JP2021028060A - Porous granular body and method for manufacturing the same - Google Patents

Porous granular body and method for manufacturing the same Download PDF

Info

Publication number
JP2021028060A
JP2021028060A JP2019147935A JP2019147935A JP2021028060A JP 2021028060 A JP2021028060 A JP 2021028060A JP 2019147935 A JP2019147935 A JP 2019147935A JP 2019147935 A JP2019147935 A JP 2019147935A JP 2021028060 A JP2021028060 A JP 2021028060A
Authority
JP
Japan
Prior art keywords
porous
volcanic
particle size
powder
granulated material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019147935A
Other languages
Japanese (ja)
Inventor
和朗 東
Kazuro Higashi
和朗 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PRINCIPLE KK
Principle Co Ltd
Original Assignee
PRINCIPLE KK
Principle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PRINCIPLE KK, Principle Co Ltd filed Critical PRINCIPLE KK
Priority to JP2019147935A priority Critical patent/JP2021028060A/en
Publication of JP2021028060A publication Critical patent/JP2021028060A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fodder In General (AREA)
  • Glanulating (AREA)

Abstract

To provide: a porous granular body using volcanic product deposit mineral as a raw material, effectively usable for a slag-off material and other new uses and having a low environmental burden; and a method for manufacturing the porous granular body.SOLUTION: A porous granular body includes powder derived from volcanic product deposit mineral containing volcanic glass, and a biodegradable binding agent. The porous granular body can be manufactured by kneading powder derived from volcanic product deposit mineral containing volcanic glass, a biodegradable binding agent and water, and by passing this through a porous surface so as to have a small massive shape, followed by rolling granulation and then dry curing.SELECTED DRAWING: Figure 1

Description

本発明は、多孔質造粒体及びその製造方法に関するものである。 The present invention relates to a porous granulated material and a method for producing the same.

火山噴出物堆積鉱物の一種であるシラスは、南九州に広く大量に分布していて、容易かつ低コストで入手可能である。このシラスを資源として有効活用することについて、これまで様々な試みがなされてきた。例えば、シラス中の鉄鉱、長石、石英、輝石、角閃石等の結晶質はコンクリート用細骨材として、シラス中の結晶質以外の軽石等のガラス質は軽量骨材やコンクリート用混和材等としての使用が期待される。しかし一般に、火山噴出物堆積鉱物は、上述した結晶質とガラス質とがそれぞれ幅広い粒度分布で混在していることから、単なるふるい分けでは用途に応じた選別が困難であった。 Shirasu, a type of volcanic ejecta sedimentary mineral, is widely distributed in large quantities in southern Kyushu and is easily available at low cost. Various attempts have been made to effectively utilize this shirasu as a resource. For example, crystalline materials such as iron ore, feldspar, quartz, bright stone, and horn flash in silas are used as fine aggregates for concrete, and glassy materials such as pumice other than crystalline in silas are used as lightweight aggregates and admixtures for concrete. Is expected to be used. However, in general, since the above-mentioned crystalline and vitreous minerals are mixed in a wide particle size distribution, it is difficult to sort the volcanic ejecta sedimentary minerals according to the purpose by simple sieving.

そこで、火山噴出物堆積鉱物を用途に応じて分離、分級する技術に関し、火山噴出物堆積鉱物から粒径5mm超の礫分を除去し、残部を水平方向から所定の角度で傾斜させた多孔板を振動させつつ下方から多孔板に向けて送風するエアテーブル式の比重差選別装置に供給して、重比重分と、軽比重分と、集塵分と、多孔板落下分とに選別する火山噴出物堆積鉱物の乾式分離方法がある(特許文献1)。この乾式分離方法の一実施形態によれば、選別された重比重分及び多孔板落下分はコンクリート用細骨材として、軽比重分のふるい上は軽量骨材又は粉砕されて混和材原料として、軽比重分のふるい下及び集塵分から粘土質を分級したものはパーライト代替、パーライト原料、シラスバルーン原料、混和材原料又は混合セメント原料として、それぞれ回収することができるようになった。 Therefore, regarding the technology for separating and classifying volcanic ejecta deposit minerals according to the application, a perforated plate in which gravel with a particle size of more than 5 mm is removed from the volcanic ejecta deposit minerals and the rest is inclined at a predetermined angle from the horizontal direction. A volcano that supplies air to an air table type specific gravity difference sorting device that blows air from below toward the perforated plate while vibrating it, and sorts it into a heavy specific gravity component, a light specific gravity component, a dust collecting component, and a perforated plate falling component. There is a dry separation method for ejecta sedimentary minerals (Patent Document 1). According to one embodiment of this dry separation method, the selected heavy specific gravity and the fallen perforated plate are used as fine aggregate for concrete, and the light specific gravity sieve is used as a lightweight aggregate or a crushed admixture raw material. The clay material classified from the light specific gravity under the sieve and the dust collection can be recovered as a pearlite substitute, a pearlite raw material, a silas balloon raw material, an admixture raw material, or a mixed cement raw material, respectively.

また、上述した用途以外の新たな用途に、シラス等の火山噴出物堆積鉱物を用いることも試みられている。一例として鋳造の際に電気炉や取鍋等に収容された鋳鉄、鋳鋼、非鉄金属の溶湯表面に投入される除滓材は、従来は黒曜石,真珠岩を粉砕して粒度調整したものがあり、また、粒状シリカやシリカ80%以上の高珪酸ガラス繊維クロスを用いるものが提案されている(特許文献2)。そこで、これら従来の除滓材の代わりに、シラス粉末を用いた除滓材が考えられる。 It is also attempted to use volcanic ejecta sedimentary minerals such as Shirasu for new uses other than those mentioned above. As an example, the scavenger material that is put into the surface of molten cast iron, cast steel, and non-ferrous metal housed in an electric furnace or ladle during casting has conventionally been adjusted by crushing obsidian and pearlite. Further, those using granular silica or high silicate glass fiber cloth having 80% or more of silica have been proposed (Patent Document 2). Therefore, instead of these conventional slag-removing materials, a slag-removing material using shirasu powder can be considered.

しかしながら、シラス粉末からなる除滓材は、金属溶湯への投入時にシラス粉末が舞い上がるため、作業環境上好ましくなかった。また、シラス中に含まれる比較的粒度の大きな軽石を除滓材に用いた場合には、金属溶湯への投入時に舞い上がることは抑制されるが、粒状であるが故に金属溶湯中に巻き込まれて鋳造不良を招くおそれがあり、また、除滓性能や保温性能が低く作業性に悪影響を及ぼすおそれがあった。 However, the slag remover made of shirasu powder is not preferable in terms of working environment because the shirasu powder soars when it is put into the molten metal. In addition, when pumice stones with a relatively large particle size contained in Shirasu are used as a slag remover, they are suppressed from flying up when they are put into the molten metal, but because they are granular, they are caught in the molten metal. There is a risk of casting defects, and the slag removal performance and heat retention performance are low, which may adversely affect workability.

特許第6458267号Patent No. 6458267 実開平5−44369号公報Jikkenhei 5-44369 Gazette

シラス等の火山噴出物堆積鉱物について、新たな用途を開拓し用途の拡大を図ることは、これまで活用されることが少なかった資源を、これまで以上に有効活用し、ひいては国内産業の振興に寄与することに繋がるので産業上の利用価値は極めて高い。また、シラス等の火山噴出物堆積鉱物は天然素材であり、新たな用途に用いられる加工品が自然環境に悪影響を与えず、使用後には自然に還る、環境負荷の小さな加工品が求められているところである。 Exploring new uses and expanding the use of volcanic ejecta sedimentary minerals such as shirasu will make more effective use of resources that were rarely used until now, and eventually promote domestic industry. The industrial utility value is extremely high because it leads to contribution. In addition, volcanic ejecta sedimentary minerals such as shirasu are natural materials, and processed products used for new purposes do not adversely affect the natural environment and return to nature after use, and processed products with a small environmental load are required. I'm here.

そこで本発明は、火山噴出物堆積鉱物を原料とし、除滓材用、その他の新たな用途に有効に用いることができ、環境負荷が小さい多孔質造粒体及びその製造方法を提供することを目的とする。 Therefore, the present invention provides a porous granule having a small environmental load and a method for producing the same, which can be effectively used for a slag-removing material and other new uses by using a volcanic ejecta sedimentary mineral as a raw material. The purpose.

本発明者は、シラスの新たな用途の開拓に向け鋭意研究を重ねた結果、シラスと生分解性結合剤とを含む多孔質の造粒体は、環境負荷が小さく、かつ、除滓材として投入時に舞い上がらず、また投入後は溶湯上で粒が素早く発泡と同時に溶解し従来の除滓材と同等の性能を有することを見出した。この知見から、更にシラスを含む多孔質造粒体について研究開発を進めた結果、シラスと生分解性結合剤とを含む多孔質の造粒体は、堆肥処理材、家畜飼料添加材、焼成発泡体原料等の多彩な用途で優れた性能を有していることを見出した。
本発明は、上記知見に基づくものである。
As a result of intensive research toward the development of new applications of Shirasu, the present inventor has found that a porous granulated material containing Shirasu and a biodegradable binder has a small environmental load and can be used as a decontamination material. It was found that the particles did not fly up at the time of charging, and after the charging, the particles quickly foamed and melted at the same time on the molten metal, and had the same performance as the conventional shirasu remover. Based on this finding, as a result of further research and development on porous granules containing shirasu, the porous granules containing shirasu and biodegradable binders are compost treatment materials, livestock feed additives, and calcined foam. It was found that it has excellent performance in various applications such as body raw materials.
The present invention is based on the above findings.

本発明の多孔質造粒体は、火山ガラス質を含む火山噴出物堆積鉱物由来の粉末と、生分解性結合剤と、を含有するものである。 The porous granule of the present invention contains a powder derived from a volcanic ejecta deposit mineral containing volcanic glass and a biodegradable binder.

