JP2021023967A - Ti-Al BASED ALLOY CASTING METHOD - Google Patents

Ti-Al BASED ALLOY CASTING METHOD Download PDF

Info

Publication number
JP2021023967A
JP2021023967A JP2019143776A JP2019143776A JP2021023967A JP 2021023967 A JP2021023967 A JP 2021023967A JP 2019143776 A JP2019143776 A JP 2019143776A JP 2019143776 A JP2019143776 A JP 2019143776A JP 2021023967 A JP2021023967 A JP 2021023967A
Authority
JP
Japan
Prior art keywords
casting
ingot
based alloy
crucible
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019143776A
Other languages
Japanese (ja)
Inventor
西村 友宏
Tomohiro Nishimura
友宏 西村
大介 松若
Daisuke MATSUWAKA
大介 松若
石田 斉
Hitoshi Ishida
斉 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2019143776A priority Critical patent/JP2021023967A/en
Priority to EP20850248.4A priority patent/EP3995227A4/en
Priority to US17/630,322 priority patent/US20220250141A1/en
Priority to PCT/JP2020/027164 priority patent/WO2021024704A1/en
Publication of JP2021023967A publication Critical patent/JP2021023967A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/06Casting non-ferrous metals with a high melting point, e.g. metallic carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/005Castings of light metals with high melting point, e.g. Be 1280 degrees C, Ti 1725 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/15Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

To reduce cavities inside a small-diameter ingot and improve good product yielding percentage in an active metal casting method.SOLUTION: In a Ti-Al based alloy casting method for tapping a molten metal to a casting mold 4 from a tap hole 5 provided in a bottom of a water-cooled copper crucible 2 in an induction melting furnace 3 using the crucible 2 to cast Ti-Al based alloy ingot, a degree of vacuum in the induction melting furnace 3 when casting dissolving or casting the Ti-Al based alloy is kept within the range of 80 to 700 torr, and an Al concentration of the cast ingot is kept within ± 1.0 mass% of a target value.SELECTED DRAWING: Figure 1

Description

本発明は、Al濃度を精度良く制御することができるTi−Al基合金の鋳造方法に関するものである。 The present invention relates to a method for casting a Ti—Al base alloy capable of accurately controlling the Al concentration.

水冷銅の坩堝を用いた誘導溶解炉(CCIM:コールドクルーシブル誘導溶解装置)は、溶解雰囲気および坩堝から溶湯内に不純物が混入することがほとんどなく、高融点のTi−Al基合金の溶解に適している。
また、誘導溶解炉は、坩堝サイズより小さな原料であれば、形状に制約なく炉内で溶解ができるため、スクラップ等の材料を原材料として有効に活用することができる。
An induction melting furnace (CCIM: cold crucible induction melting device) using a water-cooled copper crucible is suitable for melting a high melting point Ti—Al-based alloy with almost no impurities mixed in the molten metal from the melting atmosphere and the crucible. ing.
Further, in the induction melting furnace, if the raw material is smaller than the crucible size, it can be melted in the furnace regardless of the shape, so that the material such as scrap can be effectively used as the raw material.

さらに、誘導溶解炉で加熱を起こさせる電磁誘導は、溶湯を攪拌させる電磁斥力も生じさせるため、電磁斥力による攪拌で溶湯内の成分均質性を保つことも可能となる。
そのため、誘導溶解炉を用いたTi−Al基合金の鋳造は、高価な原料費が故に高い歩留まりが求められるTi−Al基合金の鋳塊に対して、高品質な鋳塊を高歩留まりで得るための有効な手法とされている。
Further, since the electromagnetic induction that causes heating in the induction melting furnace also generates an electromagnetic repulsive force that stirs the molten metal, it is possible to maintain the homogeneity of the components in the molten metal by stirring by the electromagnetic repulsive force.
Therefore, casting of a Ti—Al-based alloy using an induction melting furnace can obtain a high-quality ingot with a high yield as compared with an ingot of a Ti—Al-based alloy that requires a high yield due to an expensive raw material cost. It is said to be an effective method for this.

