JP2021032865A - Object detection device, system, method, and program - Google Patents

Object detection device, system, method, and program Download PDF

Info

Publication number
JP2021032865A
JP2021032865A JP2019157302A JP2019157302A JP2021032865A JP 2021032865 A JP2021032865 A JP 2021032865A JP 2019157302 A JP2019157302 A JP 2019157302A JP 2019157302 A JP2019157302 A JP 2019157302A JP 2021032865 A JP2021032865 A JP 2021032865A
Authority
JP
Japan
Prior art keywords
target
target distance
transmission
frequency
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019157302A
Other languages
Japanese (ja)
Other versions
JP7433812B2 (en
Inventor
渡邉 優
Masaru Watanabe
優 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2019157302A priority Critical patent/JP7433812B2/en
Publication of JP2021032865A publication Critical patent/JP2021032865A/en
Application granted granted Critical
Publication of JP7433812B2 publication Critical patent/JP7433812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

To provide a dual-frequency continuous wave-type object detection technique which improves object distance measurement accuracy without making temporal change in object distance discontinuous, even in the presence of large noise components on received signals, an effect of an environment other than an object, and an effect of how people or the like move.SOLUTION: An object detection device T disclosed herein is configured to use one of a time-integrated value of object speed and an object distance to correct the other of the time-integrated value of object speed and the object distance, and output the other that was corrected or the one that was not corrected as a high precision object distance.SELECTED DRAWING: Figure 1

Description

本開示は、2周波連続波方式の物標距離精度を向上させる技術に関する。 The present disclosure relates to a technique for improving the target distance accuracy of the dual frequency continuous wave system.

2周波連続波方式の物標検知技術が、非特許文献1等に開示されている。ここで、非特許文献1等では、各送受信周期において、第1周波数の送信信号を照射した後に、第2周波数の送信信号を照射したうえで、第1周波数の送受信信号間のビート位相と第2周波数の送受信信号間のビート位相との差に基づいて、物標距離を計測している。 A two-frequency continuous wave type target detection technique is disclosed in Non-Patent Document 1 and the like. Here, in Non-Patent Document 1 and the like, in each transmission / reception cycle, after irradiating the transmission signal of the first frequency and then irradiating the transmission signal of the second frequency, the beat phase between the transmission / reception signals of the first frequency and the first are The target distance is measured based on the difference from the beat phase between the two frequency transmission / reception signals.

特開2013−113819号公報Japanese Unexamined Patent Publication No. 2013-113819

Robert J. Mayahn et al.,“A two−frequency radar for vehicle automatic lateral control”,IEEE trans. Veh. Technol.,vol.VT−31,No.3,pp.32−39.Robert J. Mayahn et al. , "A two-frequency radar for vehicle automatic lateral control", IEEE trans. Beh. Technol. , Vol. VT-31, No. 3, pp. 32-39.

しかし、非特許文献1等では、受信信号に対してノイズ成分が大きいとき、物標以外の環境による影響があるとき、及び、人間等の動き方による影響があるとき等には、物標距離の時間変化が不連続になることがあり、物標距離の計測精度が低下することがある。 However, in Non-Patent Document 1 and the like, when the noise component of the received signal is large, when there is an influence from the environment other than the target, when there is an influence from the movement of human beings, etc., the target distance The time change of the object may become discontinuous, and the measurement accuracy of the target distance may decrease.

そこで、前記課題を解決するために、本開示は、2周波連続波方式の物標検知技術において、受信信号に対してノイズ成分が大きいとき、物標以外の環境による影響があるとき、及び、人間等の動き方による影響があるとき等でも、物標距離の時間変化を不連続にすることなく、物標距離の計測精度を向上させることを目的とする。 Therefore, in order to solve the above problems, the present disclosure discloses that in the two-frequency continuous wave type target detection technology, when the noise component is large with respect to the received signal, when there is an influence from the environment other than the target, and when there is an influence. The purpose is to improve the measurement accuracy of the target distance without discontinuing the time change of the target distance even when it is affected by the movement of human beings.

受信信号に対してノイズ成分が大きいとき、物標以外の環境による影響があるとき、及び、人間等の動き方による影響があるとき等でも、物標速度の時間変化が不連続になることが少なく、物標速度の計測精度が低下することが少ない。そこで、物標速度の時間積算値を、物標距離として出力することが考えられる(特許文献1等を参照。)。しかし、物標速度の計測開始時には、物標速度の時間積算値の積分定数が不明であり、物標速度の長時間計測後には、物標速度の速度積算値の積算誤差が大きくなる。そこで、前記課題を解決するために、第1の方法として、物標速度の時間積算値及び物標距離のうちの一方の短所を、物標速度の時間積算値及び物標距離のうちの他方の長所で補完することとした。 Even when the noise component of the received signal is large, when there is an influence from the environment other than the target, or when there is an influence from the movement of human beings, etc., the time change of the target speed may be discontinuous. There is little deterioration in the measurement accuracy of the target velocity. Therefore, it is conceivable to output the time-integrated value of the target velocity as the target distance (see Patent Document 1 and the like). However, at the start of measurement of the target speed, the integration constant of the time integration value of the target speed is unknown, and after a long time measurement of the target speed, the integration error of the speed integration value of the target speed becomes large. Therefore, in order to solve the above-mentioned problems, as a first method, one of the disadvantages of the time-integrated value of the target speed and the target distance is set as the other of the time-integrated value of the target speed and the target distance. I decided to complement it with the advantages of.

具体的には、本開示は、第1周波数及び第2周波数を用いる2周波連続波方式の物標検知装置であって、前記第1周波数の送受信信号間のビート周波数又は前記第2周波数の送受信信号間のビート周波数に基づいて、物標速度を計測する物標速度計測部と、前記第1周波数の送受信信号間のビート位相と前記第2周波数の送受信信号間のビート位相との差に基づいて、物標距離を計測する物標距離計測部と、前記物標速度の時間積算値及び前記物標距離のうちの一方に基づいて、前記物標速度の時間積算値及び前記物標距離のうちの他方を補正し、補正した前記他方又は補正しなかった前記一方を、高精度化した前記物標距離として出力する物標距離出力部と、を備えることを特徴とする物標検知装置である。 Specifically, the present disclosure is a two-frequency continuous wave type target detection device using the first frequency and the second frequency, and the beat frequency between the transmission / reception signals of the first frequency or the transmission / reception of the second frequency. Based on the difference between the target speed measuring unit that measures the target speed based on the beat frequency between the signals, the beat phase between the transmission / reception signals of the first frequency and the beat phase between the transmission / reception signals of the second frequency. Then, based on the target distance measuring unit that measures the target distance, the time integrated value of the target speed, and one of the target distances, the time integrated value of the target speed and the target distance A target detection device comprising: a target distance output unit that corrects the other of the two and outputs the corrected or uncorrected one as the highly accurate target distance. is there.

また、本開示は、第1周波数及び第2周波数を用いる2周波連続波方式の物標検知方法であって、前記第1周波数の送受信信号間のビート周波数又は前記第2周波数の送受信信号間のビート周波数に基づいて、物標速度を計測する物標速度計測ステップと、前記第1周波数の送受信信号間のビート位相と前記第2周波数の送受信信号間のビート位相との差に基づいて、物標距離を計測する物標距離計測ステップと、前記物標速度の時間積算値及び前記物標距離のうちの一方に基づいて、前記物標速度の時間積算値及び前記物標距離のうちの他方を補正し、補正した前記他方又は補正しなかった前記一方を、高精度化した前記物標距離として出力する物標距離出力ステップと、を順に備えることを特徴とする物標検知方法である。 Further, the present disclosure is a two-frequency continuous wave type target detection method using the first frequency and the second frequency, and is a beat frequency between the transmission / reception signals of the first frequency or a transmission / reception signal of the second frequency. An object based on the difference between the target speed measurement step of measuring the target speed based on the beat frequency and the beat phase between the transmission / reception signals of the first frequency and the beat phase between the transmission / reception signals of the second frequency. Based on the target distance measurement step for measuring the target distance and one of the time-integrated value of the target speed and the target distance, the other of the time-integrated value of the target speed and the target distance. The target detection method is characterized in that the target distance output step of correcting and correcting the corrected or not corrected is sequentially provided as a target distance output step for outputting the corrected target distance as the highly accurate target distance.

また、本開示は、第1周波数及び第2周波数を用いる2周波連続波方式の物標検知プログラムであって、前記第1周波数の送受信信号間のビート周波数又は前記第2周波数の送受信信号間のビート周波数に基づいて、物標速度を計測する物標速度計測ステップと、前記第1周波数の送受信信号間のビート位相と前記第2周波数の送受信信号間のビート位相との差に基づいて、物標距離を計測する物標距離計測ステップと、前記物標速度の時間積算値及び前記物標距離のうちの一方に基づいて、前記物標速度の時間積算値及び前記物標距離のうちの他方を補正し、補正した前記他方又は補正しなかった前記一方を、高精度化した前記物標距離として出力する物標距離出力ステップと、を順にコンピュータに実行させるための物標検知プログラムである。 Further, the present disclosure is a two-frequency continuous wave type target detection program using the first frequency and the second frequency, and is a beat frequency between the transmission / reception signals of the first frequency or a transmission / reception signal of the second frequency. An object based on the difference between the target speed measurement step of measuring the target speed based on the beat frequency and the beat phase between the transmission / reception signals of the first frequency and the beat phase between the transmission / reception signals of the second frequency. Based on the target distance measurement step for measuring the target distance and one of the time-integrated value of the target speed and the target distance, the other of the time-integrated value of the target speed and the target distance. This is a target detection program for causing a computer to sequentially execute a target distance output step of correcting and outputting the corrected one or the uncorrected one as the highly accurate target distance.

これらの構成によれば、受信信号に対してノイズ成分が大きいとき、物標以外の環境による影響があるとき、及び、人間等の動き方による影響があるとき等でも、物標距離の時間変化を不連続にすることなく、物標距離の計測精度を向上させることができる。 According to these configurations, the target distance changes with time even when the noise component of the received signal is large, when it is affected by an environment other than the target, or when it is affected by the movement of humans or the like. It is possible to improve the measurement accuracy of the target distance without discontinuing.