本発明の多孔質造粒体においては、気孔率が45〜55%である多孔質造粒体であることが好ましい。また、上記火山ガラス質を含む火山噴出物堆積鉱物由来の粉末は、シラスから粗粒分が除去された粉末とすることができるし、また、シラスから比重選別された火山ガラス質含有率80質量%以上の粉末とすることができる。更に、上記火山ガラス質を含む火山噴出物堆積鉱物由来の粉末は、粒径が0.8mm以下であることが好ましい。
また、本発明の多孔質造粒体は、粒径が好ましくは0.6〜3mmの造粒体を、除滓材として用いることができる。また、粒径が好ましくは1〜20mm、より好ましくは3〜15mmの造粒体を、堆肥処理材として用いることができる。更に、粒径が好ましくは0.3〜2mmの造粒体を、家畜飼料添加材として用いることができる。また更に、粒径が好ましくは0.6mm以下の造粒体を、焼成発泡体原料として用いることができる。
In the porous granulated material of the present invention, it is preferable that the porous granulated material has a porosity of 45 to 55%. In addition, the powder derived from the volcanic ejecta sedimentary mineral containing the volcanic glass can be a powder obtained by removing coarse particles from the silas, and the volcanic glass content of 80 mass selected by gravity from the silas. It can be a powder of% or more. Further, the powder derived from the volcanic ejecta sedimentary mineral containing the volcanic glass is preferably having a particle size of 0.8 mm or less.
Further, as the porous granulated material of the present invention, a granulated material having a particle size of preferably 0.6 to 3 mm can be used as a decontamination material. Further, a granule having a particle size of preferably 1 to 20 mm, more preferably 3 to 15 mm can be used as a compost treatment material. Further, a granule having a particle size of preferably 0.3 to 2 mm can be used as a livestock feed additive. Furthermore, a granulated material having a particle size of preferably 0.6 mm or less can be used as a raw material for the calcined foam.

多孔質造粒体の製造方法は、火山ガラス質を含む火山噴出物堆積鉱物由来の粉末と、生分解性結合剤と、水とを、混錬した後、多孔面に通して小塊状にしてから転動造粒し、その後に乾燥硬化させることを特徴とする。 The method for producing a porous granule is to knead a powder derived from volcanic ejecta deposit minerals containing volcanic glass, a biodegradable binder, and water, and then pass it through a porous surface to form a small mass. It is characterized by rolling granulation from the ground and then drying and curing.

本発明によれば、火山噴出物堆積鉱物を原料とし、除滓材用、その他の新たな用途に有効に用いることができ、環境負荷が小さい多孔質造粒体及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a porous granulated product and a method for producing the same, which can be effectively used for a slag-removing material and other new uses by using a volcanic ejecta sedimentary mineral as a raw material and has a small environmental load. Can be done.

本発明の多孔質造粒体の粒子形状を示す図面代用写真である。It is a drawing substitute photograph which shows the particle shape of the porous granule of this invention.

以下、本発明の多孔質造粒体及びその製造方法の実施形態を、より具体的に説明する。 Hereinafter, embodiments of the porous granulated material of the present invention and the method for producing the same will be described in more detail.

[多孔質造粒体]
図1に、本発明の多孔質構造体の粒子形状を示す。多孔質造粒体は、火山ガラス質を含む火山噴出物堆積鉱物由来の粉末と、生分解性結合剤と、を含有し、当該粉末粒子が、当該結合剤により結合されている多孔質の粒子である。造粒手段によっては粒子表面近傍の密度が内側の密度よりも相対的に高くなっている場合があるものの、いずれにせよ多孔質造粒体の細孔は、開気孔であり、気体や液体が多孔質造粒体の外部から内部へ、また内部から外部へ流通可能になっている。
[Porous granules]
FIG. 1 shows the particle shape of the porous structure of the present invention. The porous granule contains a powder derived from a volcanic ejecta deposit mineral containing volcanic glass and a biodegradable binder, and the powder particles are bonded by the binder. Is. Depending on the granulation means, the density near the particle surface may be relatively higher than the density inside, but in any case, the pores of the porous granulated material are open pores, and gas or liquid It is possible to distribute the porous granulated material from the outside to the inside and from the inside to the outside.

多孔質造粒体は、気孔率が45〜55%であることが好ましい。気孔率が45〜55%であることにより、細孔は開気孔の態様であり、気体や液体が多孔質造粒体の外部から内部へ、また内部から外部へ流通可能となり、除滓材、堆肥処理材、家畜飼料添加材、焼成発泡体原料等の用途において優れた効能を有している。気孔率が45%以下になると毛細管現象に寄与しない気孔が生じ始め流通が悪くなる。また、55%以上になると造粒体がもろくなり、袋詰めした際に崩れてしまう恐れがある。気孔率はアルキメデス法により、真空脱泡してJIS R1634に準拠して測定した。 The porous granulated material preferably has a porosity of 45 to 55%. When the porosity is 45 to 55%, the pores are in the form of open pores, and gas or liquid can flow from the outside to the inside of the porous granulated material and from the inside to the outside. It has excellent efficacy in applications such as compost treatment materials, livestock feed additives, and calcined foam raw materials. When the porosity is 45% or less, pores that do not contribute to the capillary phenomenon begin to occur and distribution deteriorates. On the other hand, if it exceeds 55%, the granules become brittle and may collapse when packed in a bag. The porosity was measured according to JIS R1634 by vacuum defoaming by the Archimedes method.

多孔質造粒体の粒径は、後述するように用途によって好適な粒径が異なるが、粒径でおよそ0.3mm以上、20mm以下である。ここに粒径は整粒時のふるい目開きと同義とし、粒が楕円断面形状であれば短径のことをいう。 The particle size of the porous granulated material varies depending on the application as described later, but the particle size is about 0.3 mm or more and 20 mm or less. Here, the particle size is synonymous with the sieve mesh opening at the time of sizing, and if the grain has an elliptical cross-sectional shape, it means the minor diameter.

多孔質造粒体の嵩密度は、原料や用途によって好適な嵩密度が異なるが、およそ1.05〜1.25g/cmである。およそ1.05〜1.25g/cmの範囲であることにより、気孔率が45〜55%である多孔質造粒体を得ることができる。嵩密度は、アルキメデス法により、真空脱泡してJIS R1634に準拠して測定した。 The bulk density of the porous granulated material is approximately 1.05 to 1.25 g / cm 3 , although the suitable bulk density varies depending on the raw material and the application. By the range of about 1.05 to 1.25 g / cm 3 , it is possible to obtain a porous granule having a porosity of 45 to 55%. The bulk density was measured according to JIS R1634 by vacuum defoaming by the Archimedes method.

多孔質造粒体の圧壊強度は、生分解性結合剤の配合量や用途によって異なるが、およそ4〜57Nとすることができる。圧壊強度が低いと保管安定性が低下し、圧壊強度が高いと製造コストが高くなる。圧壊強度は、平面荷重によりJIS Z8841に準拠して測定した。 The crushing strength of the porous granulated material varies depending on the blending amount of the biodegradable binder and the application, but can be about 4 to 57N. If the crush strength is low, the storage stability is low, and if the crush strength is high, the manufacturing cost is high. The crushing strength was measured according to JIS Z8841 by a planar load.

次に、多孔質造粒体の各成分について説明する。
(火山ガラス質を含む火山噴出物堆積鉱物由来の粉末)
多孔質造粒体の原料の火山ガラス質を含む火山噴出物堆積鉱物は、代表例としてシラスを挙げることができる。もっとも、シラスに限定されない。多孔質造粒体の原料に用いることにより、火山ガラス質を含む火山噴出物堆積鉱物を、有効活用することができる。
Next, each component of the porous granulated material will be described.
(Powder derived from volcanic ejecta sedimentary minerals including volcanic glass)
Shirasu can be mentioned as a typical example of volcanic ejecta sedimentary minerals containing volcanic glass as a raw material for porous granules. However, it is not limited to Shirasu. By using it as a raw material for porous granules, volcanic ejecta sedimentary minerals containing volcanic glass can be effectively utilized.

火山ガラス質を含む火山噴出物堆積鉱物由来の粉末は、上述の火山ガラス質を含む火山噴出物堆積鉱物から、粒径5mmを超える礫分が、ふるい等で除去された後、粗粒分が除去されたものとすることができる。本発明の多孔質造粒体は、火山噴出物堆積鉱物中の火山ガラス質を有効成分として活用しており、結晶質は少ないことが望ましいところ、粗粒分には結晶質の砂を多く含む。また、粗粒分は、造粒体の形成を困難にし、多孔質造粒体の圧壊強度を低下させる。ここに生分解性結合剤の配合割合を増やせば多孔質造粒体の圧壊強度は増大するが、造粒の作業性やコストの面で不利となる。 The powder derived from the volcanic ejecta deposit mineral containing volcanic glass has a coarse grain content after the gravel having a particle size of more than 5 mm is removed from the above-mentioned volcanic ejecta deposit mineral containing volcanic glass by a sieve or the like. It can be assumed that it has been removed. The porous granules of the present invention utilize volcanic glass in volcanic ejecta sedimentary minerals as an active ingredient, and it is desirable that the amount of crystalline material is small, but the coarse particles contain a large amount of crystalline sand. .. In addition, the coarse grain content makes it difficult to form a granulated material and reduces the crushing strength of the porous granulated material. If the blending ratio of the biodegradable binder is increased here, the crushing strength of the porous granulated material is increased, but it is disadvantageous in terms of granulation workability and cost.