ところで、通常、金属は液体状態よりも固体状態において密度が大きいため、凝固の際に鋳造体の容積が小さくなる。つまり、凝固時に収縮が起こることで、比較的冷却速度が遅く凝固の遅れる部分には、引巣と呼ばれる空洞が鋳造時の欠陥として発生してしまう。このような引巣は、特に細径鋳塊を製造する際に鋳塊の軸心部で発生しやすい。そこで、誘導溶解炉で溶解した金属を細径鋳塊として鋳造する場合は、鋳造時の引巣を抑制するため、以下の特許文献1のような技術が開発されている。 By the way, since the density of metal is usually higher in the solid state than in the liquid state, the volume of the cast body becomes smaller during solidification. That is, due to shrinkage during solidification, cavities called nests are generated as defects during casting in the portion where the cooling rate is relatively slow and solidification is delayed. Such cavities are likely to occur at the axial center of the ingot, especially when producing a small-diameter ingot. Therefore, in the case of casting a metal melted in an induction melting furnace as a small-diameter ingot, a technique as described in Patent Document 1 below has been developed in order to suppress nesting during casting.

特許文献1は、水冷銅の坩堝を用いた誘導溶解炉において、当該坩堝の底部に設けられた出湯口から溶湯を鋳型に出湯して活性金属の鋳塊を鋳造する活性金属の鋳造方法であって、前記鋳塊は直径10mm以上で、且つ、鋳塊高さHと鋳塊径Dの比(H/D)が1.5以上であり、前記鋳造で出湯される溶湯の重量が200kg以下とされた鋳造条件で鋳造を行うに際しては、前記鋳造時の溶湯の温度を活性金属の融点よりも高温にすると共に、前記出湯口の開口径を調整することで、前記鋳型内で鋳造が進む速度である鋳造速度V(mm/秒)を、前記鋳塊高さHとの関係で、V≦0.1Hに制御しつつ前記鋳造を行う活性金属の鋳造方法を開示している。 Patent Document 1 is a method for casting an active metal in an induction melting furnace using a water-cooled copper pit, in which the molten metal is poured into a mold from a hot water outlet provided at the bottom of the pit to cast an ingot of the active metal. The ingot has a diameter of 10 mm or more, the ratio (H / D) of the ingot height H to the ingot diameter D is 1.5 or more, and the weight of the molten metal discharged in the casting is 200 kg or less. When casting is performed under the above casting conditions, the temperature of the molten metal at the time of casting is set higher than the melting point of the active metal, and the opening diameter of the outlet is adjusted so that the casting proceeds in the mold. Disclosed is a method for casting an active metal in which the casting is performed while controlling the casting speed V (mm / sec), which is the speed, to V ≦ 0.1H in relation to the ingot height H.

特許文献1の技術では、鋳造速度を調整することで一方向凝固に近い鋳造が可能となり、Ti−Al基合金などの活性金属において、引け巣の発生を抑制して最大で86%の歩留まりを実現可能としている。 In the technique of Patent Document 1, casting close to one-way solidification is possible by adjusting the casting speed, and in active metals such as Ti—Al base alloys, the occurrence of shrinkage cavities is suppressed and the yield is up to 86%. It is feasible.

