JP2021025730A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2021025730A
JP2021025730A JP2019145639A JP2019145639A JP2021025730A JP 2021025730 A JP2021025730 A JP 2021025730A JP 2019145639 A JP2019145639 A JP 2019145639A JP 2019145639 A JP2019145639 A JP 2019145639A JP 2021025730 A JP2021025730 A JP 2021025730A
Authority
JP
Japan
Prior art keywords
passage
partition wall
heat medium
outflow
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019145639A
Other languages
Japanese (ja)
Inventor
祐生 藤田
Masao Fujita
祐生 藤田
祥啓 古賀
Yoshihiro Koga
祥啓 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2019145639A priority Critical patent/JP2021025730A/en
Publication of JP2021025730A publication Critical patent/JP2021025730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide a heat exchanger enabling expansion pressure generated when a heating medium in a heating medium flow passage is frozen to be easily released from an inflow port or an outflow port to outside.SOLUTION: A heating medium flow passage R2 of a heat exchanger 10 is formed to have a U-shape comprising an inflow passage 14a having an inflow port 15a, an outflow passage 14b having an outflow port 15b and a communication passage 13 communicating the inflow passage 14a with the outflow passage 14b. The heat exchanger includes a partition wall 12d that partitions a space between the inflow passage 14a and the outflow passage 14b and constitutes a wall part of the communication passage 13. Each of a flow passage cross sectional area A1 of the inflow passage 14a and a flow passage cross sectional area A2 of the outflow passage 14b is set larger than a flow passage cross sectional area A3 of the communication passage 13.SELECTED DRAWING: Figure 5

Description

本発明は、セラミック製の熱交換器に関する。 The present invention relates to a ceramic heat exchanger.

特許文献1に開示される熱交換器は、ガス流通路と、熱媒体流通路と、ガス流通路及び熱媒体流通路を区画する区画壁とを備えるセラミック製のハニカム構造体により構成され、ガス流通路を流通するガスと、熱媒体流通路を流通する液状の熱媒体との間で熱交換を行う。特許文献1の熱交換器の熱媒体流通路は、外部に開口する流入路及び流出路と、流入路と流出路とを連通する複数のセルとから構成されている。 The heat exchanger disclosed in Patent Document 1 is composed of a gas honeycomb structure including a gas flow passage, a heat medium flow passage, and a partition wall for partitioning the gas flow passage and the heat medium flow passage, and is composed of a gas. Heat exchange is performed between the gas flowing through the flow passage and the liquid heat medium flowing through the heat medium flow passage. The heat medium flow path of the heat exchanger of Patent Document 1 is composed of an inflow path and an outflow path that open to the outside, and a plurality of cells that communicate the inflow path and the outflow path.

特開2015−140273号公報JP-A-2015-140273

ところで、特許文献1の熱交換器を、内部に熱媒体が溜まった状態として熱媒体が凍結する条件に曝した場合、流入路と流出路とを連通する各セル内の熱媒体が凍結した際の膨張圧によって、流入路と流出路とを連通する各セルを区画する区画壁が損傷する虞があった。上記問題を解決する熱交換器として、図13〜15に示す構造の熱交換器40を作製したところ、以下に記載する問題が新たに生じた。 By the way, when the heat exchanger of Patent Document 1 is exposed to a condition in which the heat medium is frozen with the heat medium accumulated inside, when the heat medium in each cell communicating the inflow path and the outflow path is frozen. There was a risk that the partition wall partitioning each cell communicating the inflow path and the outflow path would be damaged by the expansion pressure of. When the heat exchanger 40 having the structure shown in FIGS. 13 to 15 was manufactured as a heat exchanger to solve the above problems, the following problems were newly generated.

熱交換器40の熱媒体流通路R2は、熱媒体を貯留する貯留部41と、流入口42と貯留部41とを連通する流入路43と、流出口44と貯留部41とを連通する流出路45とを備えている。この場合、流入路43と流出路45とを連通する狭いセルが存在しないため、貯留部41内の熱媒体が凍結した際に生じる膨張圧を流入路43又は流出路45に容易に逃がすことができる。しかしながら、貯留部41内の熱媒体が凍結する前に、流入路43内及び流出路45内の熱媒体が凍結して流入路43及び流出路45が共に塞がれた閉塞状態になり、貯留部41内の熱媒体が凍結した際の膨張圧を流入路43又は流出路45を通じて外部へ逃がすことができなくなってしまった。 The heat medium flow passage R2 of the heat exchanger 40 has a storage unit 41 that stores the heat medium, an inflow passage 43 that communicates the inflow port 42 and the storage unit 41, and an outflow that communicates the outflow port 44 and the storage unit 41. It has a road 45. In this case, since there is no narrow cell communicating the inflow passage 43 and the outflow passage 45, the expansion pressure generated when the heat medium in the storage portion 41 freezes can be easily released to the inflow passage 43 or the outflow passage 45. it can. However, before the heat medium in the storage unit 41 freezes, the heat medium in the inflow passage 43 and the outflow passage 45 freezes, and both the inflow passage 43 and the outflow passage 45 are blocked and stored. The expansion pressure when the heat medium in the section 41 freezes cannot be released to the outside through the inflow passage 43 or the outflow passage 45.

本発明は、こうした事情に鑑みてなされたものであり、その目的は、熱媒体流通路内の熱媒体が凍結した際に生じる膨張圧が流入口又は流出口から外部へ逃げやすい熱交換器を提供することにある。 The present invention has been made in view of these circumstances, and an object of the present invention is to provide a heat exchanger in which the expansion pressure generated when the heat medium in the heat medium flow path freezes easily escapes to the outside from the inlet or outlet. To provide.

上記課題を解決する熱交換器は、ガス流通路と、熱媒体流通路と、上記ガス流通路及び上記熱媒体流通路を区画する区画壁とを備え、上記ガス流通路を流通するガスと、上記熱媒体流通路を流通する液状の熱媒体との間で熱交換が行われるセラミック製の熱交換器であって、上記熱媒体流通路は、流入口を有する流入路と、流出口を有する流出路と、上記流入路と上記流出路とを連通する連通路とを備えるU字状に形成され、上記区画壁は、上記流入路と上記流出路との間を仕切るとともに上記連通路の壁面を構成する仕切壁を備え、上記流入路の熱媒体流通方向における断面積及び上記流出路の熱媒体流通方向における断面積の少なくとも一方は、上記連通路の熱媒体流通方向における断面積よりも大きい。 A heat exchanger that solves the above problems includes a gas flow passage, a heat medium flow passage, and a partition wall that partitions the gas flow passage and the heat medium flow passage, and the gas flowing through the gas flow passage and the gas. A ceramic heat exchanger in which heat is exchanged with a liquid heat medium flowing through the heat medium flow path, and the heat medium flow path has an inflow path having an inflow port and an outflow port. It is formed in a U shape including an outflow passage and a communication passage that connects the inflow passage and the outflow passage, and the partition wall partitions the inflow passage and the outflow passage and is a wall surface of the communication passage. At least one of the cross-sectional area of the inflow path in the heat medium flow direction and the cross-sectional area of the outflow path in the heat medium flow direction is larger than the cross-sectional area of the communication passage in the heat medium flow direction. ..

上記構成の熱交換器を、熱媒体流通路内に液状の熱媒体が溜まった状態として熱媒体が凍結する条件に曝すと、熱媒体流通路内の熱媒体が徐々に凍結していく。このとき、流路断面積が大きい流入路及び流出路では、内部の熱媒体が完全に凍結するまでに要する時間が長くなり、流路断面積が小さい連通路では、内部の熱媒体が完全に凍結するまでに要する時間が短くなる。これにより、連通路内の熱媒体に占める、流入路内及び流出路内の熱媒体が凍結して流入路及び流出路が共に塞がれた閉塞状態になる前に凍結する部分の割合(以下、凍結割合という。)が高くなる。 When the heat exchanger having the above configuration is exposed to a condition in which the heat medium is frozen with the liquid heat medium accumulated in the heat medium flow path, the heat medium in the heat medium flow path is gradually frozen. At this time, in the inflow and outflow passages having a large flow path cross-sectional area, the time required for the internal heat medium to completely freeze becomes long, and in the continuous passage having a small flow path cross-sectional area, the internal heat medium is completely frozen. The time required to freeze is shortened. As a result, the proportion of the heat medium in the communication passage that freezes before the heat medium in the inflow passage and the outflow passage freezes and the inflow passage and the outflow passage are both blocked and blocked (hereinafter referred to as , The freezing rate) becomes high.

流入路及び流出路が上記閉塞状態になる前であれば、連通路内の熱媒体が凍結する際の膨張圧は、流入路内又は流出路内に残る未凍結部分を通じて、流入口又は流出口から外部へ逃げることができる。したがって、上記構成によれば、流入路及び流出路が上記閉塞状態になる前における連通路内の熱媒体の凍結割合を高めることによって、連通路内の熱媒体が凍結する際の膨張圧を流入口又は流出口から外部へ逃がすことができる。 Before the inflow passage and the outflow passage are in the blocked state, the expansion pressure when the heat medium in the communication passage is frozen is applied to the inflow port or the outflow port through the unfrozen portion remaining in the inflow passage or the outflow passage. Can escape from. Therefore, according to the above configuration, by increasing the freezing ratio of the heat medium in the communication passage before the inflow passage and the outflow passage are in the blocked state, the expansion pressure when the heat medium in the communication passage freezes flows. It can escape to the outside from the inlet or outlet.