除去される粗粒分は、およそ0.8mm以下のふるい目開きよりも大きな粒子である。目開きは好ましくは0.2〜0.8mmであり、より好ましくは0.4〜0.6mmである。目開きが大きいほど、ふるい下の粉末に軽石や結晶質の砂が多く含まれ、多孔質造粒体の密度が低下して強度が低くなり、また、粉末中に不要な結晶質の割合が多くなる。目開きが小さいほど原料の歩留まりが低下し、コストアップとなり、また、多孔質造粒体の密度が高くなって気孔率が低下する。一例で入戸シラスを原料とする場合、目開きが0.6mmのときの粗粒分は25.4質量%であり、粉末の歩留まりは74.6質量%であった。また、目開きが0.6mmの振動ふるいにより粗粒分を除去後の粉末において、火山ガラス質含有量は70質量%以上であった。 The coarse particles to be removed are particles larger than the sieve mesh of about 0.8 mm or less. The opening is preferably 0.2 to 0.8 mm, more preferably 0.4 to 0.6 mm. The larger the opening, the more pumice stones and crystalline sand are contained in the powder under the sieve, the density of the porous granules decreases and the strength decreases, and the ratio of unnecessary crystalline substances in the powder increases. More. The smaller the opening, the lower the yield of the raw material, the higher the cost, and the higher the density of the porous granules, the lower the porosity. In one example, when Ito shirasu was used as a raw material, the coarse particle content was 25.4% by mass and the powder yield was 74.6% by mass when the opening was 0.6 mm. In addition, the volcanic glass content was 70% by mass or more in the powder after removing the coarse particles by a vibration sieve having a mesh size of 0.6 mm.

火山噴出物堆積鉱物から粗粒分を除去する手段は、上述した目開きの振動ふるいの他、風力選別機を用いることもできる。いずれにせよ火山噴出物堆積鉱物から、簡便な装置によって粗粒分が除去された粉末を高い歩留まりで得ることができる。 As a means for removing coarse particles from volcanic ejecta sedimentary minerals, a wind power sorter can be used in addition to the above-mentioned open vibration sieve. In any case, it is possible to obtain a powder from volcanic ejecta deposit minerals from which coarse particles have been removed by a simple device with a high yield.

ふるいの好適な目開きにより、火山噴出物堆積鉱物から粗粒分が除去された、火山ガラス質を含む火山噴出物堆積鉱物由来の粉末の粒径は0.8mm以下、好ましくは0.2mm以下〜0.8mm以下、より好ましくは0.4mm以下〜0.6mm以下である。ここに、粒径は、前述したように整粒時のふるい目開きと同義であり、粗粒分が除去された、火山ガラス質を含む火山噴出物堆積鉱物由来の粉末の粒径は、上掲のふるい目開き以下である。粗粒分が除去された粉末は、シリカを主成分とする火山ガラス質を高い含有率で含む天然素材であり、家畜が経口摂取しても無害である。 The particle size of the powder derived from volcanic ejecta sedimentary minerals, including volcanic glass, from which coarse particles have been removed from the volcanic ejecta sedimentary minerals by a suitable opening of the sieve is 0.8 mm or less, preferably 0.2 mm or less. It is ~ 0.8 mm or less, more preferably 0.4 mm or less ~ 0.6 mm or less. Here, the particle size is synonymous with the sieving opening at the time of sizing as described above, and the particle size of the powder derived from the volcanic ejecta sedimentary mineral containing volcanic glass from which the coarse particles have been removed is above. It is below the screen opening. The powder from which the coarse particles have been removed is a natural material containing a high content of volcanic glass containing silica as a main component, and is harmless even when taken orally by livestock.

火山ガラス質を含む火山噴出物堆積鉱物由来の粉末は、上述の火山ガラス質を含む火山噴出物堆積鉱物から、特許文献1に記載された火山噴出物堆積鉱物の乾式分離方法を用いて、シラスから比重選別された火山ガラス質含有率80質量%以上の粉末であってもよい。具体的な一例では火山噴出物堆積鉱物から粒径5mm超の礫分を除去し、残部を水平方向から所定の角度で傾斜させた多孔板を振動させつつ下方から多孔板に向けて送風するエアテーブル式の比重差選別装置に供給して、重比重分と、軽比重分と、集塵分と、多孔板落下分とに選別し、上記軽比重分を目開き0.8mmのふるいにかけた粉末と、上記集塵分からサイクロン分級機で微小な粘土質を分級除去した粉末と、をそれぞれ回収した粉末は、火山ガラス質の含有率が80質量%以上であり、粒径が0.8mm以下である。特許文献1に記載された火山噴出物堆積鉱物の乾式分離方法を用いることにより、火山ガラス質の含有率が高い粉末を得ることができる。 The powder derived from the volcanic ejecta deposit mineral containing volcanic glass can be obtained from the above-mentioned volcanic ejecta deposit mineral containing volcanic glass by using the dry separation method of the volcanic ejecta deposit mineral described in Patent Document 1. It may be a powder having a volcanic glass content of 80% by mass or more selected by specific gravity. In a specific example, air that removes gravel with a particle size of more than 5 mm from the sedimentary minerals of volcanic ejecta and blows air from below toward the perforated plate while vibrating the perforated plate with the balance tilted at a predetermined angle from the horizontal direction. It was supplied to a table-type specific gravity difference sorting device, sorted into a heavy specific gravity component, a light specific gravity component, a dust collector, and a perforated plate drop component, and the light specific gravity component was sieved with a mesh size of 0.8 mm. The powder and the powder obtained by classifying and removing fine clay from the dust collector with a cyclone classifier have a volcanic vitreous content of 80% by mass or more and a particle size of 0.8 mm or less. Is. By using the dry separation method of volcanic ejecta sedimentary minerals described in Patent Document 1, a powder having a high content of volcanic glass can be obtained.

(生分解性結合剤)
生分解性結合剤は、ガラス質を含む火山噴出物堆積鉱物由来の粉末を結合する。結合剤が生分解性結合剤であることにより、使用時に無害で使用後に自然に還る、環境負荷が小さい多孔質造粒体とすることができる。
(Biodegradable binder)
The biodegradable binder binds powders derived from volcanic ejecta sedimentary minerals, including vitreous. Since the binder is a biodegradable binder, it is possible to obtain a porous granule having a small environmental load, which is harmless at the time of use and returns naturally after use.

多孔質造粒体が除滓材に用いられる場合には、結合剤が生分解性結合剤であることにより、当該生分解性結合剤が溶湯の高温により容易に焼却されて多孔質造粒体が発泡,溶解して除滓材として有効に作用するとともに、溶湯金属中に介在物として残存することがない。 When a porous granulated material is used as a scavenger, the binder is a biodegradable binder, so that the biodegradable binder is easily incinerated by the high temperature of the molten metal to form a porous granulated material. Foams and melts to act effectively as a decomposing material, and does not remain as inclusions in the molten metal.

多孔質造粒体が堆肥処理材に用いられる場合には、結合剤が生分解性結合剤であることにより、処理後に結合剤が生分解するので、多孔質造粒体は火山噴出物堆積鉱物として土壌に還り、特別な後処理が不要で環境負担が小さい。 When a porous granule is used as a compost treatment material, since the binder is a biodegradable binder, the binder is biodegraded after the treatment, so that the porous granule is a volcanic ejecta sedimentary mineral. As it returns to the soil, no special post-treatment is required and the environmental burden is small.

多孔質造粒体が家畜飼料添加材に用いられる場合には、結合剤が生分解性結合剤であることにより、家畜が経口摂取しても無害である。 When the porous granulated material is used as a livestock feed additive, it is harmless even if it is orally ingested by livestock because the binder is a biodegradable binder.

多孔質造粒体が焼成発泡体原料に用いられる場合には、結合剤の加熱分解および焼成によりCO、HOのみが生じ、有害物質の発生がなく、環境負荷の小さい多孔質造粒体とすることができる。 When a porous granulated material is used as a raw material for a fired foam, only CO 2 and H 2 O are generated by thermal decomposition and firing of a binder, no harmful substances are generated, and the porous granulation has a small environmental load. Can be a body.

生分解性結合剤としては、生分解性プラスチックとして開発されたさまざまな種類が使用できる。製造方法によって微生物系、天然物系、化学合成系の3つに分類され、微生物系としてはポリエステルや多糖類のバクテリアセルロースなど、天然物系としてはセルロースやでんぷん、化学合成系としてはポリビニルアルコール(以下、略字で「PVA」と表記する。)や脂肪酸ポリエステルを例示することができ、生産量や安全性の点から好ましくはPVAである。
PVAは、合成高分子の一種であり、水に可溶性であり、接着剤やセラミックス製品製造時のバインダーなど広い範囲で利用されている。PVAは、有害性は極めて低く、医薬品添加物規格および化粧品基準に記載されている。また、地力増進法で政令指定土壌改良資材として記載されている。さらに、PVAは、化学合成系の生分解性プラスチックであり、自然界の微生物により最終的に水と二酸化炭素に分解される。したがって、PVAを多孔性造粒体の結合剤に用いることにより、環境負荷の小さい多孔性造粒体を得ることができる。
As the biodegradable binder, various types developed as biodegradable plastics can be used. It is classified into three types according to the production method: microbial system, natural product system, and chemical synthesis system. Polyester and polysaccharide bacterial cellulose are used as the microbial system, cellulose and starch are used as the natural product system, and polyvinyl alcohol is used as the chemical synthesis system. Hereinafter, abbreviation "PVA") and fatty acid polyester can be exemplified, and PVA is preferable from the viewpoint of production amount and safety.
PVA is a kind of synthetic polymer, is soluble in water, and is widely used as an adhesive and a binder for manufacturing ceramic products. PVA is extremely low in toxicity and is listed in Pharmaceutical Additives Standards and Cosmetic Standards. In addition, it is listed as a soil improvement material designated by government ordinance in the Soil Strengthening Law. In addition, PVA is a chemically synthesized biodegradable plastic that is ultimately decomposed into water and carbon dioxide by naturally occurring microorganisms. Therefore, by using PVA as a binder for porous granules, it is possible to obtain porous granules with a small environmental load.