特開2018−94628号公報JP-A-2018-94628

ところで、特許文献1の技術は、実操業にて制御できる因子として鋳造速度に着目しており、高い歩留まりを得るために非常に有効な手法を開示している。
しかし、実際の製造で製品の良否を判断する基準には、引け巣のような形状の欠陥以外にも、例えばAlの濃度が規格範囲から外れているといった組成の欠陥なども存在する。
この点、特許文献1においては、鋳片の引け巣の割合で歩留まりを評価しているものの、Alの偏析などの影響で鋳片におけるAl濃度がどのように変化したか、言い換えればAl濃度という組成の欠陥には全く考慮がなされておらず、Al濃度を制御可能な溶解条件は全く知見が得られていない。
By the way, the technique of Patent Document 1 focuses on the casting speed as a factor that can be controlled in actual operation, and discloses a very effective method for obtaining a high yield.
However, in addition to defects in the shape such as shrinkage cavities, there are also defects in the composition such that the concentration of Al is out of the standard range in the criteria for judging the quality of the product in actual manufacturing.
In this regard, in Patent Document 1, although the yield is evaluated by the ratio of shrinkage cavities of the slab, how the Al concentration in the slab changed due to the influence of segregation of Al, in other words, the Al concentration. No consideration has been given to compositional defects, and no knowledge has been obtained regarding dissolution conditions that can control the Al concentration.

つまり、Ti−Al基合金の鋳造品の品質には、形状だけでなく組成の欠陥も考慮した総合的な要求品質の向上が求められており、Al濃度を精度良く制御することが重要となっている。
本発明は、上述の問題に鑑みてなされたものであり、Al濃度が精度良く制御され、形状だけでなく組成の欠陥も考慮した総合的な品質を大きく向上させることができるTi−Al基合金の鋳造方法を提供することを目的とする。
In other words, the quality of cast products of Ti—Al-based alloys is required to improve the overall required quality considering not only the shape but also the defects of the composition, and it is important to control the Al concentration accurately. ing.
The present invention has been made in view of the above-mentioned problems, and the Al concentration can be controlled with high accuracy, and the overall quality considering not only the shape but also the defect of the composition can be greatly improved. It is an object of the present invention to provide a casting method of.

上記課題を解決するため、本発明のTi−Al基合金の鋳造方法は以下の技術的手段を講じている。
即ち、本発明のTi−Al基合金の鋳造方法は、水冷銅の坩堝を用いた誘導溶解炉において、当該坩堝の底部に設けられた出湯口から溶湯を鋳型に出湯してTi−Al基合金の鋳塊を鋳造するTi−Al基合金の鋳造方法であって、前記Ti−Al基合金を溶解乃至は鋳造する際における前記誘導溶解炉内の真空度を80〜700torrの範囲内とし、鋳造された鋳塊のAl濃度を目標値に対して±1.0mass%以内にすることを特徴とする。
In order to solve the above problems, the casting method of the Ti—Al based alloy of the present invention takes the following technical means.
That is, in the method for casting a Ti-Al-based alloy of the present invention, in an induction melting furnace using a water-cooled copper pit, molten metal is discharged from a hot water outlet provided at the bottom of the pit into a mold to form a Ti-Al-based alloy. This is a method for casting a Ti-Al-based alloy for casting the ingot of the above, in which the degree of vacuum in the induction melting furnace at the time of melting or casting the Ti-Al-based alloy is within the range of 80 to 700 torr. It is characterized in that the Al concentration of the ingot is within ± 1.0 mass% with respect to the target value.

本発明のTi−Al基合金の鋳造方法によれば、鋳造品のAl濃度を精度良く制御することができ、鋳造品形状に関する不良だけでなく組成に関する不良も考慮した総合的な品質を大きく向上させることができる。 According to the casting method of the Ti—Al based alloy of the present invention, the Al concentration of the cast product can be controlled with high accuracy, and the overall quality considering not only the defect related to the shape of the cast product but also the defect related to the composition is greatly improved. Can be made to.

本実施形態のTi−Al基合金の鋳造方法に用いられる鋳造設備を示した模式図である。It is a schematic diagram which showed the casting equipment used in the casting method of the Ti—Al based alloy of this embodiment. 炉内の真空度と溶湯からのAlの蒸発速度との関係を示した図である。It is a figure which showed the relationship between the degree of vacuum in a furnace and the evaporation rate of Al from a molten metal. 炉内の真空度とガス欠陥の数との関係を示した図である。It is a figure which showed the relationship between the degree of vacuum in a furnace and the number of gas defects.

