JP2021025074A - Oriented electromagnetic steel sheet, wound iron core, oriented electromagnetic steel sheet production method, and wound iron core production method - Google Patents

Oriented electromagnetic steel sheet, wound iron core, oriented electromagnetic steel sheet production method, and wound iron core production method Download PDF

Info

Publication number
JP2021025074A
JP2021025074A JP2019142309A JP2019142309A JP2021025074A JP 2021025074 A JP2021025074 A JP 2021025074A JP 2019142309 A JP2019142309 A JP 2019142309A JP 2019142309 A JP2019142309 A JP 2019142309A JP 2021025074 A JP2021025074 A JP 2021025074A
Authority
JP
Japan
Prior art keywords
steel sheet
plate
groove
iron core
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019142309A
Other languages
Japanese (ja)
Other versions
JP7406064B2 (en
Inventor
濱村 秀行
Hideyuki Hamamura
秀行 濱村
史明 高橋
Fumiaki Takahashi
史明 高橋
新井 聡
Satoshi Arai
聡 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019142309A priority Critical patent/JP7406064B2/en
Publication of JP2021025074A publication Critical patent/JP2021025074A/en
Application granted granted Critical
Publication of JP7406064B2 publication Critical patent/JP7406064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide an oriented electromagnetic steel sheet in which a plurality of grooves extending in sheet width direction are formed in sheet length direction at predetermined intervals, a wound iron core formed by winding the oriented electromagnetic steel sheet, and production methods for the oriented electromagnetic steel sheet and the wound iron core.SOLUTION: The present invention provides an oriented electromagnetic steel sheet in which a plurality of grooves extending in sheet width direction are formed in sheet length direction at predetermined intervals. It has a sheet width for winding of a wound iron core, and assuming that a standard deviation of groove depths of the grooves along the sheet width direction is σ, and assuming that an average groove depth of the grooves along the sheet width direction is ave, a groove depth variation expressed by σ/ave is 0.05 or more and 0.17 or less.SELECTED DRAWING: Figure 2

Description

本発明は、板幅方向に延在する溝が板長方向に所定間隔で複数形成された方向性電磁鋼板、及び、この方向性電磁鋼板を巻回して形成された巻鉄芯に関する。
また、本発明は、方向性電磁鋼板に、その板幅方向に延在する溝を板長方向に所定間隔で形成する溝加工工程を含む方向性電磁鋼板の製造方法、及び、その方向性電磁鋼板を巻回して形成する鋼板巻回工程を含む巻鉄芯の製造方法に関する。
The present invention relates to a grain-oriented electrical steel sheet in which a plurality of grooves extending in the plate width direction are formed at predetermined intervals in the plate length direction, and a wound iron core formed by winding the grain-oriented electrical steel sheet.
Further, the present invention comprises a method for manufacturing a grain-oriented electrical steel sheet, which includes a groove processing step of forming grooves extending in the plate width direction at predetermined intervals in the plate length direction, and the grain-oriented electrical steel sheet. The present invention relates to a method for manufacturing a wound steel core including a steel sheet winding step of winding a steel sheet to form the steel sheet.

方向性電磁鋼板は、比較的小さな磁化力において磁化する際のエネルギー損失(鉄損)が低いため、例えば変圧器(トランス)の巻鉄芯を製造するために用いられている。このような巻鉄芯に用いられる方向性電磁鋼板は、低鉄損であることが求められる。
方向性電磁鋼板の鉄損を改善する方策の一つとして、方向性電磁鋼板に溝を導入することで溝周辺に磁極を発生させ、磁区を細分化し、異常渦電流損を下げることができる技術(耐SRA性磁区制御)が知られている(例えば、特許文献1〜6参照)。耐SRA性とは、高温の応力緩和焼鈍「SRA(Stress Relief Annealing)」を行っても鉄損改善効果が消滅しないことを意味する。
Since a grain-oriented electrical steel sheet has a low energy loss (iron loss) when magnetized with a relatively small magnetization force, it is used, for example, for manufacturing a wound iron core of a transformer. The grain-oriented electrical steel sheet used for such a wound steel core is required to have a low iron loss.
As one of the measures to improve the iron loss of grain-oriented electrical steel sheet, a technology that can generate magnetic poles around the groove by introducing a groove in the grain-oriented electrical steel sheet, subdivide the magnetic domain, and reduce the abnormal eddy current loss. (SRA-resistant magnetic domain control) is known (see, for example, Patent Documents 1 to 6). The SRA resistance means that the iron loss improving effect is not extinguished even if high-temperature stress relaxation annealing "SRA (Stress Relief Annealing)" is performed.

特公昭62−54873号公報Special Publication No. 62-54873 特公昭62−53579号公報Special Publication No. 62-53579 特開平6−57335号公報Japanese Unexamined Patent Publication No. 6-57335 特開2003−129135号公報Japanese Unexamined Patent Publication No. 2003-129135 特許第5234222号公報Japanese Patent No. 5234222 特開平6−299244号公報Japanese Unexamined Patent Publication No. 6-299244

従来、耐SRA性磁区制御のための溝は、方向性電磁鋼板の全幅にわたり形成されている。
耐SRA性磁区制御のための溝を設けることにより、鉄損を低くした電磁鋼板を提供できるようになったが、この電磁鋼板を巻回して構成した巻鉄芯においては、交流通電時に騒音が発生し易い問題がある。
即ち、電磁鋼板に溝を形成した部分は巻鉄芯において空隙部分となるので、交流通電時の磁歪現象により電磁鋼板に伸縮を生じると、空隙部分が共振点となる可能性があり、低周波騒音などの騒音発生の原因となる問題がある。
Conventionally, a groove for controlling an SRA-resistant magnetic domain is formed over the entire width of a grain-oriented electrical steel sheet.
By providing a groove for controlling the SRA-resistant magnetic domain, it has become possible to provide an electromagnetic steel sheet with low iron loss. However, in the wound iron core constructed by winding this electromagnetic steel sheet, noise is generated when alternating current is applied. There is a problem that is likely to occur.
That is, since the portion where the groove is formed in the electrical steel sheet becomes a gap portion in the wound iron core, if the electromagnetic steel sheet expands or contracts due to the magnetic strain phenomenon during AC energization, the gap portion may become a resonance point and the frequency is low. There is a problem that causes noise such as noise.

本発明は、上述の問題に鑑みてなされたものであり、鉄損改善率に優れ、巻鉄芯を構成した場合に騒音を抑制できる方向性電磁鋼板とその製造方法を提供することを目的とする。
また、本発明は、上述の問題に鑑みてなされたものであり、鉄損改善率に優れ、騒音を抑制した巻鉄芯とその製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a grain-oriented electrical steel sheet having an excellent iron loss improvement rate and capable of suppressing noise when a wound iron core is formed, and a method for manufacturing the same. To do.
Further, the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a wound iron core having an excellent iron loss improvement rate and suppressing noise, and a method for manufacturing the same.

「1」本形態の方向性電磁鋼板は、板幅方向に延在する溝を板長方向に所定間隔で複数形成した方向性電磁鋼板であって、巻鉄芯巻回用の板幅を有し、前記板幅方向に沿う前記溝の溝深さの標準偏差をσと定義し、前記板幅方向に沿う前記溝の平均溝深さをaveと定義すると、σ/aveで示される溝深さばらつきが0.05以上0.17以下であることを特徴とする。 "1" The directional electromagnetic steel plate of the present embodiment is a directional electromagnetic steel plate in which a plurality of grooves extending in the plate width direction are formed at predetermined intervals in the plate length direction, and has a plate width for winding an iron core. Then, if the standard deviation of the groove depth of the groove along the plate width direction is defined as σ and the average groove depth of the groove along the plate width direction is defined as ave, the groove depth indicated by σ / ave is defined. The variation is 0.05 or more and 0.17 or less.

板幅方向に延在する溝を板長方向に所定間隔で複数形成した方向性電磁鋼板を巻回して巻鉄芯を構成した場合、巻回し積層した下層の方向性電磁鋼板と上層の方向性電磁鋼板との間に溝の存在により空隙を生じる。しかし、溝深さばらつきを0.05以上0.17以下としているので、巻鉄芯の振動モードを複雑にできる。この結果、均一深さの溝を有する方向性電磁鋼板を用いた場合より、共振を抑制できるので、通電時に発生する騒音を抑制できる。このため、低騒音化した巻鉄芯を提供できる。
また、溝深さばらつきを上述の範囲とすることで鉄損改善率を好適な範囲に維持することができる。
When a grain-oriented electrical steel sheet in which a plurality of grooves extending in the plate width direction are formed at predetermined intervals in the plate length direction is wound to form a wound iron core, the directionality of the lower layer directional electromagnetic steel sheet and the upper layer that are wound and laminated. A gap is created due to the presence of a groove between the product and the electromagnetic steel plate. However, since the groove depth variation is 0.05 or more and 0.17 or less, the vibration mode of the wound iron core can be complicated. As a result, resonance can be suppressed as compared with the case of using a grain-oriented electrical steel sheet having grooves having a uniform depth, so that noise generated during energization can be suppressed. Therefore, it is possible to provide a wound iron core with reduced noise.
Further, by setting the groove depth variation within the above range, the iron loss improvement rate can be maintained within a suitable range.

「2」本形態に係る方向性電磁鋼板において、前記溝深さばらつきが0.05以上0.15以下であることが好ましい。 "2" In the grain-oriented electrical steel sheet according to the present embodiment, the groove depth variation is preferably 0.05 or more and 0.15 or less.

溝深さばらつきを0.05以上0.15以下とすることで、より好適な鉄損改善率を得た上に低騒音化した巻鉄芯を形成できる方向性電磁鋼板を提供できる。 By setting the groove depth variation to 0.05 or more and 0.15 or less, it is possible to provide a grain-oriented electrical steel sheet capable of forming a wound steel core with reduced noise while obtaining a more suitable iron loss improvement rate.

「3」本形態に係る巻鉄芯は、板幅方向に延在する溝が板長方向に所定間隔で複数形成された方向性電磁鋼板を巻回した巻鉄芯であって、前記板幅方向に沿う前記溝の溝深さの標準偏差をσと定義し、前記板幅方向に沿う前記溝の平均溝深さをaveと定義すると、σ/aveで示される溝深さばらつきが0.05以上0.17以下である方向性電磁鋼板を巻回したことを特徴とする。 "3" The wound iron core according to the present embodiment is a wound iron core obtained by winding a directional electromagnetic steel plate in which a plurality of grooves extending in the plate width direction are formed at predetermined intervals in the plate length direction. If the standard deviation of the groove depth of the groove along the direction is defined as σ and the average groove depth of the groove along the plate width direction is defined as ave, the groove depth variation indicated by σ / ave is 0. It is characterized in that a directional electromagnetic steel plate having a value of 05 or more and 0.17 or less is wound.

板幅方向に延在する溝を板長方向に所定間隔で複数形成した方向性電磁鋼板を巻回して巻鉄芯を構成した場合、巻回した下層と上層の方向性電磁鋼板の間に溝の存在により空隙を生じる。しかし、溝深さばらつきを0.05以上0.17以下としているので、巻鉄芯の振動モードを複雑にできる結果、均一深さの溝を有する方向性電磁鋼板を用いた場合より、共振を抑制することができ、通電時に発生する騒音を抑制できる。このため、低騒音化した巻鉄芯を提供できる。
また、溝深さばらつきを上述の範囲とすることで鉄損改善率を好適な範囲に維持できるとともに低騒音化した巻鉄芯を提供できる。
When a wound iron core is formed by winding a grain-oriented electrical steel sheet in which a plurality of grooves extending in the plate width direction are formed at predetermined intervals in the plate length direction, a groove is formed between the wound lower layer and the upper layer of the grain-oriented electrical steel sheet. Creates voids due to the presence of. However, since the groove depth variation is 0.05 or more and 0.17 or less, the vibration mode of the wound iron core can be complicated, and as a result, resonance occurs more than when a grain-oriented electrical steel sheet having a groove with a uniform depth is used. It can be suppressed, and the noise generated when energized can be suppressed. Therefore, it is possible to provide a wound iron core with reduced noise.
Further, by setting the groove depth variation within the above range, the iron loss improvement rate can be maintained in a suitable range, and a wound iron core with reduced noise can be provided.

「4」本形態に係る巻鉄芯において、前記溝深さばらつきが0.05以上0.15以下である方向性電磁鋼板を巻回したことが好ましい。
溝深さばらつきを0.05以上0.15以下とすることで、より好適な鉄損改善率を得た上に低騒音化した方向性電磁鋼板を提供できる。
"4" In the wound iron core according to the present embodiment, it is preferable to wind a grain-oriented electrical steel sheet having a groove depth variation of 0.05 or more and 0.15 or less.
By setting the groove depth variation to 0.05 or more and 0.15 or less, it is possible to provide a grain-oriented electrical steel sheet having a more suitable iron loss improvement rate and reduced noise.

「5」本形態に係る巻鉄芯において、板幅方向に延在する溝が板長方向に所定間隔で複数形成された方向性電磁鋼板の製造方法であって、板幅方向に沿ってレーザ−光を照射して前記溝を形成する際、レーザー光の強弱を調節することにより、前記板幅方向に沿う前記溝の溝深さの標準偏差をσと定義し、前記板幅方向に沿う前記溝の平均溝深さをaveと定義すると、σ/aveで示される溝深さばらつきが0.05以上0.17以下である方向性電磁鋼板を形成する方向性電磁鋼板の製造方法。
「6」本形態に係る巻鉄芯において、前記溝深さばらつきを0.05以上0.15以下とした方向性電磁鋼板を用いることが好ましい。
"5" A method for manufacturing a directional electromagnetic steel plate in which a plurality of grooves extending in the plate width direction are formed at predetermined intervals in the plate length direction in the wound iron core according to the present embodiment, and a laser is formed along the plate width direction. -When the groove is formed by irradiating light, the standard deviation of the groove depth along the plate width direction is defined as σ by adjusting the intensity of the laser beam, and is along the plate width direction. When the average groove depth of the grooves is defined as ave, a method for manufacturing a directional electromagnetic steel plate for forming a directional electromagnetic steel plate having a groove depth variation represented by σ / ave of 0.05 or more and 0.17 or less.
"6" In the wound iron core according to the present embodiment, it is preferable to use a grain-oriented electrical steel sheet having a groove depth variation of 0.05 or more and 0.15 or less.