また、本開示は、前記物標距離出力部は、前記物標距離の時間変化が不連続であるときに、前記物標速度の時間積算値に基づいて、前記物標距離を補正し、補正した前記物標距離又は補正しなかった前記物標速度の時間積算値を、高精度化した前記物標距離として出力することを特徴とする物標検知装置である。 Further, in the present disclosure, the target distance output unit corrects the target distance based on the time integration value of the target speed when the time change of the target distance is discontinuous. The target detection device is characterized in that the time-integrated value of the target distance or the uncorrected target speed is output as the highly accurate target distance.

この構成によれば、物標距離の短所(物標距離の時間変化の不連続性)を、物標速度の時間積算値の長所(物標速度の時間変化の連続性)で補完することができる。 According to this configuration, the disadvantage of the target distance (discontinuity of the time change of the target distance) can be complemented by the advantage of the time integrated value of the target speed (continuity of the time change of the target speed). it can.

また、本開示は、前記物標距離出力部は、計測開始時かつ前記物標距離の時間変化が連続であるときに、又は、一定期間毎かつ前記物標距離の時間変化が連続であるときに、前記物標距離に基づいて、前記物標速度の時間積算値を補正し、補正した前記物標速度の時間積算値又は補正しなかった前記物標距離を、高精度化した前記物標距離として出力することを特徴とする物標検知装置である。 Further, in the present disclosure, when the target distance output unit starts measurement and the time change of the target distance is continuous, or when the time change of the target distance is continuous at regular intervals. In addition, based on the target distance, the time-integrated value of the target speed is corrected, and the corrected time-integrated value of the target speed or the uncorrected target distance is highly accurate. It is a target detection device characterized by outputting as a distance.

この構成によれば、物標速度の時間積算値の短所(積分定数及び積算誤差の考慮要)を、物標距離の長所(積分定数及び積算誤差の考慮不要)で補完することができる。 According to this configuration, the disadvantage of the time integration value of the target velocity (need to consider the integration constant and the integration error) can be complemented by the advantage of the target distance (no need to consider the integration constant and the integration error).

受信信号に対してノイズ成分が小さいとき、物標以外の環境による影響が少ないとき、及び、人間等の動き方による影響が少ないとき等には、送受信実信号に基づく物標距離と送受信虚信号に基づく物標距離との差が小さい。一方で、受信信号に対してノイズ成分が大きいとき、物標以外の環境による影響があるとき、及び、人間等の動き方による影響があるとき等には、送受信実信号に基づく物標距離と送受信虚信号に基づく物標距離との差が大きい。そこで、前記課題を解決するために、第2の方法として、送受信実信号に基づく物標距離と送受信虚信号に基づく物標距離との差に基づいて、送受信実信号に基づく物標距離及び送受信虚信号に基づく物標距離の信頼性を判定することとした。 When the noise component is small with respect to the received signal, when the influence of the environment other than the target is small, or when the influence of the movement of human beings is small, the target distance based on the transmitted / received real signal and the transmitted / received imaginary signal The difference from the target distance based on is small. On the other hand, when the noise component is large with respect to the received signal, when there is an influence from the environment other than the target, or when there is an influence from the movement of human beings, etc., the target distance based on the transmitted / received actual signal is used. There is a large difference from the target distance based on the transmitted / received imaginary signal. Therefore, in order to solve the above problem, as a second method, the target distance based on the transmission / reception real signal and the transmission / reception based on the difference between the target distance based on the transmission / reception real signal and the target distance based on the transmission / reception imaginary signal. It was decided to judge the reliability of the target distance based on the imaginary signal.

具体的には、本開示は、前記第1周波数の送受信実信号間のビート位相と前記第2周波数の送受信実信号間のビート位相との差に基づいて、前記物標距離を計測する実信号物標距離計測部と、前記第1周波数の送受信虚信号間のビート位相と前記第2周波数の送受信虚信号間のビート位相との差に基づいて、前記物標距離を計測する虚信号物標距離計測部と、前記送受信実信号に基づく前記物標距離と前記送受信虚信号に基づく前記物標距離との差に基づいて、前記送受信実信号に基づく前記物標距離及び前記送受信虚信号に基づく前記物標距離の信頼性を判定する物標距離信頼性判定部と、をさらに備えることを特徴とする物標検知装置である。 Specifically, the present disclosure measures the target distance based on the difference between the beat phase between the transmission / reception real signals of the first frequency and the beat phase between the transmission / reception real signals of the second frequency. An imaginary signal target that measures the target distance based on the difference between the target distance measuring unit and the beat phase between the transmitted / received imaginary signal of the first frequency and the beat phase between the transmitted / received imaginary signal of the second frequency. Based on the distance measuring unit and the difference between the target distance based on the transmission / reception real signal and the target distance based on the transmission / reception imaginary signal, the target distance based on the transmission / reception real signal and the transmission / reception imaginary signal. The target detection device is further provided with a target distance reliability determination unit for determining the reliability of the target distance.

この構成によれば、受信信号に対してノイズ成分が大きいとき、物標以外の環境による影響があるとき、及び、人間等の動き方による影響があるとき等でも、物標距離の時間変化を連続にするより前に、物標距離の信頼性を判定することができる。 According to this configuration, even when the noise component of the received signal is large, when there is an influence due to the environment other than the target, and when there is an influence due to the movement of human beings, etc., the time change of the target distance can be obtained. The reliability of the target distance can be determined before making it continuous.

また、本開示は、前記物標距離信頼性判定部は、前記送受信実信号及び前記送受信虚信号に基づく前記物標距離の信頼性が高いときに、前記送受信実信号及び前記送受信虚信号に基づく前記物標距離のうちの一方又は両方に基づいて、高精度化した前記物標距離を出力することを特徴とする物標検知装置である。 Further, in the present disclosure, the target distance reliability determination unit is based on the transmission / reception real signal and the transmission / reception imaginary signal when the target distance is highly reliable based on the transmission / reception real signal and the transmission / reception imaginary signal. It is a target detection device characterized by outputting a highly accurate target distance based on one or both of the target distances.

この構成によれば、送受信実信号及び送受信虚信号に基づく物標距離の信頼性が高いときには、特段の処理もなく物標距離の時間変化を連続にできるはずである。 According to this configuration, when the reliability of the target distance based on the transmission / reception real signal and the transmission / reception imaginary signal is high, it should be possible to continuously change the target distance over time without any special processing.

また、本開示は、前記物標距離信頼性判定部は、前記送受信実信号及び前記送受信虚信号に基づく前記物標距離の信頼性が低いときに、前記送受信実信号及び前記送受信虚信号に基づく前記物標距離のうちの前回までの送受信周期の前記物標距離により近い一方に基づいて、又は、前記前回までの送受信周期の前記物標距離に基づいて推定した現時点での送受信周期の前記物標距離に基づいて、高精度化した前記物標距離を出力することを特徴とする物標検知装置である。 Further, in the present disclosure, the target distance reliability determination unit is based on the transmission / reception real signal and the transmission / reception imaginary signal when the reliability of the target distance based on the transmission / reception real signal and the transmission / reception imaginary signal is low. The object of the current transmission / reception cycle estimated based on one of the target distances that is closer to the target distance of the transmission / reception cycle up to the previous time, or based on the target distance of the transmission / reception cycle up to the previous time. It is a target detection device characterized by outputting the target distance with high accuracy based on the target distance.

この構成によれば、送受信実信号及び送受信虚信号に基づく物標距離の信頼性が低いときでも、上記の処理により物標距離の時間変化を連続にすることができる。 According to this configuration, even when the reliability of the target distance based on the transmission / reception real signal and the transmission / reception imaginary signal is low, the time change of the target distance can be made continuous by the above processing.

また、本開示は、以上に記載の物標検知装置と、前記2周波連続波方式のレーダ送受信装置と、を備えることを特徴とする物標検知システムである。 Further, the present disclosure is a target detection system including the target detection device described above and the dual frequency continuous wave type radar transmission / reception device.

この構成によれば、受信信号に対してノイズ成分が大きいとき、物標以外の環境による影響があるとき、及び、人間等の動き方による影響があるとき等でも、物標距離の時間変化を不連続にすることなく、物標距離の計測精度を向上させることができる。 According to this configuration, the time change of the target distance can be changed even when the noise component of the received signal is large, when there is an influence due to an environment other than the target, or when there is an influence due to the movement of a human being or the like. It is possible to improve the measurement accuracy of the target distance without making it discontinuous.

このように、本開示は、2周波連続波方式の物標検知技術において、受信信号に対してノイズ成分が大きいとき、物標以外の環境による影響があるとき、及び、人間等の動き方による影響があるとき等でも、物標距離の時間変化を不連続にすることなく、物標距離の計測精度を向上させることができる。 As described above, in the two-frequency continuous wave type target detection technology, the present disclosure depends on the noise component of the received signal, the influence of the environment other than the target, and the movement of humans and the like. Even when there is an influence, the measurement accuracy of the target distance can be improved without discontinuing the time change of the target distance.

第1実施形態の物標検知装置の構成を示す図である。It is a figure which shows the structure of the target detection apparatus of 1st Embodiment. 第1実施形態の物標検知方法の手順を示す図である。It is a figure which shows the procedure of the target detection method of 1st Embodiment. 第1実施形態の物標検知方法の詳細を示す図である。It is a figure which shows the detail of the target detection method of 1st Embodiment. 第1実施形態の物標検知方法の詳細を示す図である。It is a figure which shows the detail of the target detection method of 1st Embodiment. 第1実施形態の物標検知方法の詳細を示す図である。It is a figure which shows the detail of the target detection method of 1st Embodiment. 第2実施形態の物標検知装置の構成を示す図である。It is a figure which shows the structure of the target detection apparatus of 2nd Embodiment. 第2実施形態の物標検知方法の手順を示す図である。It is a figure which shows the procedure of the target detection method of 2nd Embodiment. 第2実施形態の物標検知方法の詳細を示す図である。It is a figure which shows the detail of the target detection method of 2nd Embodiment. 第3実施形態の物標検知装置の構成を示す図である。It is a figure which shows the structure of the target detection apparatus of 3rd Embodiment. 第4実施形態の物標検知装置の構成を示す図である。It is a figure which shows the structure of the target detection apparatus of 4th Embodiment. 第5実施形態の物標検知装置の構成を示す図である。It is a figure which shows the structure of the target detection apparatus of 5th Embodiment.