以下、本発明にかかるTi−Al基合金の鋳造方法の実施形態を、図面に基づき詳しく説明する。
本実施形態のTi−Al基合金の鋳造方法は、活性高融点なチタン−アルミ系合金(Ti−Al基合金)を溶解した溶湯Mを鋳型4に注湯して鋳造を行うことにより、細径鋳塊S(鋳塊)を製造するものとなっている。このTi−Al基合金には、さまざまなものが考えられるが、航空機部材で使用されている合金であれば、Ti-3Al-2.5V合金、Ti-6Al-6V-2Sn-0.5Fe-0.5Cu合金、Ti-3Al-10V-2Fe合金、Ti-5Al-5V-5Mo-3Cr-0.5Fe合金、Ti-3Al-8V-6Cr-4Mo-4Zr合金、Ti-3Al-15V-3Cr-3Sn合金、Ti-6Al-4V合金、Ti-3Al-15Mo-2.7Nb-0.2Si合金、Ti-5Al-2Sn-2Zr-4Mo-4Cr合金、Ti-6Al-2Sn-4Zr-6Mo合金、Ti-6Al-2Sn-4Zr-2Mo合金、Ti-6Al-5Zr-0.5Mo-0.25Si合金、Ti-5.5Al-3.5Sn-3Zr-1Nb-0.25Mo-0.3Si合金、Ti-5.8Al-4Sn-3.5Zr-0.7Nb-0.5Mo-0.35Si-0.06C合金などの合金が用いられる。
Hereinafter, embodiments of the method for casting a Ti—Al based alloy according to the present invention will be described in detail with reference to the drawings.
The method for casting a Ti-Al-based alloy of the present embodiment is fine by pouring molten metal M in which a titanium-aluminum-based alloy (Ti-Al-based alloy) having an active high melting point is dissolved into a mold 4 and casting. A diameter ingot S (ingot) is manufactured. Various Ti-Al base alloys can be considered, but if it is an alloy used in aircraft parts, Ti-3Al-2.5V alloy, Ti-6Al-6V-2Sn-0.5Fe-0.5Cu Alloys, Ti-3Al-10V-2Fe alloys, Ti-5Al-5V-5Mo-3Cr-0.5Fe alloys, Ti-3Al-8V-6Cr-4Mo-4Zr alloys, Ti-3Al-15V-3Cr-3Sn alloys, Ti -6Al-4V alloy, Ti-3Al-15Mo-2.7Nb-0.2Si alloy, Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy, Ti-6Al-2Sn-4Zr-6Mo alloy, Ti-6Al-2Sn-4Zr -2Mo alloy, Ti-6Al-5Zr-0.5Mo-0.25Si alloy, Ti-5.5Al-3.5Sn-3Zr-1Nb-0.25Mo-0.3Si alloy, Ti-5.8Al-4Sn-3.5Zr-0.7Nb-0.5 Alloys such as Mo-0.35Si-0.06C alloys are used.