方向性電磁鋼板にレーザー光を照射して溝を形成する際、レーザー光の強弱を調節することにより、溝深さに所定のばらつきを付加することができる。そして、溝深さばらつきを0.05以上0.17以下の範囲とすることで、巻鉄芯を構成した場合にその振動モードを複雑にできる結果、均一深さの溝を有する方向性電磁鋼板を用いた場合より、共振を抑制することができ、通電時に発生する騒音を抑制できる。このため、低騒音化した巻鉄芯を提供できる。
より優れた鉄損改善率を得るとともに騒音を低減するには、溝深さばらつきを0.05以上0.15以下とした方向性電磁鋼板を用いることが好ましい。
When a groove is formed by irradiating a grain-oriented electrical steel sheet with a laser beam, a predetermined variation can be added to the groove depth by adjusting the intensity of the laser beam. Then, by setting the groove depth variation in the range of 0.05 or more and 0.17 or less, the vibration mode can be complicated when the wound iron core is configured, and as a result, the grain-oriented electrical steel sheet having a groove of a uniform depth Resonance can be suppressed and noise generated during energization can be suppressed as compared with the case of using. Therefore, it is possible to provide a wound iron core with reduced noise.
In order to obtain a more excellent iron loss improvement rate and reduce noise, it is preferable to use a grain-oriented electrical steel sheet having a groove depth variation of 0.05 or more and 0.15 or less.

「7」本形態に係る方向性電磁鋼板の製造方法は、長さ方向に沿って鋼板を搬送する途中に、前記板幅方向に沿って板面から離間して設置した複数のレーザー装置からレーザー光を照射し、板幅方向に前記溝を形成する処理を前記板長方向に繰り返し、前記板長方向に所定の間隔で複数の溝を形成することを特徴とする。 "7" The method for manufacturing a directional electromagnetic steel sheet according to the present embodiment is to use a laser from a plurality of laser devices installed apart from the plate surface along the plate width direction while the steel plate is being conveyed along the length direction. The process of irradiating light and forming the grooves in the plate width direction is repeated in the plate length direction, and a plurality of grooves are formed at predetermined intervals in the plate length direction.

「8」本形態に係る巻鉄芯の製造方法は、板幅方向に延在する溝が板長方向に所定間隔で複数形成された方向性電磁鋼板を巻回して構成される巻鉄芯の製造方法であって、板幅方向に沿ってレーザ−光を照射して前記溝を形成する際、レーザー光の強弱を調節することにより、前記板幅方向に沿う前記溝の溝深さの標準偏差をσと定義し、前記板幅方向に沿う前記溝の平均溝深さをaveと定義すると、σ/aveで示される溝深さばらつきが0.05以上0.17以下となる方向性電磁鋼板を形成し、この方向性電磁鋼板を巻回することを特徴とする。 "8" The method for manufacturing a wound iron core according to the present embodiment is a wound iron core formed by winding a directional electromagnetic steel plate in which a plurality of grooves extending in the plate width direction are formed at predetermined intervals in the plate length direction. In the manufacturing method, when the groove is formed by irradiating a laser beam along the plate width direction, the groove depth of the groove along the plate width direction is standardized by adjusting the intensity of the laser beam. If the deviation is defined as σ and the average groove depth of the groove along the plate width direction is defined as ave, the directional electromagnetic wave in which the groove depth variation indicated by σ / ave is 0.05 or more and 0.17 or less. It is characterized in that a steel plate is formed and this directional electromagnetic steel plate is wound around.

「9」本形態に係る巻鉄芯の製造方法において、前記溝深さばらつきを0.05以上0.15以下とすることが好ましい。
「10」本形態に係る巻鉄芯の製造方法において、長さ方向に沿って鋼板を搬送する途中に、前記板幅方向に沿って板面から離間して設置した複数のレーザー装置からレーザー光を照射し、板幅方向に前記溝を形成する処理を前記板長方向に繰り返し、前記板長方向に所定の間隔で複数の溝を形成した方向性電磁鋼板を巻回することが好ましい。
"9" In the method for manufacturing a wound iron core according to the present embodiment, it is preferable that the groove depth variation is 0.05 or more and 0.15 or less.
"10" In the method for manufacturing a wound iron core according to the present embodiment, laser light is emitted from a plurality of laser devices installed apart from the plate surface along the plate width direction while the steel plate is being conveyed along the length direction. It is preferable that the process of forming the grooves in the plate width direction is repeated in the plate length direction, and a directional electromagnetic steel plate in which a plurality of grooves are formed at predetermined intervals in the plate length direction is wound.

本発明によれば、方向性電磁鋼板の板幅方向に設けた溝の板幅方向に沿う溝深さばらつきを所定の範囲とすることにより、巻鉄芯とした場合に鉄損改善率を高い状態に維持しつつ共振を抑制して低騒音化できる方向性電磁鋼板を提供できる。
また、この方向性電磁鋼板を用いることで鉄損改善率を維持しつつ、低騒音化した巻鉄芯を提供することができる。
According to the present invention, by setting the groove depth variation along the plate width direction of the groove provided in the plate width direction of the grain-oriented electrical steel sheet within a predetermined range, the iron loss improvement rate is high when the wound iron core is used. It is possible to provide a grain-oriented electrical steel sheet capable of suppressing resonance and reducing noise while maintaining the state.
Further, by using this grain-oriented electrical steel sheet, it is possible to provide a wound steel core with low noise while maintaining the iron loss improvement rate.

本実施形態に係る方向性電磁鋼板の一例構成を示す板厚方向に沿った断面図である。It is sectional drawing along the plate thickness direction which shows the example structure of the grain-oriented electrical steel sheet which concerns on this embodiment. 本実施形態に係る巻鉄芯の一例を示す斜視図である。It is a perspective view which shows an example of the wound iron core which concerns on this embodiment. 図2に示す巻鉄芯を構成する方向性電磁鋼板を展開した状態の一例を示す平面図である。It is a top view which shows an example of the developed state of the grain-oriented electrical steel sheet which constitutes the wound iron core shown in FIG. 図3のF4−F4線に沿う断面図である。It is sectional drawing which follows the F4-F4 line of FIG. 他の実施形態に係る方向性電磁鋼板の一例を示す断面図である。It is sectional drawing which shows an example of the grain-oriented electrical steel sheet which concerns on another embodiment. 比較例の方向性電磁鋼板において均一深さの溝を設けた場合の一例を示す断面図である。It is sectional drawing which shows an example of the case where the groove of a uniform depth is provided in the grain-oriented electrical steel sheet of the comparative example. 本実施形態に係る方向性電磁鋼板と巻鉄芯の製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of the grain-oriented electrical steel sheet and the wound iron core which concerns on this embodiment. 本実施形態に係る方向性電磁鋼板の製造工程について図7に示す工程と異なる場合の例を示すもので、(A)は冷間圧延工程の後にレーザー加工工程を行う場合の一例を示すフローチャート、(B)は脱炭焼鈍工程の後にレーザー加工工程を行う場合の一例を示すフローチャート、(C)は最終仕上げ焼鈍工程の後にレーザー加工工程を行う場合の一例を示すフローチャートである。An example of the case where the manufacturing process of the directional electromagnetic steel plate according to the present embodiment is different from the process shown in FIG. 7 is shown, and (A) is a flowchart showing an example of a case where the laser processing process is performed after the cold rolling process. (B) is a flowchart showing an example of a case where a laser processing step is performed after a decarburization annealing step, and (C) is a flowchart showing an example of a case where a laser processing step is performed after a final finish annealing step. 本実施形態に係る方向性電磁鋼板に溝を形成する場合に用いるレーザー照射装置の概要とレーザー加工中の方向性電磁鋼板を示す斜視図である。It is a perspective view which shows the outline of the laser irradiation apparatus used when forming a groove in the grain-oriented electrical steel sheet which concerns on this embodiment, and the grain-oriented electrical steel sheet during laser processing. 図9に示すレーザー照射装置で溝が形成された方向性電磁鋼板の一例を示す平面図である。It is a top view which shows an example of the grain-oriented electrical steel sheet which groove was formed by the laser irradiation apparatus shown in FIG. 実施例において製造された方向性電磁鋼板を巻回して構成される巻鉄芯について鉄損改善率と騒音改善率に関し、溝深さのばらつき(σ/ave)との相関関係を示すグラフである。It is a graph which shows the correlation with the variation (σ / ave) of the groove depth about the iron loss improvement rate and the noise improvement rate about the wound iron core formed by winding the grain-oriented electrical steel sheet manufactured in the Example. .. 実施例において製造された方向性電磁鋼板の板幅方向位置毎の溝深さについて示す説明図である。It is explanatory drawing which shows the groove depth for every position in the plate width direction of the grain-oriented electrical steel sheet manufactured in an Example. 本実施形態に係る方向性電磁鋼板の製造方法の変形例として方向性電磁鋼板に溝を一列のみ形成する工程を示す斜視図である。It is a perspective view which shows the process of forming only one row of grooves in the grain-oriented electrical steel sheet as a modification of the manufacturing method of grain-oriented electrical steel sheet which concerns on this embodiment. 本実施形態に係る方向性電磁鋼板の製造方法の変形例として歯型ロールによって方向性電磁鋼板に溝を形成する工程を示す斜視図である。It is a perspective view which shows the process of forming the groove in the grain-oriented electrical steel sheet by the tooth mold roll as a modification of the manufacturing method of the grain-oriented electrical steel sheet which concerns on this embodiment. 比較例に係る巻鉄芯の構成の一例を示す斜視図である。It is a perspective view which shows an example of the structure of the wound iron core which concerns on a comparative example. 図15に示す巻鉄芯を構成する方向性電磁鋼板を展開した状態の一例を示す平面図である。It is a top view which shows an example of the developed state of the grain-oriented electrical steel sheet which constitutes the wound iron core shown in FIG.

以下に、図面を参照しながら、本発明の好適な実施形態について説明する。
なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合がある。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
In addition, in the drawing used in the following description, in order to make the feature easy to understand, the feature portion may be enlarged and shown for convenience.

<方向性電磁鋼板の概要>
方向性電磁鋼板は、鋼板の結晶粒の磁化容易軸(体心立方晶の<100>方向)が製造工程における圧延方向に略揃っている電磁鋼板である。方向性電磁鋼板は、圧延方向に磁化が向いた磁区を、磁壁を挟んで複数配列した構造を有する。このような方向性電磁鋼板は圧延方向に磁化しやすいため、磁力線の方向がほぼ一定に流れるトランスの鉄芯材料に適している。
<Overview of grain-oriented electrical steel sheets>
The grain-oriented electrical steel sheet is an electrical steel sheet in which the easily magnetizing axes of the crystal grains of the steel sheet (the <100> direction of the body-centered cubic crystal) are substantially aligned in the rolling direction in the manufacturing process. The grain-oriented electrical steel sheet has a structure in which a plurality of magnetic domains whose magnetization is oriented in the rolling direction are arranged with a domain wall in between. Since such grain-oriented electrical steel sheets are easily magnetized in the rolling direction, they are suitable as iron core materials for transformers in which the directions of magnetic field lines flow almost constantly.

トランスは、通常、積みトランスと巻きトランスとに大別される。本実施形態に係る方向性電磁鋼板は、鋼板に巻き変形を加えながらトランスの形状に組み上げる巻きトランスの鉄芯材料として利用される。
図1に示すように、本実施形態に係る方向性電磁鋼板10は、鋼板本体(地鉄)12と、鋼板本体12の表裏両面に形成されたグラス被膜14と、グラス被膜14上に形成された絶縁被膜16と、を有する。
Transformers are usually roughly classified into stacking transformers and winding transformers. The grain-oriented electrical steel sheet according to the present embodiment is used as an iron core material for a winding transformer that is assembled into a transformer shape while applying winding deformation to the steel sheet.
As shown in FIG. 1, the grain-oriented electromagnetic steel sheet 10 according to the present embodiment is formed on the steel sheet main body (base steel) 12, the glass coating 14 formed on both the front and back surfaces of the steel plate main body 12, and the glass coating 14. It also has an insulating coating 16.

鋼板本体12は、Siを含有する鉄合金で構成されている。
変圧器用の巻鉄芯等に加工される直前の、最終的な方向性電磁鋼板10における鋼板本体12の組成は、一例として、Si;2.0質量%以上4.0質量%以下、C;0.003質量%以下、Mn;0.05質量%以上0.15質量%以下、酸可溶性Al;0.003質量%以上0.040質量%以下、N;0.002質量%以下、S;0.02質量%以下、残部がFe及び不純物である。鋼板本体12の厚さは、例えば、0.15mm以上、かつ、0.35mm以下である。
The steel plate body 12 is made of an iron alloy containing Si.
The composition of the steel plate body 12 in the final directional electromagnetic steel plate 10 immediately before being processed into a wound iron core for a transformer is, for example, Si; 2.0% by mass or more and 4.0% by mass or less, C; 0.003% by mass or less, Mn; 0.05% by mass or more and 0.15% by mass or less, acid-soluble Al; 0.003% by mass or more and 0.040% by mass or less, N; 0.002% by mass or less, S; 0.02% by mass or less, the balance is Fe and impurities. The thickness of the steel plate body 12 is, for example, 0.15 mm or more and 0.35 mm or less.

グラス被膜14は、例えば、フォルステライト(MgSiO)、スピネル(MgAl)及びコージライト(MgAlSi18)などの複合酸化物によって構成されている。グラス被膜14の厚さは、例えば、1μmである。 The glass coating 14 is composed of a composite oxide such as forsterite (Mg 2 SiO 4 ), spinel (Mg Al 2 O 4 ) and cordierite (Mg 2 Al 4 Si 5 O 18). The thickness of the glass coating 14 is, for example, 1 μm.

絶縁被膜16は、例えば、コロイド状シリカとリン酸塩(リン酸マグネシウム、リン酸アルミニウムなど)を主体とするコーティング液やアルミナゾルとホウ酸を混合したコーティング液の塗膜を加熱乾燥させた被膜により構成されている。
上述した構成の方向性電磁鋼板10は、複数枚重ねられた状態で巻回され、変圧器(トランス)用の図2に示す巻鉄芯50が形成される。
The insulating coating film 16 is formed by, for example, a coating film obtained by heating and drying a coating film containing colloidal silica and a phosphate (magnesium phosphate, aluminum phosphate, etc.) or a coating solution containing alumina sol and boric acid. It is configured.
A plurality of grain-oriented electrical steel sheets 10 having the above-described configuration are wound in a stacked state to form a wound iron core 50 shown in FIG. 2 for a transformer.