上記熱交換器において、上記流入路の熱媒体流通方向における断面積及び上記流出路の熱媒体流通方向における断面積の少なくとも一方は、上記連通路の熱媒体流通方向における断面積の5倍以上であることが好ましい。 In the heat exchanger, at least one of the cross-sectional area of the inflow path in the heat medium flow direction and the cross-sectional area of the outflow path in the heat medium flow direction is at least five times the cross-sectional area of the communication passage in the heat medium flow direction. It is preferable to have.

上記構成によれば、流入路及び流出路が上記閉塞状態になる前に、連通路内の熱媒体の全て又は大部分を凍結させることができる。そのため、連通路内の熱媒体が凍結する際の膨張圧を流入口又は流出口から外部へ逃がすことができる効果がより顕著に得られる。 According to the above configuration, all or most of the heat medium in the communication passage can be frozen before the inflow passage and the outflow passage are in the blocked state. Therefore, the effect that the expansion pressure when the heat medium in the communication passage freezes can be released to the outside from the inlet or outlet can be obtained more remarkably.

上記熱交換器において、上記仕切壁は、上記流入路と上記流出路との間を仕切る中実の壁部であることが好ましい。
上記構成によれば、連通路内の熱媒体が凍結した際の膨張圧によって、連通路の内部応力が過度に上昇して、仕切壁にクラックが生じたとしても、クラックが熱交換器の外部に達するまでの距離が長くなるため、外部への液漏れが生じ難い。
In the heat exchanger, the partition wall is preferably a solid wall portion that partitions between the inflow path and the outflow path.
According to the above configuration, even if the internal stress of the communication passage is excessively increased due to the expansion pressure when the heat medium in the communication passage is frozen and the partition wall is cracked, the crack is outside the heat exchanger. Since the distance to reach is long, it is difficult for liquid to leak to the outside.

上記熱交換器において、上記仕切壁の熱伝導率は、上記区画壁における上記流入路又は上記流出路を挟んで上記仕切壁の反対側に位置する部分の熱伝導率以上であることが好ましい。 In the heat exchanger, the thermal conductivity of the partition wall is preferably equal to or higher than the thermal conductivity of the portion of the partition wall located on the opposite side of the inflow path or the outflow path across the partition wall.

上記構成によれば、熱交換器の外部の温度が仕切壁を通じて連通路内の熱媒体に伝わりやすくなり、流入路及び流出路が上記閉塞状態になる前における連通路内の熱媒体の凍結割合が高くなりやすい。その結果、連通路内の熱媒体が凍結する際の膨張圧を流入口又は流出口から外部へ逃がすことができる効果がより顕著に得られる。 According to the above configuration, the temperature outside the heat exchanger is easily transmitted to the heat medium in the communication passage through the partition wall, and the freezing ratio of the heat medium in the communication passage before the inflow passage and the outflow passage are in the blocked state. Is likely to be high. As a result, the effect that the expansion pressure when the heat medium in the communication passage freezes can be released to the outside from the inlet or outlet can be obtained more remarkably.

上記熱交換器において、上記区画壁は、炭化ケイ素を主成分として含有し、上記仕切壁の炭化ケイ素の体積含有率は、上記区画壁における上記流入路又は上記流出路を挟んで上記仕切壁の反対側に位置する部分の炭化ケイ素の体積含有率以上であることが好ましい。 In the heat exchanger, the partition wall contains silicon carbide as a main component, and the volume content of silicon carbide in the partition wall is the volume content of the partition wall across the inflow path or the outflow path in the partition wall. It is preferably equal to or greater than the volume content of silicon carbide in the portion located on the opposite side.

上記構成によれば、仕切壁の熱伝導率を容易に調整できる。
上記熱交換器において、上記仕切壁は、上記連通路の壁面を構成する上記仕切壁以外の上記区画壁よりも強度が低いことが好ましい。
According to the above configuration, the thermal conductivity of the partition wall can be easily adjusted.
In the heat exchanger, it is preferable that the partition wall has a lower strength than the partition wall other than the partition wall constituting the wall surface of the communication passage.

上記構成によれば、連通路内の熱媒体が凍結した際の膨張圧によって、連通路の内部応力が過度に上昇した際に、相対的に強度の低い仕切壁に優先的にクラックが生じる。これにより、連通路の内部応力の上昇が緩和されて、連通路を区画する仕切壁以外の区画壁にクラックが生じ難くなる。流入路及び流出路を仕切る中実の仕切壁は、クラックが生じたとしても液漏れが生じ難いため、仕切壁に優先的にクラックを生じさせて、連通路を区画する仕切壁以外の区画壁にクラックを生じ難くすることにより、熱交換器の外部及び連通路に隣接するガス流通路へのクラックを通じた熱媒体の漏れを抑制できる。 According to the above configuration, when the internal stress of the communication passage is excessively increased due to the expansion pressure when the heat medium in the communication passage is frozen, cracks are preferentially generated in the partition wall having a relatively low strength. As a result, the increase in internal stress of the communication passage is alleviated, and cracks are less likely to occur in the partition wall other than the partition wall that divides the communication passage. Since the solid partition wall that separates the inflow path and the outflow path is unlikely to leak liquid even if a crack occurs, the partition wall is preferentially cracked to form a partition wall other than the partition wall that partitions the continuous passage. By making it difficult for cracks to occur, it is possible to suppress leakage of the heat medium through cracks to the outside of the heat exchanger and the gas flow passage adjacent to the communication passage.

本発明の熱交換器によれば、熱媒体流通路内の熱媒体が凍結した際に生じる膨張圧が流入口又は流出口から外部へ逃げやすくなる。 According to the heat exchanger of the present invention, the expansion pressure generated when the heat medium in the heat medium flow path freezes easily escapes to the outside from the inflow port or the outflow port.

熱交換器の斜視図。Perspective view of the heat exchanger. 図1の2−2線断面図。2-2 sectional view of FIG. 図1の3−3線断面図。FIG. 1 is a sectional view taken along line 3-3 of FIG. 図1の4−4線断面図。FIG. 1 is a sectional view taken along line 4-4 of FIG. 図1の5−5線断面図。FIG. 5-5 is a sectional view taken along line 5-5 of FIG. 第1成形体の斜視図。The perspective view of the 1st molded article. 熱媒体流通路形成工程の説明図。The explanatory view of the heat medium flow path formation process. 第2成形体の斜視図。The perspective view of the 2nd molded article. 脱脂工程の説明図。Explanatory drawing of degreasing process. 含浸工程の説明図。Explanatory drawing of impregnation process. 変更例の熱交換器の斜視図。Perspective view of the heat exchanger of the modified example. 図11のX−X線断面図。FIG. 11 is a sectional view taken along line XX of FIG. 熱交換器の斜視図。Perspective view of the heat exchanger. 図13のY−Y線断面図。FIG. 13 is a sectional view taken along line YY. 図13のZ−Z線断面図。FIG. 13 is a cross-sectional view taken along the line ZZ of FIG.

以下、熱交換器の一実施形態を説明する。
図1〜5に示すように、熱交換器10は、矩形筒状の周壁11と、周壁11の内部を複数のガス流通路R1と複数の熱媒体流通路R2に区画する区画壁12とを備えている。
Hereinafter, an embodiment of the heat exchanger will be described.
As shown in FIGS. 1 to 5, the heat exchanger 10 has a rectangular tubular peripheral wall 11 and a partition wall 12 for partitioning the inside of the peripheral wall 11 into a plurality of gas flow passages R1 and a plurality of heat medium flow passages R2. I have.

図2に示すように、矩形筒状の周壁11は、上下に対向する一対の横側壁11aと、左右に対向する一対の縦側壁11bとを有し、周壁11の軸方向に直交する断面形状が横長の長方形をなすように構成されている。以下では、周壁11の軸方向を単に軸方向と記載する。 As shown in FIG. 2, the rectangular tubular peripheral wall 11 has a pair of lateral side walls 11a facing vertically and a pair of vertical side walls 11b facing left and right, and has a cross-sectional shape orthogonal to the axial direction of the peripheral wall 11. Is configured to form a horizontally long rectangle. Hereinafter, the axial direction of the peripheral wall 11 is simply referred to as the axial direction.

図2、3に示すように、区画壁12は、横側壁11aに平行な第1区画壁12aと、第1区画壁12a同士を接続するとともに、縦側壁11bに平行な第2区画壁12bとを備える。また、図2、3に示すように、区画壁12は、所定の隣り合う第2区画壁12b同士の間を部分的に接続するように配置され、縦側壁11bに平行な第3区画壁12c及び仕切壁12dを備える。 As shown in FIGS. 2 and 3, the partition wall 12 connects the first partition wall 12a parallel to the lateral side wall 11a and the first partition wall 12a to each other, and also connects the second partition wall 12b parallel to the vertical side wall 11b. To be equipped. Further, as shown in FIGS. 2 and 3, the partition wall 12 is arranged so as to partially connect the predetermined adjacent second partition walls 12b to each other, and the third partition wall 12c parallel to the vertical side wall 11b. And a partition wall 12d.