PVAは、酢酸ビニルを重合させポリ酢酸ビニルとし、更にアルカリを用いたけん化反応により酢酸基を水酸基に置き換えて合成される。PVAの特性は、重合度とけん化度とに大きく影響を受ける。重合度は、PVAにおいて酢酸ビニル分子が繋がった数のことであり、また、けん化度は、PVA中の酢酸基と水酸基の合計数に対する水酸基の百分率のことである。けん化度の程度により、けん化度の高い順に完全けん化ポバール、中間けん化ポバール、部分けん化ポバールと称される。ポバールは、PVAの意味である。 PVA is synthesized by polymerizing vinyl acetate to obtain polyvinyl acetate, and further replacing the acetate group with a hydroxyl group by a saponification reaction using an alkali. The properties of PVA are greatly affected by the degree of polymerization and the degree of saponification. The degree of polymerization is the number of vinyl acetate molecules linked in PVA, and the degree of saponification is the percentage of hydroxyl groups to the total number of acetic acid groups and hydroxyl groups in PVA. Depending on the degree of saponification, they are called fully saponified poval, intermediate saponified poval, and partially saponified poval in descending order of saponification. Poval means PVA.

PVAの重合度は、PVA水溶液の粘度、塗布されたPVA被膜の強度などに大きく影響する。具体的に重合度が高くなると水溶性が悪くなり、また水溶液の粘度も高くなり、作業性が悪くなる。逆に重合度が低くなると水溶性は良くなるが、結合強度が低下する。また、PVAのけん化度は水への溶解性、PVA被膜の耐水性などに影響を与える。具体的に部分けん化型は完全けん化型より水溶性が良くなるが、その分皮膜の耐水性が悪くなる。多孔質造粒体は、搬送や加工処理の際での崩れ防止のために、ある程度の強度が必要であり、また、水との接触によるPVAの溶け出しによる崩壊防止のために、ある程度の耐水性が必要である。そこで、多孔質造粒体の用途、目的に応じて適切な重合度・けん化度のPVAを選択する。一例では、完全けん化型(98%以上)のPVAであり、重合度重合度は1300〜2000、好ましくは1600〜1800、より好ましくは1500〜1800のPVAを選択すればよい。 The degree of polymerization of PVA greatly affects the viscosity of the aqueous PVA solution, the strength of the applied PVA coating, and the like. Specifically, as the degree of polymerization increases, the water solubility deteriorates, and the viscosity of the aqueous solution also increases, resulting in poor workability. On the contrary, when the degree of polymerization is low, the water solubility is improved, but the bond strength is lowered. In addition, the saponification degree of PVA affects the solubility in water, the water resistance of the PVA coating, and the like. Specifically, the partially saponified type has better water solubility than the fully saponified type, but the water resistance of the separate film becomes worse. The porous granulated material needs to have a certain level of strength to prevent it from collapsing during transportation and processing, and also has a certain degree of water resistance to prevent it from collapsing due to the dissolution of PVA due to contact with water. I need sex. Therefore, PVA having an appropriate degree of polymerization and saponification is selected according to the use and purpose of the porous granulated material. As an example, a completely saponified type (98% or more) PVA may be selected, and the degree of polymerization may be selected from 1300 to 2000, preferably 1600 to 1800, and more preferably 1500 to 1800.

PVAは水溶性であるが常温ではなかなか溶けず、多孔質造粒体の製造時において混錬を容易にするためにあらかじめPVA水溶液を作成するときは、90℃程度まで加熱することが好ましい。 Although PVA is water-soluble, it does not easily dissolve at room temperature, and when an aqueous PVA solution is prepared in advance in order to facilitate kneading during the production of porous granules, it is preferable to heat it to about 90 ° C.

多孔質造粒体におけるPVAの配合割合は、上述した火山ガラス質を含む火山噴出物堆積鉱物由来の粉末のサイズにもよるが、例えば振動ふるいにより0.6mmのふるい目を通過したシラスに対する百分率で0.8〜2.0質量%程度とするのが好ましく、0.9〜1.1質量%程度とするのがより好ましい。PVAの配合割合が少な過ぎると造粒体強度が弱く、多いと造粒体強度は増すが造粒体製造時の混錬物の粘りが強く作業性が悪くなり材料の無駄が増える。 The proportion of PVA in the porous granulated body depends on the size of the powder derived from the volcanic ejecta deposit mineral containing the volcanic glass mentioned above, but is a percentage of the silas that has passed through a 0.6 mm sieve by, for example, a vibrating sieve. It is preferably about 0.8 to 2.0% by mass, and more preferably about 0.9 to 1.1% by mass. If the blending ratio of PVA is too small, the strength of the granulated material is weak, and if it is too large, the strength of the granulated material is increased, but the stickiness of the kneaded product during the production of the granulated material is strong, the workability is deteriorated, and the waste of the material is increased.

多孔質造粒体は、上述した成分に加えて、用途、目的、機能に応じて、他の成分を含むことができる。 In addition to the above-mentioned components, the porous granulated material may contain other components depending on the use, purpose, and function.

[多孔質造粒体の製造方法]
次に、多孔質造粒体の製造方法について説明する。
製造方法は、火山ガラス質を含む火山噴出物堆積鉱物由来の粉末と、生分解性結合剤と、水とを、混錬した後、多孔面に通して小塊状にしてから転動造粒し、その後に加熱乾燥させる工程を含む。
[Manufacturing method of porous granules]
Next, a method for producing a porous granule will be described.
The production method is as follows: powder derived from volcanic ejecta deposit minerals containing volcanic glass, biodegradable binder, and water are kneaded, passed through a porous surface to form small lumps, and then rolled and granulated. After that, the step of heating and drying is included.

(原料)
火山ガラス質を含む火山噴出物堆積鉱物由来の粉末は、一例では前述したように原料の火山噴出物堆積鉱物、例えばシラスから、ふるいにより粒径5mm超の礫分を除去した後、残部をふるいにより粗粒分を除去して得られる。粒径5mm超の礫分を除去する前に、又は除去した後に、シラスに含まれる水分量に応じて、必要によりロータリーキルン等の加熱装置よりシラス中の水分量を所定量以下に低減させることができる。もっとも加熱装置を用いなくても、原料の天日干しにより自然乾燥させて水分量を低減させることもできる。
(material)
In one example, the powder derived from the volcanic ejecta deposit mineral containing volcanic vitreous is obtained by removing the gravel having a particle size of more than 5 mm from the raw material volcanic ejecta deposit mineral, for example, silas, and then sieving the rest. It is obtained by removing coarse particles. Before or after removing gravel having a particle size of more than 5 mm, the amount of water in the shirasu can be reduced to a predetermined amount or less by a heating device such as a rotary kiln, depending on the amount of water contained in the shirasu. it can. However, even if a heating device is not used, the raw material can be naturally dried by sun-drying to reduce the amount of water.

粗粒分は、前述した所定の目開き(0.8mm以下、好ましくは0.2〜0.8mm、より好ましくは0.4〜0.6mm)の振動ふるいによって除去することができる。振動ふるいの代わりに、風力選別機を用いて粗粒分を除去することもできる。風力選別機は、循環式風力選別機でもよいし、吹上げ式風力選別機でもよいし、吸引式風力選別機でもよい。なかでも密閉型又は外気導入型の循環式風力選別機は、吹上げ式風力選別機や吸引式風力選別機に比べて動力を少なくできるので好ましい。 The coarse particle content can be removed by the above-mentioned vibration sieve having a predetermined opening (0.8 mm or less, preferably 0.2 to 0.8 mm, more preferably 0.4 to 0.6 mm). Instead of a vibrating sieve, a wind sorter can also be used to remove the coarse particles. The wind power sorter may be a circulation type wind power sorter, a blow-up type wind power sorter, or a suction type wind power sorter. Among them, the closed type or outside air introduction type circulation type wind power sorter is preferable because the power can be reduced as compared with the blow-up type wind power sorter and the suction type wind power sorter.

火山ガラス質を含む火山噴出物堆積鉱物由来の粉末は、別の例では前述したように特許文献1に記載された火山噴出物堆積鉱物の乾式分離方法を用いて、原料の火山噴出物堆積鉱物、例えばシラスから、ふるいにより粒径5mm超の礫分を除去した後、水平方向から所定の角度で傾斜させた多孔板を振動させつつ下方から多孔板に向けて送風するエアテーブル式の比重差選別装置に供給して、重比重分と、軽比重分と、集塵分と、多孔板落下分とに選別し、上記軽比重分を目開き0.8mmのふるいにかけた粉末と、上記集塵分からサイクロン分級機で微小な粘土質を分級した粉末と、をそれぞれ回収して得られる。回収して得られた粉末は、火山ガラス質の含有率が80質量%以上であり、粒径が0.8mm以下である。前処理としてふるいにより粒径5mm超の礫分を除去する代わりに、粒径5mm以下に粉砕する機械を用いて粉砕することもできる。粒径5mm超の礫分を除去する前に、又は除去した後に、シラスに含まれる水分量に応じて、必要によりロータリーキルン等の加熱装置よりシラス中の水分量を所定量以下に低減させることができる。もっとも加熱装置を用いなくても、原料の天日干しにより自然乾燥させて水分量を低減させることもできる。 In another example, the powder derived from the volcanic ejecta sedimentary mineral containing volcanic vitreous is the raw material volcanic ejecta sedimentary mineral by using the dry separation method of the volcanic ejecta sedimentary mineral described in Patent Document 1 as described above. For example, after removing gravel with a particle size of more than 5 mm from the silas by sieving, an air table type specific gravity difference that blows air from below toward the perforated plate while vibrating the perforated plate inclined at a predetermined angle from the horizontal direction. It is supplied to a sorting device and sorted into a heavy specific gravity component, a light specific gravity component, a dust collecting component, and a perforated plate falling component, and the light specific gravity component is sieved with a mesh opening of 0.8 mm and the above-mentioned collection. It is obtained by recovering the powder obtained by classifying minute clay substances from the dust with a cyclone classifier. The recovered powder has a volcanic glass content of 80% by mass or more and a particle size of 0.8 mm or less. As a pretreatment, instead of removing gravel having a particle size of more than 5 mm by sieving, it can be pulverized using a machine for pulverizing to a particle size of 5 mm or less. Before or after removing gravel having a particle size of more than 5 mm, the amount of water in the shirasu can be reduced to a predetermined amount or less by a heating device such as a rotary kiln, depending on the amount of water contained in the shirasu. it can. However, even if a heating device is not used, the raw material can be naturally dried by sun-drying to reduce the amount of water.