図2に示すように、本実施形態に係る巻鉄芯50は、略直方体形状をなしており、中央側に空間が形成されている。図2に示すように、空間の開口部を横向き(Y軸向き)とした巻鉄芯50において、外周の横の長さはAと表記することができ、縦の長さはBと表記することができ、奥行きの長さはCと表記することができる。また、巻鉄芯50の内周の横の長さはaと表記することができ、縦の長さはbと表記することができ、内周の奥行きは外周の奥行きと同じ長さに形成されている。巻鉄芯50は、四隅に製造時に曲げ加工されたコーナ部52を有する。コーナ部52は、例えばR形状となっている。 As shown in FIG. 2, the wound iron core 50 according to the present embodiment has a substantially rectangular parallelepiped shape, and a space is formed on the central side. As shown in FIG. 2, in the wound iron core 50 in which the opening of the space is oriented sideways (Y-axis direction), the horizontal length of the outer circumference can be described as A, and the vertical length is described as B. And the length of depth can be written as C. Further, the horizontal length of the inner circumference of the wound iron core 50 can be described as a, the vertical length can be described as b, and the depth of the inner circumference is formed to be the same as the depth of the outer circumference. Has been done. The wound iron core 50 has corner portions 52 bent at four corners during manufacturing. The corner portion 52 has, for example, an R shape.

本実施形態の巻鉄芯50は、上述の通り方向性電磁鋼板10を巻回した構成であるため、方向性電磁鋼板10を展開すると図3に示す形状となる。図3には、巻鉄芯50を構成する方向性電磁鋼板10の長さ方向の一部が示されている。なお、図2のX方向が図3の圧延方向(板長方向)に対応し、図2のY方向が図3の板幅方向に対応する。また、図3のF4−F4線に沿う断面を図4に示す。 Since the wound iron core 50 of the present embodiment has a configuration in which the grain-oriented electrical steel sheet 10 is wound as described above, the shape shown in FIG. 3 is obtained when the grain-oriented electrical steel sheet 10 is unfolded. FIG. 3 shows a part of the grain-oriented electrical steel sheet 10 constituting the wound iron core 50 in the length direction. The X direction in FIG. 2 corresponds to the rolling direction (plate length direction) in FIG. 3, and the Y direction in FIG. 2 corresponds to the plate width direction in FIG. Further, a cross section taken along the line F4-F4 of FIG. 3 is shown in FIG.

図3、図4に示すように、方向性電磁鋼板10においては、鉄損を低減させるために、方向性電磁鋼板10の製造時の搬送方向(圧延方向)と交差する方向(図の例では90°交差方向)に延在する溝20が、鋼板本体(地鉄)12の表面に圧延方向(板長方向)に所定の間隔で複数形成されている。
本実施形態において、溝20は方向性電磁鋼板10の幅方向両端に到達されている。また、溝20において溝底には凹凸が形成され、板幅方向の位置毎に溝深さが異なるように溝20の深さにばらつきが付与されている。
As shown in FIGS. 3 and 4, in the grain-oriented electrical steel sheet 10, in order to reduce iron loss, the direction intersecting the transport direction (rolling direction) at the time of manufacturing the grain-oriented electrical steel sheet 10 (in the example of the figure). A plurality of grooves 20 extending in the 90 ° crossing direction) are formed on the surface of the steel plate main body (base steel) 12 at predetermined intervals in the rolling direction (plate length direction).
In the present embodiment, the grooves 20 reach both ends in the width direction of the grain-oriented electrical steel sheet 10. Further, in the groove 20, unevenness is formed on the bottom of the groove, and the depth of the groove 20 is varied so that the groove depth differs depending on the position in the plate width direction.

これらの溝20は、図9を基に後述するようにレーザー照射装置106によりレーザー光(レーザービーム)を方向性電磁鋼板10の表面に集光照射することにより形成されたものである。図3に示す方向性電磁鋼板10において、板長方向に配列されている複数の溝20は全て同一ピッチで形成されている。
レーザー照射装置106からのレーザー光を方向性電磁鋼板10に集光照射し、レーザー光を板幅方向一端から他端に走査する間に溝20を形成する場合、レーザー照射装置106から発生させるレーザー光の出力を調整し、板幅方向の位置毎に照射するレーザー光の強度を変化させることで溝20が形成されている。
These grooves 20 are formed by concentrating and irradiating the surface of the grain-oriented electrical steel sheet 10 with laser light (laser beam) by the laser irradiation device 106 as described later based on FIG. In the grain-oriented electrical steel sheet 10 shown in FIG. 3, the plurality of grooves 20 arranged in the plate length direction are all formed at the same pitch.
When the laser beam from the laser irradiation device 106 is focused and irradiated on the directional electromagnetic steel plate 10 and the groove 20 is formed while scanning the laser beam from one end to the other end in the plate width direction, the laser generated from the laser irradiation device 106 is formed. The groove 20 is formed by adjusting the output of light and changing the intensity of the laser light to be emitted for each position in the plate width direction.

レーザー光の強度(レーザー光から鋼板に付与されるエネルギー)を変化させる場合、パルスジェネレーター等を用いて、後述するレーザー発振器102への入力電圧を変化させることにより、レーザー光のパワーを時間単位で変更しても良いし、レーザー光のフォーカス位置を時間単位で調整しても良いし、レーザー光量調節用のフィルターの偏光量などを調節してレーザー光の強度を時間単位で変更しても良い。例えば、レーザー光の走査速度(スキャン速度)は数10m/s程度であるので、方向性電磁鋼板10の幅方向一端から幅方向他端にレーザー光を走査する間に、正弦波、余弦波、三角波、ランダム信号波などに沿うようにレーザー光のパワーやフィルターの偏光量を調節することで、溝深さにばらつきを付与できる。また、レーザー照射装置に設けられている集光レンズと方向性電磁鋼板10との相対距離を時間あたり変動するように調整することによりフォーカス位置を板厚方向に調節し、溝深さを調整しても良い。
図4は一例として正弦波に合わせてレーザー光のパワーを調節し、溝20の底部に板幅方向に沿うように断面山型の凸部20Aと断面谷型の凹部20Bとを複数連続形成した形状の溝20が形成された例を描いている。
When changing the intensity of the laser light (energy applied to the steel plate from the laser light), the power of the laser light is changed in hours by changing the input voltage to the laser oscillator 102, which will be described later, using a pulse generator or the like. It may be changed, the focus position of the laser beam may be adjusted in hours, or the intensity of the laser beam may be changed in hours by adjusting the polarization amount of the filter for adjusting the amount of laser light. .. For example, since the scanning speed (scanning speed) of the laser beam is about several tens of m / s, a sine wave, a cosine wave, or a sine wave or a chord wave, while scanning the laser beam from one end in the width direction to the other end in the width direction of the directional electromagnetic steel plate 10. By adjusting the power of the laser beam and the amount of polarization of the filter along the triangular wave, random signal wave, etc., the groove depth can be varied. Further, the focus position is adjusted in the plate thickness direction by adjusting the relative distance between the condensing lens provided in the laser irradiation device and the grain-oriented electrical steel sheet 10 so as to fluctuate with time, and the groove depth is adjusted. You may.
As an example, FIG. 4 shows that the power of the laser beam is adjusted according to a sine wave, and a plurality of convex portions 20A having a mountain-shaped cross section and recesses 20B having a valley-shaped cross section are continuously formed at the bottom of the groove 20 along the plate width direction. An example in which a groove 20 having a shape is formed is drawn.

本実施形態の方向性電磁鋼板10においては、上述の溝深さのばらつきを規定の範囲に収めることが望ましい。
前記板幅方向に沿う溝20の溝深さの標準偏差をσと定義し、板幅方向に沿う溝20の平均溝深さをaveと定義すると、(σ/ave)で示される溝深さばらつきを0.05以上0.17以下とすることが好ましい。この範囲を採用するならば、方向性電磁鋼板10を用いて図2に示す巻鉄芯50を構成した場合、巻鉄芯50として14%以上の鉄損改善率を得ることができ4%以上の騒音改善率を得ることが可能となる。
また、溝深さのばらつきとして、前述の範囲内であっても0.05以上0.15以下であることがより好ましい。この範囲を採用するならば、巻鉄芯50を構成した場合、15%以上の鉄損改善率を得ることができ4%以上の騒音改善率を得ることが可能となる。
また、溝深さのばらつきの下限値として、0.07を採用し、0.07以上とすることがより好ましい。このため、溝深さのばらつきとして、0.07以上0.15以下がより好ましい。この範囲を採用するならば、巻鉄芯50を構成した場合、15%以上の鉄損改善率を得ることができ、7%以上の騒音改善率を得ることが可能となる。
なお、溝深さのばらつきを求める場合に適用する標準偏差と平均を求める場合、1つの溝に対し溝の長さ方向(板幅方向)に沿って所定の間隔で20箇所以上で深さを測定し、1つの溝における標準偏差と平均溝深さを求め、方向性電磁鋼板10の板長方向に形成されている3つ以上の溝20の平均値として算出することが好ましい。
In the grain-oriented electrical steel sheet 10 of the present embodiment, it is desirable to keep the above-mentioned variation in groove depth within a specified range.
If the standard deviation of the groove depth of the groove 20 along the plate width direction is defined as σ and the average groove depth of the groove 20 along the plate width direction is defined as ave, the groove depth indicated by (σ / ave) is defined. The variation is preferably 0.05 or more and 0.17 or less. If this range is adopted, when the wound iron core 50 shown in FIG. 2 is configured by using the grain-oriented electrical steel sheet 10, an iron loss improvement rate of 14% or more can be obtained as the wound iron core 50 and 4% or more. It is possible to obtain the noise improvement rate of.
Further, the variation in groove depth is more preferably 0.05 or more and 0.15 or less even within the above range. If this range is adopted, when the wound iron core 50 is configured, an iron loss improvement rate of 15% or more can be obtained, and a noise improvement rate of 4% or more can be obtained.
Further, 0.07 is adopted as the lower limit of the variation in the groove depth, and it is more preferable to set it to 0.07 or more. Therefore, the variation in groove depth is more preferably 0.07 or more and 0.15 or less. If this range is adopted, when the wound iron core 50 is configured, an iron loss improvement rate of 15% or more can be obtained, and a noise improvement rate of 7% or more can be obtained.
When calculating the standard deviation and the average applied when determining the variation in groove depth, the depth is set at 20 or more points at predetermined intervals along the groove length direction (plate width direction) for one groove. It is preferable to measure and obtain the standard deviation and the average groove depth in one groove, and calculate it as the average value of three or more grooves 20 formed in the plate length direction of the directional electromagnetic steel plate 10.

図3、図4に示すように溝20を備えた方向性電磁鋼板10を巻回して図2に示す巻鉄芯を構成すると、巻回し積層した下層側の方向性電磁鋼板10と上層側の方向性電磁鋼板10との間に溝20の存在により空隙を生じる。
本実施形態の方向性電磁鋼板10を適用した巻鉄芯50では、板幅方向の全幅に渡り深さ一定の溝を設けた従来構造に対比し、溝深さに上述の範囲のばらつきを有する溝部20を備えた方向性電磁鋼板10を適用しているので、前述の溝深さばらつきに起因し、通電時に発生しようとする共振を抑制できる。このため、従来構造より低騒音化できる巻鉄芯50を提供できる。
As shown in FIGS. 3 and 4, when the directional electromagnetic steel sheet 10 provided with the groove 20 is wound to form the wound iron core shown in FIG. 2, the directional electromagnetic steel sheet 10 on the lower layer side and the upper layer side are wound and laminated. A gap is created due to the presence of the groove 20 with the grain-oriented electrical steel sheet 10.
The wound steel core 50 to which the grain-oriented electrical steel sheet 10 of the present embodiment is applied has a variation in the groove depth in the above range as compared with a conventional structure in which grooves having a constant depth are provided over the entire width in the plate width direction. Since the grain-oriented electrical steel sheet 10 having the groove portion 20 is applied, it is possible to suppress the resonance that is about to occur during energization due to the above-mentioned groove depth variation. Therefore, it is possible to provide the wound iron core 50 which can reduce the noise as compared with the conventional structure.

溝深さのばらつきは、鉄損改善率(%)と騒音低減率(%)に関連する。
巻鉄芯を交流駆動(例えば50Hz)して最大磁束密度(例えば1.7T)で磁化した場合、方向性電磁鋼板1kgあたりの電気エネルギー損失をW17/50(W/kg)と表記することができる。
W17/50(W/kg)=トランス鉄損(W)/トランス重量(kg)
この巻鉄芯において、巻トランス鉄損は、巻鉄芯に一次素線(励磁巻線)および二次巻線(サーチコイル)をそれぞれ巻き付けて、電力計により測定することができる。
The variation in groove depth is related to the iron loss improvement rate (%) and the noise reduction rate (%).
When the wound iron core is AC-driven (for example, 50 Hz) and magnetized at the maximum magnetic flux density (for example, 1.7 T), the electrical energy loss per 1 kg of grain-oriented electrical steel sheet can be expressed as W17 / 50 (W / kg). it can.
W17 / 50 (W / kg) = Transformer iron loss (W) / Transformer weight (kg)
In this wound iron core, the winding transformer iron loss can be measured by a power meter by winding a primary wire (excited winding) and a secondary winding (search coil) around the wound iron core.