添付の図面を参照して本開示の実施形態を説明する。以下に説明する実施形態は本開示の実施の例であり、本開示は以下の実施形態に制限されるものではない。 Embodiments of the present disclosure will be described with reference to the accompanying drawings. The embodiments described below are examples of the embodiments of the present disclosure, and the present disclosure is not limited to the following embodiments.

(第1実施形態)
第1実施形態の物標検知装置の構成を図1に示す。第1実施形態の物標検知方法の手順を図2に示す。第1実施形態の物標検知方法の詳細を図3〜5に示す。物標検知装置Tは、物標速度計測部1、物標距離計測部2及び物標距離出力部3から構成され、図2の物標検知プログラムをコンピュータにインストールして実現可能である。
(First Embodiment)
The configuration of the target detection device of the first embodiment is shown in FIG. The procedure of the target detection method of the first embodiment is shown in FIG. The details of the target detection method of the first embodiment are shown in FIGS. 3 to 5. The target detection device T is composed of a target speed measurement unit 1, a target distance measurement unit 2, and a target distance output unit 3, and can be realized by installing the target detection program of FIG. 2 on a computer.

受信信号に対してノイズ成分が大きいとき、物標以外の環境による影響があるとき、及び、人間等の動き方による影響があるとき等には、物標距離d(t)の時間変化が不連続になることがあり、物標距離d(t)の計測精度が低下することがある。一方で、受信信号に対してノイズ成分が大きいとき、物標以外の環境による影響があるとき、及び、人間等の動き方による影響があるとき等でも、物標速度v(t)の時間変化が不連続になることが少なく、物標速度v(t)の計測精度が低下することが少ない。 When the noise component of the received signal is large, when there is an influence from the environment other than the target, or when there is an influence from the movement of human beings, etc., the time change of the target distance d (t) is insignificant. It may be continuous, and the measurement accuracy of the target distance d (t) may decrease. On the other hand, the time change of the target velocity v (t) even when the noise component of the received signal is large, when there is an influence due to an environment other than the target, or when there is an influence due to the movement of a human being or the like. Is less likely to be discontinuous, and the measurement accuracy of the target velocity v (t) is less likely to decrease.

そこで、物標速度v(t)の時間積算値d(t)を、物標距離として出力することが考えられる。しかし、物標速度v(t)の計測開始時には、物標速度v(t)の時間積算値d(t)の積分定数が不明であり、物標速度v(t)の長時間計測後には、物標速度v(t)の速度積算値d(t)の積算誤差が大きくなる。そこで、物標速度v(t)の時間積算値d(t)及び物標距離d(t)のうちの一方の短所を、物標速度v(t)の時間積算値d(t)及び物標距離d(t)のうちの他方の長所で補完する。 Therefore, the target velocity v (t) is a time integration value d v (t), it is conceivable to output a target distance. However, at the start of measurement of the target velocity v (t), the integration constant of the time-integrated value dv (t) of the target velocity v (t) is unknown, and after the long-term measurement of the target velocity v (t) the integrated error of the speed integrated value d v of the target speed v (t) (t) increases. Therefore, the target velocity v (t) of the time integrated value d v (t) and one of the disadvantages of the target distance d (t), the time integration value d v of the target speed v (t) (t) And the advantage of the other of the target distance d (t).

物標速度計測部1は、第1周波数の送受信信号間のビート周波数又は第2周波数の送受信信号間のビート周波数に基づいて、物標速度v(t)を計測する(ステップS1)。なお、送受信信号は、送受信実信号でもよく、送受信虚信号でもよい。 The target velocity measuring unit 1 measures the target velocity v (t) based on the beat frequency between the transmission / reception signals of the first frequency or the beat frequency between the transmission / reception signals of the second frequency (step S1). The transmission / reception signal may be a transmission / reception real signal or a transmission / reception imaginary signal.

物標距離計測部2は、第1周波数の送受信信号間のビート位相と第2周波数の送受信信号間のビート位相との差に基づいて、物標距離d(t)を計測する(ステップS2)。なお、送受信信号は、送受信実信号でもよく、送受信虚信号でもよい。 The target distance measuring unit 2 measures the target distance d (t) based on the difference between the beat phase between the transmission / reception signals of the first frequency and the beat phase between the transmission / reception signals of the second frequency (step S2). .. The transmission / reception signal may be a transmission / reception real signal or a transmission / reception imaginary signal.

物標距離出力部3は、物標速度v(t)の時間積算値d(t)及び物標距離d(t)のうちの一方に基づいて、物標速度v(t)の時間積算値d(t)及び物標距離d(t)のうちの他方を補正し、補正した他方又は補正しなかった一方を、高精度化した物標距離として出力する(ステップS3〜S9)。具体的な処理について、以下に説明する。 The target distance output unit 3 time-integrates the target speed v (t) based on one of the target speed v (t) time integration value d v (t) and the target distance d (t). The other of the values d v (t) and the target distance d (t) is corrected, and the corrected or uncorrected one is output as a highly accurate target distance (steps S3 to S9). Specific processing will be described below.

図3の上段では、物標速度v(t)の時間変化を示す。図3の下段では、物標速度v(t)の時間積算値d(t)の時間変化を示す。図3の上段において、物標速度v(t)が0であるときには、送受信信号間のビート周波数は0であるため、送受信信号間のビート位相を確定することができず、物標距離d(t)を計測することができない。図3の下段において、物標速度v(t)の時間積算値d(t)は、計測開始時のt=0では、物標距離d(t)=0に基づいて真値0に初期化されているが、長時間計測後のt→大では、真値に積算誤差を重畳している(「誤差あり」が「誤差なし」から離れている。)。 The upper part of FIG. 3 shows the time change of the target velocity v (t). In the lower part of FIG. 3 shows the time variation of the time integrated value d v (t) of the target velocity v (t). In the upper part of FIG. 3, when the target velocity v (t) is 0, the beat frequency between the transmission / reception signals is 0, so that the beat phase between the transmission / reception signals cannot be determined, and the target distance d ( t) cannot be measured. In the lower part of FIG. 3, the time integration value d v of the target speed v (t) (t) is the t = 0 at the start of measurement, initially true value 0 on the basis of the target distance d (t) = 0 However, when t → large after long-term measurement, the integration error is superimposed on the true value (“with error” is far from “without error”).

物標距離出力部3は、物標距離d(t)の時間変化が不連続であるときに(ステップS3、NO)、物標速度v(t)の時間積算値d(t)に基づいて、物標距離d(t)を補正し(ステップS4)、補正した物標距離d(t)又は補正しなかった物標速度v(t)の時間積算値d(t)を、高精度化した物標距離として出力する(ステップS5)。 The target distance output unit 3 is based on the time integration value d v (t) of the target speed v (t) when the time change of the target distance d (t) is discontinuous (step S3, NO). Te, corrects the target distance d (t) (step S4), and the time integration value d v of the corrected target distance d (t) or correction that did not target velocity v (t) a (t), high It is output as a refined target distance (step S5).

ここで、物標距離出力部3は、以下の方法等により、物標距離d(t)の時間変化が不連続であることを判定する:(1)d(t)−d(t−nΔt)とd(t)−d(t−nΔt)との差が所定閾値より大きいと判定(Δtは1送受信周期、nは1以上の整数。)、(2)d(t−nΔt)〜d(t−Δt)と比べてd(t)が大きく異なると判定、(3)v(t)が0に近いため、d(t)が大きな誤差を有すると判定。 Here, the target distance output unit 3 determines that the time change of the target distance d (t) is discontinuous by the following method or the like: (1) d (t) −d (t−nΔt). ) and determining the difference between the d v (t) -d v ( t-nΔt) is greater than a predetermined threshold value (Delta] t is 1 reception period, n represents an integer of 1 or more.), (2) d ( t-nΔt) It is determined that d (t) is significantly different from that of ~ d (t−Δt), and (3) it is determined that d (t) has a large error because v (t) is close to 0.

そして、物標距離出力部3は、以下の方法等により、物標速度v(t)の時間積算値d(t)に基づいて、物標距離d(t)を補正する:(1)d(t)が大きな誤差を有するものの、d(t)が大きな誤差を有さないと考えて、d(t)がd(t)に等しいと補正、(2)d(t)が大きな誤差を有するため、d(t)が多少は誤差を有すると考えて、d(t)が(d(t−Δt)+d(t−Δt))/2に等しいと補正。 Then, the target distance output unit 3 corrects the target distance d (t) based on the time integrated value d v (t) of the target speed v (t) by the following method or the like: (1). Considering that d (t) has a large error but d v (t) does not have a large error, it is corrected if d (t) is equal to d v (t), (2) d (t) Since it has a large error, it is considered that d v (t) has some error, and it is corrected that d (t) is equal to (d v (t−Δt) + d (t−Δt)) / 2.

なお、物標距離出力部3は、将来に物標距離d(t)の時間変化が不連続であるかどうかを判定するために、補正した物標距離d(t)を記憶しておく。 The target distance output unit 3 stores the corrected target distance d (t) in order to determine whether or not the time change of the target distance d (t) is discontinuous in the future.