生分解性結合剤は、前述したPVAを好適に用いることができる。 As the biodegradable binder, the above-mentioned PVA can be preferably used.

火山ガラス質を含む火山噴出物堆積鉱物由来の粉末と、生分解性結合剤と、水との混錬は、生分解性結合剤として好適に用いられるPVAが、常温では水になかなか溶けないので、90℃程度に加熱した水とPVAと混合して、PVA水溶液を調製することが好ましい。 Kneading powder derived from volcanic ejecta deposit minerals including volcanic vitreous, biodegradable binder, and water is because PVA, which is preferably used as a biodegradable binder, is difficult to dissolve in water at room temperature. , It is preferable to prepare an aqueous PVA solution by mixing PVA with water heated to about 90 ° C.

火山ガラス質を含む火山噴出物堆積鉱物由来の粉末と、生分解性結合剤と、水との配合割合は、目開き0.6mmのふるいで粗粒分を除去したシラスとPVAと水との場合において、PVAがシラスに対して0.8〜2.0質量%程度、より好ましくは0.9〜1.1質量%程度とし、水がシラスに対して18〜25質量%程度、より好ましくは20〜23質量%程度とするのが望ましい。水の割合が少な過ぎると多孔面に通した小塊状の混錬物がまとまらず造粒され難い。水の割合が多過ぎると多孔面に通した後、転動造粒機の容器壁への原料付着が激しくなり、また、小塊状の混錬物同士が付着して所定のサイズの造粒体が得られ難い。 The mixing ratio of powder derived from volcanic ejecta deposit minerals including volcanic glass, biodegradable binder, and water is silas, PVA, and water from which coarse particles have been removed by a sieve with a mesh size of 0.6 mm. In some cases, PVA is about 0.8 to 2.0% by mass, more preferably about 0.9 to 1.1% by mass, and water is about 18 to 25% by mass, more preferably about Silas. Is preferably about 20 to 23% by mass. If the proportion of water is too small, the lumpy smelted product that has passed through the porous surface will not be organized and will be difficult to granulate. If the proportion of water is too large, the raw material will adhere to the container wall of the rolling granulator after passing through the porous surface, and the lumpy kneaded products will adhere to each other to form a granulated material of a predetermined size. Is difficult to obtain.

(混錬)
混錬は、公知の混錬装置により原料が混錬され得る時間をかけて行うことができる。
(Kneading)
The kneading can be carried out over a period of time during which the raw materials can be kneaded by a known kneading apparatus.

(小塊状化)
混錬後に、多孔面に通して混錬物を小塊状にする。発明者の新規知見によれば、混錬物を直接的に所定の粒径の造粒体を効率良く製造するのは難しかったのに対して、混錬物を一旦、所定の粒径の造粒体よりも粒径が小さい小塊状として、この小塊状の混錬物を造粒することにより、小塊状の混錬物が造粒体の核となって所定の粒径の造粒体を効率良く製造することができる。多孔面の孔径は、製造する造粒体の粒径よりも小さいことが好ましい。造粒体の用途に応じた粒子の大きさによるが、多孔面の孔径は、およそ1〜8mmとする。家畜飼料添加材用の造粒体を製造するときは、多孔面の孔径が1〜2mmであることが好ましく、除滓材用や堆肥処理材用の造粒体を製造するときは、多孔面の孔径が2〜8mmであることが好ましい。
(Amplification)
After kneading, the kneaded product is passed through a porous surface to form small lumps. According to the new findings of the inventor, it was difficult to efficiently produce granules having a predetermined particle size directly from the kneaded product, whereas the kneaded product was once produced to have a predetermined particle size. By granulating this small lump-shaped kneaded product into small lumps having a particle size smaller than that of the granules, the small lump-shaped kneaded product becomes the core of the granulated material to form a granulated product having a predetermined particle size. It can be manufactured efficiently. The pore size of the porous surface is preferably smaller than the particle size of the granulated material to be produced. The pore size of the porous surface is approximately 1 to 8 mm, although it depends on the size of the particles according to the intended use of the granulated material. When producing granules for livestock feed additives, the pore size of the porous surface is preferably 1 to 2 mm, and when producing granules for slag remover or compost treatment material, the porous surface The hole diameter is preferably 2 to 8 mm.

多孔面の孔を通過させるために必要な圧力を混錬物に加えつつ、多孔面の出側で混錬物を掻き落とすことにより、小塊状の混錬物が効率よく得られる。得られた小塊状の混錬物は、必要により粗砕して造粒体よりも小さな粒径にすることができる。 By applying the pressure required to pass through the pores of the porous surface to the kneaded product and scraping off the kneaded product on the outlet side of the porous surface, a small-lump kneaded product can be efficiently obtained. The obtained small-lump kneaded product can be coarsely crushed to have a particle size smaller than that of the granulated material, if necessary.

(造粒)
造粒は、公知の転動造粒機、例えば傾斜した円形容器に粉体を供給して当該円盤容器を回転させることにより造粒する造粒機を用いることができる。転動造粒により、粒子の形状が整えられ、粒子表面のシラス密度が内部に比べて高まる。転動回転速度や回転時間の調整によって造粒体の大きさや粒度分布を調整することができる。
(Granulation)
For granulation, a known rolling granulator, for example, a granulator that granulates by supplying powder to an inclined circular container and rotating the disk container can be used. By rolling granulation, the shape of the particles is adjusted, and the shirasu density on the surface of the particles is higher than that inside. The size and particle size distribution of the granules can be adjusted by adjusting the rolling rotation speed and the rotation time.

(乾燥硬化)
転動造粒機により得られた造粒体は、水分を除去し生分解性結合剤を完全に硬化させるために加熱装置に供給する。加熱装置は乾燥機やロータリーキルンなど公知の装置を用いる。加熱温度は、造粒体の水分を飛ばしPVAを固化させる温度として80〜150℃であれば良い。具体的には作業性の関係から105℃で乾燥・硬化することができる。加熱温度が高すぎるとPVCの熱分解するおそれがある。加熱温度が低いと乾燥硬化に時間を要する。
(Dry curing)
The granulated material obtained by the rolling granulator is supplied to a heating device to remove water and completely cure the biodegradable binder. As the heating device, a known device such as a dryer or a rotary kiln is used. The heating temperature may be 80 to 150 ° C. as a temperature at which the water content of the granules is removed and the PVA is solidified. Specifically, it can be dried and cured at 105 ° C. due to workability. If the heating temperature is too high, there is a risk of thermal decomposition of PVC. If the heating temperature is low, it takes time to dry and cure.

なお、加熱前に造粒体をあらかじめ自然乾燥させることもできる。また、加熱前又は加熱後に、用途に応じた造粒体の粒度調整のために、造粒体をふるい分けすることができる。更に、乾式バレルで共擦りして粒の表面に付着した微粉を落とし、表面を滑らかにする処理を行うこともできる。 The granules can be naturally dried in advance before heating. Further, before or after heating, the granulated material can be sifted in order to adjust the particle size of the granulated material according to the intended use. Further, it is also possible to perform a process of smoothing the surface by co-rubbing with a dry barrel to remove fine powder adhering to the surface of the grains.

(粒度調整)
造粒体の粒度調整は、例えば、各用途で必要とされる粒径よりも大きな造粒体を、乾燥前にふるい分けすることが挙げられる。ふるい分けされた大きな造粒体は、混錬された原料に戻して再利用される。また、家畜飼料添加材用の多孔質造粒体は、必要とされる粒径が、除滓材用や堆肥処理材用の造粒体よりも小さいので、乾燥後に、家畜飼料添加材用と、除滓材用又は堆肥処理材用とに、ふるい分けすることができる。更に、粒径0.3mm以下のものは、十分に造粒されていないか、または造粒後に破片又は粉となったもの等であり、家畜飼料添加材用や除滓材用や堆肥処理材用には必要とされないので、目開き0.3mmのふるいにより、ふるい分けすることができる。除滓材用の場合にふるい分けされた粒径0.6mm以下のもの、堆肥処理材用の場合にふるい分けされた粒径1.0mm以下のものが更にふるい分けされた粒径0.6mm以下のもの、及び家畜飼料添加材用の場合にふるい分けされた粒径0.3mm以下のものは、シラスバルーン等の焼成発泡体原料として用いることができる。このような粒度調整により、製造された造粒体を無駄なく活用することができる。
(Particle size adjustment)
The particle size adjustment of the granules includes, for example, sieving the granules having a particle size larger than that required for each application before drying. The large sieved granules are returned to the kneaded raw material for reuse. In addition, since the required particle size of the porous granules for livestock feed additives is smaller than that for granules for slag removers and compost treatment materials, they are used for livestock feed additives after drying. , For slag removal material or for compost treatment material, can be sifted. Further, those having a particle size of 0.3 mm or less are those that have not been sufficiently granulated, or that have become debris or powder after granulation, and are used for livestock feed additives, slag removers, and compost treatment materials. Since it is not required for use, it can be sifted by a sieve having a mesh size of 0.3 mm. Sifted particle size of 0.6 mm or less for waste remover, sieved particle size of 1.0 mm or less for compost treatment material, further sieved of 0.6 mm or less , And those having a particle size of 0.3 mm or less, which are filtered out for livestock feed additives, can be used as a raw material for calcined foam such as a silas balloon. By adjusting the particle size in this way, the produced granules can be utilized without waste.