溝なしの方向性電磁鋼板を巻回して構成した巻鉄芯のトランス鉄損(W)と、所定条件の溝を備えた方向性電磁鋼板を巻回して構成した巻鉄芯のトランス鉄損(Wi)とを対比し、{(W−Wi)/W}×100(%)の関係式から、所定条件の溝を備えた方向性電磁鋼板を巻回して構成した巻鉄芯についての鉄損改善率(η)を求めることができる。
ここで、溝を全幅に有する方向性電磁鋼板を巻回して構成した巻鉄芯のトランス鉄損を(Wg)とすると、その鉄損改善率は、上記式から、(η)={(W−Wg)/W}×100(%)により求められ、後述する実施例に示すように16.6%などとなる。そのため、所定条件の溝を有する方向性電磁鋼板を巻回して構成した巻鉄芯の鉄損改善率は、この関係式から求められる鉄損改善率として14%以上を備えることが望ましいと考えられ、15%以上を備えることがより好ましいと考えられる。鉄損改善率は、巻鉄芯50として重要な指標であるから、できるだけ高いことが好ましい。
Transformer iron loss (W 0 ) of a wound iron core formed by winding a grainless directional electromagnetic steel sheet and transformer iron loss of a wound steel core formed by winding a directional electromagnetic steel sheet having grooves of predetermined conditions. In comparison with (Wi), from the relational expression of {(W 0 − Wi) / W 0 } × 100 (%), the wound iron core formed by winding a grain-oriented electrical steel sheet having grooves under predetermined conditions. The iron loss improvement rate (η) can be obtained.
Here, assuming that the transformer iron loss of the wound iron core formed by winding a directional electromagnetic steel plate having a groove in the entire width is (Wg), the iron loss improvement rate is (η) = {(W) from the above equation. It is obtained by 0 − Wg) / W 0 } × 100 (%), and is 16.6% or the like as shown in Examples described later. Therefore, it is considered desirable that the iron loss improvement rate of the wound iron core formed by winding a grain-oriented electrical steel sheet having a groove under a predetermined condition is 14% or more as the iron loss improvement rate obtained from this relational expression. , 15% or more is considered to be more preferable. Since the iron loss improvement rate is an important index for the wound iron core 50, it is preferably as high as possible.

騒音低減率(%)は、巻鉄芯を交流(例えば50Hz)で最大磁束密度(例えば1.7T)で磁化した際の騒音として、均一深さの溝を有する方向性電磁鋼板を巻回して構成した巻鉄芯と、溝深さにばらつきを有する方向性電磁鋼板を巻回して構成した巻鉄芯との比較から求めることができる。
均一な溝深さの方向性電磁鋼板からなる巻鉄芯におけるトランス騒音(N)と、溝深さにばらつきを有する方向性電磁鋼板からなる巻鉄芯におけるトランス騒音(N)を比較し、{(N−N)/N}×100(%)の関係式から騒音低減率(%)を求めることができる。
この関係式から求められる騒音低減率(%)として、4%以上が望ましいと考えられる。騒音低減率(%)については、σ/aveで示される溝深さばらつきの値が向上するにつれて、低下するが、深さばらつきの範囲が0.05〜0.17の範囲であれば、4〜16.6%程度の騒音低減率を確保できる。
このため、前記式の関係を満足することが好ましい。
The noise reduction rate (%) is determined by winding a grain-oriented electrical steel sheet having grooves of uniform depth as noise when the wound iron core is magnetized at the maximum magnetic flux density (for example, 1.7 T) at alternating current (for example, 50 Hz). It can be obtained from a comparison between the constructed iron core and the wound steel core formed by winding a grain-oriented electrical steel sheet having a variation in groove depth.
Comparing the transformer noise (N 0 ) in the wound iron core made of grain-oriented electrical steel sheets with uniform groove depth and the transformer noise (N) in the wound iron core made of grain-oriented electrical steel sheets with varying groove depths, The noise reduction rate (%) can be obtained from the relational expression of {(N 0 −N) / N 0} × 100 (%).
It is considered that 4% or more is desirable as the noise reduction rate (%) obtained from this relational expression. The noise reduction rate (%) decreases as the value of the groove depth variation indicated by σ / ave increases, but if the range of the depth variation is in the range of 0.05 to 0.17, 4 A noise reduction rate of about 16.6% can be secured.
Therefore, it is preferable to satisfy the relationship of the above formula.

ここで、比較例として、図15、図16に示すように、巻鉄芯に使われる板幅の全幅に亘って溝120が形成され、均一な深さを有する溝120が形成された方向性電磁鋼板110、及び、この方向性電磁鋼板110を巻回して形成した巻鉄芯150を例に挙げて、方向性電磁鋼板について説明する。
方向性電磁鋼板の曲げ加工においては、通常、鋼板が圧延方向に曲げられる。
Here, as a comparative example, as shown in FIGS. 15 and 16, the groove 120 is formed over the entire width of the plate used for the wound iron core, and the groove 120 having a uniform depth is formed. The directional electromagnetic steel sheet will be described by taking as an example the electromagnetic steel sheet 110 and the wound iron core 150 formed by winding the directional electromagnetic steel sheet 110.
In bending of grain-oriented electrical steel sheets, the steel sheets are usually bent in the rolling direction.

巻鉄芯150においては、方向性電磁鋼板110が内周側から外周側に巻回され、方向性電磁鋼板110が巻層毎に積層されているが、方向性電磁鋼板110の全幅に渡るように溝120が形成されていると、巻鉄芯150の積層構造の内部に複数の空隙が存在することとなる。
図16は略図のため、巻鉄芯150の最外層表面に存在する溝120のみを描いているが、巻鉄芯150を構成する方向性電磁鋼板110の全長に渡り間欠的に溝120を形成しているので、溝120による空隙は巻鉄芯150の内層側から外層側に複数存在する。また、参考のため、図6に均一な深さの溝120を備えた方向性電磁鋼板110の断面構造を示しておく。
In the wound iron core 150, the grain-oriented electrical steel sheet 110 is wound from the inner peripheral side to the outer peripheral side, and the grain-oriented electrical steel sheet 110 is laminated for each winding layer, but the width of the grain-oriented electrical steel sheet 110 is extended. When the groove 120 is formed in the groove 120, a plurality of voids are present inside the laminated structure of the wound steel core 150.
Since FIG. 16 is a schematic diagram, only the groove 120 existing on the outermost layer surface of the wound iron core 150 is drawn, but the groove 120 is intermittently formed over the entire length of the directional electromagnetic steel plate 110 constituting the wound iron core 150. Therefore, there are a plurality of voids due to the grooves 120 from the inner layer side to the outer layer side of the wound iron core 150. Further, for reference, FIG. 6 shows the cross-sectional structure of the grain-oriented electrical steel sheet 110 provided with the grooves 120 having a uniform depth.

図15に示す巻鉄芯150においてその内層側から外層側にかけて複数の空隙が存在すると、巻鉄芯150全体の剛性が低下するため、交流通電により方向性電磁鋼板110が伸縮した場合、巻鉄芯150から騒音が発生し易くなる。また、空隙が複数存在すると巻回構造の巻鉄芯150において遊びの部分が多く存在するので、滑り等に起因して巻鉄芯150から騒音が発生し易くなる。 If a plurality of voids are present in the wound iron core 150 shown in FIG. 15 from the inner layer side to the outer layer side, the rigidity of the entire wound iron core 150 decreases. Therefore, when the directional electromagnetic steel plate 110 expands and contracts due to alternating current, the wound iron Noise is likely to be generated from the core 150. Further, when a plurality of voids are present, there are many play portions in the wound iron core 150 having a wound structure, so that noise is likely to be generated from the wound iron core 150 due to slippage or the like.

図15、図16に示す構造に対し、図2〜図4に示すように溝深さにばらつきを有する溝20を備えた方向性電磁鋼板10からなる巻鉄芯50であるならば、板幅方向に沿って溝20の深さが位置毎に異なり、共振モードが複雑になるので、共振を抑制することができ、低騒音化した巻鉄芯50を提供できる。 If the wound iron core 50 is made of a grain-oriented electrical steel sheet 10 having grooves 20 having variations in groove depth as shown in FIGS. 2 to 4, the plate width is different from the structure shown in FIGS. 15 and 16. Since the depth of the groove 20 differs for each position along the direction and the resonance mode becomes complicated, resonance can be suppressed and the wound iron core 50 with reduced noise can be provided.

なお、本実施形態において説明した方向性電磁鋼板10は、レーザー照射装置に付加した正弦波に起因するパワー変動に応じ、凸部20Aと凹部20Bを有する凹凸形状の溝底形状を有したが、溝底形状はこの実施形態の例に限るものではない。
例えば、レーザー照射装置106のパワーに三角波やランダム波を送ることで、凹凸形状の異なる図5に示す断面形状の凹凸部20Cを有する方向性電磁鋼板10を製造し、これを巻鉄芯製造用の方向性電磁鋼板として用いても良い。また、歯の形状がランダムに構成された歯型ロールを用いて方向性電磁鋼板10を製造することにより、ランダムな溝深さ分布を作るよういにしても良い。
The grain-oriented electrical steel sheet 10 described in the present embodiment has a concave-convex groove bottom shape having a convex portion 20A and a concave portion 20B in response to a power fluctuation caused by a sine wave applied to the laser irradiation device. The groove bottom shape is not limited to the example of this embodiment.
For example, by sending a triangular wave or a random wave to the power of the laser irradiation device 106, a directional electromagnetic steel sheet 10 having a concavo-convex portion 20C having a cross-sectional shape shown in FIG. It may be used as a grain-oriented electrical steel sheet. Further, a random groove depth distribution may be created by manufacturing the grain-oriented electrical steel sheet 10 using a tooth mold roll having a randomly configured tooth shape.

<巻鉄芯の製造方法の流れ>
図7を参照しながら、本実施形態に係る巻鉄芯50の製造方法の流れについて説明する。
巻鉄芯50の製造工程は、図7に示すように、鋳造工程S2と、熱間圧延工程S4と、焼鈍工程S6と、冷間圧延工程S8と、脱炭焼鈍工程S10と、焼鈍分離剤塗布工程S12と、最終仕上げ焼鈍工程S14と、絶縁被膜形成工程S16と、板幅方向鉄損測定工程S18と、レーザー加工工程S20と、再絶縁被膜形成工程S22と、鋼板巻回工程S30とを含む。
<Flow of manufacturing method of wound iron core>
The flow of the manufacturing method of the wound iron core 50 according to the present embodiment will be described with reference to FIG. 7.
As shown in FIG. 7, the manufacturing process of the wound iron core 50 includes a casting process S2, a hot rolling process S4, an annealing process S6, a cold rolling process S8, a decarburization annealing process S10, and an annealing separator. The coating step S12, the final finish annealing step S14, the insulating film forming step S16, the plate width direction iron loss measuring step S18, the laser processing step S20, the reinsulating film forming step S22, and the steel plate winding step S30. Including.

鋳造工程S2では、所定の組成に調整された溶鋼を連続鋳造機等に供給して、鋳塊を連続的に形成する。熱間圧延工程S4では、鋳塊を所定温度(例えば1150〜1400℃)に加熱して熱間圧延を行う。これにより、所定厚さ(例えば厚さ1.8〜3.5mm)の熱間圧延材が形成される。 In the casting step S2, molten steel adjusted to a predetermined composition is supplied to a continuous casting machine or the like to continuously form ingots. In the hot rolling step S4, the ingot is heated to a predetermined temperature (for example, 1150 to 1400 ° C.) to perform hot rolling. As a result, a hot-rolled material having a predetermined thickness (for example, a thickness of 1.8 to 3.5 mm) is formed.

焼鈍工程S6では、熱間圧延材に対して、例えば、加熱温度750〜1200℃、加熱時間30秒〜10分の条件で熱処理を行う。冷間圧延工程S8では、熱間圧延材の表面を酸洗した後に、冷間圧延を行う。これにより、所定厚さ(例えば、厚さ0.15〜0.35mm)の冷間圧延材が形成される。 In the annealing step S6, the hot rolled material is heat-treated under the conditions of, for example, a heating temperature of 750 to 1200 ° C. and a heating time of 30 seconds to 10 minutes. In the cold rolling step S8, the surface of the hot rolled material is pickled and then cold rolled. As a result, a cold-rolled material having a predetermined thickness (for example, a thickness of 0.15 to 0.35 mm) is formed.

脱炭焼鈍工程S10では、冷間圧延材に対し、例えば、加熱温度700〜900℃、加熱時間1〜3分の条件で熱処理を行い、鋼板本体12を形成する。鋼板本体12の表面には、シリカ(SiO)を主体とする酸化物層が形成される。焼鈍分離剤塗布工程S12では、鋼板本体12の酸化物層の上に、マグネシア(MgO)を主体とする焼鈍分離剤を塗布する。 In the decarburization annealing step S10, the cold-rolled material is heat-treated under the conditions of, for example, a heating temperature of 700 to 900 ° C. and a heating time of 1 to 3 minutes to form the steel sheet body 12. An oxide layer mainly composed of silica (SiO 2 ) is formed on the surface of the steel sheet body 12. In the annealing separator coating step S12, an annealing separator mainly composed of magnesia (MgO) is coated on the oxide layer of the steel sheet main body 12.

最終仕上げ焼鈍工程S14では、焼鈍分離剤が塗布された鋼板本体12を例えばコイル状に巻き取った状態で、バッチ式炉内に挿入して熱処理を行う。熱処理条件は、例えば、加熱温度1100〜1300℃、加熱時間20〜24時間である。この際、鋼板本体12の圧延方向と磁化容易軸とが一致した、いわゆるゴス粒が優先的に結晶成長する。この結果、仕上げ焼鈍の後に結晶方位性(結晶配向性)が高い方向性電磁鋼板10が得られることとなる。また、最終仕上げ焼鈍工程S14により、酸化物層と焼鈍分離剤が反応し、鋼板本体12の表面にフォルステライト(MgSiO)からなるグラス被膜14が形成される。 In the final finish annealing step S14, the steel plate body 12 coated with the annealing separator is wound into a coil, for example, and inserted into a batch type furnace to perform heat treatment. The heat treatment conditions are, for example, a heating temperature of 1100 to 1300 ° C. and a heating time of 20 to 24 hours. At this time, so-called goth grains in which the rolling direction of the steel sheet body 12 and the axis for easy magnetization coincide with each other are preferentially crystal-grown. As a result, the grain-oriented electrical steel sheet 10 having high crystal orientation (crystal orientation) can be obtained after finish annealing. Further, in the final finish annealing step S14, the oxide layer reacts with the annealing separator, and a glass film 14 made of forsterite (Mg 2 SiO 4) is formed on the surface of the steel sheet main body 12.