図4の上段では、物標速度v(t)の時間積算値d(t)の時間変化を示す。図4の下段では、物標距離d(t)の時間変化を示す。d(t)は不連続性を有さないが、d(t)は不連続性を有している。そこで、d(t)はd(t)に近い値に補正される。そして、補正されたd(t)又は補正されなかったd(t)が出力される。 In the upper part of FIG. 4 shows the time variation of the time integrated value d v (t) of the target velocity v (t). The lower part of FIG. 4 shows the time change of the target distance d (t). d v (t 1 ) has no discontinuity, but d (t 1 ) has discontinuity. Therefore, d (t 1 ) is corrected to a value close to d v (t 1). Then, the corrected d (t 1 ) or the uncorrected d v (t 1 ) is output.

物標距離出力部3は、計測開始時(ステップS6、YES)かつ物標距離d(t)の時間変化が連続であるときに(ステップS3、YES)、物標距離d(t)に基づいて、物標速度v(t)の時間積算値d(t)を補正し(ステップS7)、補正した物標速度v(t)の時間積算値d(t)又は補正しなかった物標距離d(t)を、高精度化した物標距離として出力する(ステップS8)。又は、物標距離出力部3は、一定期間毎(ステップS6、YES)かつ物標距離d(t)の時間変化が連続であるときに(ステップS3、YES)、物標距離d(t)に基づいて、物標速度v(t)の時間積算値d(t)を補正し(ステップS7)、補正した物標速度v(t)の時間積算値d(t)又は補正しなかった物標距離d(t)を、高精度化した物標距離として出力する(ステップS8)。 The target distance output unit 3 is based on the target distance d (t) at the start of measurement (step S6, YES) and when the time change of the target distance d (t) is continuous (step S3, YES). Then, the time-integrated value dv (t) of the target speed v (t) is corrected (step S7), and the time-integrated value dv (t) of the corrected target speed v (t) or the uncorrected object. The target distance d (t) is output as a highly accurate target distance (step S8). Alternatively, the target distance output unit 3 sets the target distance d (t) at regular intervals (step S6, YES) and when the time change of the target distance d (t) is continuous (step S3, YES). Based on the above, the time-integrated value dv (t) of the targeting speed v (t) is corrected (step S7), and the time-integrated value dv (t) of the corrected targeting speed v (t) or not corrected. The target distance d (t) is output as a highly accurate target distance (step S8).

ここで、物標距離出力部3は、以下の方法等により、物標距離d(t)の時間変化が連続であることを判定する:(1)d(t)−d(t−nΔt)とd(t)−d(t−nΔt)との差が所定閾値より小さいと判定(Δtは1送受信周期、nは1以上の整数。)、(2)d(t−nΔt)〜d(t−Δt)と比べてd(t)が大きく異ならないと判定、(3)v(t)が0に近くないため、d(t)が大きな誤差を有さないと判定。 Here, the target distance output unit 3 determines that the time change of the target distance d (t) is continuous by the following method or the like: (1) d (t) −d (t−nΔt). It is determined that the difference between d v (t) -d v (t-nΔt) is smaller than the predetermined threshold value (Δt is one transmission / reception cycle, n is an integer of 1 or more), (2) d (t-nΔt) to It is determined that d (t) is not significantly different from d (t−Δt), and (3) v (t) is not close to 0, so it is determined that d (t) does not have a large error.

そして、物標距離出力部3は、ステップS6の計測開始時として、t≒0を設定し、ステップS6の一定期間として、許容可能な最大限の積算誤差が生じる期間を設定する。 Then, the target distance output unit 3 sets t≈0 as the start of measurement in step S6, and sets a period in which the maximum allowable integration error occurs as a fixed period in step S6.

さらに、物標距離出力部3は、以下の方法等により、物標距離d(t)に基づいて、物標速度v(t)の時間積算値d(t)を補正する:(1)d(t)が大きな誤差を有するものの、d(t)が大きな誤差を有さないと考えて、d(t)がd(t)に等しいと補正、(2)d(t)が大きな誤差を有するため、d(t)が多少は誤差を有すると考えて、d(t)が(d(t−Δt)+d(t−Δt))/2に等しいと補正。 Further, the target distance output unit 3 corrects the time integrated value d v (t) of the target speed v (t) based on the target distance d (t) by the following method or the like: (1). although d v (t) has a large error, consider d (t) does not have a large error, correcting the d v (t) is equal to d (t), (2) d v (t) Has a large error, so it is considered that d (t) has some error, and it is corrected that d v (t) is equal to (d (t−Δt) + dv (t−Δt)) / 2.

なお、物標距離出力部3は、将来に物標距離d(t)の時間変化が連続であるかどうかを判定するために、補正した物標速度v(t)の時間積算値d(t)を記憶しておく。 Incidentally, the target distance output section 3, in order to determine whether the time change of the target distance d (t) is continuous in the future, the corrected target speed v of the (t) time integration value d v ( Remember t).

図5の上段では、物標速度v(t)の時間積算値d(t)の時間変化を示す。図5の下段では、物標距離d(t)の時間変化を示す。d(t)は計測開始時の物標速度の時間積算値であり、d(t)は不連続性を有さない。そこで、d(t)はd(t)に近い値に補正される。そして、補正されたd(t)又は補正されなかったd(t)が出力される。d(t)は一定期間毎の物標速度の時間積算値であり、d(t)は不連続性を有さない。そこで、d(t)はd(t)に近い値に補正される。そして、補正されたd(t)又は補正されなかったd(t)が出力される。 In the upper part of FIG. 5 shows the time variation of the time integrated value d v (t) of the target velocity v (t). The lower part of FIG. 5 shows the time change of the target distance d (t). d v (t 3 ) is a time-integrated value of the target velocity at the start of measurement, and d (t 3 ) has no discontinuity. Therefore, d v (t 3 ) is corrected to a value close to d (t 3). Then, the corrected dv (t 3 ) or the uncorrected d (t 3 ) is output. d v (t 4 ) is a time-integrated value of the target velocity at regular intervals, and d (t 4 ) has no discontinuity. Therefore, d v (t 4 ) is corrected to a value close to d (t 4). Then, the corrected dv (t 4 ) or the uncorrected d (t 4 ) is output.

物標距離出力部3は、計測開始時でない時(ステップS6、NO)かつ物標距離d(t)の時間変化が連続であるときに(ステップS3、YES)、計測された物標速度v(t)の時間積算値d(t)又は計測された物標距離d(t)を、高精度化した物標距離として出力する(ステップS9)。又は、物標距離出力部3は、一定期間毎でない時(ステップS6、NO)かつ物標距離d(t)の時間変化が連続であるときに(ステップS3、YES)、計測された物標速度v(t)の時間積算値d(t)又は計測された物標距離d(t)を、高精度化した物標距離として出力する(ステップS9)。 The target distance output unit 3 measures the measured target speed v when it is not at the start of measurement (step S6, NO) and when the time change of the target distance d (t) is continuous (step S3, YES). The time-integrated value dv (t) of (t) or the measured target distance d (t) is output as a highly accurate target distance (step S9). Alternatively, the target distance output unit 3 measures the target when it is not every fixed period (step S6, NO) and when the time change of the target distance d (t) is continuous (step S3, YES). velocity v (t) is a time integration value d v (t) or measured target distance d (t), and outputs the target distance and high accuracy (step S9).

図4の上段では、物標速度v(t)の時間積算値d(t)の時間変化を示す。図4の下段では、物標距離d(t)の時間変化を示す。d(t)は計測開始時でない時又は一定期間毎でない時の物標速度の時間積算値であり、d(t)は不連続性を有さない。そこで、計測されたd(t)又は計測されたd(t)が出力される。 In the upper part of FIG. 4 shows the time variation of the time integrated value d v (t) of the target velocity v (t). The lower part of FIG. 4 shows the time change of the target distance d (t). d v (t 2 ) is a time-integrated value of the target velocity when the measurement is not started or not every fixed period, and d (t 2 ) has no discontinuity. Therefore, the measured d v (t 2 ) or the measured d (t 2 ) is output.

このように、受信信号に対してノイズ成分が大きいとき、物標以外の環境による影響があるとき、及び、人間等の動き方による影響があるとき等でも、物標距離の時間変化を不連続にすることなく、物標距離の計測精度を向上させることができる。 In this way, the time change of the target distance is discontinuous even when the noise component of the received signal is large, when it is affected by the environment other than the target, or when it is affected by the movement of humans or the like. It is possible to improve the measurement accuracy of the target distance without using the above.

そして、図4に示したように、物標距離d(t)の短所(物標距離d(t)の時間変化の不連続性)を、物標速度v(t)の時間積算値d(t)の長所(物標速度v(t)の時間変化の連続性)で補完することができる。さらに、図5に示したように、物標速度v(t)の時間積算値d(t)の短所(積分定数及び積算誤差の考慮要)を、物標距離d(t)の長所(積分定数及び積算誤差の考慮不要)で補完することができる。 Then, as shown in FIG. 4, target distance d (the discontinuity of the time change target distance d (t)) Disadvantages of (t), the time integration value d v of the target speed v (t) It can be complemented by the advantage of (t) (continuity of time change of target velocity v (t)). Further, as shown in FIG. 5, the disadvantage of the time integration value d v (t) of the target velocity v (t) (need to consider the integration constant and the integration error) and the advantage of the target distance d (t) ( It can be complemented by (no need to consider the integration constant and integration error).

(第2実施形態)
第2実施形態の物標検知装置の構成を図6に示す。第2実施形態の物標検知方法の手順を図7に示す。第2実施形態の物標検知方法の詳細を図8に示す。物標検知装置Tは、実信号物標距離計測部4、虚信号物標距離計測部5及び物標距離信頼性判定部6から構成され、図7の物標検知プログラムをコンピュータにインストールして実現可能である。
(Second Embodiment)
The configuration of the target detection device of the second embodiment is shown in FIG. The procedure of the target detection method of the second embodiment is shown in FIG. The details of the target detection method of the second embodiment are shown in FIG. The target detection device T is composed of a real signal target distance measurement unit 4, an imaginary signal target distance measurement unit 5, and a target distance reliability determination unit 6, and the target detection program of FIG. 7 is installed in a computer. It is feasible.