図5に示すように、第3区画壁12cは、縦側壁11bの軸方向の両端部に位置する側縁に沿って上下方向に延びる一対の端壁部12c1と、縦側壁11bの下縁に沿って軸方向に延びるとともに一対の端壁部12c1に接続される下壁部12c2とを備えるU字状に形成されている。仕切壁12dは、U字状の第3区画壁12cの内側に所定の間隔をあけて配置され、縦側壁11bの上縁中央部から下方へ延びる矩形状に形成されている。 As shown in FIG. 5, the third partition wall 12c is formed on a pair of end wall portions 12c1 extending in the vertical direction along the side edges located at both ends in the axial direction of the vertical side wall 11b and the lower edge of the vertical side wall 11b. It is formed in a U shape including a lower wall portion 12c2 extending along the axial direction and being connected to a pair of end wall portions 12c1. The partition walls 12d are arranged inside the U-shaped third partition wall 12c at predetermined intervals, and are formed in a rectangular shape extending downward from the central portion of the upper edge of the vertical side wall 11b.

図2〜4に示すように、周壁11の内部には、第1区画壁12aと第2区画壁12bとによって、軸方向に延びる複数のガス流通セルCが形成されている。ガス流通セルCは、ガス流通路R1を構成する。 As shown in FIGS. 2 to 4, a plurality of gas flow cells C extending in the axial direction are formed inside the peripheral wall 11 by the first partition wall 12a and the second partition wall 12b. The gas distribution cell C constitutes the gas flow passage R1.

図2、5に示すように、周壁11の内部には、第2区画壁12b、第3区画壁12c及び仕切壁12dによって、軸方向に並ぶ一対の流入路14a及び流出路14bと、軸方向に延びるとともに流入路14aと流出路14bとを連通する連通路13とが形成されている。流入路14a、流出路14b、及び連通路13は、熱媒体流通路R2を構成する。したがって、流入路14aの周壁11に開口する端部は、熱媒体流通路R2の流入口15aとなるとともに、流出路14bの周壁11に開口する端部は、熱媒体流通路R2の流出口15bとなる。図1に示すように、本実施形態においては、3組の流入路14a及び流出路14bが軸方向に直交する方向に並ぶように形成されている。 As shown in FIGS. 2 and 5, inside the peripheral wall 11, a pair of inflow passages 14a and outflow passages 14b arranged in the axial direction by the second partition wall 12b, the third partition wall 12c, and the partition wall 12d, and the axial direction. A communication passage 13 that extends to the inflow path 14a and communicates with the outflow path 14b is formed. The inflow passage 14a, the outflow passage 14b, and the communication passage 13 form a heat medium flow passage R2. Therefore, the end opening to the peripheral wall 11 of the inflow passage 14a becomes the inflow port 15a of the heat medium flow passage R2, and the end opening to the peripheral wall 11 of the outflow passage 14b is the outflow outlet 15b of the heat medium flow passage R2. It becomes. As shown in FIG. 1, in the present embodiment, three sets of inflow passages 14a and outflow passages 14b are formed so as to be arranged in a direction orthogonal to the axial direction.

図5に示すように、仕切壁12dは、流入路14aと流出路14bとの間を仕切る壁部であり、流入路14a及び流出路14bにおける軸方向内側の壁面を構成するとともに、連通路13における上側の壁面を構成している。第3区画壁12cは、流入路14a及び流出路14bの軸方向外側の壁面を構成するとともに、連通路13の下側の壁面を構成している。 As shown in FIG. 5, the partition wall 12d is a wall portion that partitions between the inflow passage 14a and the outflow passage 14b, constitutes an axially inner wall surface in the inflow passage 14a and the outflow passage 14b, and is a continuous passage 13 It constitutes the upper wall surface in. The third partition wall 12c constitutes an axially outer wall surface of the inflow passage 14a and the outflow passage 14b, and also constitutes a lower wall surface of the communication passage 13.

図2に示すように、第3区画壁12c及び仕切壁12dの厚さTは、第1区画壁12a及び第2区画壁12bよりも厚く構成され、ガス流通セルCの幅方向(図中左右方向)の寸法と略等しくなるように構成されている。ここで、第3区画壁12c及び仕切壁12dの厚さTとは、ガス流通セルCの幅方向における第3区画壁12c及び仕切壁12dの寸法を意味するものとする。 As shown in FIG. 2, the thickness T of the third partition wall 12c and the partition wall 12d is configured to be thicker than that of the first partition wall 12a and the second partition wall 12b, and is formed in the width direction of the gas flow cell C (left and right in the figure). It is configured to be approximately equal to the dimension in the direction). Here, the thickness T of the third partition wall 12c and the partition wall 12d means the dimensions of the third partition wall 12c and the partition wall 12d in the width direction of the gas distribution cell C.

第3区画壁12c及び仕切壁12dの厚さTは、ガス流通セルCの幅方向の寸法(流路幅)に対して、1.0〜5.0倍であることが好ましい。なお、第1区画壁12a及び第2区画壁12bの厚さは、例えば、0.1〜0.5mmであり、第3区画壁12c及び仕切壁12dの厚さTは、例えば、0.5〜5.0mmである。また、第3区画壁12c及び仕切壁12dの厚さTは、ガス流通セルCの幅方向(図中左右方向)における、流入路14a及び流出路14bの寸法U(図3参照)と等しくなるように構成される。 The thickness T of the third partition wall 12c and the partition wall 12d is preferably 1.0 to 5.0 times the dimension in the width direction (flow path width) of the gas flow cell C. The thickness of the first partition wall 12a and the second partition wall 12b is, for example, 0.1 to 0.5 mm, and the thickness T of the third partition wall 12c and the partition wall 12d is, for example, 0.5. It is ~ 5.0 mm. Further, the thickness T of the third partition wall 12c and the partition wall 12d is equal to the dimensions U (see FIG. 3) of the inflow path 14a and the outflow path 14b in the width direction of the gas flow cell C (left-right direction in the figure). It is configured as follows.

次に、ガス流通路R1を構成するガス流通セルCについて説明する。
図2〜4に示すように、ガス流通セルCは、両端部が共に開放され、処理対象のガスを軸方向に沿って流通させることができるように構成されている。ガス流通セルCは、周壁11の縦側壁11bに平行にガス流通セルCが8個配列したセル列Caを備える。セル列Caは、周壁11の横側壁11aに沿って4列設けられている。図2、3に示すように、4列のセル列Caと4列のセル列Caとの間に第3区画壁12c及び仕切壁12dが配置されている。そして、4列のセル列Caの隣であって、第3区画壁12c及び仕切壁12dの間に流入路14a、流出路14b及び連通路13が配置されている。そして、これらの配置が繰り返された配置パターンが形成されている。
Next, the gas distribution cell C constituting the gas flow passage R1 will be described.
As shown in FIGS. 2 to 4, the gas flow cell C is configured so that both ends are open and the gas to be processed can be circulated along the axial direction. The gas distribution cell C includes a cell row Ca in which eight gas distribution cells C are arranged in parallel with the vertical side wall 11b of the peripheral wall 11. Four cell rows Ca are provided along the lateral side wall 11a of the peripheral wall 11. As shown in FIGS. 2 and 3, a third partition wall 12c and a partition wall 12d are arranged between the four rows of cell rows Ca and the four rows of cell rows Ca. Next to the four rows of cell rows Ca, an inflow passage 14a, an outflow passage 14b, and a communication passage 13 are arranged between the third partition wall 12c and the partition wall 12d. Then, an arrangement pattern in which these arrangements are repeated is formed.

ガス流通セルCを流通させる処理対象のガスとしては、例えば、内燃機関の排気ガスが挙げられる。ガス流通セルCのセル構造は特に限定されるものではないが、例えば、第1区画壁12a及び第2区画壁12bの壁厚が0.1〜0.5mmであり、セル密度が、周壁11の軸方向に直交する断面1cmあたり15〜93セルであるセル構造とすることができる。 Examples of the gas to be processed in which the gas distribution cell C is distributed include the exhaust gas of an internal combustion engine. The cell structure of the gas flow cell C is not particularly limited, but for example, the wall thickness of the first partition wall 12a and the second partition wall 12b is 0.1 to 0.5 mm, and the cell density is the peripheral wall 11. It is possible to have a cell structure having 15 to 93 cells per 1 cm 2 in cross section orthogonal to the axial direction of.