[用途]
次に、多孔質造粒体の用途について説明する。
(除滓材)
従来、除滓材にはシリカ系粉末が用いられていた。しかし、粉末は高温の金属溶湯の上に撒くため粉が舞い作業環境上好ましくなかった。これに対し、粉が舞わなくするために微粒軽石が使われているが、微粒軽石は溶解し難く品質や作業性に影響を及ぼす可能性があった。
[Use]
Next, the use of the porous granulated material will be described.
(Slag remover)
Conventionally, a silica-based powder has been used as a slag-removing material. However, since the powder is sprinkled on a hot metal molten metal, the powder flies and is not preferable in terms of the working environment. On the other hand, fine pumice stones are used to prevent the powder from flying, but the fine pumice stones are difficult to dissolve and may affect the quality and workability.

ここに、本発明の多孔質造粒体を除滓材に用いることで、粉塵が舞わず、かつ溶解性も問題がなく除滓性能も良好であった。その理由は、多孔質造粒体が金属溶湯に触れると生分解性結合剤(有機物)が燃え、造粒体が素早く崩壊、分散するとともに、シラス粉末が発泡し、更にノロ(スラグ)と反応することでスラグを高粘度にし、除滓に寄与すると考えられる。また、除滓材は、ある程度の耐熱性が必要であるところ、本発明の多孔質造粒体は、好ましくは原料が0.6mm以下のシラスを用いており、多孔質であることが、耐熱性に寄与していると思われる。 Here, by using the porous granulated product of the present invention as a scavenger, dust did not fly, there was no problem in solubility, and the slag removal performance was good. The reason is that when the porous granules come into contact with the molten metal, the biodegradable binder (organic matter) burns, the granules quickly disintegrate and disperse, and the silas powder foams and further reacts with slag. It is thought that this will increase the viscosity of the slag and contribute to the removal of slag. Further, since the slag remover needs to have a certain degree of heat resistance, the porous granulated material of the present invention preferably uses shirasu having a raw material of 0.6 mm or less, and the porous material is heat resistant. It seems that it contributes to sex.

除滓材の用途において、多孔質造粒体の粒径は、粉塵として舞わないサイズとして0.6mm程度〜3mm程度が好ましい。 In the use of the slag remover, the particle size of the porous granulated material is preferably about 0.6 mm to 3 mm as a size that does not fly as dust.

(堆肥処理材)
家畜の糞尿を発酵により無臭化する策としてバイオ菌による発酵促進が検討されている。従来、軽石などの多孔質体を担体にバイオ菌を植え付け、畜舎床に撒いたり、糞尿集積場での処理に用いられたりしていた。しかし発酵をより高めるためにバイオ菌の繁殖を高めることが求められているのに対して、従来の軽石などの多孔質体では限界があった。また、処理された糞尿は、牧草地や田畑の堆肥として用いられるが、軽石は容易に風化せず軽石交じりの土になってしまう。
(Compost treatment material)
Fermentation promotion by bio-bacteria is being studied as a measure to deodorize livestock manure by fermentation. Conventionally, biobacteria have been planted on a porous body such as pumice as a carrier and sprinkled on the barn floor, or used for treatment at a manure collection site. However, while it is required to enhance the reproduction of bio-bacteria in order to further enhance fermentation, there is a limit in the conventional porous body such as pumice. In addition, the treated manure is used as compost for pastures and fields, but pumice stones are not easily weathered and become soil mixed with pumice stones.

ここに、本発明の多孔質造粒体を堆肥処理材としてバイオ菌の担体としたものでは、バイオ菌の繁殖が活発で、従来の三分の一の量で同様な発酵があった。その理由は明確ではないが、繁殖が活発となる理由は、本発明の多孔質造粒体の孔は貫通孔であり毛細管現象で水溶性養分を外部から取り込みやすくバイオ菌の繁殖する空間が多いこと、および有機の結合剤がバイオ菌の栄養となっているためと予想される。また、処理された糞尿を堆肥として用いるときに、本発明の多孔質造粒体は結合剤に水可溶性で、かつ生分解性のものを用いているので、最終的にはシラス粉として土壌に還る。 Here, in the case where the porous granulated material of the present invention was used as a compost treatment material and used as a carrier for bio-bacteria, the bio-bacteria were actively propagated, and similar fermentation was carried out at one-third the amount of the conventional one. The reason is not clear, but the reason why the reproduction becomes active is that the pores of the porous granules of the present invention are through holes, and it is easy to take in water-soluble nutrients from the outside by capillarity, and there are many spaces where bio-bacteria propagate. It is expected that this is because the organic binder is a nutrient for the bio-bacteria. Further, when the treated manure is used as compost, the porous granule of the present invention uses a water-soluble and biodegradable binder as a binder, and thus is finally used as shirasu powder in the soil. Return.

堆肥処理材の用途において、多孔質造粒体の粒径は、堆肥上に広域に散布する必要から、遠くまで届く、また、散布の際に粉塵が舞わないという作業性の観点から、1〜20mm程度が好ましく、3〜15mm程度がより好ましい。 In the use of compost treatment materials, the particle size of the porous granules needs to be sprayed over a wide area on the compost, so it can reach a long distance, and from the viewpoint of workability that dust does not fly during spraying, 1 to 1 About 20 mm is preferable, and about 3 to 15 mm is more preferable.

(家畜飼料添加材)
バイオ菌を飼料とともに摂取することで、腸内での発酵を進めることで糞尿を無臭化したり、また、病原菌への抵抗力を高めたりすることが可能となる。
(Livestock feed additive)
By ingesting bio-bacteria together with feed, it is possible to deodorize manure by promoting fermentation in the intestine and to increase resistance to pathogenic bacteria.

ここに、本発明の多孔質造粒体を、家畜飼料添加材としてバイオ菌の担体としたものは、当該多孔質造粒体が貫通孔を有しバイオ菌の繁殖する空間が多いため、および有機結合剤を用いているためにバイオ菌が繁殖しやすい造粒体であることから、少ない添加量で家畜に経口摂取させることができる。また、本発明の多孔質造粒体は、経口摂取させても家畜に無害な成分からなる。 Here, the porous granulated material of the present invention used as a carrier for biobacteria as a livestock feed additive is because the porous granulated material has through holes and has a large space for biobacteria to propagate. Since it is a granule in which bio-bacteria can easily propagate due to the use of an organic binder, it can be orally ingested by livestock with a small amount of addition. In addition, the porous granules of the present invention are composed of components that are harmless to livestock even when ingested orally.

家畜飼料添加材の用途において、多孔質造粒体の粒径は、0.3mm程度〜2mm程度が好ましい。より好ましくは1mm以下である。なお豚の腸は人間に近く、多孔質造粒体として0.6mm以下のものを用いることもできる。 In the use of livestock feed additive, the particle size of the porous granule is preferably about 0.3 mm to 2 mm. More preferably, it is 1 mm or less. The intestine of a pig is close to that of a human, and a porous granule of 0.6 mm or less can be used.

(焼成発泡体原料)
シラスは、1000℃程度の高温に瞬時にさらすことにより発泡しシラスバルーンが得られる。シラスバルーンは、球状の発泡体であり、軽量で低熱伝導性であり、組成がアルミノけい酸塩であるため不燃性で高融点であり、また無毒・不活性である等の特性を有し、コンクリート建材等として用いられている。シラスバルーンは水浮揚率が高い、サイズの大きなものが好ましい。また、シラスバルーンの製造時には、得られたシラスバルーンを水に浮かせて中空のシラスバルーンを選別回収している製品もある。しかし、シラスの種類や焼成条件にもよるが、バルーンの破裂があり水浮揚率、換言すればシラスバルーンのサイズや収率を高めるのは難しい。
(Baking foam raw material)
Shirasu is instantly exposed to a high temperature of about 1000 ° C. to foam and a shirasu balloon is obtained. The shirasu balloon is a spherical foam, is lightweight and has low thermal conductivity, is nonflammable and has a high melting point because it is an aluminosilicate composition, and has characteristics such as non-toxicity and inactivity. It is used as a concrete building material. The shirasu balloon is preferably large in size and has a high water levitation rate. In addition, when manufacturing a shirasu balloon, there is also a product in which the obtained shirasu balloon is floated in water to sort and collect a hollow shirasu balloon. However, although it depends on the type of shirasu and the firing conditions, it is difficult to increase the water levitation rate, in other words, the size and yield of the shirasu balloon due to the rupture of the balloon.