受信信号に対してノイズ成分が大きいとき、物標以外の環境による影響があるとき、及び、人間等の動き方による影響があるとき等には、物標距離d(t)の時間変化が不連続になることがあり、物標距離d(t)の計測精度が低下することがある。よって、受信信号に対してノイズ成分が大きいとき、物標以外の環境による影響があるとき、及び、人間等の動き方による影響があるとき等には、送受信実信号に基づく物標距離d(t)と送受信虚信号に基づく物標距離d(t)との差|d(t)−d(t)|が大きい。 When the noise component of the received signal is large, when there is an influence from the environment other than the target, or when there is an influence from the movement of human beings, etc., the time change of the target distance d (t) is insignificant. It may be continuous, and the measurement accuracy of the target distance d (t) may decrease. Therefore, when the noise component is large with respect to the received signal, when there is an influence due to the environment other than the target, or when there is an influence due to the movement of human beings, etc., the target distance d I based on the transmitted / received actual signal. The difference between (t) and the target distance d Q (t) based on the transmitted / received imaginary signal | d I (t) − d Q (t) | is large.

一方で、受信信号に対してノイズ成分が小さいとき、物標以外の環境による影響が少ないとき、及び、人間等の動き方による影響が少ないとき等には、送受信実信号に基づく物標距離d(t)と送受信虚信号に基づく物標距離d(t)との差|d(t)−d(t)|が小さい。そこで、送受信実信号に基づく物標距離d(t)と送受信虚信号に基づく物標距離d(t)との差|d(t)−d(t)|に基づいて、送受信実信号に基づく物標距離d(t)及び送受信虚信号に基づく物標距離d(t)の信頼性を判定する。 On the other hand, when the noise component is small with respect to the received signal, when the influence of the environment other than the target is small, or when the influence of the movement of human beings is small, the target distance d based on the transmitted / received actual signal is small. The difference between I (t) and the target distance d Q (t) based on the transmitted / received imaginary signal | d I (t) −d Q (t) | is small. Therefore, transmission / reception is based on the difference between the target distance d I (t) based on the transmission / reception real signal and the target distance d Q (t) based on the transmission / reception imaginary signal | d I (t) −d Q (t) | The reliability of the target distance d I (t) based on the real signal and the target distance d Q (t) based on the transmitted / received imaginary signal is determined.

実信号物標距離計測部4は、第1周波数の送受信実信号間のビート位相と第2周波数の送受信実信号間のビート位相との差に基づいて、送受信実信号に基づく物標距離d(t)を計測する(ステップS11)。 The real signal target distance measuring unit 4 is based on the difference between the beat phase between the transmission and reception real signals of the first frequency and the beat phase between the transmission and reception real signals of the second frequency, and the target distance d I based on the transmission and reception real signals. (T) is measured (step S11).

虚信号物標距離計測部5は、第1周波数の送受信虚信号間のビート位相と第2周波数の送受信虚信号間のビート位相との差に基づいて、送受信虚信号に基づく物標距離d(t)を計測する(ステップS12)。 The imaginary signal target distance measuring unit 5 is based on the difference between the beat phase between the transmitted and received imaginary signals of the first frequency and the beat phase between the transmitted and received imaginary signals of the second frequency, and the target distance d Q based on the transmitted and received imaginary signals. (T) is measured (step S12).

物標距離信頼性判定部6は、送受信実信号に基づく物標距離d(t)と送受信虚信号に基づく物標距離d(t)との差|d(t)−d(t)|に基づいて、送受信実信号に基づく物標距離d(t)及び送受信虚信号に基づく物標距離d(t)の信頼性を判定する(ステップS13)。 The target distance reliability determination unit 6 determines the difference between the target distance d I (t) based on the transmitted / received real signal and the target distance d Q (t) based on the transmitted / received imaginary signal | d I (t) −d Q ( Based on t) |, the reliability of the target distance d I (t) based on the transmitted / received real signal and the target distance d Q (t) based on the transmitted / received imaginary signal is determined (step S13).

ここで、物標距離信頼性判定部6は、送受信実信号に基づく物標距離d(t)と送受信虚信号に基づく物標距離d(t)との差|d(t)−d(t)|が所定閾値以下であるときには、送受信実信号に基づく物標距離d(t)及び送受信虚信号に基づく物標距離d(t)の信頼性が高いと判定する(ステップS14、YES)。 Here, the target distance reliability determination unit 6 determines the difference between the target distance d I (t) based on the transmitted / received real signal and the target distance d Q (t) based on the transmitted / received imaginary signal | d I (t) −. When d Q (t) | is equal to or less than a predetermined threshold value, it is determined that the target distance d I (t) based on the transmitted / received real signal and the target distance d Q (t) based on the transmitted / received imaginary signal are highly reliable ( Step S14, YES).

一方で、物標距離信頼性判定部6は、送受信実信号に基づく物標距離d(t)と送受信虚信号に基づく物標距離d(t)との差|d(t)−d(t)|が所定閾値より大きいときには、送受信実信号に基づく物標距離d(t)及び送受信虚信号に基づく物標距離d(t)の信頼性が低いと判定する(ステップS14、NO)。 On the other hand, the target distance reliability determination unit 6 determines the difference between the target distance d I (t) based on the transmitted / received real signal and the target distance d Q (t) based on the transmitted / received imaginary signal | d I (t) −. When d Q (t) | is larger than a predetermined threshold value, it is determined that the target distance d I (t) based on the transmitted / received real signal and the target distance d Q (t) based on the transmitted / received imaginary signal are unreliable (step). S14, NO).

図8の上段では、送受信実信号に基づく物標距離d(t)の時間変化を示す。図8の中段では、送受信虚信号に基づく物標距離d(t)の時間変化を示す。図8の下段では、送受信実信号に基づく物標距離d(t)と送受信虚信号に基づく物標距離d(t)との差|d(t)−d(t)|の時間変化を示す。 The upper part of FIG. 8 shows the time change of the target distance d I (t) based on the transmitted / received real signal. The middle part of FIG. 8 shows the time change of the target distance d Q (t) based on the transmission / reception imaginary signal. In the lower part of FIG. 8, the difference between the target distance d I (t) based on the transmitted / received real signal and the target distance d Q (t) based on the transmitted / received imaginary signal | d I (t) − d Q (t) | Shows time change.

(t)は不連続性を有さず、d(t)も不連続性を有さず、d(t)とd(t)はほぼ等しく、|d(t)−d(t)|はほぼ0である。d(t)は不連続性を有し、d(t)は不連続性を有さず、d(t)とd(t)は大きく異なり、|d(t)−d(t)|は有限値となる。d(t)は不連続性を有さず、d(t)は不連続性を有し、d(t)とd(t)は大きく異なり、|d(t)−d(t)|は有限値となる。d(t)は不連続性を有し、d(t)も不連続性を有し、d(t)とd(t)は大きく異なり、|d(t)−d(t)|は有限値となる。 d I (t 5 ) has no discontinuity, d Q (t 5 ) also has no discontinuity, d I (t 5 ) and d Q (t 5 ) are almost equal, | d I (T 5 ) -d Q (t 5 ) | is almost 0. d I (t 6 ) has discontinuity, d Q (t 6 ) has no discontinuity, d I (t 6 ) and d Q (t 6 ) are very different, | d I ( t 6 ) -d Q (t 6 ) | is a finite value. d I (t 7 ) has no discontinuity, d Q (t 7 ) has discontinuity, d I (t 7 ) and d Q (t 7 ) are very different, | d I ( t 7 ) -d Q (t 7 ) | is a finite value. d I (t 8 ) has a discontinuity, d Q (t 8 ) also has a discontinuity, and d I (t 8 ) and d Q (t 8 ) are very different, | d I (t 8). 8 ) -d Q (t 8 ) | is a finite value.

物標距離信頼性判定部6は、送受信実信号及び送受信虚信号に基づく物標距離d(t)、d(t)の信頼性が高いときに(ステップS14、YES)、送受信実信号及び送受信虚信号に基づく物標距離d(t)、d(t)のうちの一方又は両方に基づいて、高精度化した物標距離を出力する(ステップS15)。 When the target distance reliability determination unit 6 has high reliability of the target distances d I (t) and d Q (t) based on the transmission / reception real signal and the transmission / reception imaginary signal (step S14, YES), the target transmission / reception real signal And, based on one or both of the target distances d I (t) and d Q (t) based on the transmission / reception imaginary signals, the highly accurate target distance is output (step S15).

ここで、物標距離信頼性判定部6は、以下の方法等により、高精度化した物標距離を出力する:(1)d(t)、d(t)のうちの一方を、高精度化した物標距離として出力、(2)(d(t)+d(t))/2を、高精度化した物標距離として出力。 Here, the target distance reliability determination unit 6 outputs a highly accurate target distance by the following method or the like: (1) One of d I (t) and d Q (t) is output. Output as a highly accurate target distance, and output (2) (d I (t) + d Q (t)) / 2 as a highly accurate target distance.

図8では、|d(t)−d(t)|はほぼ0であり、d(t)、d(t)の信頼性が高い。そこで、計測されたd(t)又は計測されたd(t)が出力される。 In FIG. 8, | d I (t 5 ) − d Q (t 5 ) | is almost 0, and the reliability of d I (t 5 ) and d Q (t 5 ) is high. Therefore, the measured d I (t 5 ) or the measured d Q (t 5 ) is output.

物標距離信頼性判定部6は、送受信実信号及び送受信虚信号に基づく物標距離d(t)、d(t)の信頼性が低いときに(ステップS14、NO)、かつ、送受信実信号及び送受信虚信号に基づく物標距離d(t)、d(t)のうちの一方の物標距離の時間変化が連続であるときに(ステップS16、YES)、送受信実信号及び送受信虚信号に基づく物標距離d(t)、d(t)のうちの前回までの送受信周期の物標距離により近い一方に基づいて、高精度化した物標距離を出力する(ステップS17)。 The target distance reliability determination unit 6 transmits / receives when the reliability of the target distances d I (t) and d Q (t) based on the transmission / reception real signal and the transmission / reception imaginary signal is low (step S14, NO). When the time change of the target distance of one of the target distances d I (t) and d Q (t) based on the real signal and the transmission / reception imaginary signal is continuous (step S16, YES), the transmission / reception real signal and the transmission / reception real signal and A highly accurate target distance is output based on one of the target distances d I (t) and d Q (t) based on the transmission / reception imaginary signal, which is closer to the target distance of the transmission / reception cycle up to the previous time (step). S17).