絶縁被膜形成工程S16では、コイル状に巻き取られた鋼板本体12を巻き解して板状に伸ばして搬送する。そして、鋼板本体12の両面に形成されたグラス被膜14の上に絶縁剤を塗布、焼付けを行い、絶縁被膜16を形成する。絶縁被膜16が形成された鋼板本体12は、コイル状に巻き取られる。 In the insulating film forming step S16, the steel plate main body 12 wound in a coil shape is unwound, stretched in a plate shape, and conveyed. Then, an insulating agent is applied and baked on the glass coating 14 formed on both sides of the steel plate main body 12 to form the insulating coating 16. The steel plate body 12 on which the insulating coating 16 is formed is wound into a coil.

板幅方向鉄損測定工程S18では、例えば、後述するレーザー加工工程S20で溝20を板幅方向に形成する場合において、所定の間隔で分けられた領域毎の鉄損の値を前もって測定する。板幅方向鉄損測定工程S18で鉄損を測定しておくことで、続くレーザー加工工程S20において、先の測定結果に基づき、所定間隔で分けられた領域毎のレーザー加工の条件を変えることができる。
なお、板幅方向鉄損測定工程S18は必須ではなく、特に、方向性電磁鋼板10が得られる最終仕上げ焼鈍工程S14より前に、レーザー加工工程を行う場合(後述する図8(A)、図8(B)の場合)等には、板幅方向鉄損測定工程S18を省略できる。
In the plate width direction iron loss measuring step S18, for example, when the groove 20 is formed in the plate width direction in the laser processing step S20 described later, the iron loss value for each region divided at a predetermined interval is measured in advance. By measuring the iron loss in the plate width direction iron loss measurement step S18, in the subsequent laser processing step S20, the laser processing conditions for each region divided at predetermined intervals can be changed based on the previous measurement result. it can.
It should be noted that the iron loss measurement step S18 in the plate width direction is not essential, and in particular, when the laser processing step is performed before the final finish annealing step S14 in which the grain-oriented electrical steel sheet 10 is obtained (FIG. 8 (A) described later, FIG. In the case of 8 (B) and the like), the plate width direction iron loss measurement step S18 can be omitted.

レーザー加工工程S20では、コイル状に巻き取られた鋼板本体12を巻き解して板状に伸ばして水平搬送する。そして、後述するレーザー照射装置106によって、鋼板本体12の片面に向けてレーザー光を集光・照射し、圧延方向に搬送される方向性電磁鋼板10の圧延方向と交差する交差方向、例えば90°交差方向にレーザービームを走査する。
これにより、鋼板本体12の表面に、延在する溝20が、前記圧延方向(鋼板10の長さ方向)に所定間隔で複数形成される。なお、レーザービームの集光・照射は、鋼板本体12の表面及び裏面の両方から行ってもよい。このレーザー加工工程S20は、溝加工工程の一例である。
In the laser processing step S20, the steel plate main body 12 wound in a coil shape is unwound, stretched in a plate shape, and horizontally conveyed. Then, the laser irradiation device 106, which will be described later, condenses and irradiates the laser beam toward one side of the steel plate body 12, and is conveyed in the rolling direction. The crossing direction intersecting the rolling direction of the electromagnetic steel plate 10, for example, 90 °. Scan the laser beam in the crossing direction.
As a result, a plurality of extending grooves 20 are formed on the surface of the steel plate main body 12 at predetermined intervals in the rolling direction (length direction of the steel plate 10). The laser beam may be focused and irradiated from both the front surface and the back surface of the steel sheet main body 12. This laser processing step S20 is an example of a grooving process.

再絶縁被膜形成工程S22では、溝20が形成された鋼板本体12に対して、絶縁被膜形成工程S16と同様に絶縁被膜16を形成する。すなわち、2回目の絶縁被膜16を形成する。前記の一連の工程により、前記圧延方向と交差する方向に延在する溝20が、鋼板本体12(地鉄)の表面に圧延方向に所定間隔で形成された方向性電磁鋼板10が製造される。 In the reinsulating film forming step S22, the insulating film 16 is formed on the steel sheet main body 12 in which the groove 20 is formed in the same manner as in the insulating film forming step S16. That is, the second insulating coating 16 is formed. Through the series of steps described above, a directional electromagnetic steel sheet 10 in which grooves 20 extending in a direction intersecting the rolling direction are formed on the surface of the steel sheet body 12 (ground steel) at predetermined intervals in the rolling direction is manufactured. ..

このように、本実施形態では、鋼板本体12の表面にグラス被膜14及び絶縁被膜16を形成し、レーザービームの照射によって磁区制御された方向性電磁鋼板10を製造する。すなわち、上述した工程S2〜S22が、方向性電磁鋼板10の製造工程となる。 As described above, in the present embodiment, the glass coating 14 and the insulating coating 16 are formed on the surface of the steel sheet main body 12, and the grain-controlled electromagnetic steel sheet 10 is manufactured by irradiation with a laser beam. That is, the steps S2 to S22 described above are the manufacturing steps of the grain-oriented electrical steel sheet 10.

鋼板巻回工程S30では、まず、溝20が形成された方向性電磁鋼板10を圧延方向に所定長さだけカットし、複数枚準備する。そして、複数枚の方向性電磁鋼板10を重ねた状態で巻回することで、図2に示す巻鉄芯50が製造される。すなわち、上述した工程S2〜S22に、鋼板巻回工程S30を加えた工程が、巻鉄芯50の製造工程となる。 In the steel sheet winding step S30, first, the grain-oriented electrical steel sheet 10 in which the groove 20 is formed is cut by a predetermined length in the rolling direction, and a plurality of sheets are prepared. Then, the wound iron core 50 shown in FIG. 2 is manufactured by winding the plurality of directional electromagnetic steel sheets 10 in a stacked state. That is, the step of adding the steel plate winding step S30 to the above steps S2 to S22 is the manufacturing step of the wound iron core 50.

なお、以上の説明では、レーザー加工工程S20を絶縁被膜形成工程S16の後に行うこととしたが、この順序に限定されず、レーザー加工工程S20を絶縁被膜形成工程S16よりも前に行ってもよい。
例えば、方向性電磁鋼板10の製造工程において、図8(A)に示すように、冷間圧延工程S8の後に、レーザー加工工程S20を行ってもよい。この場合、図8(A)に示すように、レーザー加工工程S20の後に絶縁被膜形成工程S16を行なうので、図7に示す再絶縁被膜形成工程S22が不要となり、方向性電磁鋼板10の製造工程(結果的に、巻鉄芯50の製造工程も)を短縮できる。
In the above description, the laser processing step S20 is performed after the insulating film forming step S16, but the order is not limited to this, and the laser processing step S20 may be performed before the insulating film forming step S16. ..
For example, in the manufacturing process of the grain-oriented electrical steel sheet 10, as shown in FIG. 8A, the laser machining step S20 may be performed after the cold rolling step S8. In this case, as shown in FIG. 8A, since the insulating film forming step S16 is performed after the laser machining step S20, the reinsulating film forming step S22 shown in FIG. 7 becomes unnecessary, and the manufacturing process of the directional electromagnetic steel plate 10 is eliminated. (As a result, the manufacturing process of the wound iron core 50 can also be shortened).

また、図8(B)に示すように、脱炭焼鈍工程S10の後に、レーザー加工工程S20を行ってもよい。さらに、図8(C)に示すように、最終仕上げ焼鈍工程S14の後に、レーザー加工工程S20を行ってもよい。これらの場合においても、レーザー加工工程S20の後に絶縁被膜形成工程S16が行われるので、図7に示す再絶縁被膜形成工程S22が不要となり、方向性電磁鋼板10の製造工程(結果的に、巻鉄芯50の製造工程も)を短縮できる。 Further, as shown in FIG. 8B, the laser processing step S20 may be performed after the decarburization annealing step S10. Further, as shown in FIG. 8C, a laser machining step S20 may be performed after the final finish annealing step S14. Also in these cases, since the insulating film forming step S16 is performed after the laser processing step S20, the reinsulating film forming step S22 shown in FIG. 7 becomes unnecessary, and the manufacturing process of the directional electromagnetic steel plate 10 (resulting in winding). The manufacturing process of the iron core 50) can be shortened.

<レーザー照射装置の構成>
図9を参照しながら、方向性電磁鋼板10にレーザービームを照射して溝20を形成するレーザー照射装置100の構成の一例について説明する。この例のレーザー照射装置100は、圧延方向に一定速度で水平搬送される方向性電磁鋼板10の絶縁被膜16の上から圧延方向と交差する交差方向(例えば90°交差方向)にレーザービームを照射し、その交差方向に延在する溝20を形成する。
<Construction of laser irradiation device>
An example of the configuration of the laser irradiation device 100 for forming the groove 20 by irradiating the grain-oriented electrical steel sheet 10 with a laser beam will be described with reference to FIG. The laser irradiation device 100 of this example irradiates a laser beam from above the insulating coating 16 of the directional electromagnetic steel plate 10 which is horizontally conveyed at a constant speed in the rolling direction in a crossing direction (for example, 90 ° crossing direction) intersecting the rolling direction. Then, a groove 20 extending in the intersecting direction is formed.

レーザー照射装置100は、レーザー発振器102と、伝送ファイバ104と、レーザー照射装置106とを、それぞれ複数有する。これら複数のレーザー発振器102、複数の伝送ファイバ104、複数のレーザー照射装置106の各構成はいずれも同様である。
図9に示す形態では、1つの方向性電磁鋼板10を水平搬送しながらレーザー加工した後、3本の仮想線Lに沿って切断し、4本の方向性電磁鋼板10Aを得る場合に適用するレーザー照射装置100を描いている。
レーザー照射装置100においては、1つの方向性電磁鋼板10Aに相当する幅に対し、個々のレーザー照射装置106が設置されている。また、これらレーザー照射装置106は、互いの位置の干渉を避けるために、方向性電磁鋼板10の上方空間に、方向性電磁鋼板10の板幅方向に位置ずれするように設置されている。
The laser irradiation device 100 has a plurality of laser oscillators 102, transmission fibers 104, and a plurality of laser irradiation devices 106, respectively. The configurations of the plurality of laser oscillators 102, the plurality of transmission fibers 104, and the plurality of laser irradiation devices 106 are all the same.
The embodiment shown in FIG. 9 is applied to the case where one grain-oriented electrical steel sheet 10 is laser-machined while being horizontally conveyed and then cut along three virtual lines L to obtain four grain-oriented electrical steel sheets 10A. The laser irradiation device 100 is drawn.
In the laser irradiation device 100, individual laser irradiation devices 106 are installed for a width corresponding to one grain-oriented electrical steel sheet 10A. Further, these laser irradiation devices 106 are installed in the space above the grain-oriented electrical steel sheet 10 so as to be displaced in the plate width direction of the grain-oriented electrical steel sheet 10 in order to avoid interference between the positions of the laser irradiation devices 106.

レーザー発振器102は、例えば高出力のレーザービームを出射することができる。伝送ファイバ104は、レーザー発振器102から出射されたレーザービームをレーザー照射装置106まで伝送する光ファイバである。 The laser oscillator 102 can emit, for example, a high-power laser beam. The transmission fiber 104 is an optical fiber that transmits the laser beam emitted from the laser oscillator 102 to the laser irradiation device 106.

レーザー発振器102の種類としては、微小集光特性に優れ、狭い溝を形成できる観点等から、ファイバレーザーまたはディスクレーザーが好ましい。ファイバレーザーまたはディスクレーザーは、波長が近紫外域から近赤外域(例えば1μm帯)にあるため、レーザービームを光ファイバにより高効率で伝送が可能であり、レーザービームを光ファイバで伝送することで比較的コンパクトなレーザー照射装置100を実現できる。また、レーザー発振器102は連続波レーザーでもパルスレーザーでもよい。 As the type of the laser oscillator 102, a fiber laser or a disk laser is preferable from the viewpoint of excellent microscopic focusing characteristics and the ability to form a narrow groove. Since the wavelength of a fiber laser or a disk laser is in the near-ultraviolet to near-infrared region (for example, 1 μm band), the laser beam can be transmitted with high efficiency by the optical fiber, and the laser beam can be transmitted by the optical fiber. A relatively compact laser irradiation device 100 can be realized. Further, the laser oscillator 102 may be a continuous wave laser or a pulse laser.

レーザー照射装置106は、レーザー発振器102から伝送ファイバ104により伝送されたレーザービームを方向性電磁鋼板10に集光・走査させる。ここで、レーザービームの集光形状は、例えばレーザー照射に伴う溶融物の発生を抑制する観点等から、楕円形状が好ましい。
なお、図9の説明では、方向性電磁鋼板10上のレーザービームの集光形状が楕円形状であることとしたが、これに限定されない。例えば、レーザービームの集光形状が、真円形状であってもよい。
The laser irradiation device 106 focuses and scans the laser beam transmitted from the laser oscillator 102 by the transmission fiber 104 on the directional electromagnetic steel plate 10. Here, the condensing shape of the laser beam is preferably an elliptical shape from the viewpoint of suppressing the generation of melts due to laser irradiation, for example.
In the description of FIG. 9, the condensing shape of the laser beam on the grain-oriented electrical steel sheet 10 is elliptical, but the present invention is not limited to this. For example, the focused shape of the laser beam may be a perfect circle shape.

また、上述の説明では、レーザー発振器102がファイバレーザーまたはディスクレーザーであることとしたが、これらに限定されない。例えば、レーザー発振器102が、COレーザーであってもよい。 Further, in the above description, the laser oscillator 102 is a fiber laser or a disk laser, but the present invention is not limited thereto. For example, the laser oscillator 102 may be a CO 2 laser.

図9に示す装置では、1つの方向性電磁鋼板10Aに相当する幅に対し、レーザー照射装置106を設けている。
このうち、レーザー照射装置106が方向性電磁鋼板10Aの幅方向にレーザービームを集光照射し、走査することによって溝20を形成する。
方向性電磁鋼板10Aは板長方向に所定の速度で順次搬送されているので、レーザー照射装置106によるレーザー照射を所定の間隔で繰り返すことで方向性電磁鋼板10Aの長さ方向に所定のピッチで溝20を複数形成できる。
In the device shown in FIG. 9, the laser irradiation device 106 is provided for a width corresponding to one grain-oriented electrical steel sheet 10A.
Of these, the laser irradiation device 106 condenses and irradiates the laser beam in the width direction of the grain-oriented electrical steel sheet 10A and scans it to form the groove 20.
Since the grain-oriented electrical steel sheet 10A is sequentially conveyed in the plate length direction at a predetermined speed, the laser irradiation by the laser irradiation device 106 is repeated at predetermined intervals to achieve a predetermined pitch in the length direction of the grain-oriented electrical steel sheet 10A. A plurality of grooves 20 can be formed.