ここに、本発明の多孔質造粒体を、焼成発泡体原料として用いることで、シラスバルーンの製造時には、シラス粒子が生分解性結合剤で結合した造粒体を焼成処理して発泡粒子が互いに凝着した発泡体となる。これにより、シラス粒子のバルーンが部分的に割れているとしてもバルーン同士が凝集していることにより水に浮くことができる。したがって水浮遊率が高く収率が高いシラスバルーン凝着発泡粒が得られる。従来のシラスバルーンでは得られない粒径が大きな水浮揚の発泡粒子を得ることが出来る。得られたシラスバルーンは、従来のシラスバルーンと同様にコンクリート建材等として用いることができる他、家畜用飼料添加材用としてバイオ菌の担体に用いることもできる。
焼成発泡体原料の用途において、多孔質造粒体の粒径は、0.6mm以下が好ましい。
By using the porous granules of the present invention as a raw material for calcined foams, the granulated particles in which the silas particles are bonded with a biodegradable binder are calcined during the production of silas balloons to produce foamed particles. The foams adhere to each other. As a result, even if the balloons of the Shirasu particles are partially broken, they can float on water due to the agglomeration of the balloons. Therefore, shirasu balloon-adhered foam particles having a high water floating rate and a high yield can be obtained. It is possible to obtain water-floating foamed particles having a large particle size that cannot be obtained with a conventional shirasu balloon. The obtained shirasu balloon can be used as a concrete building material or the like like a conventional shirasu balloon, and can also be used as a carrier for biobacteria as a feed additive for livestock.
In the use of the calcined foam raw material, the particle size of the porous granulated material is preferably 0.6 mm or less.

(その他の用途)
害虫対策用の農薬を本発明の多孔質造粒体に含浸させて、薬剤が徐々に溶け出すようにして薬効が長期に渡り機能するための徐効性担体として用いることができる。このように本発明の多孔質造粒体を徐効性担体として用いることで、農薬散布回数の削減となり、労働削減し農薬使用量の削減に寄与する。また、農地に散布したとしても徐効性担体としての多孔体造粒体は結合剤が生分解されて土に還る。
(Other uses)
It can be used as a slow-acting carrier for impregnating the porous granulated product of the present invention with a pesticide for pest control so that the drug gradually dissolves and the medicinal effect functions for a long period of time. By using the porous granule of the present invention as a slow-acting carrier in this way, the number of times of spraying pesticides is reduced, labor is reduced, and the amount of pesticides used is reduced. Further, even if it is sprayed on agricultural land, the binder is biodegraded and returned to the soil in the porous granulated material as a slow-acting carrier.

また、害虫対策用の農薬の代わりに育成用サプリを本発明の多孔質造粒体に含浸させて、サプリメントが徐々に溶出するようにして長期に渡る投与効果が得られる。 Further, instead of the pesticide for pest control, the growth supplement is impregnated into the porous granule of the present invention so that the supplement is gradually eluted to obtain a long-term administration effect.

(実施例の多孔質造粒体の製造)
入戸シラスをふるいにかけ5mm以上の礫分を除去した後、ロータリーキルンで水分を4%以下に低減してから、目開き0.6mmの振動ふるいにより粗粒分を除去した。粗粒分の除去後のシラス粉末に対して1質量%相当のPVAを、当該シラス粉末に対して22質量%相当の水に、90℃の水温度で溶解させてPVA水溶液を得て、このPVA水溶液と当該粗粒分の除去後のシラス粉末とをミキサーにより混錬した。得られた混錬物を、孔径5mmの多孔面に通して小塊状にした。得られた小塊状の混錬物を転動造粒機に供給して造粒した。得られた造粒物を目開き5.6mmのふるいにかけて大粒の造粒体を除去してから室内乾燥後、乾燥機により105℃で一晩加熱して乾燥硬化させた。乾燥硬化後の多孔質造粒体を目開き4.75mmのふるいと、目開き4.00mmのふるいにかけて粒径4.00〜4.75mmの実施例の多孔質造粒体を得た。
(Production of Porous Granules of Examples)
After sieving the Ito shirasu to remove gravel of 5 mm or more, the water content was reduced to 4% or less with a rotary kiln, and then the coarse particles were removed by a vibrating sieve with an opening of 0.6 mm. PVA equivalent to 1% by mass with respect to the silas powder after removal of coarse particles is dissolved in water equivalent to 22% by mass with respect to the silus powder at a water temperature of 90 ° C. to obtain a PVA aqueous solution. The PVA aqueous solution and the silas powder after removing the coarse particles were kneaded with a mixer. The obtained kneaded product was passed through a porous surface having a pore diameter of 5 mm to form small lumps. The obtained small lump-shaped kneaded product was supplied to a rolling granulator for granulation. The obtained granules were sieved with a mesh size of 5.6 mm to remove large granules, dried indoors, and then dried and cured by heating at 105 ° C. overnight with a dryer. The porous granulated material after drying and curing was sieved through a sieve having a mesh size of 4.75 mm and a sieve having a mesh size of 4.00 mm to obtain a porous granulated material having a particle size of 4.0 to 4.75 mm.

(特性評価)
この製造プロセスを2ロットで行い、各ロットで7個の造粒体試料を採取してアルキメデス法により気孔率を調べたところ、52%であった。また嵩密度は、1.13g/cmであった。
(Characteristic evaluation)
This production process was carried out in 2 lots, and 7 granule samples were collected in each lot and the porosity was examined by the Archimedes method. As a result, it was 52%. The bulk density was 1.13 g / cm 3 .

さらに、圧壊強度を調べたところ、1ロット目の平均が26N、2ロット目の平均が12Nであった。試料粒の形状はまちまちであり、圧壊強度は4〜38Nのばらつきがあった。 Further, when the crushing strength was examined, the average of the first lot was 26N, and the average of the second lot was 12N. The shape of the sample grain was different, and the crushing strength varied from 4 to 38 N.

軽石に比べて多孔質造粒体の圧壊強度が低いことの利点として、多孔質造粒体を堆肥処理材として用いたときに、家畜舎の床に撒いた時に家畜が踏んで潰れやすく、家畜の蹄を痛めることがない。また、家畜の糞尿を発酵させた堆肥中に粒として残っていても潰れやすく、作業者や農機具を痛めることがない。 The advantage of the porous granules having lower crushing strength than pumice stones is that when the porous granules are used as a compost treatment material, the livestock are easily stepped on and crushed when sprinkled on the floor of the livestock barn. Does not hurt your hoof. In addition, even if it remains as grains in the fermented compost of livestock manure, it is easily crushed and does not damage workers or agricultural machinery.

(除滓材としての使用)
次に、上述した実施例の多孔質造粒体の製造の際に、乾燥硬化後の多孔質造粒体を目開き3mmのふるいと、目開き0.6mmのふるいにかけた以外は同様の工程により粒径0.6〜3mmの実施例の多孔質造粒体を得た。
この多孔質造粒体を銑鉄の鋳造時に取鍋内に投入したところ、溶銑の表面で速やかに発泡し熔解し、スラグを高粘土にして容易に除滓することができた。
(Use as a slag remover)
Next, in the production of the porous granules of the above-mentioned Examples, the same steps were carried out except that the porous granules after drying and curing were sieved with a sieve having a mesh size of 3 mm and a sieve having a mesh size of 0.6 mm. Obtained a porous granule of Example having a particle size of 0.6 to 3 mm.
When this porous granulated material was put into a ladle at the time of casting pig iron, it was rapidly foamed and melted on the surface of the hot metal, and the slag was made into high clay and could be easily removed.

(堆肥処理材としての使用)
次に、上述した実施例の多孔質造粒体の製造の際に、乾燥硬化後の多孔質造粒体を目開き20mmのふるいと、目開き1mmのふるいにかけた以外は同様の工程により粒径1〜20mmの実施例の多孔質造粒体を得た。
この多孔質造粒体に農林水産省が指定している飼料添加物として認められているバチルス菌などのバイオ菌を担持させて家畜の畜舎の床に撒いたところ、糞尿を無臭化するとともに堆肥化することができた。多孔質造粒体を用いることによりバイオ菌の繁殖が活性となり、軽石使用に比べて三分の一の量で済んだ。その原因は、軽石は多孔体ではあるが造粒されたものではないために閉鎖孔が多く、バイオ菌が固定する空間が少ないのに対して、多孔質造粒体は連通孔であるため毛細管現象で水溶性養分を外部から取り込みやすく固定空間が広いため、および有機の結合剤を含むためと考えられる。
(Use as a compost treatment material)
Next, in the production of the porous granules of the above-mentioned Examples, the porous granules after drying and curing were sieved by a sieve having a mesh size of 20 mm and a sieve having a mesh size of 1 mm, and the grains were subjected to the same steps. Porous granules of Examples having a diameter of 1 to 20 mm were obtained.
When biobacteria such as Bacillus subtilis, which is recognized as a feed additive designated by the Ministry of Agriculture, Forestry and Fisheries, was carried on this porous granule and sprinkled on the floor of a livestock barn, manure was deodorized and compost was composted. I was able to change it. By using the porous granulated material, the propagation of bio-bacteria became active, and the amount was one-third that of using pumice stone. The reason is that pumice is a porous body, but it is not granulated, so there are many obturators foramen, and there is little space for biobacteria to fix. On the other hand, the porous granulated body has communication holes, so it is a capillary tube. It is thought that this is because the water-soluble nutrients are easily taken in from the outside and the fixed space is wide, and because it contains an organic binder.

堆肥処理材で消臭発酵した後のものを牧草地や田畑の有機肥料として使用した。この際、軽石は崩れずいつまでの石のままであったのに対して、多孔質造粒体は結合剤が土中の細菌により分解され土に還った。 After deodorizing and fermenting with compost treatment material, it was used as organic fertilizer in pastures and fields. At this time, the pumice stone did not collapse and remained as a stone until then, whereas in the porous granules, the binder was decomposed by bacteria in the soil and returned to the soil.

(家畜飼料添加材としての使用)
上述した実施例用の多孔質造粒体の製造の際に、多孔面の孔径を2mmとし、乾燥硬化後の多孔質造粒体を目開き2.0mmのふるいと、目開き0.3mmのふるいにかけた以外は同様の工程により粒径0.3〜2.0mmの実施例の多孔質造粒体を得た。
(Use as livestock feed additive)
In the production of the porous granules for the above-mentioned examples, the pore size of the porous surface was set to 2 mm, and the porous granules after drying and curing were sieved with a mesh size of 2.0 mm and a mesh size of 0.3 mm. Porous granules of Examples having a particle size of 0.3 to 2.0 mm were obtained by the same steps except for sieving.