ここで、物標距離信頼性判定部6は、以下の方法等により、送受信実信号及び送受信虚信号に基づく物標距離d(t)、d(t)のうちの一方の物標距離の時間変化が連続であることを判定する:(1)dI、Q(t−nΔt)〜dI、Q(t−Δt)と比べてdI、Q(t)が大きく異ならないと判定(Δtは1送受信周期、nは1以上の整数。)、(2)v(t)が0に近くないため、dI、Q(t)が大きな誤差を有さないと判定(v(t)は物標速度。第1周波数の送受信実/虚信号間のビート周波数又は第2周波数の送受信実/虚信号間のビート周波数に基づいて計測。v(t)=0であれば、dI、Q(t)は計測不能。)。 Here, the target distance reliability determination unit 6 uses the following method or the like to perform a target distance of one of the target distances d I (t) and d Q (t) based on the transmission / reception real signal and the transmission / reception imaginary signal. Judging that the time change of is continuous: (1) It is judged that d I and Q (t) are not significantly different from d I and Q (t−nΔt) to d I and Q (t−Δt). (Δt is one transmission / reception cycle, n is an integer of 1 or more.), (2) Since v (t) is not close to 0, it is determined that d I and Q (t) do not have a large error (v (t). ) Is the target speed. Measured based on the beat frequency between the transmitted / received real / imaginary signals of the first frequency or the beat frequency between the transmitted / received real / imaginary signals of the second frequency. If v (t) = 0, d I , Q (t) cannot be measured.).

そして、物標距離信頼性判定部6は、以下の方法等により、高精度化した物標距離を出力する:(1)|d(t)−d(t−nΔt)|<|d(t)−d(t−nΔt)|(nは1程度の小さい整数。)であれば、d(t)を高精度化した物標距離として出力、(2)|d(t)−d(t−nΔt)|>|d(t)−d(t−nΔt)|(nは1程度の小さい整数。)であれば、d(t)を高精度化した物標距離として出力。 Then, the target distance reliability determination unit 6 outputs a highly accurate target distance by the following method or the like: (1) | d I (t) -d I (t-nΔt) | << | d If Q (t) −d Q (tnΔt) | (n is a small integer of about 1), d I (t) is output as a highly accurate target distance, (2) | d I ( If t) -d I (t-nΔt) |> | d Q (t) -d Q (t-nΔt) | (n is a small integer of about 1 ), the accuracy of d Q (t) is improved. Output as the target distance.

図8では、|d(t)−d(t)|は有限値であり、d(t)は不連続性を有し、d(t)は不連続性を有さず、|d(t)−d(t−Δt)|>|d(t)−d(t−Δt)|である。そこで、d(t)はd(t)に近い値に補正される。そして、補正されたd(t)又は補正されなかったd(t)が出力される。 In FIG. 8, | d I (t 6 ) − d Q (t 6 ) | is a finite value, d I (t 6 ) has a discontinuity, and d Q (t 6 ) has a discontinuity. Not present, | d I (t 6 ) -d I (t 6- Δt) |> | d Q (t 6 ) -d Q (t 6- Δt) |. Therefore, d I (t 6 ) is corrected to a value close to d Q (t 6). Then, the corrected d I (t 6 ) or the uncorrected d Q (t 6 ) is output.

図8では、|d(t)−d(t)|は有限値であり、d(t)は不連続性を有さず、d(t)は不連続性を有し、|d(t)−d(t−Δt)|<|d(t)−d(t−Δt)|である。そこで、d(t)はd(t)に近い値に補正される。そして、補正されたd(t)又は補正されなかったd(t)が出力される。 In FIG. 8, | d I (t 7 ) − d Q (t 7 ) | is a finite value, d I (t 7 ) has no discontinuity, and d Q (t 7 ) has discontinuity. | D I (t 7 ) -d I (t 7- Δt) | << | d Q (t 7 ) -d Q (t 7- Δt) | Therefore, d Q (t 7 ) is corrected to a value close to d I (t 7). Then, the corrected d Q (t 7 ) or the uncorrected d I (t 7 ) is output.

なお、物標距離信頼性判定部6は、将来に送受信実信号及び送受信虚信号に基づく物標距離d(t)、d(t)のうちの一方の物標距離の時間変化が連続であることを判定するために、補正した物標速度d(t)又はd(t)を記憶しておく。 In the future, the target distance reliability determination unit 6 will continuously change the target distance of one of the target distances d I (t) and d Q (t) based on the transmission / reception real signal and the transmission / reception imaginary signal. The corrected target velocity d I (t) or d Q (t) is stored in order to determine that.

物標距離信頼性判定部6は、送受信実信号及び送受信虚信号に基づく物標距離d(t)、d(t)の信頼性が低いときに(ステップS14、NO)、かつ、送受信実信号及び送受信虚信号に基づく物標距離d(t)、d(t)のうちの両方の物標距離の時間変化が不連続であるときに(ステップS16、NO)、前回までの送受信周期の物標距離d(t−nΔt)又はd(t−nΔt)に基づいて推定した現時点での送受信周期の物標距離d(t)に基づいて、高精度化した物標距離を出力する(ステップS18)。 The target distance reliability determination unit 6 transmits / receives when the reliability of the target distances d I (t) and d Q (t) based on the transmission / reception real signal and the transmission / reception imaginary signal is low (step S14, NO). When the time change of both the target distances d I (t) and d Q (t) based on the real signal and the transmitted / received imaginary signal is discontinuous (steps S16, NO), up to the previous time. based on the reception cycle of the target distance d I (t-nΔt) or d Q (t-nΔt) of the transmitting and receiving period at the present time that is estimated based on the target distance d e (t), high accuracy the target object The distance is output (step S18).

ここで、物標距離信頼性判定部6は、以下の方法等により、送受信実信号及び送受信虚信号に基づく物標距離d(t)、d(t)のうちの両方の物標距離の時間変化が不連続であることを判定する:(1)dI、Q(t−nΔt)〜dI、Q(t−Δt)と比べてdI、Q(t)が大きく異なると判定(Δtは1送受信周期、nは1以上の整数。)、(2)v(t)が0に近いため、dI、Q(t)が大きな誤差を有すると判定(v(t)は物標速度。第1周波数の送受信実/虚信号間のビート周波数又は第2周波数の送受信実/虚信号間のビート周波数に基づいて計測。v(t)=0であれば、dI、Q(t)は計測不能。)。 Here, the target distance reliability determination unit 6 uses the following method or the like to perform the target distances of both the target distances d I (t) and d Q (t) based on the transmission / reception real signal and the transmission / reception imaginary signal. Judgment that the time change of is discontinuous: (1) Judge that d I, Q (t) are significantly different from d I, Q (t−nΔt) to d I, Q (t−Δt). (Δt is one transmission / reception cycle, n is an integer of 1 or more.), (2) Since v (t) is close to 0, it is determined that d I and Q (t) have a large error (v (t) is a thing. Elevated speed. Measured based on the beat frequency between the transmitted / received real / imaginary signals of the first frequency or the beat frequency between the transmitted / received real / imaginary signals of the second frequency. If v (t) = 0, d I, Q ( t) cannot be measured.).

そして、物標距離信頼性判定部6は、以下の方法等により、高精度化した物標距離を出力する:(1)d(t−nΔt)〜d(t−Δt)の現時点への外挿に基づいて、d(t)を高精度化した物標距離として出力、(2)d(t−nΔt)〜d(t−Δt)の現時点への外挿に基づいて、d(t)を高精度化した物標距離として出力。 Then, the target distance reliability determination unit 6 outputs a highly accurate target distance by the following method or the like: (1) to the present time of d I (t-nΔt) to d I (t-Δt). based on extrapolation, outputs the d e (t) as the accuracy of the target distance, based on the extrapolation to the present time of (2) d Q (t- nΔt) ~d Q (t-Δt) , output as target distances accuracy of the d e (t).

図8では、|d(t)−d(t)|は有限値であり、d(t)は不連続性を有し、d(t)も不連続性を有する。そこで、d(t)及びd(t)はd(t)に補正される。そして、補正されたd(t)又は補正されたd(t)が出力される。 In FIG. 8, | d I (t 8 ) − d Q (t 8 ) | is a finite value, d I (t 8 ) has a discontinuity, and d Q (t 8 ) also has a discontinuity. Have. Therefore, d I (t 8 ) and d Q (t 8 ) are corrected to de (t 8). Then, the corrected d I (t 8 ) or the corrected d Q (t 8 ) is output.

なお、物標距離信頼性判定部6は、将来に送受信実信号及び送受信虚信号に基づく物標距離d(t)、d(t)のうちの両方の物標距離の時間変化が不連続であることを判定するために、補正した物標速度d(t)及びd(t)を記憶しておく。 In the future, the target distance reliability determination unit 6 will not change the target distances of both the target distances d I (t) and d Q (t) based on the transmission / reception real signal and the transmission / reception imaginary signal over time. The corrected target velocities d I (t) and d Q (t) are stored in order to determine that they are continuous.

このように、受信信号に対してノイズ成分が大きいとき、物標以外の環境による影響があるとき、及び、人間等の動き方による影響があるとき等でも、物標距離の時間変化を連続にするより前に、物標距離の信頼性を判定することができる。 In this way, even when the noise component of the received signal is large, when there is an influence from the environment other than the target, and when there is an influence from the movement of human beings, etc., the time change of the target distance is continuous. Before doing so, the reliability of the target distance can be determined.