レーザー照射装置106からレーザー光を方向性電磁鋼板10に集光照射し、溝20を形成する場合、レーザー照射装置106から発生させるレーザー光のパワーを調整し、板幅方向の位置毎に照射するレーザー光の強度を変化させることで溝20を形成することができる。 When the directional electromagnetic steel plate 10 is focused and irradiated with the laser light from the laser irradiation device 106 to form the groove 20, the power of the laser light generated from the laser irradiation device 106 is adjusted and irradiated at each position in the plate width direction. The groove 20 can be formed by changing the intensity of the laser beam.

レーザー光の強度を変化させる場合、方向性電磁鋼板10の幅方向一端から幅方向他端にレーザー光を走査する間に正弦波あるいは余弦波あるいはランダム信号波などに沿うようにレーザー光を調整するか、レーザー光のパワーやフィルターの偏光量を調節することで溝深さにばらつきを付与できる。 When changing the intensity of the laser beam, the laser beam is adjusted so as to follow a sine wave, a cosine wave, a random signal wave, or the like while scanning the laser beam from one end in the width direction to the other end in the width direction of the directional electromagnetic steel plate 10. Alternatively, the groove depth can be varied by adjusting the power of the laser beam and the amount of polarization of the filter.

溝深さにばらつきを有する溝20を備えた方向性電磁鋼板10は、巻きトランスの鉄芯(巻鉄芯)として利用される。方向性電磁鋼板は元々巻鉄芯のサイズに応じた板幅で製造されるか、または、溝形成後に適宜巻鉄芯のサイズに応じた板幅に切り分けられる。そして、巻鉄芯の製造時に、巻鉄芯に好適な板幅となった方向性電磁鋼板の曲げ加工が行なわれる。
図9では、一例として、方向性電磁鋼板10の製造後に3本の仮想線Lに沿って方向性電磁鋼板10を板幅方向に4つに切断する場合を示したが、方向性電磁鋼板10を切断する数は任意で良く、後に図13を基に説明する変形例のように切断しない場合を想定しても良い。
The grain-oriented electrical steel sheet 10 provided with the grooves 20 having varying groove depths is used as an iron core (rolled iron core) of a winding transformer. The grain-oriented electrical steel sheet is originally manufactured with a plate width according to the size of the wound iron core, or is appropriately cut into a plate width according to the size of the wound iron core after groove formation. Then, when the wound iron core is manufactured, the grain-oriented electrical steel sheet having a plate width suitable for the wound iron core is bent.
FIG. 9 shows, as an example, a case where the grain-oriented electrical steel sheet 10 is cut into four pieces in the plate width direction along three virtual lines L after the grain-oriented electrical steel sheet 10 is manufactured. The number of cuttings may be arbitrary, and it may be assumed that the cutting is not performed as in the modification described later with reference to FIG.

<変形例>
前記実施形態では、図9に示すように、方向性電磁鋼板10を板幅方向に複数に切断することに対応させ、方向性電磁鋼板10に複数列の溝20を形成した。しかしながら、図13に示すように、方向性電磁鋼板10を板幅方向に複数に切断することなく一枚の鋼板として巻鉄芯に使用する場合は、方向性電磁鋼板10に対し1列に溝20を形成してもよい。
<Modification example>
In the above embodiment, as shown in FIG. 9, a plurality of rows of grooves 20 are formed in the grain-oriented electrical steel sheet 10 in correspondence with cutting the grain-oriented electrical steel sheet 10 into a plurality in the plate width direction. However, as shown in FIG. 13, when the grain-oriented electrical steel sheet 10 is used as a single steel sheet for a wound iron core without being cut into a plurality in the plate width direction, the grooves are formed in one row with respect to the grain-oriented electrical steel sheet 10. 20 may be formed.

図13に示す変形例において、方向性電磁鋼板10に対し1列の溝20を形成することができる。
前記実施形態では、溝加工工程において、レーザー加工によって方向性電磁鋼板10に溝20を形成したが、例えば、エッチング加工や電子ビーム加工などのレーザー加工以外の除去加工によって方向性電磁鋼板10に溝20を形成してもよい。
In the modified example shown in FIG. 13, one row of grooves 20 can be formed with respect to the grain-oriented electrical steel sheet 10.
In the above embodiment, in the grooving step, the groove 20 is formed in the directional electromagnetic steel plate 10 by laser processing, but for example, the groove 20 is formed in the directional electromagnetic steel plate 10 by removal processing other than laser processing such as etching processing and electron beam processing. 20 may be formed.

また、溝加工工程では、転写加工によって方向性電磁鋼板10に溝20を形成してもよい。例えば、図14に示す変形例では、転写加工の一例として、歯型ロール30と押付ロール40を用いて方向性電磁鋼板10を板厚方向の両側から挟み込み、歯型ロール30の歯部32を方向性電磁鋼板10の表面に押し付けることにより、方向性電磁鋼板10に溝20を形成している。 Further, in the groove processing step, the groove 20 may be formed in the grain-oriented electrical steel sheet 10 by transfer processing. For example, in the modified example shown in FIG. 14, as an example of transfer processing, the grain-oriented electrical steel sheet 10 is sandwiched from both sides in the plate thickness direction by using the tooth mold roll 30 and the pressing roll 40, and the tooth portion 32 of the tooth mold roll 30 is sandwiched. A groove 20 is formed in the grain-oriented electrical steel sheet 10 by pressing it against the surface of the grain-oriented electrical steel sheet 10.

本変形例では、歯型ロール30の軸長を方向性電磁鋼板10の板幅方向の長さと同等に形成し、歯型ロール30の歯部32の先端側に凹凸部を形成した構造を採用できる。
この構造の歯部32を方向性電磁鋼板10の表面に押し付けることで板幅方向の位置毎に深さの異なる溝20を形成できる。
In this modification, a structure is adopted in which the axial length of the tooth mold roll 30 is formed equal to the length in the plate width direction of the grain-oriented electrical steel sheet 10, and an uneven portion is formed on the tip side of the tooth portion 32 of the tooth mold roll 30. it can.
By pressing the tooth portion 32 having this structure against the surface of the grain-oriented electrical steel sheet 10, grooves 20 having different depths can be formed for each position in the plate width direction.

また、図9、図10に示すように、仮想線Lに沿って方向性電磁鋼板10を板幅方向に複数に切断する場合、歯部32を歯型ロール30の軸方向に断続的に複数形成することにより、複数の溝20を板幅方向に間隔を空けて断続的に形成してもよい。 Further, as shown in FIGS. 9 and 10, when a plurality of grain-oriented electrical steel sheets 10 are cut in the plate width direction along the virtual line L, a plurality of tooth portions 32 are intermittently cut in the axial direction of the tooth mold roll 30. By forming, a plurality of grooves 20 may be formed intermittently at intervals in the plate width direction.

歯型ロール30を前述のように構成しても、方向性電磁鋼板10の製造後に仮想線Lで方向性電磁鋼板10を板幅方向に複数に切断することにより、図3に示す構成の方向性電磁鋼板10Aを複数得ることができる。 Even if the tooth mold roll 30 is configured as described above, the direction of the configuration shown in FIG. 3 is obtained by cutting the grain-oriented electrical steel sheet 10 into a plurality in the plate width direction with the virtual line L after the production of the grain-oriented electrical steel sheet 10. A plurality of electrical steel sheets 10A can be obtained.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はこれまで説明した実施形態に限定されない。
本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例を採用できることは明らかであり、これらの例についても、当然に本発明の技術的範囲に属するものと解釈できる。
Although the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited to the embodiments described so far.
It is clear that a person having ordinary knowledge in the field of technology to which the present invention belongs can adopt various modifications or modifications within the scope of the technical idea described in the claims. Of course, the example of can be interpreted as belonging to the technical scope of the present invention.

本実施例に係る方向性電磁鋼板を以下に記載の条件の基、製造した。
まず、方向性電磁鋼板の製造するための材料(出発材料)として、Si;3.0質量%、C;0.05質量%、Mn;0.1質量%、酸可溶性Al;0.02質量%、N;0.01質量%、S;0.01質量%、残部がFe及び不純物、といった組成のスラブを準備した。このスラブに対して、1280℃で熱間圧延を実施し、厚さ2.3mmの熱間圧延材を製出した。
The grain-oriented electrical steel sheet according to this example was manufactured under the conditions described below.
First, as a material (starting material) for producing a directional electromagnetic steel plate, Si; 3.0% by mass, C; 0.05% by mass, Mn; 0.1% by mass, acid-soluble Al; 0.02% by mass. A slab having a composition of%, N; 0.01% by mass, S; 0.01% by mass, and the balance of Fe and impurities was prepared. The slab was hot-rolled at 1280 ° C. to produce a hot-rolled material having a thickness of 2.3 mm.

次に、熱間圧延材に対し、1000℃×1分の条件で熱処理を行った。熱処理後に酸洗処理を施した上で冷間圧延を実施し、厚さ0.23mmの冷間圧延材を製出した。この冷間圧延材に対して、800℃×2分の条件で脱炭焼鈍を実施した。次に、脱炭焼鈍後の冷間圧延材の両面に、マグネシアを主成分とする焼鈍分離材を塗布した。 Next, the hot rolled material was heat-treated under the conditions of 1000 ° C. × 1 minute. After the heat treatment, it was pickled and then cold-rolled to produce a cold-rolled material having a thickness of 0.23 mm. This cold-rolled material was decarburized and annealed under the conditions of 800 ° C. × 2 minutes. Next, an annealed separator containing magnesia as a main component was applied to both sides of the cold-rolled material after decarburization and annealing.

そして、焼鈍分離材を塗布した冷間圧延材をコイル状に巻き取った状態で、バッチ式炉に装入し、1200℃×20時間の条件で仕上げ焼鈍を実施した。これにより、表面にグラス被膜14が形成された鋼板地鉄(鋼板本体12)を製造した。次に、グラス被膜14の上に、リン酸アルミニウムからなる絶縁材を塗布、焼き付け(850℃×1分)し、1回目の絶縁被膜16を形成した。 Then, the cold-rolled material coated with the annealing separator was wound into a coil and charged into a batch-type furnace, and finish annealing was performed under the conditions of 1200 ° C. × 20 hours. As a result, a steel plate base iron (steel plate main body 12) having a glass coating 14 formed on its surface was manufactured. Next, an insulating material made of aluminum phosphate was applied and baked (850 ° C. × 1 minute) on the glass film 14, to form the first insulating film 16.

次に、グラス被膜14及び絶縁被膜16が形成された板幅200mmの鋼板本体12に対し、レーザービームを照射し、鋼板本体12の表面板長方向に3mmピッチで溝20を形成した。 Next, the steel plate main body 12 having a plate width of 200 mm on which the glass coating 14 and the insulating coating 16 were formed was irradiated with a laser beam to form grooves 20 at a pitch of 3 mm in the surface plate length direction of the steel plate main body 12.

ここで、本実施例では、図13に示す構成のレーザー照射装置106において、レーザー発振器102に加える出力電圧信号を、周期Tの正弦波とし、振幅が±25%程度以内となるように調整する。例えば、電圧10Vで1000Wのレーザーパワーを出力する場合には、V(t)=10×(1+0.25sin((2π/T)t)))で規定される電圧をレーザー発振器102に付与することにより、レーザー光の出力による方向性電磁鋼板へのエネルギー付加量を変動させた。
基準の照射条件としては、レーザービーム強度を1000W、ビーム走査速度を30m/sとした。また、レーザービームの形状は楕円形状であり、ビーム径の圧延方向は0.1mmであり、ビーム径の走査方向は0.3mmである。かかる照射条件により、幅が50μmで、深さが20μmの溝を形成できた。
Here, in the present embodiment, in the laser irradiation device 106 having the configuration shown in FIG. 13, the output voltage signal applied to the laser oscillator 102 is a sine wave having a period T, and the amplitude is adjusted to be within ± 25%. .. For example, when a laser power of 1000 W is output at a voltage of 10 V, a voltage specified by V (t) = 10 × (1 + 0.25 sin ((2π / T) t))) is applied to the laser oscillator 102. As a result, the amount of energy added to the directional electromagnetic steel plate due to the output of the laser beam was changed.
The standard irradiation conditions were a laser beam intensity of 1000 W and a beam scanning speed of 30 m / s. The shape of the laser beam is elliptical, the rolling direction of the beam diameter is 0.1 mm, and the scanning direction of the beam diameter is 0.3 mm. Under such irradiation conditions, a groove having a width of 50 μm and a depth of 20 μm could be formed.