次に、熱媒体流通路R2について説明する。
図5に示すように、熱媒体流通路R2は、周壁11に開口する流入口15aを有する流入路14aと、周壁11に開口する流出口15bを有する流出路14bと、流入路14a及び流出路14bの下側の端部に連通される連通路13とを備えるU字状に形成されている。流入路14a及び流出路14bは、軸方向における中央に配置される仕切壁12dを挟んで軸方向に並設されている。また、流入路14a及び流出路14bは、軸方向に直交する方向に平行に延びるように形成されている。
Next, the heat medium flow path R2 will be described.
As shown in FIG. 5, the heat medium flow passage R2 includes an inflow passage 14a having an inflow port 15a opening in the peripheral wall 11, an outflow passage 14b having an outflow outlet 15b opening in the peripheral wall 11, an inflow passage 14a, and an outflow passage. It is formed in a U shape including a communication passage 13 communicating with the lower end of 14b. The inflow path 14a and the outflow path 14b are arranged side by side in the axial direction with the partition wall 12d arranged at the center in the axial direction interposed therebetween. Further, the inflow path 14a and the outflow path 14b are formed so as to extend in parallel in a direction orthogonal to the axial direction.

熱交換効率を高める観点において、流入路14aの軸方向の長さと流出路14bの軸方向の長さとの合計は、ガス流通セルCの軸方向の長さの1/2以上であることが好ましい。また、流入路14a及び流出路14bの上下方向の長さは、流入路14a及び流出路14bの下端が熱交換器10の中心よりも下側に位置する長さであることが好ましい。 From the viewpoint of increasing the heat exchange efficiency, the total of the axial length of the inflow path 14a and the axial length of the outflow path 14b is preferably 1/2 or more of the axial length of the gas flow cell C. .. Further, the vertical lengths of the inflow path 14a and the outflow path 14b are preferably such that the lower ends of the inflow path 14a and the outflow path 14b are located below the center of the heat exchanger 10.

図2、3に示すように、ガス流通セルCの幅方向(図中左右方向)において、熱媒体流通路R2の両側にガス流通セルCが設けられ、熱媒体流通路R2は、第2区画壁12bを介してガス流通セルCに隣接している。 As shown in FIGS. 2 and 3, gas flow cells C are provided on both sides of the heat medium flow passage R2 in the width direction of the gas flow cell C (left-right direction in the figure), and the heat medium flow passage R2 is the second section. It is adjacent to the gas flow cell C via the wall 12b.

図5に示すように、熱媒体流通路R2は、熱媒体流通方向における断面積として規定される流路断面積が、流入路14a及び流出路14bと連通路13との間で異なっている。詳述すると、流入路14aの流路断面積A1は、連通路13の流路断面積A3よりも大きく、好ましくは連通路13の流路断面積A3の5倍以上であり、より好ましくは連通路13の流路断面積A3の10倍以上である。 As shown in FIG. 5, in the heat medium flow passage R2, the flow path cross-sectional area defined as the cross-sectional area in the heat medium flow direction is different between the inflow passage 14a and the outflow passage 14b and the communication passage 13. More specifically, the flow path cross-sectional area A1 of the inflow passage 14a is larger than the flow path cross-sectional area A3 of the continuous passage 13, preferably 5 times or more the flow path cross-sectional area A3 of the continuous passage 13, and more preferably continuous. It is 10 times or more the flow path cross-sectional area A3 of the passage 13.

流出路14bの流路断面積A2は、連通路13の流路断面積A3よりも大きく、好ましくは連通路13の流路断面積A3の5倍以上であり、より好ましくは連通路13の流路断面積A3の10倍以上である。また、流入路14aの流路断面積A1と流出路14bの流路断面積A2は同じである。連通路13の流路断面積A3は、例えば、3mm以上であることが好ましい。 The flow path cross-sectional area A2 of the outflow passage 14b is larger than the flow path cross-sectional area A3 of the communication passage 13, preferably 5 times or more the flow path cross-sectional area A3 of the communication passage 13, and more preferably the flow of the communication passage 13. It is 10 times or more the road cross-sectional area A3. Further, the flow path cross-sectional area A1 of the inflow path 14a and the flow path cross-sectional area A2 of the outflow path 14b are the same. The flow path cross-sectional area A3 of the communication passage 13 is preferably, for example, 3 mm 2 or more.

なお、流入路14aの流路断面積A1は、流入口15aである一端側から連通路13に連通される他端側までの全範囲で一定である。流出路14bの流路断面積A2は、流出口15bである一端側から連通路13に連通される他端側までの全範囲で一定である。連通路13の流路断面積A3は、流入路14aに連通される一端側から流出路14bに連通される他端側までの全範囲で一定である。 The flow path cross-sectional area A1 of the inflow passage 14a is constant over the entire range from one end side of the inflow port 15a to the other end side communicating with the communication passage 13. The flow path cross-sectional area A2 of the outflow passage 14b is constant over the entire range from one end side of the outflow port 15b to the other end side communicating with the communication passage 13. The flow path cross-sectional area A3 of the communication passage 13 is constant over the entire range from one end side communicating with the inflow passage 14a to the other end side communicating with the outflow passage 14b.

図5に示すように、熱交換器10に供給された熱媒体は、周壁11に開口する流入口15aから熱交換器10内に流入し、流入路14aを通って連通路13へと流通する。連通路13へ流通した熱媒体は、軸方向に沿って流入路14a側から流出路14b側へと流れる。そして、流出路14bを通って、周壁11に開口する流出口15bから熱交換器10外へ流出する。 As shown in FIG. 5, the heat medium supplied to the heat exchanger 10 flows into the heat exchanger 10 from the inflow port 15a opening in the peripheral wall 11, and flows to the communication passage 13 through the inflow passage 14a. .. The heat medium flowing through the communication passage 13 flows from the inflow passage 14a side to the outflow passage 14b side along the axial direction. Then, the heat flows out of the heat exchanger 10 from the outflow port 15b that opens to the peripheral wall 11 through the outflow passage 14b.

熱媒体流通路R2を流通する熱媒体としては、水を用いることができる。
上記構成の熱交換器10は、ガス流通セルCを流れるガスと、熱媒体流通路R2を流れる熱媒体との間で、区画壁12を介して熱交換を行うことができる。
Water can be used as the heat medium flowing through the heat medium flow passage R2.
The heat exchanger 10 having the above configuration can exchange heat between the gas flowing through the gas flow cell C and the heat medium flowing through the heat medium flow passage R2 via the partition wall 12.

また、熱交換器10の周壁11及び区画壁12は、セラミック材料により構成されている。上記セラミック材料は、特に限定されるものではなく、公知のセラミック製の熱交換器に用いられる材料を用いることができる。上記セラミック材料としては、例えば、炭化ケイ素、炭化タンタル、炭化タングステン等の炭化物、窒化ケイ素、窒化ホウ素等の窒化物が挙げられる。これらの中でも、炭化ケイ素を主成分として含む材料は、他のセラミック材料に比べて熱伝導率が高く、熱交換効率を高くすることができるため好ましい。ここで、主成分とは、50質量%以上を意味するものとする。炭化ケイ素を主成分として含む材料としては、例えば、炭化ケイ素の粒子と金属ケイ素を含む材料が挙げられる。なお、周壁11及び区画壁12は、同じセラミック材料により構成されており、周壁11及び区画壁12の各部位の熱伝導率は全て同じである。 Further, the peripheral wall 11 and the partition wall 12 of the heat exchanger 10 are made of a ceramic material. The ceramic material is not particularly limited, and a material used in a known ceramic heat exchanger can be used. Examples of the ceramic material include carbides such as silicon carbide, tantalum carbide and tungsten carbide, and nitrides such as silicon nitride and boron nitride. Among these, a material containing silicon carbide as a main component is preferable because it has a higher thermal conductivity than other ceramic materials and can increase the heat exchange efficiency. Here, the principal component is assumed to mean 50% by mass or more. Examples of the material containing silicon carbide as a main component include materials containing silicon carbide particles and metallic silicon. The peripheral wall 11 and the partition wall 12 are made of the same ceramic material, and the thermal conductivity of each part of the peripheral wall 11 and the partition wall 12 is the same.

図6〜10に基づいて、熱交換器10の一製造方法について説明する。
熱交換器10は、以下に記載する成形工程、熱媒体流通路形成工程、脱脂工程、含浸工程を順に経ることにより製造される。
A method for manufacturing the heat exchanger 10 will be described with reference to FIGS. 6 to 10.
The heat exchanger 10 is manufactured by going through the molding step, the heat medium flow path forming step, the degreasing step, and the impregnation step described below in this order.

(成形工程)
熱交換器の成形に用いる原料として、炭化ケイ素粒子と、有機バインダーと、分散媒とを含有する粘土状の混合物を調製する。
(Molding process)
A clay-like mixture containing silicon carbide particles, an organic binder, and a dispersion medium is prepared as a raw material used for molding the heat exchanger.

有機バインダーとしては、例えば、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロースが挙げられる。これらの有機バインダーの中でも、メチルセルロース、カルボキシメチルセルロースが特に好ましい。また、上記の有機バインダーのうちの一種のみを用いてもよいし、二種以上を併用してもよい。 Examples of the organic binder include polyvinyl alcohol, methyl cellulose, ethyl cellulose, and carboxymethyl cellulose. Among these organic binders, methyl cellulose and carboxymethyl cellulose are particularly preferable. Further, only one of the above organic binders may be used, or two or more of them may be used in combination.