以降では、本実施形態のTi−Al基合金の鋳造方法に用いられる鋳造設備1について説明する。
図1に示すように、本実施形態の鋳造方法に用いられる鋳造設備1は、水冷銅製の坩堝2を用いた誘導溶解炉3と、坩堝2の底部から出湯した溶湯Mが注入される鋳型4と、を有している。この鋳造設備1は、坩堝2の底部から溶湯Mを鋳型4に出湯してTi−Al基合金の細径鋳塊Sを鋳造するものである。これら誘導溶解炉3及び坩堝2と、それらの下方に配備される鋳型4とは、一つの容器(真空容器)内に収められるようになっており、真空容器内の真空度を所定のものとしつつ、Ti−Al基合金の細径鋳塊Sを鋳造可能とする。
Hereinafter, the casting equipment 1 used in the method for casting the Ti—Al based alloy of the present embodiment will be described.
As shown in FIG. 1, the casting equipment 1 used in the casting method of the present embodiment includes an induction melting furnace 3 using a water-cooled copper crucible 2 and a mold 4 into which the molten metal M discharged from the bottom of the crucible 2 is injected. And have. In this casting facility 1, the molten metal M is discharged from the bottom of the crucible 2 into the mold 4 to cast a small-diameter ingot S of a Ti—Al-based alloy. The induction melting furnace 3 and the crucible 2 and the mold 4 placed below them are housed in one container (vacuum container), and the degree of vacuum in the vacuum container is set to a predetermined value. At the same time, the small-diameter ingot S of the Ti—Al-based alloy can be cast.

本発明は、この溶解・鋳造室内の真空度(気圧)を所定の値に制御することで、鋳塊内部のガス巻き込みなどに起因するガス欠陥を低減すると共に、鋳造品のAl濃度を規格範囲に抑えることで、鋳造品の良品歩留まりを向上させることを可能とするものである。
本実施形態の鋳造設備1に用いられる誘導溶解炉3は、溶解対象となる材料の内部に誘導電流を生じさせてその抵抗発熱を利用するものであり、一般にコールドクルーシブル誘導溶解装置(Cold Crucible Induction Melting)と呼ばれるものである。この誘導溶解炉3は、水冷銅の坩堝2を用いてTi−Al基合金を溶解させるものであり、一般的な溶解炉であれば坩堝2を構成する材料に多用される耐火物を用いずに、銅で形成されるものとなっている。そのため、誘導溶解炉3を用いた鋳造では、耐火物からのコンタミの影響を受け難い。
According to the present invention, by controlling the degree of vacuum (atmospheric pressure) in the melting / casting chamber to a predetermined value, gas defects caused by gas entrainment inside the ingot are reduced, and the Al concentration of the cast product is within the specified range. It is possible to improve the yield of non-defective products by suppressing the pressure to.
The induction melting furnace 3 used in the casting facility 1 of the present embodiment generates an induced current inside the material to be melted and utilizes the resistance heat generation, and is generally a cold crucible induction melting device (Cold Crucible Induction). It is called Melting). This induction melting furnace 3 melts a Ti—Al based alloy using a crucible 2 of water-cooled copper, and if it is a general melting furnace, it does not use a refractory material often used as a material constituting the crucible 2. In addition, it is made of copper. Therefore, casting using the induction melting furnace 3 is not easily affected by contamination from refractories.

上述した誘導溶解炉3に用いられる坩堝2は、図1に示すように、上方へ向かって開口した有底筒状に形成されており、内部に溶解されたTi−Al基合金を収容可能となっている。
この坩堝2の壁は、前述の如く銅で形成されると共に水冷が行われている。このような水冷銅で坩堝2の壁を形成すれば、溶解されたTi−Al基合金を収容していても坩堝2の内壁の温度が所定の温度(例えば250℃)以上に上昇することがない。具体的には、水冷銅の坩堝2に上述した溶融したTi−Al基合金を入れても、坩堝2の壁の内周面と溶融金属との間にスカルといわれる凝固殻が形成され、坩堝としての役割を果たすことで溶融金属が坩堝2から汚染されることがない。
As shown in FIG. 1, the crucible 2 used in the above-mentioned induction melting furnace 3 is formed in a bottomed tubular shape that opens upward, and can accommodate a Ti—Al-based alloy dissolved inside. It has become.
The wall of the crucible 2 is made of copper and water-cooled as described above. If the wall of the crucible 2 is formed of such water-cooled copper, the temperature of the inner wall of the crucible 2 may rise to a predetermined temperature (for example, 250 ° C.) or higher even if the melted Ti—Al base alloy is contained. Absent. Specifically, even if the above-mentioned molten Ti—Al base alloy is put into the crucible 2 of water-cooled copper, a solidified shell called a skull is formed between the inner peripheral surface of the wall of the crucible 2 and the molten metal, and the crucible The molten metal is not contaminated from the crucible 2 by playing the role of.