そして、図8の時刻tに示したように、送受信実信号及び送受信虚信号に基づく物標距離d(t)、d(t)の信頼性が高いときには、特段の処理もなく物標距離の時間変化を連続にできるはずである。さらに、図8の時刻t、t、tに示したように、送受信実信号及び送受信虚信号に基づく物標距離d(t)、d(t)の信頼性が低いときでも、上記の処理により物標距離の時間変化を連続にすることができる。 Then, as shown at time t 5 in FIG. 8, the target distance based on the reception real signal and the transceiver imaginary signal d I (t), when the high reliability d Q (t) is no special processing object It should be possible to continuously change the altitude over time. Further, as shown at times t 6 , t 7 , and t 8 in FIG. 8, even when the reliability of the target distances d I (t) and d Q (t) based on the transmission / reception real signal and the transmission / reception imaginary signal is low. , The time change of the target distance can be made continuous by the above processing.

(第3実施形態)
第3実施形態の物標検知装置の構成を図9に示す。第3実施形態では、第1実施形態及び第2実施形態の物標検知処理を、お互いの効果を妨げないように並行して実行する。
(Third Embodiment)
The configuration of the target detection device of the third embodiment is shown in FIG. In the third embodiment, the target detection processes of the first embodiment and the second embodiment are executed in parallel so as not to interfere with each other's effects.

そのために、物標検知装置Tは、物標速度計測部1、物標距離計測部2、物標距離出力部3、実信号物標距離計測部4、虚信号物標距離計測部5及び物標距離信頼性判定部6から構成される。各構成要素の処理内容は、第1実施形態及び第2実施形態と同様である。 Therefore, the target detection device T includes a target speed measurement unit 1, a target distance measurement unit 2, a target distance output unit 3, a real signal target distance measurement unit 4, an imaginary signal target distance measurement unit 5, and an object. It is composed of a reference distance reliability determination unit 6. The processing content of each component is the same as that of the first embodiment and the second embodiment.

(第4実施形態)
第4実施形態の物標検知装置の構成を図10に示す。第4実施形態では、第2実施形態の物標検知処理の前半部分を、第1実施形態の物標検知処理に置換している。
(Fourth Embodiment)
The configuration of the target detection device of the fourth embodiment is shown in FIG. In the fourth embodiment, the first half of the target detection process of the second embodiment is replaced with the target detection process of the first embodiment.

そのために、物標検知装置Tは、物標速度計測部1I、1Q、物標距離計測部2I、2Q、物標距離出力部3I、3Q及び物標距離信頼性判定部6から構成される。各構成要素の処理内容は、第1実施形態及び第2実施形態と同様である。ただし、物標速度計測部1I(1Q)、物標距離計測部2I(2Q)及び物標距離出力部3I(3Q)は、第1、2周波数の送受信実(虚)信号間のビート信号についての処理を実行する。 Therefore, the target detection device T is composed of a target speed measurement unit 1I, 1Q, a target distance measurement unit 2I, 2Q, a target distance output unit 3I, 3Q, and a target distance reliability determination unit 6. The processing content of each component is the same as that of the first embodiment and the second embodiment. However, the target velocity measurement unit 1I (1Q), the target distance measurement unit 2I (2Q), and the target distance output unit 3I (3Q) refer to the beat signal between the transmission / reception real (imaginary) signals of the first and second frequencies. Executes the processing of.

(第5実施形態)
第5実施形態の物標検知装置の構成を図11に示す。第5実施形態では、第1実施形態の物標検知処理の前半部分を、第2実施形態の物標検知処理に置換している。
(Fifth Embodiment)
The configuration of the target detection device of the fifth embodiment is shown in FIG. In the fifth embodiment, the first half of the target detection process of the first embodiment is replaced with the target detection process of the second embodiment.

そのために、物標検知装置Tは、実信号物標距離計測部4、虚信号物標距離計測部5、物標距離信頼性判定部6、実信号物標速度計測部7、虚信号物標速度計測部8、物標速度信頼性判定部9及び物標距離出力部3から構成される。各構成要素の処理内容は、第1実施形態及び第2実施形態と同様である。ただし、実信号物標速度計測部7、虚信号物標速度計測部8及び物標速度信頼性判定部9は、以下の処理を実行する。 Therefore, the target detection device T includes a real signal target distance measurement unit 4, an imaginary signal target distance measurement unit 5, a target distance reliability determination unit 6, a real signal target speed measurement unit 7, and an imaginary signal target. It is composed of a speed measurement unit 8, a target speed reliability determination unit 9, and a target distance output unit 3. The processing content of each component is the same as that of the first embodiment and the second embodiment. However, the real signal object velocity measurement unit 7, the imaginary signal object velocity measurement unit 8, and the object velocity reliability determination unit 9 execute the following processing.

実信号物標速度計測部7は、第1周波数の送受信実信号間のビート周波数又は第2周波数の送受信実信号間のビート周波数に基づいて、送受信実信号に基づく物標速度を計測する。虚信号物標速度計測部8は、第1周波数の送受信虚信号間のビート周波数又は第2周波数の送受信虚信号間のビート周波数に基づいて、送受信虚信号に基づく物標速度を計測する。物標速度信頼性判定部9は、送受信実信号に基づく物標速度と送受信虚信号に基づく物標速度との差に基づいて、送受信実信号に基づく物標速度及び送受信虚信号に基づく物標速度の信頼性を判定する。もっとも、物標速度の信頼性は、高いと考えられる。 The real signal object velocity measuring unit 7 measures the object velocity based on the transmitted / received real signal based on the beat frequency between the transmitted / received real signals of the first frequency or the beat frequency between the transmitted / received real signals of the second frequency. The imaginary signal target speed measuring unit 8 measures the target speed based on the transmitted / received imaginary signal based on the beat frequency between the transmitted / received imaginary signals of the first frequency or the beat frequency between the transmitted / received imaginary signals of the second frequency. The target speed reliability determination unit 9 is based on the difference between the target speed based on the transmission / reception real signal and the target speed based on the transmission / reception imaginary signal, and the target speed based on the transmission / reception real signal and the target based on the transmission / reception imaginary signal. Determine speed reliability. However, the reliability of the target speed is considered to be high.

本開示の物標検知装置、システム、方法及びプログラムは、2周波連続波方式の物標検知技術において、受信信号に対してノイズ成分が大きいとき、物標以外の環境による影響があるとき、及び、人間等の動き方による影響があるとき等でも、物標距離の時間変化を不連続にすることなく、物標距離の計測精度を向上させることができる。 The target detection device, system, method and program of the present disclosure are used in the two-frequency continuous wave type target detection technology when the noise component is large with respect to the received signal, when there is an influence from an environment other than the target, and when there is an influence from the environment other than the target. Even when there is an influence of the movement of a human being or the like, the measurement accuracy of the target distance can be improved without discontinuing the time change of the target distance.

T:物標検知装置
1、1I、1Q:物標速度計測部
2、2I、2Q:物標距離計測部
3、3I、3Q:物標距離出力部
4:実信号物標距離計測部
5:虚信号物標距離計測部
6:物標距離信頼性判定部
7:実信号物標速度計測部
8:虚信号物標速度計測部
9:物標速度信頼性判定部
T: Target detection device 1, 1I, 1Q: Target speed measurement unit 2, 2I, 2Q: Target distance measurement unit 3, 3I, 3Q: Target distance output unit 4: Actual signal Target distance measurement unit 5: False signal target distance measurement unit 6: Target distance reliability determination unit 7: Real signal target speed measurement unit 8: False signal target speed measurement unit 9: Target speed reliability determination unit

Claims (9)