分散媒としては、例えば、水、有機溶剤が挙げられる。有機溶剤としては、例えば、エタノールが挙げられる。また、上記の分散媒のうちの一種のみを用いてもよいし、二種以上を併用してもよい。 Examples of the dispersion medium include water and an organic solvent. Examples of the organic solvent include ethanol. Further, only one of the above dispersion media may be used, or two or more of them may be used in combination.

また、混合物中にその他の成分を更に含有させてもよい。その他の成分としては、例えば、炭化ケイ素以外の材質からなるセラミック粒子、可塑剤、潤滑剤が挙げられる。炭化ケイ素以外の材質からなるセラミック粒子としては、炭化タンタル、炭化タングステン等の炭化物、窒化アルミニウム、窒化ケイ素、窒化ホウ素等の窒化物からなるセラミック粒子が挙げられる。可塑剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル等のポリオキシアルキレン系化合物が挙げられる。潤滑剤としては、例えば、グリセリンが挙げられる。 In addition, other components may be further contained in the mixture. Examples of other components include ceramic particles made of a material other than silicon carbide, a plasticizer, and a lubricant. Examples of the ceramic particles made of a material other than silicon carbide include carbides such as tantalum carbide and tungsten carbide, and ceramic particles made of nitrides such as aluminum nitride, silicon nitride and boron nitride. Examples of the plasticizer include polyoxyalkylene compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether. Examples of the lubricant include glycerin.

図6に示すように、この粘土状の混合物を用いて、ガス流通セルCが縦方向に8個配列したセル列を備え、このセル列が横方向に4列設けられた矩形筒状の成形体(第1成形体20)を成形する。必要に応じて、得られた第1成形体20に対して乾燥処理を行う。乾燥処理の具体的方法としては、例えば、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等を用いた乾燥処理が挙げられる。 As shown in FIG. 6, this clay-like mixture is used to form a rectangular cylinder in which eight gas flow cells C are arranged in the vertical direction and four rows of the cell rows are provided in the horizontal direction. The body (first molded body 20) is molded. If necessary, the obtained first molded product 20 is subjected to a drying treatment. Specific methods of the drying treatment include, for example, a drying treatment using a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer and the like.

(熱媒体流通路形成工程)
熱媒体流通路形成工程は、成形工程で得られた複数の成形体の間に層間材を用いて熱媒体流通路を形成する工程である。
(Heat medium flow path forming process)
The heat medium flow path forming step is a step of forming a heat medium flow path between a plurality of molded bodies obtained in the molding step by using an interlayer material.

図7に示すように、第1成形体20の側面におけるガス流通セルCの延びる方向の両端部、及び第1成形体20の側面における下端部に、層間材21、22として、第1成形体20の原料と同じ粘土状の混合物を塗布する。層間材21は、後の工程を経て第3区画壁12cとなる部分であり、開放部が上方を向いたU字状に塗布される。層間材22は、後の工程を経て仕切壁12dとなる部分であり、第1成形体20の側面の中央上端部から下方に延びる矩形状に塗布される。 As shown in FIG. 7, the first molded body is formed as interlayer materials 21 and 22 at both ends in the extending direction of the gas flow cell C on the side surface of the first molded body 20 and at the lower end portion on the side surface of the first molded body 20. The same clay-like mixture as the 20 raw materials is applied. The interlayer material 21 is a portion that becomes a third partition wall 12c through a later step, and is applied in a U shape with the open portion facing upward. The interlayer material 22 is a portion that becomes a partition wall 12d through a later step, and is applied in a rectangular shape extending downward from the central upper end portion of the side surface of the first molded body 20.

層間材21、22を塗布した第1成形体20には、必要に応じて乾燥処理が行われる。層間材21、22の厚さは、特に限定されないが、ガス流通セルCの流路幅に対して、1.0〜5.0倍であることが好ましい。 The first molded body 20 coated with the interlayer materials 21 and 22 is subjected to a drying treatment as necessary. The thickness of the interlayer materials 21 and 22 is not particularly limited, but is preferably 1.0 to 5.0 times the flow path width of the gas flow cell C.

図8に示すように、層間材21、22を塗布した第1成形体20を重ね合わせることにより、4個の第1成形体20の間に、層間材21、22が配置された成形体(第2成形体23)を作製する。ここで、第1成形体20の側面に層間材21、22を塗布する方法に代えて、予め、層間材21、22をコ字状等の形状に成形した後、複数の第1成形体20間に配置してもよい。 As shown in FIG. 8, by superimposing the first molded bodies 20 coated with the interlayer materials 21 and 22, the molded bodies 21 and 22 are arranged between the four first molded bodies 20 ( The second molded body 23) is produced. Here, instead of the method of applying the interlayer materials 21 and 22 to the side surface of the first molded body 20, the interlayer materials 21 and 22 are previously molded into a U-shaped shape, and then a plurality of first molded bodies 20 are formed. It may be placed in between.

(脱脂工程及び含浸工程)
脱脂工程は、第2成形体23を加熱することによって、第2成形体23に含まれる有機分を焼失させる工程である。図9に示すように、脱脂工程を経ることにより、炭化ケイ素粒子同士が接触した状態で配置された骨格部分を有する多孔質の脱脂体30が得られる。
(Degreasing process and impregnation process)
The degreasing step is a step of burning off the organic matter contained in the second molded body 23 by heating the second molded body 23. As shown in FIG. 9, by going through the degreasing step, a porous degreasing body 30 having a skeleton portion arranged in a state where the silicon carbide particles are in contact with each other can be obtained.

含浸工程は、脱脂体30の各壁の内部に金属ケイ素を含浸させる工程である。含浸工程においては、脱脂体30に対して金属ケイ素の塊を接触させた状態として、金属ケイ素の融点以上(例えば、1450℃以上)に加熱する。これにより、図10に示すように、溶融した金属ケイ素が毛細管現象によって、脱脂体の骨格部分を構成する粒子間の隙間へ入り込み、同隙間に金属ケイ素が含浸される。 The impregnation step is a step of impregnating the inside of each wall of the degreasing body 30 with metallic silicon. In the impregnation step, the degreased body 30 is brought into contact with the lump of metallic silicon and heated to a temperature equal to or higher than the melting point of the metallic silicon (for example, 1450 ° C. or higher). As a result, as shown in FIG. 10, the molten metallic silicon enters the gaps between the particles constituting the skeleton portion of the degreased body by the capillary phenomenon, and the metallic silicon is impregnated in the gaps.

含浸工程の加熱処理は、脱脂工程の加熱処理から連続して行ってもよい。例えば、加工成形体に対して金属ケイ素の塊を接触させた状態として、金属ケイ素の融点未満の温度で加熱することにより有機分を除去して脱脂体とした後、加熱温度を金属ケイ素の融点以上に上昇させ、溶融した金属ケイ素を脱脂体に含浸させる。上記の含浸工程を経ることにより、筒状の周壁11と、周壁11の内部に複数のガス流通セルC及び複数の熱媒体流通路R2を区画する区画壁12とを備える熱交換器10が得られる。 The heat treatment of the impregnation step may be performed continuously from the heat treatment of the degreasing step. For example, in a state where a lump of metallic silicon is in contact with a processed molded body, the organic component is removed by heating at a temperature lower than the melting point of metallic silicon to form a degreased body, and then the heating temperature is set to the melting point of metallic silicon. It is raised above and the degreased body is impregnated with the molten metallic silicon. Through the above impregnation step, a heat exchanger 10 including a tubular peripheral wall 11 and a partition wall 12 for partitioning a plurality of gas flow cells C and a plurality of heat medium flow passages R2 inside the peripheral wall 11 is obtained. Be done.

次に、本実施形態の作用及び効果について記載する。
(1)熱交換器は、ガス流通路と、熱媒体流通路と、ガス流通路及び熱媒体流通路を区画する区画壁とを備えている。熱媒体流通路は、流入口を有する流入路と、流出口を有する流出路と、流入路と流出路とを連通する連通路とを備えるU字状に形成されている。区画壁は、流入路と流出路との間を仕切るとともに連通路の壁部を構成する仕切壁を備え、流入路の流路断面積及び流出路の流路断面積は、連通路の流路断面積よりも大きい。
Next, the operation and effect of this embodiment will be described.
(1) The heat exchanger includes a gas flow passage, a heat medium flow passage, and a partition wall for partitioning the gas flow passage and the heat medium flow passage. The heat medium flow path is formed in a U shape including an inflow path having an inflow port, an outflow path having an outflow port, and a communication path communicating the inflow path and the outflow path. The partition wall is provided with a partition wall that separates the inflow passage and the outflow passage and constitutes the wall portion of the communication passage, and the flow path cross-sectional area of the inflow passage and the flow path cross-sectional area of the outflow passage are the flow paths of the communication passage. Larger than the cross-sectional area.