本実施形態の坩堝2は底部出湯型となっており、坩堝2の底部には収容されたTi−Al基合金を下方に案内可能な出湯口5が形成されている。この出湯口5は、開口径を調整可能とされており、下方に案内される溶湯Mの量を調整可能とされている。この出湯口5は、電磁式や機械式で開口径を調整可能なものでも良いし、開口径が異なる複数の弁部材を予め用意しておいて、弁部材を取り替えることで開口径を調整するようにしても良い。 The crucible 2 of the present embodiment has a bottom hot water outlet type, and a hot water outlet 5 capable of guiding the contained Ti—Al base alloy downward is formed at the bottom of the crucible 2. The opening diameter of the hot water outlet 5 can be adjusted, and the amount of molten metal M guided downward can be adjusted. The outlet 5 may be electromagnetically or mechanically adjustable in opening diameter, or a plurality of valve members having different opening diameters may be prepared in advance and the opening diameter may be adjusted by replacing the valve members. You may do so.

鋳型4は上方に向かって開口した有底円筒状に形成されている。
鋳型4の内寸法は、様々なものが考えられるが、鋳塊Sの直径をD、鋳塊Sの高さをH、溶湯Mの重量をWとした場合に、以下の適用範囲に収まる程度のサイズとされるのが望ましい。
鋳塊径D(mm): 10≦D≦150
鋳塊高さH(mm):15≦H≦1600
溶湯重量W(kg): 0.2≦W≦200
次に、上述した誘導溶解炉3を用いて活性金属を鋳造する場合の手順、言い換えればTi−Al基合金の鋳造方法について説明する。
The mold 4 is formed in a bottomed cylindrical shape that opens upward.
Various internal dimensions of the mold 4 can be considered, but when the diameter of the ingot S is D, the height of the ingot S is H, and the weight of the molten metal M is W, the internal dimensions fall within the following applicable range. It is desirable that the size is.
Ingot diameter D (mm): 10 ≤ D ≤ 150
Ingot height H (mm): 15 ≤ H ≤ 1600
Molten metal weight W (kg): 0.2 ≤ W ≤ 200
Next, a procedure for casting an active metal using the induction melting furnace 3 described above, in other words, a method for casting a Ti—Al base alloy will be described.

本実施形態のTi−Al基合金の鋳造方法は、水冷銅の坩堝2を用いた誘導溶解炉3において、当該坩堝2の底部から溶湯Mを鋳型4に出湯して活性金属の細径の鋳塊Sを鋳造するものである。このとき鋳造される細径の鋳塊Sは直径10mm以上で、且つ、鋳塊Sの高さ(H)と鋳塊Sの直径(D)の比H/Dが1.5以上であり、鋳造で出湯される溶湯Mの重量が200kg以下とされた鋳造条件で鋳造が行われる。また、鋳造を行うに際しては、坩堝2の底部に、開口径を調整可能な出湯口5を設けておき、鋳造時の溶湯Mの温度を活性金属の融点よりも高温にすると共に、出湯口5の開口径を調整することで、鋳型4内で鋳造が進む速度である鋳造速度V(kg/秒)を、鋳塊Sの高さとの関係で、V≦0.1Hに制御しつつ鋳造を行い、鋳塊Sの内部の引巣を低減すると共に鋳造歩留まりを向上させるものとなっている。なお、鋳造時に出湯された溶湯が詰まって溶湯が流れなくなる「湯詰まり」を起こさないようにするためには、鋳造時の溶湯Mの温度を好ましくは活性金属の融点より20℃以上高温、より好ましくは40℃以上高温にするとよい。 In the method for casting a Ti—Al based alloy of the present embodiment, in an induction melting furnace 3 using a water-cooled copper crucible 2, molten metal M is discharged from the bottom of the crucible 2 into a mold 4 to cast a small diameter active metal. The mass S is cast. The small-diameter ingot S cast at this time has a diameter of 10 mm or more, and the ratio H / D of the height (H) of the ingot S to the diameter (D) of the ingot S is 1.5 or more. Casting is performed under casting conditions in which the weight of the molten metal M discharged by casting is 200 kg or less. Further, when casting, a hot water outlet 5 having an adjustable opening diameter is provided at the bottom of the crucible 2, so that the temperature of the molten metal M at the time of casting is higher than the melting point of the active metal, and the hot water outlet 5 is used. By adjusting the opening diameter of the casting, the casting speed V (kg / sec), which is the speed at which casting proceeds in the mold 4, is controlled to V ≦ 0.1H in relation to the height of the ingot S. This is performed to reduce the crucible inside the ingot S and improve the casting yield. In order to prevent "clogging" in which the molten metal discharged during casting is clogged and the molten metal does not flow, the temperature of the molten metal M during casting is preferably 20 ° C. or higher higher than the melting point of the active metal. It is preferable to raise the temperature to 40 ° C. or higher.