この多孔質造粒体に農林水産省が指定する飼料添加物として認められている生菌剤であるバチルス菌などのバイオ菌を担持させてニワトリの飼料に添加して与えた。従来の軽石を担体としたものと比較して、バイオ菌による飼料効果(ある大きさに成長するまでに与える飼料の量)は同じであった。また、バイオ菌を与えなかった場合の飼料効果を10としてバイオ菌を担持させた多孔質造粒体の飼料効果は8であり、飼料を削減できた。その理由は、バイオ菌による食物の分解と腸内細菌の活性化により栄養吸収が高くなるためと考えられる。 Biobacteria such as Bacillus bacillus, which is a viable bacterial agent approved as a feed additive designated by the Ministry of Agriculture, Forestry and Fisheries, was carried on this porous granule and added to chicken feed. Compared with the conventional pumice stone carrier, the feed effect by the biobacterium (the amount of feed given until it grows to a certain size) was the same. In addition, the feed effect of the porous granules carrying the bio-bacteria was 8 when the feed effect was 10 when the bio-bacteria were not given, and the feed could be reduced. The reason is considered to be that nutrient absorption is enhanced by the decomposition of food by biobacteria and the activation of intestinal bacteria.

なお、軽石を用いた場合との相違点としては、軽石は火山ガラスと固い結晶粒子が混在しているためニワトリの砂ズリの中に固体(石)として残ったが、多孔質造粒体は砂となって消化物とともに排出された。したがって、多孔質造粒体を用いた場合は砂ズリを含め腸内がきれいであり、ニワトリをさばく際に包丁を欠かしたりすることもなく作業性が向上した。 The difference from the case of using pumice is that pumice remains as a solid (stone) in the sand shavings of chickens because volcanic glass and hard crystal particles are mixed, but the porous granulated body is It became sand and was discharged together with the digested material. Therefore, when the porous granules were used, the intestines including sand scraps were clean, and the workability was improved without missing the kitchen knife when handling the chickens.

(焼成発泡体原料としての使用)
上述した実施例用の多孔質造粒体の製造の際に、乾燥硬化後の多孔質造粒体をふるいにかけた残りの多孔質造粒体のうち、ふるい下の多孔質造粒体に、目開き0.6mmのふるいにかけた以外は同様の工程により粒径0.6mm以下の多孔質造粒体を得た。
(Use as a raw material for fired foam)
Of the remaining porous granules obtained by sieving the dry-cured porous granules during the production of the porous granules for the above-mentioned examples, the porous granules under the sieve were used. A porous granulated material having a particle size of 0.6 mm or less was obtained by the same process except that it was sieved with a mesh size of 0.6 mm.

次に、上述した実施例の多孔質造粒体を内燃式媒体流動床炉で1050℃に加熱して発泡させたのち、水に浮かせて中空の凝着発泡体を選別回収した。その結果、水浮遊率が高く、収率高く凝着発泡体が得られた。 Next, the porous granules of the above-mentioned examples were heated to 1050 ° C. in an internal combustion medium fluidized bed furnace to foam them, and then floated in water to select and recover hollow cohesive foams. As a result, a cohesive foam having a high water floating rate and a high yield was obtained.

本発明の多孔質造粒体は、除滓材、堆肥処理材、家畜飼料添加材、焼成発泡体原料、農薬担体、土壌改良材などしてシラスの新たな用途を拓くものであり、埋蔵量の大きなシラスを加工することで産業の振興を図ることができる。 The porous granulated product of the present invention opens up new uses for silas as a slag remover, compost treatment material, livestock feed additive, calcined foam raw material, pesticide carrier, soil conditioner, etc., and has a reserve amount. It is possible to promote the industry by processing a large amount of silas.

Claims (10)

火山ガラス質を含む火山噴出物堆積鉱物由来の粉末と、生分解性結合剤と、を含有する多孔質造粒体。 A porous granule containing a powder derived from a volcanic ejecta deposit mineral containing volcanic glass and a biodegradable binder. 気孔率が45〜55%である請求項1記載の多孔質造粒体。 The porous granulated material according to claim 1, which has a porosity of 45 to 55%. 前記火山ガラス質を含む火山噴出物堆積鉱物由来の粉末が、シラスから粗粒分が除去された粉末である請求項1又は2記載の多孔質造粒体。 The porous granulated product according to claim 1 or 2, wherein the powder derived from the volcanic ejecta sedimentary mineral containing volcanic glass is a powder obtained by removing coarse particles from silas. 前記火山ガラス質を含む火山噴出物堆積鉱物由来の粉末が、シラスから比重選別された火山ガラス質含有率80質量%以上の粉末である請求項1〜3のいずれか一項に記載の多孔質造粒体。 The porosity according to any one of claims 1 to 3, wherein the powder derived from the volcanic ejecta deposit mineral containing the volcanic glass is a powder having a volcanic glass content of 80% by mass or more selected by specific gravity from silas. Granular material. 前記火山ガラス質を含む火山噴出物堆積鉱物由来の粉末の粒径が0.8mm以下である請求項1〜4のいずれか一項に記載の多孔質造粒体。 The porous granule according to any one of claims 1 to 4, wherein the particle size of the powder derived from the volcanic ejecta sedimentary mineral containing the volcanic glass is 0.8 mm or less. 造粒体の粒径が0.6〜3mmであり、除滓材用である請求項1〜5のいずれか一項に記載の多孔質造粒体。 The porous granulated material according to any one of claims 1 to 5, wherein the granulated material has a particle size of 0.6 to 3 mm and is used for a slag remover. 造粒体の粒径が1〜20mmであり、堆肥処理材用である請求項1〜5のいずれか一項に記載の多孔質造粒体。 The porous granulated material according to any one of claims 1 to 5, wherein the granulated material has a particle size of 1 to 20 mm and is used for a compost treatment material. 造粒体の粒径が0.3〜2mmであり、家畜飼料添加材用である請求項1〜5のいずれか一項に記載の多孔質造粒体。 The porous granule according to any one of claims 1 to 5, wherein the granule has a particle size of 0.3 to 2 mm and is used as an additive for livestock feed. 造粒体の粒径が0.6mm以下であり、焼成発泡体原料用である請求項1〜5のいずれか一項に記載の多孔質造粒体。 The porous granulated material according to any one of claims 1 to 5, wherein the granulated material has a particle size of 0.6 mm or less and is used as a raw material for calcined foam. 火山ガラス質を含む火山噴出物堆積鉱物由来の粉末と、生分解性結合剤と、水とを、混錬した後、多孔面に通して小塊状にしてから転動造粒し、その後に乾燥硬化させることを特徴とする多孔質造粒体の製造方法。 Powder derived from volcanic ejecta deposit minerals including volcanic glass, biodegradable binder, and water are kneaded, passed through a porous surface to form agglomerates, then rolled and granulated, and then dried. A method for producing a porous granule, which is characterized by being cured.
JP2019147935A 2019-08-09 2019-08-09 Porous granular body and method for manufacturing the same Pending JP2021028060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019147935A JP2021028060A (en) 2019-08-09 2019-08-09 Porous granular body and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019147935A JP2021028060A (en) 2019-08-09 2019-08-09 Porous granular body and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2021028060A true JP2021028060A (en) 2021-02-25

Family

ID=74667313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019147935A Pending JP2021028060A (en) 2019-08-09 2019-08-09 Porous granular body and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2021028060A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275848A (en) * 2006-04-11 2007-10-25 Toyokazutada Kk Composite material utilizing industrial waste liquid, solid-liquid separation method of industrial waste liquid and storage method of industrial waste liquid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275848A (en) * 2006-04-11 2007-10-25 Toyokazutada Kk Composite material utilizing industrial waste liquid, solid-liquid separation method of industrial waste liquid and storage method of industrial waste liquid

Similar Documents

Publication Publication Date Title
US6287496B1 (en) Method of granulating peat using gentle extrusion conditions and viscosified water
CN110384048B (en) Cat litter containing bean curd by-product and method for producing the same
US11970429B2 (en) Core-shell composite particles and methods of making same
JP6069741B2 (en) Method for producing organic coated porous granules for fish feed or supplemented feed using livestock blood and clay minerals
CN1056503A (en) The continuous prilling process and the device thereof of super absorbent resin powder
CN108440012A (en) A kind of boron mud sludge ceramsite and preparation method thereof
CN108147833A (en) A kind of preparation method of iron tailings base low temperature haydite
CA2208441C (en) Animal excrement treating material and method of manufacturing same
JP2021028060A (en) Porous granular body and method for manufacturing the same
CN209226874U (en) A kind of sewage sludge organic fertilizer production system
JP2003261878A (en) Manufacturing method for carbide
CN104131001A (en) Preparation method for granular and solid powdery enzyme preparation
CN106431330A (en) Production method of multifunctional quincuncial boric sludge light through-hole ceramsite
CN106332789A (en) Coal gangue ceramsite cat litter and preparation method thereof
JPH06343362A (en) Toilet sand for pet
JP4649361B2 (en) Composite material utilizing industrial waste liquid, solid-liquid separation method of industrial waste liquid, and storage method of industrial waste liquid
RU2545791C1 (en) Method of production of granular nitrogen fertiliser or ameliorant from bottom-ash mixture
JP2004321036A (en) Granular culture soil
JPH09121674A (en) Artificial soil and its production
JP2527558B2 (en) Method for producing water-soluble granules
JP2018114494A (en) Environment purifying powder, manufacturing method for the same, and environment purifying molding
RU2222377C2 (en) Sorbent manufacture method
JP2573794B2 (en) Pet toilet sand
JPH10231152A (en) Artificial lightweight aggregate and production thereof
JP2002200471A (en) Decomposition treatment equipment for organic waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240206