上記構成の熱交換器を、熱媒体流通路内に液状の熱媒体が溜まった状態として熱媒体が凍結する条件に曝すと、熱媒体流通路内の熱媒体が徐々に凍結していく。このとき、流路断面積が大きい流入路及び流出路では、内部の熱媒体が完全に凍結するまでに要する時間が長くなり、流路断面積が小さい連通路では、内部の熱媒体が完全に凍結するまでに要する時間が短くなる。これにより、連通路内の熱媒体に占める、流入路内及び流出路内の熱媒体が凍結して流入路及び流出路が共に塞がれた閉塞状態になる前に凍結する部分の割合(以下、凍結割合という。)が高くなる。 When the heat exchanger having the above configuration is exposed to a condition in which the heat medium is frozen with the liquid heat medium accumulated in the heat medium flow path, the heat medium in the heat medium flow path is gradually frozen. At this time, in the inflow passage and the outflow passage having a large flow path cross-sectional area, the time required for the internal heat medium to completely freeze becomes long, and in the continuous passage having a small flow path cross-sectional area, the internal heat medium is completely frozen. The time required to freeze is shortened. As a result, the proportion of the heat medium in the communication passage that freezes before the heat medium in the inflow passage and the outflow passage freezes and the inflow passage and the outflow passage are both blocked and blocked (hereinafter referred to as , The freezing rate) becomes high.

流入路及び流出路が上記閉塞状態になる前であれば、連通路内の熱媒体が凍結する際の膨張圧は、流入路内又は流出路内に残る未凍結部分を通じて、流入口又は流出口から外部へ逃げることができる。したがって、上記構成によれば、流入路及び流出路が上記閉塞状態になる前における連通路内の熱媒体の凍結割合を高めることによって、連通路内の熱媒体が凍結する際の膨張圧を流入口又は流出口から外部へ逃がすことができる。 Before the inflow passage and the outflow passage are in the blocked state, the expansion pressure when the heat medium in the communication passage is frozen is applied to the inflow port or the outflow port through the unfrozen portion remaining in the inflow passage or the outflow passage. Can escape from. Therefore, according to the above configuration, by increasing the freezing ratio of the heat medium in the communication passage before the inflow passage and the outflow passage are in the blocked state, the expansion pressure when the heat medium in the communication passage freezes flows. It can escape to the outside from the inlet or outlet.

(2)流入路の断面積及び流出路の断面積は、連通路の断面積の5倍以上である。
上記構成によれば、流入路及び流出路が上記閉塞状態になる前に、連通路内の熱媒体の全て又は大部分を凍結させることができる。そのため、連通路内の熱媒体が凍結する際の膨張圧を流入口又は流出口から外部へ逃がすことができる効果が顕著に得られる。
(2) The cross-sectional area of the inflow passage and the cross-sectional area of the outflow passage are five times or more the cross-sectional area of the continuous passage.
According to the above configuration, all or most of the heat medium in the communication passage can be frozen before the inflow passage and the outflow passage are in the blocked state. Therefore, the effect that the expansion pressure when the heat medium in the communication passage freezes can be released to the outside from the inlet or outlet can be remarkably obtained.

(3)仕切壁は、流入路と流出路との間を仕切る中実の壁部である。
上記構成によれば、連通路内の熱媒体が凍結した際の膨張圧によって、連通路の内部応力が過度に上昇して、仕切壁にクラックが生じたとしても、クラックが熱交換器の外部に達するまでの距離が長くなるため、外部への液漏れが生じ難い。また、仕切壁に生じたクラックが達した先が、流入路又は流出路であれば、実質的に熱媒体流路の外に熱媒体が漏れることはない。
(3) The partition wall is a solid wall portion that separates the inflow path and the outflow path.
According to the above configuration, even if the internal stress of the communication passage is excessively increased due to the expansion pressure when the heat medium in the communication passage is frozen and the partition wall is cracked, the crack is outside the heat exchanger. Since the distance to reach is long, it is difficult for liquid to leak to the outside. Further, if the destination where the crack generated in the partition wall reaches the inflow path or the outflow path, the heat medium does not substantially leak out of the heat medium flow path.

(4)仕切壁は、流入路と流出路との間を仕切る中実の壁部であり、仕切壁の熱伝導率は、区画壁における流入路又は流出路を挟んで仕切壁の反対側に位置する部分である第3区画壁の端壁部の熱伝導率と同じである。 (4) The partition wall is a solid wall portion that separates the inflow path and the outflow path, and the thermal conductivity of the partition wall is on the opposite side of the partition wall across the inflow path or the outflow path in the partition wall. It is the same as the thermal conductivity of the end wall portion of the third partition wall, which is the located portion.

上記構成によれば、熱交換器の外部の温度が仕切壁を通じて連通路内の熱媒体に伝わりやすくなり、流入路及び流出路が上記閉塞状態になる前における連通路内の熱媒体の凍結割合が高くなりやすい。その結果、連通路内の熱媒体が凍結する際の膨張圧を流入口又は流出口から外部へ逃がすことができる効果が顕著に得られる。 According to the above configuration, the temperature outside the heat exchanger is easily transmitted to the heat medium in the communication passage through the partition wall, and the freezing ratio of the heat medium in the communication passage before the inflow passage and the outflow passage are in the blocked state. Is likely to be high. As a result, the effect that the expansion pressure when the heat medium in the communication passage freezes can be released to the outside from the inlet or outlet can be remarkably obtained.

(5)熱交換器は、炭化ケイ素を主成分として含有する。仕切壁の炭化ケイ素の体積含有率は、第3区画壁の端壁部の炭化ケイ素の体積含有率と同じである。
上記構成によれば、仕切壁の熱伝導率を容易に調整できる。
(5) The heat exchanger contains silicon carbide as a main component. The volume content of silicon carbide in the partition wall is the same as the volume content of silicon carbide in the end wall portion of the third partition wall.
According to the above configuration, the thermal conductivity of the partition wall can be easily adjusted.

本実施形態は、次のように変更して実施することも可能である。また、上記実施形態の構成や以下の変更例に示す構成を適宜組み合わせて実施することも可能である。
・流入路の流路断面積と流出路の流路断面積とを異ならせてもよい。この場合、流入路の流路断面積及び流出路の流路断面積のいずれか一方のみが連通路の流路断面積よりも大きい構成としてもよい。
This embodiment can also be modified and implemented as follows. It is also possible to appropriately combine the configurations of the above-described embodiment and the configurations shown in the following modified examples.
-The cross-sectional area of the flow path of the inflow path and the cross-sectional area of the flow path of the outflow path may be different. In this case, only one of the flow path cross-sectional area of the inflow path and the flow path cross-sectional area of the outflow path may be larger than the flow path cross-sectional area of the continuous passage.

・流入路及び流出路は、流路断面積が一定でない形状であってもよい。この場合、流入路及び流出路のそれぞれの流路断面積の平均値を流路断面積とする。
・連通路は、流路断面積が一定でない形状であってもよい。この場合、連通路の流路断面積の平均値を流路断面積とする。
-The inflow path and the outflow path may have a shape in which the cross-sectional area of the flow path is not constant. In this case, the average value of the channel cross-sectional areas of the inflow path and the outflow path is taken as the channel cross-sectional area.
-The continuous passage may have a shape in which the cross-sectional area of the flow path is not constant. In this case, the average value of the flow path cross-sectional area of the continuous passage is taken as the flow path cross-sectional area.

・仕切壁の熱伝導率を、区画壁における流入路又は流出路を挟んで仕切壁の反対側に位置する部分、即ち第3区画壁の端壁部の一方又は両方の熱伝導率よりも高くしてもよい。この場合、上記(4)の効果が更に顕著に得られる。仕切壁の熱伝導率を調整する方法は特に限定されるものではなく、公知の調整方法を採用できる。 -The thermal conductivity of the partition wall is higher than that of the portion of the partition wall located on the opposite side of the partition wall across the inflow path or outflow path, that is, the thermal conductivity of one or both of the end wall portions of the third partition wall. You may. In this case, the effect of (4) above can be obtained more remarkably. The method for adjusting the thermal conductivity of the partition wall is not particularly limited, and a known adjustment method can be adopted.

例えば、炭化ケイ素を主成分として含有する区画壁を採用する場合、仕切壁における炭化ケイ素の体積含有率を第3区画壁の端壁部における炭化ケイ素の体積含有率よりも高くすることによって、仕切壁の相対的な熱伝導率を容易に高めることができる。仕切壁における炭化ケイ素の体積含有率は、例えば、仕切壁の炭化ケイ素の組成比が相対的に高くなるように、又は仕切壁の気孔率が相対的に低くなるように、熱媒体流通路形成工程において、層間材として用いる粘土状の混合物の組成を適宜、変更することにより、調整できる。例えば、仕切壁の炭化ケイ素の組成比が相対的に高くなるように、炭化ケイ素粒子の配合比率を変化させた混合物とする。また、仕切壁の気孔率が低くなるように、金属ケイ素に対する濡れ性を調整する添加剤を含有させた混合物とする。 For example, when a partition wall containing silicon carbide as a main component is adopted, the volume content of silicon carbide in the partition wall is made higher than the volume content of silicon carbide in the end wall portion of the third partition wall. The relative thermal conductivity of the wall can be easily increased. The volume content of silicon carbide in the partition wall is such that, for example, the composition ratio of silicon carbide in the partition wall is relatively high, or the porosity of the partition wall is relatively low. In the step, it can be adjusted by appropriately changing the composition of the clay-like mixture used as the interlayer material. For example, the mixture is prepared by changing the mixing ratio of silicon carbide particles so that the composition ratio of silicon carbide on the partition wall is relatively high. In addition, the mixture contains an additive that adjusts the wettability to metallic silicon so that the porosity of the partition wall is low.