ところで、上述した鋳造速度V(kg/秒)でTi−Al基合金の鋳塊Sを鋳造する場合でも、炉内が真空状態になっていると溶湯からAlが蒸発するため、Al濃度は鋳造中に徐々に低下し、最終的には鋳造品の組成が目標とするAl濃度の規格値を下回る可能性がある。そこで、本実施形態のTi−Al基合金の鋳造方法では、水冷銅の坩堝2を用いた誘導溶解炉3において、この坩堝2の底部に設けられた出湯口5から溶湯Mを鋳型4に出湯してTi−Al基合金の鋳造品(鋳塊)を鋳造するに際して、Ti−Al基合金を溶解乃至は鋳造する際における誘導溶解炉3内の真空度を80torr〜700torrの範囲内とし、鋳造された鋳造品(鋳塊)のAl濃度を目標値に対して±1.0mass%以内にするものとしている。 By the way, even when the ingot S of the Ti—Al base alloy is cast at the above-mentioned casting speed V (kg / sec), Al evaporates from the molten metal when the inside of the furnace is in a vacuum state, so that the Al concentration is cast. There is a possibility that the composition of the cast product will eventually fall below the target Al concentration standard value. Therefore, in the method for casting a Ti—Al based alloy of the present embodiment, in the induction melting furnace 3 using the water-cooled copper pit 2, the molten metal M is discharged into the mold 4 from the hot water outlet 5 provided at the bottom of the pit 2. Then, when casting a cast product (ingot) of the Ti—Al base alloy, the degree of vacuum in the induction melting furnace 3 when melting or casting the Ti—Al base alloy is set within the range of 80 torr to 700 torr. The Al concentration of the cast product (ingot) is set to be within ± 1.0 mass% with respect to the target value.

なお、上述したAl濃度は、厳密には、鋳造品に鋳造された状態(固体状態)と、溶湯の状態(液体状態)とでは、異なるものとなる。しかし、本実施形態では、固体、液体、いずれの場合でも±1.0mass%以内とするものとする。
上述した誘導溶解炉3内の真空度を80torr〜700torrの範囲内に規定するのは以下の理由による。
Strictly speaking, the Al concentration described above differs between the state of being cast into a cast product (solid state) and the state of molten metal (liquid state). However, in this embodiment, it shall be within ± 1.0 mass% in both solid and liquid cases.
The vacuum degree in the induction melting furnace 3 described above is defined in the range of 80 torr to 700 torr for the following reasons.