次に、溝20が形成された鋼板本体12に対して、2回目の絶縁被膜16を形成した。これにより、図3、図4に示す方向性電磁鋼板10と同等構成の方向性電磁鋼板を製造した。
なお、レーザービームを照射して溝を形成する場合、上述したレーザー発振器102に付与する電圧の条件を変更することで形成する凹凸部の大きさを変更し、以下の表1に示す溝深さの平均値(Ave:μm)と最大値(MAX:μm)と最小値(MIN:μm)の溝を形成し、実施例1、2の方向性電磁鋼板試料を作製した。
実施例1及び実施例2では、電圧10Vで1000Wのレーザーパワーを出力する場合を想定し、実施例1ではレーザー発振器102に付与する電圧として、V(t)=10×(1+0.25sin((2π/T)t)))(V)を用い、実施例2ではレーザー発振器102に付与する電圧として、V(t)=10×(1+0.10sin((2π/T)t))(V)を用いた。また、実施例1及び実施例2ではともに周期T=33(msec)とした。
また、対比のために深さ20μm一定の溝(比較例1)を形成した方向性電磁鋼板試料を作成し、更に、板幅方向一端と他端に溝を形成しない溝なし部を板幅方向に10mm設け、これらの溝なし部の間に、板幅方向に沿って深さ一定(20μm深さ)の溝(比較例2)を形成した方向性電磁鋼板試料を作製した。
比較例1ではレーザー発振器102に付与する電圧として、V=10(V)を用い、比較例2ではレーザー発振器102に付与する電圧として、溝部ではV=10(V)を用い、エッジ部ではV=0(V)を用いた。
実施例2、比較例1、2の試料において、上述した溝作成条件と溝深さ以外の製造条件は同等である。
Next, the second insulating coating 16 was formed on the steel plate main body 12 in which the groove 20 was formed. As a result, a grain-oriented electrical steel sheet having the same configuration as the grain-oriented electrical steel sheet 10 shown in FIGS. 3 and 4 was manufactured.
When the groove is formed by irradiating the laser beam, the size of the uneven portion formed by changing the condition of the voltage applied to the laser oscillator 102 described above is changed, and the groove depth shown in Table 1 below is changed. Grooves of the average value (Ave: μm), the maximum value (MAX: μm), and the minimum value (MIN: μm) were formed, and the directional electromagnetic steel plate samples of Examples 1 and 2 were prepared.
In the first and second embodiments, it is assumed that a laser power of 1000 W is output at a voltage of 10 V, and in the first embodiment, the voltage applied to the laser oscillator 102 is V (t) = 10 × (1 + 0.25 sin) (((1 + 0.25 sin)). 2π / T) t))) (V) is used, and in Example 2, V (t) = 10 × (1 + 0.10 sin ((2π / T) t)) (V) as the voltage applied to the laser oscillator 102. Was used. Further, in both Example 1 and Example 2, the period T = 33 (msec) was set.
Further, for comparison, a grain-oriented electrical steel sheet sample in which a groove having a constant depth of 20 μm (Comparative Example 1) was formed was prepared, and further, a grooveless portion in which no groove was formed at one end and the other end in the plate width direction was formed in the plate width direction. A grain-oriented electrical steel sheet sample was prepared in which a groove (Comparative Example 2) having a constant depth (20 μm depth) was formed along the plate width direction between these grooveless portions.
In Comparative Example 1, V = 10 (V) is used as the voltage applied to the laser oscillator 102, in Comparative Example 2, V = 10 (V) is used as the voltage applied to the laser oscillator 102 in the groove portion, and V is used in the edge portion. = 0 (V) was used.
In the samples of Example 2 and Comparative Examples 1 and 2, the above-mentioned groove forming conditions and manufacturing conditions other than the groove depth are the same.

Figure 2021025074
Figure 2021025074

作製したそれぞれの方向性電磁鋼板を用いて巻鉄芯試料を試作した。巻鉄芯は図2に示す各サイズ、A=270mm、B=200mm、C=200mm、積層厚60mm、a=150mm、b=70mm、重量68kgとした。 A wound iron core sample was prototyped using each of the prepared grain-oriented electrical steel sheets. The wound iron core had each size shown in FIG. 2, A = 270 mm, B = 200 mm, C = 200 mm, laminated thickness 60 mm, a = 150 mm, b = 70 mm, and weight 68 kg.

作製した各巻鉄芯試料に対し、溝深さばらつき「標準偏差(σ)/平均溝深さ(ave)」の値と鉄損改善率(%)の相関関係を求めるとともに、溝深さばらつきと騒音低減率(%)の相関関係を求めた。
また、これらの相関関係を広い範囲で求めるために、表1に示す実施例および比較例と同様に溝深さの平均値(Ave:μm)と最大値(MAX:μm)と最小値(MIN:μm)の溝を種々形成し、実施例1、2の方向性電磁鋼板試料と同様の試料を複数作成し、これら複数の試料を用いて以下の定義に従い鉄損改善率と騒音低減率を求めた。
各例において溝深さの平均値(Ave:μm)と最大値(MAX:μm)と最小値(MIN:μm)、および、溝深さばらつきの値は、1つの溝に対し、用いた方向性電磁鋼板の板長方向に沿って20箇所で深さを測定し、3つの溝のそれぞれにおいて個々に平均値(Ave:μm)と最大値(MAX:μm)と最小値(MIN:μm)を求め、溝深さばらつきを求めるとともに、選択した全ての溝の平均値を求めた結果である。
For each wound iron core sample prepared, the correlation between the value of the groove depth variation "standard deviation (σ) / average groove depth (ave)" and the iron loss improvement rate (%) was obtained, and the groove depth variation and the groove depth variation were obtained. The correlation of noise reduction rate (%) was calculated.
Further, in order to obtain these correlations in a wide range, the average value (Ave: μm), the maximum value (MAX: μm), and the minimum value (MIN) of the groove depths are the same as in the Examples and Comparative Examples shown in Table 1. : Μm) grooves were formed in various ways, and a plurality of samples similar to the grain-oriented electrical steel sheet samples of Examples 1 and 2 were prepared, and the iron loss improvement rate and noise reduction rate were determined using these multiple samples according to the following definitions. I asked.
In each example, the average value (Ave: μm), maximum value (MAX: μm), minimum value (MIN: μm) of the groove depth, and the value of the groove depth variation are the directions used for one groove. Depth is measured at 20 points along the plate length direction of the sex electromagnetic steel plate, and the average value (Ave: μm), maximum value (MAX: μm), and minimum value (MIN: μm) are individually measured in each of the three grooves. Is obtained, the groove depth variation is obtained, and the average value of all the selected grooves is obtained.

「鉄損改善率の定義」
巻鉄芯を交流駆動(50Hz)して最大磁束密度(1.7T)で磁化した場合、方向性電磁鋼板1kgあたりの電気エネルギー損失をW17/50(W/kg)と表記することができる。
W17/50(W/kg)=トランス鉄損(W)/トランス重量(kg)
この巻鉄芯において、巻トランス鉄損は、巻鉄芯に一次素線(励磁巻線)および二次巻線(サーチコイル)をそれぞれ巻き付けて、電力計により測定した。
"Definition of iron loss improvement rate"
When the wound iron core is AC-driven (50 Hz) and magnetized at the maximum magnetic flux density (1.7 T), the electrical energy loss per 1 kg of the grain-oriented electrical steel sheet can be expressed as W17 / 50 (W / kg).
W17 / 50 (W / kg) = Transformer iron loss (W) / Transformer weight (kg)
In this wound iron core, the winding transformer iron loss was measured by a power meter by winding a primary wire (excited winding) and a secondary winding (search coil) around the wound iron core.

溝なしの方向性電磁鋼板を巻回して構成した巻鉄芯のトランス鉄損(W)と、所定条件の溝を備えた方向性電磁鋼板を巻回して構成した巻鉄芯(加工比率100%)のトランス鉄損(Wi)を対比し、{(W−Wi)/W}×100(%)の関係式から、鉄損改善率(η)を求めた。
溝なしの方向性電磁鋼板からなる試料のトランス鉄損は61.2Wであり、W17/50=0.90(W/kg)=Wに設定した。
全幅に亘り均一な深さ(20μm)の溝を有する方向性電磁鋼板(加工比率100%)からなる試料のトランス鉄損(Wg)は25.5Wであり、W17/50=0.75(W/kg)=Wgに設定した。
鉄損改善率は溝なしの方向性電磁鋼板からなる巻鉄芯を基準として、標準偏差(σ)/平均溝深さ(ave)の値が異なる種々の方向性電磁鋼板を用いて構成した複数の巻鉄芯の値を算出し、相関性を求めた。その結果を図11に示す。
Transformer iron loss (W 0 ) of a wound steel core formed by winding a grainless directional electromagnetic steel plate, and a wound steel core composed of a wound steel core having a groove of a predetermined condition (processing ratio 100). %) Of trans iron loss (Wi) was compared, and the iron loss improvement rate (η) was obtained from the relational expression of {(W 0 − Wi) / W 0} × 100 (%).
Trans iron loss of a sample consisting of grain-oriented electrical steel sheet without grooves is 61.2W, was set to W17 / 50 = 0.90 (W / kg) = W 0.
The transformer iron loss (Wg) of a sample made of grain-oriented electrical steel sheet (processing ratio 100%) having grooves of uniform depth (20 μm) over the entire width is 25.5 W, and W17 / 50 = 0.75 (W). / Kg) = Wg was set.
The iron loss improvement rate is based on a wound iron core made of grainless grain-oriented electrical steel sheets, and is composed of various grain-oriented electrical steel sheets having different standard deviation (σ) / average groove depth (ave) values. The value of the winding iron core was calculated, and the correlation was obtained. The result is shown in FIG.

鉄損改善率(η)={(W−Wg)/W}×100(%)として、均一な深さ(深さ20μm)の溝を有する方向性電磁鋼板からなる巻鉄芯の鉄損改善率は16.6%となった。
巻鉄芯を備えたトランスにおいては、鉄損改善率が重要なため、上述のように求められる鉄損改善率が14%以上必要と判断し、より望ましくは鉄損改善率が15%以上必要と判断した。
Iron loss improvement rate (η) = {(W 0 − Wg) / W 0 } × 100 (%), and iron cored from grain steel made of grain-oriented electrical steel sheet with grooves of uniform depth (depth 20 μm) The loss improvement rate was 16.6%.
In a transformer equipped with a wound iron core, the iron loss improvement rate is important, so it is judged that the iron loss improvement rate required as described above is 14% or more, and more preferably 15% or more is required. I decided.

「騒音低減率の定義」
騒音低減率(%)は、巻鉄芯を交流(50Hz)で最大磁束密度(1.7T)で磁化した際の騒音として、均一深さの溝を有する方向性電磁鋼板を巻回して構成した巻鉄芯と、溝深さばらつきを有する方向性電磁鋼板を巻回して構成した巻鉄芯の騒音の比較から求めた。
均一深さの溝を有する方向性電磁鋼板からなる巻鉄芯におけるトランス騒音(N)と、溝深さばらつきを有する方向性電磁鋼板からなる巻鉄芯におけるトランス騒音(N)を比較し、{(N−N)/N}×100(%)の関係式から騒音低減率(%)を求めた。騒音低減率は、均一深さの溝を有する方向性電磁鋼板からなる巻鉄芯を基準として、溝深さばらつきを有する方向性電磁鋼板からなる巻鉄芯との比較により求めた。
均一深さ(深さ20μm)の溝を有する方向性電磁鋼板からなる試料のトランス騒音は、N=50dBAとなった。
"Definition of noise reduction rate"
The noise reduction rate (%) was configured by winding a grain-oriented electrical steel sheet having grooves of uniform depth as noise when the wound iron core was magnetized at alternating current (50 Hz) at the maximum magnetic flux density (1.7 T). It was obtained by comparing the noise of the wound iron core and the wound iron core formed by winding a grain-oriented electrical steel sheet having a variation in groove depth.
The transformer noise (N 0 ) in the wound iron core made of the grain-oriented electrical steel sheet having grooves of uniform depth and the transformer noise (N) in the wound iron core made of the grain-oriented electrical steel sheet having the groove depth variation were compared. The noise reduction rate (%) was obtained from the relational expression of {(N 0 −N) / N 0} × 100 (%). The noise reduction rate was determined by comparing with a wound steel core made of grain-oriented electrical steel sheets having grooves of uniform depth as a reference and a core made of grain-oriented electrical steel sheets having groove depth variations.
The transformer noise of the sample made of the grain-oriented electrical steel sheet having grooves of a uniform depth (depth 20 μm) was N 0 = 50 dBA.

{(N−N)/N}×100(%)の関係式から騒音低減率(%)を求めることができる。 The noise reduction rate (%) can be obtained from the relational expression of {(N 0 −N) / N 0} × 100 (%).

図11に示す結果から、トランスにおいて重要な鉄損改善率を重要視し、14%以上必要と判断し、騒音低減率については、4%以上必要と判断すると、σ/aveで示される溝深さばらつきが0.05以上0.17以下の範囲が望ましいと判断できる。
なお、鉄損改善率を更に重要視し、15%以上必要と判断し、騒音低減率について4%以上必要と判断すると、σ/aveで示される溝深さばらつきが0.05以上0.15以下の範囲が望ましいと判断できる。
また、鉄損改善率を更に重要視し、15%以上必要と判断し、騒音低減率について7%以上必要と判断すると、σ/aveで示される溝深さばらつきが0.07以上0.15以下の範囲が望ましいと判断できる。
From the results shown in FIG. 11, when it is judged that the iron loss improvement rate, which is important for the transformer, is important, 14% or more is necessary, and the noise reduction rate is 4% or more, the groove depth indicated by σ / ave is determined. It can be judged that the range in which the variation is 0.05 or more and 0.17 or less is desirable.
If it is judged that the iron loss improvement rate is more important, 15% or more is necessary, and the noise reduction rate is 4% or more, the groove depth variation indicated by σ / ave is 0.05 or more and 0.15. It can be judged that the following range is desirable.
Further, when the iron loss improvement rate is further emphasized and it is judged that 15% or more is necessary and the noise reduction rate is 7% or more, the groove depth variation indicated by σ / ave is 0.07 or more and 0.15. It can be judged that the following range is desirable.