・上記実施形態では、区画壁は、同じセラミック材料により構成されており、区画壁の強度は全て同じであったが、区画壁の部位毎に強度を異ならせてもよい。例えば、仕切壁の強度を、連通路の壁面を構成する仕切壁以外の区画壁、即ち第3区画壁の下壁部、及び第2区画壁の強度よりも低くする。 -In the above embodiment, the partition wall is made of the same ceramic material, and the strength of the partition wall is the same, but the strength may be different for each part of the partition wall. For example, the strength of the partition wall is made lower than the strength of the partition wall other than the partition wall constituting the wall surface of the continuous passage, that is, the lower wall portion of the third partition wall and the second partition wall.

この場合、連通路内の熱媒体が凍結した際の膨張圧によって、連通路の内部応力が過度に上昇した際に、相対的に強度が低い仕切壁に優先的にクラックが生じる。これにより、連通路の内部応力の上昇が緩和されて、連通路を区画する仕切壁以外の区画壁にクラックが生じ難くなる。上記(3)において述べた通り、流入路及び流出路を仕切る中実の仕切壁は、クラックが生じたとしても液漏れが生じ難い。そのため、仕切壁に優先的にクラックを生じさせて、連通路を区画する仕切壁以外の区画壁にクラックを生じ難くすることにより、熱交換器の外部及び連通路に隣接するガス流通路へのクラックを通じた熱媒体の漏れを抑制できる。 In this case, when the internal stress of the communication passage is excessively increased due to the expansion pressure when the heat medium in the communication passage is frozen, cracks are preferentially generated in the partition wall having a relatively low strength. As a result, the increase in internal stress of the communication passage is alleviated, and cracks are less likely to occur in the partition wall other than the partition wall that divides the communication passage. As described in (3) above, the solid partition wall that separates the inflow path and the outflow path is unlikely to leak even if a crack occurs. Therefore, by preferentially causing cracks in the partition wall and making it difficult for cracks to occur in the partition walls other than the partition wall that partitions the communication passage, the outside of the heat exchanger and the gas flow passage adjacent to the communication passage can be reached. Leakage of heat medium through cracks can be suppressed.

また、仕切壁の強度を、流入路又は流出路の壁面を構成する仕切壁以外の区画壁、即ち第3区画壁の端壁部、及び第2区画壁の強度よりも低くしてもよい。この場合にも、同様のメカニズムにより、熱交換器の外部、及び流入路又は流出路に隣接するガス流通路へのクラックを通じた熱媒体の漏れを抑制できる。 Further, the strength of the partition wall may be lower than the strength of the partition wall other than the partition wall constituting the wall surface of the inflow path or the outflow path, that is, the end wall portion of the third partition wall and the second partition wall. In this case as well, the same mechanism can suppress leakage of the heat medium through cracks to the outside of the heat exchanger and to the gas flow path adjacent to the inflow path or the outflow path.

仕切壁の強度を調整する方法は特に限定されるものではなく、公知の調整方法を採用できる。例えば、炭化ケイ素を主成分として含有する区画壁を採用する場合、仕切壁における炭化ケイ素の体積含有率を下壁部及び縦側壁における炭化ケイ素の体積含有率よりも低くすることによって、仕切壁の相対的な強度を容易に低下させることができる。仕切壁における炭化ケイ素の体積含有率は、例えば、仕切壁の炭化ケイ素の組成比が相対的に低くなるように、又は仕切壁の気孔率が相対的に高くなるように、熱媒体流通路形成工程において、層間材として用いる粘土状の混合物の組成を適宜、変更することにより、調整できる。 The method for adjusting the strength of the partition wall is not particularly limited, and a known adjustment method can be adopted. For example, when a partition wall containing silicon carbide as a main component is adopted, the volume content of silicon carbide in the partition wall is made lower than the volume content of silicon carbide in the lower wall portion and the vertical side wall, thereby forming the partition wall. The relative strength can be easily reduced. The volume content of silicon carbide in the partition wall is such that, for example, the composition ratio of silicon carbide in the partition wall is relatively low, or the porosity of the partition wall is relatively high. In the step, it can be adjusted by appropriately changing the composition of the clay-like mixture used as the interlayer material.

・本実施形態では、熱交換器は、幅方向(図2の左右方向)の寸法が、上下方向の寸法よりも大きく構成されていたが、この態様に限定されない。上下方向の寸法の方が、幅方向の寸法よりも大きく構成されていてもよいし、上下方向と幅方向が同じ寸法で構成されていてもよい。 -In the present embodiment, the heat exchanger has a width direction (horizontal direction in FIG. 2) larger than the vertical dimension, but is not limited to this embodiment. The dimensions in the vertical direction may be larger than the dimensions in the width direction, or the dimensions in the vertical direction and the width direction may be the same.

・本実施形態では、ガス流通セルは、周壁の縦側壁に平行にガス流通セルが8個配列し、このセル列が、周壁の横側壁に沿って4列設けられた配置パターンが、熱媒体流通路を介して繰り返されていたが、この態様に限定されない。ガス流通セルの配置パターンは、適宜選択することができる。 -In the present embodiment, in the gas flow cell, eight gas flow cells are arranged parallel to the vertical side wall of the peripheral wall, and the arrangement pattern in which four rows of the cell rows are provided along the horizontal side wall of the peripheral wall is a heat medium. It was repeated through the flow path, but is not limited to this aspect. The arrangement pattern of the gas distribution cell can be appropriately selected.

例えば、図11、12に示すように、第3区画壁12cの下壁部12c2の側方に位置するガス流通セルCを省略して、熱交換器10の下側に、下壁部12c2に相当する厚さの中実の壁が設けられる構成としてもよい。この場合には、熱交換器10の強度が向上する。 For example, as shown in FIGS. 11 and 12, the gas flow cell C located on the side of the lower wall portion 12c2 of the third partition wall 12c is omitted, and the lower wall portion 12c2 is on the lower side of the heat exchanger 10. A solid wall having a corresponding thickness may be provided. In this case, the strength of the heat exchanger 10 is improved.

・周壁は、矩形筒状に限定されない。円筒状や、断面が楕円形の筒状に構成されていてもよい。また、ガス流通セル及び熱媒体流通路の断面形状は断面矩形状に限定されない。矩形状以外の多角形状であってもよいし、円形や楕円形であってもよい。多角形状の角部が面取りされた形状であってもよい。熱媒体流通路の流入路と流出路とで形状が異なっていてもよい。 -The peripheral wall is not limited to a rectangular cylinder. It may be formed in a cylindrical shape or a tubular shape having an elliptical cross section. Further, the cross-sectional shape of the gas flow cell and the heat medium flow path is not limited to the rectangular cross section. It may be a polygonal shape other than a rectangular shape, or may be a circular shape or an elliptical shape. The corners of the polygonal shape may be chamfered. The shape of the inflow path and the outflow path of the heat medium flow path may be different.

以下、上記実施形態をさらに具体化した実施例について説明する。
流入路、流出路、及び連通路の流路断面積を異ならせた実施例1〜4及び比較例1の熱交換器を作製し、充填した熱媒体を凍結させた際の挙動を観察した。
Hereinafter, an example in which the above embodiment is further embodied will be described.
The heat exchangers of Examples 1 to 4 and Comparative Example 1 having different flow path cross-sectional areas of the inflow path, the outflow path, and the communication passage were prepared, and the behavior when the filled heat medium was frozen was observed.

ガス流通セルが縦方向に27個配列したセル列を備え、このセル列が横方向に4列設けられた矩形筒状の第1成形体を成形した。第1成形体の各壁の壁厚は、0.15mmとし、セルサイズは、縦0.98mm×横0.98mm×長さ80mmとした。第1成形体の材料として、含浸工程後、炭化ケイ素の体積含有率が60%となる壁が形成される組成の材料を用いた。 A first molded body having a rectangular cylinder in which 27 gas flow cells were arranged in the vertical direction and four rows of the cell rows were provided in the horizontal direction was formed. The wall thickness of each wall of the first molded product was 0.15 mm, and the cell size was 0.98 mm in length × 0.98 mm in width × 80 mm in length. As the material of the first molded product, a material having a composition in which a wall having a volume content of silicon carbide of 60% was formed after the impregnation step was used.