第1周波数及び第2周波数を用いる2周波連続波方式の物標検知装置であって、
前記第1周波数の送受信信号間のビート周波数又は前記第2周波数の送受信信号間のビート周波数に基づいて、物標速度を計測する物標速度計測部と、
前記第1周波数の送受信信号間のビート位相と前記第2周波数の送受信信号間のビート位相との差に基づいて、物標距離を計測する物標距離計測部と、
前記物標速度の時間積算値及び前記物標距離のうちの一方に基づいて、前記物標速度の時間積算値及び前記物標距離のうちの他方を補正し、補正した前記他方又は補正しなかった前記一方を、高精度化した前記物標距離として出力する物標距離出力部と、
を備えることを特徴とする物標検知装置。
It is a two-frequency continuous wave type target detection device that uses the first frequency and the second frequency.
A target speed measuring unit that measures the target speed based on the beat frequency between the transmission / reception signals of the first frequency or the beat frequency between the transmission / reception signals of the second frequency.
A target distance measuring unit that measures the target distance based on the difference between the beat phase between the transmission / reception signals of the first frequency and the beat phase between the transmission / reception signals of the second frequency.
Based on the time-integrated value of the target speed and one of the target distances, the time-integrated value of the target speed and the other of the target distances are corrected, and the corrected other or not corrected. A target distance output unit that outputs one of the above as the highly accurate target distance,
A target detection device characterized by being equipped with.
前記物標距離出力部は、前記物標距離の時間変化が不連続であるときに、前記物標速度の時間積算値に基づいて、前記物標距離を補正し、補正した前記物標距離又は補正しなかった前記物標速度の時間積算値を、高精度化した前記物標距離として出力する
ことを特徴とする、請求項1に記載の物標検知装置。
The target distance output unit corrects the target distance based on the time integration value of the target speed when the time change of the target distance is discontinuous, and the corrected target distance or the corrected target distance or The target detection device according to claim 1, wherein the time-integrated value of the target speed that has not been corrected is output as the highly accurate target distance.
前記物標距離出力部は、計測開始時かつ前記物標距離の時間変化が連続であるときに、又は、一定期間毎かつ前記物標距離の時間変化が連続であるときに、前記物標距離に基づいて、前記物標速度の時間積算値を補正し、補正した前記物標速度の時間積算値又は補正しなかった前記物標距離を、高精度化した前記物標距離として出力する
ことを特徴とする、請求項1又は2に記載の物標検知装置。
The target distance output unit is the target distance at the start of measurement and when the time change of the target distance is continuous, or when the time change of the target distance is continuous at regular intervals. Based on the above, the time integration value of the target speed is corrected, and the corrected time integration value of the target speed or the uncorrected target distance is output as the highly accurate target distance. The target detection device according to claim 1 or 2, wherein the target detection device is characterized.
前記第1周波数の送受信実信号間のビート位相と前記第2周波数の送受信実信号間のビート位相との差に基づいて、前記物標距離を計測する実信号物標距離計測部と、
前記第1周波数の送受信虚信号間のビート位相と前記第2周波数の送受信虚信号間のビート位相との差に基づいて、前記物標距離を計測する虚信号物標距離計測部と、
前記送受信実信号に基づく前記物標距離と前記送受信虚信号に基づく前記物標距離との差に基づいて、前記送受信実信号に基づく前記物標距離及び前記送受信虚信号に基づく前記物標距離の信頼性を判定する物標距離信頼性判定部と、
をさらに備えることを特徴とする、請求項1から3のいずれかに記載の物標検知装置。
A real signal object distance measuring unit that measures the target distance based on the difference between the beat phase between the transmitted and received real signals of the first frequency and the beat phase between the transmitted and received real signals of the second frequency.
An imaginary signal target distance measuring unit that measures the target distance based on the difference between the beat phase between the transmitted / received imaginary signals of the first frequency and the beat phase between the transmitted / received imaginary signals of the second frequency.
Based on the difference between the target distance based on the transmission / reception real signal and the target distance based on the transmission / reception imaginary signal, the target distance based on the transmission / reception real signal and the target distance based on the transmission / reception imaginary signal. Target distance reliability judgment unit that judges reliability,
The target detection device according to any one of claims 1 to 3, further comprising.
前記物標距離信頼性判定部は、前記送受信実信号及び前記送受信虚信号に基づく前記物標距離の信頼性が高いときに、前記送受信実信号及び前記送受信虚信号に基づく前記物標距離のうちの一方又は両方に基づいて、高精度化した前記物標距離を出力する
ことを特徴とする、請求項4に記載の物標検知装置。
When the reliability of the target distance based on the transmission / reception real signal and the transmission / reception imaginary signal is high, the target distance reliability determination unit is among the target distances based on the transmission / reception real signal and the transmission / reception imaginary signal. The target detection device according to claim 4, wherein the target distance with high accuracy is output based on one or both of them.
前記物標距離信頼性判定部は、前記送受信実信号及び前記送受信虚信号に基づく前記物標距離の信頼性が低いときに、前記送受信実信号及び前記送受信虚信号に基づく前記物標距離のうちの前回までの送受信周期の前記物標距離により近い一方に基づいて、又は、前記前回までの送受信周期の前記物標距離に基づいて推定した現時点での送受信周期の前記物標距離に基づいて、高精度化した前記物標距離を出力する
ことを特徴とする、請求項4又は5に記載の物標検知装置。
When the reliability of the target distance based on the transmission / reception real signal and the transmission / reception imaginary signal is low, the target distance reliability determination unit is among the target distances based on the transmission / reception real signal and the transmission / reception imaginary signal. Based on one that is closer to the target distance of the transmission / reception cycle up to the previous time, or based on the target distance of the current transmission / reception cycle estimated based on the target distance of the transmission / reception cycle up to the previous time. The target detection device according to claim 4 or 5, wherein the target distance is output with high accuracy.
請求項1から6のいずれかに記載の物標検知装置と、前記2周波連続波方式のレーダ送受信装置と、を備えることを特徴とする物標検知システム。 A target detection system comprising the target detection device according to any one of claims 1 to 6 and the dual-frequency continuous wave radar transmission / reception device. 第1周波数及び第2周波数を用いる2周波連続波方式の物標検知方法であって、
前記第1周波数の送受信信号間のビート周波数又は前記第2周波数の送受信信号間のビート周波数に基づいて、物標速度を計測する物標速度計測ステップと、
前記第1周波数の送受信信号間のビート位相と前記第2周波数の送受信信号間のビート位相との差に基づいて、物標距離を計測する物標距離計測ステップと、
前記物標速度の時間積算値及び前記物標距離のうちの一方に基づいて、前記物標速度の時間積算値及び前記物標距離のうちの他方を補正し、補正した前記他方又は補正しなかった前記一方を、高精度化した前記物標距離として出力する物標距離出力ステップと、
を順に備えることを特徴とする物標検知方法。
It is a two-frequency continuous wave type target detection method that uses the first frequency and the second frequency.
A target speed measurement step of measuring the target speed based on the beat frequency between the transmission / reception signals of the first frequency or the beat frequency between the transmission / reception signals of the second frequency.
A target distance measurement step for measuring the target distance based on the difference between the beat phase between the transmission / reception signals of the first frequency and the beat phase between the transmission / reception signals of the second frequency.
Based on the time-integrated value of the target speed and one of the target distances, the time-integrated value of the target speed and the other of the target distances are corrected, and the corrected other or not corrected. A target distance output step that outputs one of the above as the highly accurate target distance,
A target detection method characterized in that
第1周波数及び第2周波数を用いる2周波連続波方式の物標検知プログラムであって、
前記第1周波数の送受信信号間のビート周波数又は前記第2周波数の送受信信号間のビート周波数に基づいて、物標速度を計測する物標速度計測ステップと、
前記第1周波数の送受信信号間のビート位相と前記第2周波数の送受信信号間のビート位相との差に基づいて、物標距離を計測する物標距離計測ステップと、
前記物標速度の時間積算値及び前記物標距離のうちの一方に基づいて、前記物標速度の時間積算値及び前記物標距離のうちの他方を補正し、補正した前記他方又は補正しなかった前記一方を、高精度化した前記物標距離として出力する物標距離出力ステップと、
を順にコンピュータに実行させるための物標検知プログラム。
It is a two-frequency continuous wave type target detection program that uses the first frequency and the second frequency.
A target speed measurement step of measuring the target speed based on the beat frequency between the transmission / reception signals of the first frequency or the beat frequency between the transmission / reception signals of the second frequency.
A target distance measurement step for measuring the target distance based on the difference between the beat phase between the transmission / reception signals of the first frequency and the beat phase between the transmission / reception signals of the second frequency.
Based on the time-integrated value of the target speed and one of the target distances, the time-integrated value of the target speed and the other of the target distances are corrected, and the corrected other or not corrected. A target distance output step that outputs one of the above as the highly accurate target distance,
A target detection program that allows a computer to execute
JP2019157302A 2019-08-29 2019-08-29 Target object detection device, system, method and program Active JP7433812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019157302A JP7433812B2 (en) 2019-08-29 2019-08-29 Target object detection device, system, method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019157302A JP7433812B2 (en) 2019-08-29 2019-08-29 Target object detection device, system, method and program

Publications (2)

Publication Number Publication Date
JP2021032865A true JP2021032865A (en) 2021-03-01
JP7433812B2 JP7433812B2 (en) 2024-02-20

Family

ID=74678555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019157302A Active JP7433812B2 (en) 2019-08-29 2019-08-29 Target object detection device, system, method and program

Country Status (1)

Country Link
JP (1) JP7433812B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2748817B1 (en) 1996-05-14 1998-08-14 Siemens Automotive Sa METHOD AND DEVICE FOR MEASURING THE DISTANCE OF AN OBJECT IN RELATION TO AN APPARATUS FOR MEASURING THIS DISTANCE
JP5879108B2 (en) 2011-11-30 2016-03-08 新日本無線株式会社 Motion detection device
JP6660615B2 (en) 2016-01-29 2020-03-11 パナソニックIpマネジメント株式会社 Watching device and watching system
JP6716984B2 (en) 2016-03-16 2020-07-01 株式会社デンソー Target detection device
JP6753755B2 (en) 2016-10-06 2020-09-09 京セラ株式会社 Distance measuring device, vehicle and distance measuring method

Also Published As

Publication number Publication date
JP7433812B2 (en) 2024-02-20

Similar Documents

Publication Publication Date Title
KR101088053B1 (en) System and method for coherently combining a plurality of radars
KR100826381B1 (en) Apparatus for estimating distance capable of adjusting coverage and resolution
US6593883B2 (en) Timing estimation method and apparatus for a location system
JP5105213B2 (en) Distance detection device and collision determination device
US20170146647A1 (en) Radar device for vehicle and target measurement method therefor
US10281578B2 (en) Compensated distance measurement methods and apparatus
JP2011133404A (en) Observation signal processing apparatus
JP2017215208A (en) Pulse radar
KR101454827B1 (en) High resolution distance measuring method by phase shifted value of ultrasonic signal
EA201590605A1 (en) METHOD AND KINEMATIC CALIBRATION SYSTEM FOR MEASUREMENT OF DISPLACEMENTS AND VIBRATIONS OF OBJECTS AND CONSTRUCTIONS
US20120309324A1 (en) Measurement method and apparatus
CN107209272B (en) Identification of multipath transmissions by comparison of two different Global Navigation Satellite System (GNSS) signals
KR100735407B1 (en) Apparatus and method for estimating distance using time of arrival
JP2021032865A (en) Object detection device, system, method, and program
JP7433813B2 (en) Target object detection device, system, method and program
EP3623841A1 (en) Object detection device
US20220074773A1 (en) Method for Operating an Ultrasonic Flowmeter and Ultrasonic Flowmeter
JP2010281798A (en) Radio ranging and positioning system, device, method and program for ranging and positioning
RU2612201C1 (en) Method of determining distance using sonar
CN110703270B (en) Depth module ranging method and device, readable storage medium and depth camera
JP2012220466A (en) Optical range-finding apparatus
KR20200080847A (en) Radar apparatus and method for measuring distance of target using the same
JP2003028956A (en) Distance-measuring apparatus and position-measuring apparatus using ultrasonic waves, and program for them
US11740112B2 (en) Method of measuring the speed of a fluid
KR102262439B1 (en) Apparatus for estimating distortion angle of vehicle sensor and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240207

R150 Certificate of patent or registration of utility model

Ref document number: 7433812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150