「溝深さばらつきの具体構造」
図12に実施例1、2と比較例1、2で適用した溝深さばらつきの具体構造を示す。
比較例1は、全幅に渡り深さ20μmの均一深さの溝が形成されている場合の方向性電磁鋼板の測定例を示し、比較例2は板幅方向両端に幅20mmの溝なし部を形成し、残りの部分は深さ20μm一定の溝を形成した方向性電磁鋼板の測定例を示す。
実施例1、2は、それぞれ表1に示す溝深さの平均値(Ave:μm)と最大値(MAX:μm)と最小値(MIN:μm)の溝の測定例である。
なお、本実施例では、平均溝深さが20μmとなる場合を例として示したが、平均溝深さが15μm以下であると磁区制御(異常渦電流損低減)効果が不十分となり、20μm以上でほぼ飽和(異常渦電流損が飽和)する一方、平均溝深さが35μm以上であるとヒステリシス損が劣化し、重量減による占積率(実体積/計算体積による重量)の悪化も問題になることから、平均溝深さとしては、15μm以上35μm以下であることが望ましい。
そうした平均溝深さが15μm以上35μm以下であれば、溝深さの標準偏差σを平均溝深さaveで割ることで、磁区制御効果はある程度相殺されるため、図11に示す溝深さばらつきσ/aveと鉄損改善率との関係は、平均溝深さによらず維持される。
"Specific structure of groove depth variation"
FIG. 12 shows the specific structure of the groove depth variation applied in Examples 1 and 2 and Comparative Examples 1 and 2.
Comparative Example 1 shows a measurement example of a grain-oriented electrical steel sheet in a case where a groove having a uniform depth of 20 μm is formed over the entire width, and Comparative Example 2 shows a grooveless portion having a width of 20 mm at both ends in the plate width direction. A measurement example of a grain-oriented electrical steel sheet formed and the remaining portion having a constant groove with a depth of 20 μm is shown.
Examples 1 and 2 are measurement examples of grooves having an average groove depth (Ave: μm), a maximum value (MAX: μm), and a minimum value (MIN: μm) shown in Table 1, respectively.
In this embodiment, the case where the average groove depth is 20 μm is shown as an example, but if the average groove depth is 15 μm or less, the magnetic domain control (abnormal eddy current loss reduction) effect becomes insufficient, and 20 μm or more. While it is almost saturated (abnormal eddy current loss is saturated), if the average groove depth is 35 μm or more, the hysteresis loss deteriorates, and the space factor (actual volume / weight due to calculated volume) deteriorates due to weight reduction. Therefore, it is desirable that the average groove depth is 15 μm or more and 35 μm or less.
If the average groove depth is 15 μm or more and 35 μm or less, the magnetic domain control effect is offset to some extent by dividing the standard deviation σ of the groove depth by the average groove depth ave. Therefore, the groove depth variation shown in FIG. The relationship between σ / ave and the iron loss improvement rate is maintained regardless of the average groove depth.

C…板幅、10…方向性電磁鋼板、12…鋼板本体(地鉄)、14…グラス被膜、16…絶縁被膜、20…溝、20A…凸部、20B…凹部、、50…巻鉄芯、52…コーナ部、100…レーザー照射装置、102…レーザー発振器、104…電送ファイバ、106…レーザー照射装置、L…仮想線、10A…方向性電磁鋼板。 C ... Plate width, 10 ... Directional electromagnetic steel plate, 12 ... Steel plate body (ground steel), 14 ... Glass coating, 16 ... Insulation coating, 20 ... Groove, 20A ... Convex, 20B ... Concave, 50 ... Winding iron core , 52 ... Corner section, 100 ... Laser irradiation device, 102 ... Laser oscillator, 104 ... Transmission fiber, 106 ... Laser irradiation device, L ... Virtual line, 10A ... Directional electromagnetic steel plate.

Claims (10)

板幅方向に延在する溝を板長方向に所定間隔で複数形成した方向性電磁鋼板であって、 巻鉄芯巻回用の板幅を有し、前記板幅方向に沿う前記溝の溝深さの標準偏差をσと定義し、前記板幅方向に沿う前記溝の平均溝深さをaveと定義すると、σ/aveで示される溝深さばらつきが0.05以上0.17以下である方向性電磁鋼板。 A directional electromagnetic steel plate in which a plurality of grooves extending in the plate width direction are formed at predetermined intervals in the plate length direction, has a plate width for winding an iron core, and is a groove of the groove along the plate width direction. If the standard deviation of the depth is defined as σ and the average groove depth of the groove along the plate width direction is defined as ave, the groove depth variation indicated by σ / ave is 0.05 or more and 0.17 or less. A directional electromagnetic steel plate. 前記溝深さばらつきが0.05以上0.15以下である請求項1に記載の方向性電磁鋼板。 The grain-oriented electrical steel sheet according to claim 1, wherein the groove depth variation is 0.05 or more and 0.15 or less. 板幅方向に延在する溝が板長方向に所定間隔で複数形成された方向性電磁鋼板を巻回した巻鉄芯であって、前記板幅方向に沿う前記溝の溝深さの標準偏差をσと定義し、前記板幅方向に沿う前記溝の平均溝深さをaveと定義すると、σ/aveで示される溝深さばらつきが0.05以上0.17以下である方向性電磁鋼板を巻回した巻鉄芯。 A wound iron core in which a plurality of grooves extending in the plate width direction are formed around a directional electromagnetic steel plate formed at predetermined intervals in the plate length direction, and the standard deviation of the groove depth of the grooves along the plate width direction. Is defined as σ, and the average groove depth of the groove along the plate width direction is defined as ave. As a result, the groove depth variation indicated by σ / ave is 0.05 or more and 0.17 or less. A wound iron core that is wound around. 前記溝深さばらつきが0.05以上0.15以下である方向性電磁鋼板を巻回した請求項3に記載の巻鉄芯。 The wound iron core according to claim 3, wherein the grain-oriented electrical steel sheet having a groove depth variation of 0.05 or more and 0.15 or less is wound. 板幅方向に延在する溝が板長方向に所定間隔で複数形成された方向性電磁鋼板の製造方法であって、板幅方向に沿ってレーザ−光を照射して前記溝を形成する際、レーザー光の強弱を調節することにより、前記板幅方向に沿う前記溝の溝深さの標準偏差をσと定義し、前記板幅方向に沿う前記溝の平均溝深さをaveと定義すると、σ/aveで示される溝深さばらつきが0.05以上0.17以下である方向性電磁鋼板を形成する方向性電磁鋼板の製造方法。 A method for manufacturing a directional electromagnetic steel plate in which a plurality of grooves extending in the plate width direction are formed at predetermined intervals in the plate length direction, when the grooves are formed by irradiating a laser beam along the plate width direction. By adjusting the intensity of the laser beam, the standard deviation of the groove depth of the groove along the plate width direction is defined as σ, and the average groove depth of the groove along the plate width direction is defined as ave. , A method for manufacturing a directional electromagnetic steel plate for forming a directional electromagnetic steel plate having a groove depth variation represented by σ / ave of 0.05 or more and 0.17 or less. 前記溝深さばらつきを0.05以上0.15以下とする請求項5に記載の方向性電磁鋼板の製造方法。 The method for manufacturing a grain-oriented electrical steel sheet according to claim 5, wherein the groove depth variation is 0.05 or more and 0.15 or less. 長さ方向に沿って鋼板を搬送する途中に、前記板幅方向に沿って板面から離間して設置した複数のレーザー装置からレーザー光を照射し、板幅方向に前記溝を形成する処理を前記板長方向に繰り返し、前記板長方向に所定の間隔で複数の溝を形成する請求項5または請求項6に記載の方向性電磁鋼板の製造方法。 While the steel plate is being conveyed along the length direction, laser light is irradiated from a plurality of laser devices installed apart from the plate surface along the plate width direction to form the groove in the plate width direction. The method for manufacturing a directional electromagnetic steel plate according to claim 5 or 6, wherein a plurality of grooves are formed at predetermined intervals in the plate length direction by repeating in the plate length direction. 板幅方向に延在する溝が板長方向に所定間隔で複数形成された方向性電磁鋼板を巻回して構成される巻鉄芯の製造方法であって、
板幅方向に沿ってレーザ−光を照射して前記溝を形成する際、レーザー光の強弱を調節することにより、前記板幅方向に沿う前記溝の溝深さの標準偏差をσと定義し、前記板幅方向に沿う前記溝の平均溝深さをaveと定義すると、σ/aveで示される溝深さばらつきが0.05以上0.17以下となる方向性電磁鋼板を形成し、この方向性電磁鋼板を巻回する巻鉄芯の製造方法。
A method for manufacturing a wound iron core, which is formed by winding a grain-oriented electrical steel sheet in which a plurality of grooves extending in the plate width direction are formed at predetermined intervals in the plate length direction.
When the groove is formed by irradiating the laser beam along the plate width direction, the standard deviation of the groove depth of the groove along the plate width direction is defined as σ by adjusting the intensity of the laser beam. If the average groove depth of the groove along the plate width direction is defined as ave, a directional electromagnetic steel plate having a groove depth variation represented by σ / ave of 0.05 or more and 0.17 or less is formed. A method for manufacturing a wound iron core around which a directional electromagnetic steel plate is wound.
前記溝深さばらつきを0.05以上0.15以下とした方向性電磁鋼板を巻回する請求項8に記載の巻鉄芯の製造方法。 The method for manufacturing a wound iron core according to claim 8, wherein the grain-oriented electrical steel sheet having a groove depth variation of 0.05 or more and 0.15 or less is wound. 長さ方向に沿って鋼板を搬送する途中に、前記板幅方向に沿って板面から離間して設置した複数のレーザー装置からレーザー光を照射し、板幅方向に前記溝を形成する処理を前記板長方向に繰り返し、前記板長方向に所定の間隔で複数の溝を形成した方向性電磁鋼板を巻回する請求項8または請求項9に記載の巻鉄芯の製造方法。 While the steel plate is being conveyed along the length direction, laser light is irradiated from a plurality of laser devices installed apart from the plate surface along the plate width direction to form the groove in the plate width direction. The method for manufacturing a wound iron core according to claim 8 or 9, wherein a directional electromagnetic steel plate having a plurality of grooves formed at predetermined intervals in the plate length direction is wound repeatedly in the plate length direction.
JP2019142309A 2019-08-01 2019-08-01 Method for manufacturing grain-oriented electrical steel sheet and method for manufacturing wound iron core Active JP7406064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019142309A JP7406064B2 (en) 2019-08-01 2019-08-01 Method for manufacturing grain-oriented electrical steel sheet and method for manufacturing wound iron core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019142309A JP7406064B2 (en) 2019-08-01 2019-08-01 Method for manufacturing grain-oriented electrical steel sheet and method for manufacturing wound iron core

Publications (2)

Publication Number Publication Date
JP2021025074A true JP2021025074A (en) 2021-02-22
JP7406064B2 JP7406064B2 (en) 2023-12-27

Family

ID=74663693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019142309A Active JP7406064B2 (en) 2019-08-01 2019-08-01 Method for manufacturing grain-oriented electrical steel sheet and method for manufacturing wound iron core

Country Status (1)

Country Link
JP (1) JP7406064B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904312A (en) * 1987-08-22 1990-02-27 British Steel Plc Method of electrolytically etching linear impressions in electrical steel
JPH11124629A (en) * 1997-10-16 1999-05-11 Kawasaki Steel Corp Grain oriented silicon steel sheet reduced in iron loss and noise
JPH11279646A (en) * 1998-03-26 1999-10-12 Kawasaki Steel Corp Manufacture of low iron loss grain oriented silicon steel sheet
KR20130128215A (en) * 2012-05-16 2013-11-26 주식회사 포스코 Oriented electrical steel sheets and method for manufacturing the same
JP2014073518A (en) * 2012-10-05 2014-04-24 Jfe Steel Corp Method for manufacturing oriented electromagnetic steel plate
CN106282512A (en) * 2015-05-11 2017-01-04 宝山钢铁股份有限公司 Low noise level transformer orientation silicon steel piece making method
JP2017133051A (en) * 2016-01-26 2017-08-03 Jfeスチール株式会社 Facility line to manufacture low iron loss grain oriented magnetic steel sheet and manufacturing method of low iron loss grain oriented magnetic steel sheet
JP2017186585A (en) * 2016-04-01 2017-10-12 新日鐵住金株式会社 Winding iron core, stress relieving annealing method and manufacturing method therefor
JP2018037572A (en) * 2016-09-01 2018-03-08 新日鐵住金株式会社 Wound core, and manufacturing method of wound core

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904312A (en) * 1987-08-22 1990-02-27 British Steel Plc Method of electrolytically etching linear impressions in electrical steel
JPH11124629A (en) * 1997-10-16 1999-05-11 Kawasaki Steel Corp Grain oriented silicon steel sheet reduced in iron loss and noise
JPH11279646A (en) * 1998-03-26 1999-10-12 Kawasaki Steel Corp Manufacture of low iron loss grain oriented silicon steel sheet
KR20130128215A (en) * 2012-05-16 2013-11-26 주식회사 포스코 Oriented electrical steel sheets and method for manufacturing the same
JP2014073518A (en) * 2012-10-05 2014-04-24 Jfe Steel Corp Method for manufacturing oriented electromagnetic steel plate
CN106282512A (en) * 2015-05-11 2017-01-04 宝山钢铁股份有限公司 Low noise level transformer orientation silicon steel piece making method
JP2017133051A (en) * 2016-01-26 2017-08-03 Jfeスチール株式会社 Facility line to manufacture low iron loss grain oriented magnetic steel sheet and manufacturing method of low iron loss grain oriented magnetic steel sheet
JP2017186585A (en) * 2016-04-01 2017-10-12 新日鐵住金株式会社 Winding iron core, stress relieving annealing method and manufacturing method therefor
JP2018037572A (en) * 2016-09-01 2018-03-08 新日鐵住金株式会社 Wound core, and manufacturing method of wound core

Also Published As

Publication number Publication date
JP7406064B2 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
JP4782248B1 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5935880B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6455593B2 (en) Oriented electrical steel sheet
JP4510757B2 (en) Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof
RU2509163C1 (en) Texture sheet of electric steel and method of its production
JP6044642B2 (en) Laser processing apparatus and laser irradiation method
JP6638599B2 (en) Wound iron core and method of manufacturing the wound iron core
JP7010311B2 (en) Directional electrical steel sheet
RU2547377C2 (en) Fabrication of textured steel sheet
JP6838321B2 (en) Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JP6341280B2 (en) Laser processing equipment
JP7277755B2 (en) Grain-oriented electrical steel sheet, wound iron core, method for producing grain-oriented electrical steel sheet, and method for producing wound iron core
JP7406064B2 (en) Method for manufacturing grain-oriented electrical steel sheet and method for manufacturing wound iron core
RU2710496C1 (en) Textured sheet of electrical steel and method for production of such sheet
JP7027923B2 (en) Manufacturing method of grain-oriented electrical steel sheet, rolled iron core, grain-oriented electrical steel sheet, and manufacturing method of rolled iron core
JP2021025073A (en) Oriented electromagnetic steel sheet, wound iron core, oriented electromagnetic steel sheet production method, and wound iron core production method
JP2005340619A (en) Winding iron core and transformer using the same
WO2024012439A1 (en) Laser scribing method for low-iron-loss oriented silicon steel plate, and oriented silicon steel plate
CN116508120A (en) Coiled iron core
JPH0565543A (en) Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing
JPH0250918A (en) Production of grain-oriented electrical steel sheet having small iron loss

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231127

R151 Written notification of patent or utility model registration

Ref document number: 7406064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151