第1成形体の側面に対して、表1に示す寸法の流入路、流出路、及び連通路を形成するように、厚さ3mmの層間材を塗布した。なお、表1に記載する流入路及び流出路の各幅は、軸方向の長さであり、連通路の幅は、上下方向(縦方向)の長さである。層間材の材料として、含浸工程後、炭化ケイ素の体積含有率が表1に示す数値となる壁が形成される組成の材料を用いた。層間材を挟んで8個の第1成形体を重ね合わせた第2成形体を作製し、脱脂工程及び含浸工程を実施することにより実施例1〜4及び比較例1の熱交換器を得た。 An interlayer material having a thickness of 3 mm was applied to the side surface of the first molded body so as to form an inflow passage, an outflow passage, and a communication passage having the dimensions shown in Table 1. The widths of the inflow passage and the outflow passage shown in Table 1 are the lengths in the axial direction, and the widths of the communication passages are the lengths in the vertical direction (vertical direction). As the material of the interlayer material, a material having a composition in which a wall having a volume content of silicon carbide having a numerical value shown in Table 1 was formed after the impregnation step was used. A second molded body was prepared by superimposing eight first molded bodies with an interlayer material sandwiched between them, and the degreasing step and the impregnation step were carried out to obtain heat exchangers of Examples 1 to 4 and Comparative Example 1. ..

得られた実施例1〜4及び比較例1の熱交換器の熱媒体流路である流入路、流出路、及び連通路に熱媒体としての水を充填した状態とし、−19℃の恒温槽に2時間放置した後に目視でクラックの有無を確認した。その結果を表1に示す。 The inflow passage, the outflow passage, and the communication passage, which are the heat medium passages of the heat exchangers of Examples 1 to 4 and Comparative Example 1, were filled with water as a heat medium, and a constant temperature bath at -19 ° C. After leaving it for 2 hours, the presence or absence of cracks was visually confirmed. The results are shown in Table 1.

表1に示すように、流入路の流路断面積及び流出路の流路断面積が連通路の流路断面積と同じである比較例1の場合、充填した熱媒体を凍結させることによりクラックが発生した。一方、流入路の流路断面積及び流出路の流路断面積が連通路の流路断面積よりも大きい実施例1〜4の場合、充填した熱媒体を凍結させてもクラックは発生しなかった。 As shown in Table 1, in the case of Comparative Example 1 in which the flow path cross-sectional area of the inflow path and the flow path cross-sectional area of the outflow path are the same as the flow path cross-sectional area of the continuous passage, cracks are caused by freezing the filled heat medium. There has occurred. On the other hand, in the cases of Examples 1 to 4 in which the flow path cross-sectional area of the inflow path and the flow path cross-sectional area of the outflow path are larger than the flow path cross-sectional area of the continuous passage, no crack occurs even if the filled heat medium is frozen. It was.

A1…流入路の流路断面積、A2…流出路の流路断面積、A3…連通路の流路断面積、R1…ガス流通路、R2…熱媒体流通路、10…熱交換器、11…周壁、12…区画壁、12a…第1区画壁、12b…第2区画壁、12c…第3区画壁、12c1…端壁部、12c2…下壁部、12d…仕切壁、13…連通路、14a…流入路、14b…流出路、15a…流入口、15b…流出口、20…第1成形体、21、22…層間材、23…第2成形体、30…脱脂体、R1…ガス流通路、R2…熱媒体流通路。 A1 ... Flow path cross-sectional area of inflow path, A2 ... Flow path cross-sectional area of outflow path, A3 ... Flow path cross-sectional area of continuous passage, R1 ... Gas flow path, R2 ... Heat medium flow path, 10 ... Heat exchanger, 11 ... peripheral wall, 12 ... partition wall, 12a ... first partition wall, 12b ... second partition wall, 12c ... third partition wall, 12c1 ... end wall, 12c2 ... lower wall, 12d ... partition wall, 13 ... continuous passage , 14a ... Inflow path, 14b ... Outflow path, 15a ... Inflow port, 15b ... Outlet, 20 ... First molded body, 21, 22 ... Interlayer material, 23 ... Second molded body, 30 ... Degreased body, R1 ... Gas Flow passage, R2 ... Heat medium flow passage.

Claims (6)

ガス流通路と、熱媒体流通路と、前記ガス流通路及び前記熱媒体流通路を区画する区画壁とを備え、前記ガス流通路を流通するガスと、前記熱媒体流通路を流通する液状の熱媒体との間で熱交換が行われるセラミック製の熱交換器であって、
前記熱媒体流通路は、流入口を有する流入路と、流出口を有する流出路と、前記流入路と前記流出路とを連通する連通路とを備えるU字状に形成され、
前記区画壁は、前記流入路と前記流出路との間を仕切るとともに前記連通路の壁面を構成する仕切壁を備え、
前記流入路の熱媒体流通方向における断面積及び前記流出路の熱媒体流通方向における断面積の少なくとも一方は、前記連通路の熱媒体流通方向における断面積よりも大きいことを特徴とする熱交換器。
A gas flow passage, a heat medium flow passage, a partition wall for partitioning the gas flow passage and the heat medium flow passage, and a liquid flowing through the gas flow passage and the heat medium flow passage. A ceramic heat exchanger that exchanges heat with a heat medium.
The heat medium flow path is formed in a U shape including an inflow path having an inflow port, an outflow path having an outflow port, and a communication path communicating the inflow path and the outflow path.
The partition wall includes a partition wall that partitions the inflow passage and the outflow passage and constitutes a wall surface of the communication passage.
A heat exchanger characterized in that at least one of the cross-sectional area of the inflow path in the heat medium flow direction and the cross-sectional area of the outflow path in the heat medium flow direction is larger than the cross-sectional area of the communication passage in the heat medium flow direction. ..
前記流入路の熱媒体流通方向における断面積及び前記流出路の熱媒体流通方向における断面積の少なくとも一方は、前記連通路の熱媒体流通方向における断面積の5倍以上である請求項1に記載の熱交換器。 The first aspect of claim 1, wherein at least one of the cross-sectional area of the inflow path in the heat medium flow direction and the cross-sectional area of the outflow path in the heat medium flow direction is five times or more the cross-sectional area of the communication passage in the heat medium flow direction. Heat exchanger. 前記仕切壁は、前記流入路と前記流出路との間を仕切る中実の壁部である請求項1又は請求項2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the partition wall is a solid wall portion that partitions the inflow path and the outflow path. 前記仕切壁の熱伝導率は、前記区画壁における前記流入路又は前記流出路を挟んで前記仕切壁の反対側に位置する部分の熱伝導率以上である請求項3に記載の熱交換器。 The heat exchanger according to claim 3, wherein the thermal conductivity of the partition wall is equal to or higher than the thermal conductivity of a portion of the partition wall located on the opposite side of the inflow path or the outflow path across the partition wall. 前記区画壁は、炭化ケイ素を主成分として含有し、
前記仕切壁の炭化ケイ素の体積含有率は、前記区画壁における前記流入路又は前記流出路を挟んで前記仕切壁の反対側に位置する部分の炭化ケイ素の体積含有率以上である請求項4に記載の熱交換器。
The partition wall contains silicon carbide as a main component and contains
The volume content of silicon carbide in the partition wall is equal to or greater than the volume content of silicon carbide in the partition wall located on the opposite side of the inflow path or the outflow path across the partition wall. The heat exchanger described.
前記仕切壁は、前記連通路の壁面を構成する前記仕切壁以外の前記区画壁よりも強度が低い請求項1〜3のいずれか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 3, wherein the partition wall has a strength lower than that of the partition wall other than the partition wall constituting the wall surface of the communication passage.
JP2019145639A 2019-08-07 2019-08-07 Heat exchanger Pending JP2021025730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019145639A JP2021025730A (en) 2019-08-07 2019-08-07 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019145639A JP2021025730A (en) 2019-08-07 2019-08-07 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2021025730A true JP2021025730A (en) 2021-02-22

Family

ID=74664970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019145639A Pending JP2021025730A (en) 2019-08-07 2019-08-07 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2021025730A (en)

Similar Documents

Publication Publication Date Title
KR100894930B1 (en) Honeycomb with varying channel size and die for manufacturing
JP6763699B2 (en) Manufacturing method of honeycomb structure
CN104069688A (en) Manufacturing method for honeycomb structure and honeycomb structure
WO2019176898A1 (en) Heat exchanger production method
JP6700231B2 (en) Heat exchanger
JP2021025730A (en) Heat exchanger
JP2021025732A (en) Heat exchanger
US8460589B2 (en) Method for producing ceramic honeycomb filter
WO2017159306A1 (en) Method for producing honeycomb structure
JP7018342B2 (en) Heat exchanger
WO2017213088A1 (en) Honeycomb structure
JP2020026907A (en) Manufacturing method for heat exchanger
JP6854229B2 (en) Heat exchanger
JP2021025731A (en) Heat exchanger
JP6857589B2 (en) Heat exchanger
JP2019174012A (en) Heat exchanger
US20200292252A1 (en) Heat exchanger
JP2019156683A (en) Production method of honeycomb structure
JP2019174013A (en) Method for manufacturing heat exchanger
WO2019078226A1 (en) Heat exchanger
JP6815966B2 (en) Heat exchanger
JP6352696B2 (en) Heat exchanger
JP2019074265A (en) Heat exchanger