すなわち、本実施形態では、鋳造に用いられる溶湯の重量は50kgとした。この溶湯を全て鋳塊Sとして鋳造し終わるまでには、15分という鋳造時間が必要となる。この鋳造時間は、ノズルの径によって変化することは言うまでもない。この15分間の鋳造時間中にも溶湯のAl濃度は蒸発によって徐々に低下する。ただ、蒸発によって失われたAl濃度の低下量がAl濃度の規格値の変動許容範囲内に収まるのであれば、鋳造後の鋳造品(鋳塊)はTi−Al基合金として適正な組成を持ったものとして扱うことができる。 That is, in the present embodiment, the weight of the molten metal used for casting is 50 kg. It takes 15 minutes to complete casting all of this molten metal as ingot S. It goes without saying that this casting time varies depending on the diameter of the nozzle. Even during this 15-minute casting time, the Al concentration of the molten metal gradually decreases due to evaporation. However, if the amount of decrease in Al concentration lost due to evaporation is within the permissible range of fluctuation of the standard value of Al concentration, the cast product (ingot) after casting has an appropriate composition as a Ti—Al base alloy. Can be treated as a casting.

なお、Ti−Al基合金のAl濃度の規格値(目標値)は、鋳造しようとする鋳造品の合金種によって高い場合もあれば低い場合もある。しかし、一般には23.3mass%〜43.3mass%の規格値に対して±1.0mass%以内に収めれば、Ti−Al基合金として適正な組成が得られることを出願人は確認している。例えば、30mass%というAl濃度の規格値を目標とした場合であっても、規格値に対して実際の鋳造品に許容されるAl濃度の変動範囲は±1.0mass%以内となる。 The standard value (target value) of the Al concentration of the Ti—Al base alloy may be high or low depending on the alloy type of the cast product to be cast. However, in general, the applicant confirms that an appropriate composition as a Ti—Al base alloy can be obtained if it is kept within ± 1.0 mass% with respect to the standard value of 23.3 mass% to 43.3 mass%. There is. For example, even when the standard value of Al concentration of 30 mass% is targeted, the fluctuation range of Al concentration allowed in the actual cast product is within ± 1.0 mass% with respect to the standard value.

ここで、本実施形態の鋳造方法では、まず規格値に対して許容される変動範囲の上限と下限との差、言い換えればAl濃度の変動幅を求める。このようにして求められた2.0mass%という変動幅を15分間という鋳造時間で除算する。これは15分間という鋳造時間でAl濃度が低下しても、この低下幅がAl濃度の変動範囲を超えないようなAl濃度の変化速度を求めることにほかならない。上述した計算の結果得られるAl濃度の変化速度は、2.0mass%÷15min=0.13mass%/min以下となる。 Here, in the casting method of the present embodiment, first, the difference between the upper limit and the lower limit of the fluctuation range allowed with respect to the standard value, in other words, the fluctuation range of the Al concentration is obtained. The fluctuation range of 2.0 mass% obtained in this way is divided by the casting time of 15 minutes. This is nothing but finding the rate of change of the Al concentration so that even if the Al concentration decreases in the casting time of 15 minutes, the decrease range does not exceed the fluctuation range of the Al concentration. The rate of change of the Al concentration obtained as a result of the above calculation is 2.0 mass% ÷ 15 min = 0.13 mass% / min or less.

上述した0.13mass%/minが算出されたら、Al濃度の変化速度が0.13mass%/min以下となる真空度を、実際に実験を行って求めるとよい。このようにして実験により求められた鋳造の真空度が、上述した80torr〜700torrとなる。上述した真空度の範囲を決定する実験については、後述する実施例において詳しく説明する。
上述した真空度(真空容器内の気圧)が80torr以下となる条件で鋳造を行うと、溶湯中のAlが鋳造中に大量に蒸発するため、溶湯組成が鋳造中に大きく変動し、鋳造品の組成の変動も無視できなくなる。その結果、鋳造品の組成(Al濃度)が規格値から外れ、組成面で不良となる鋳造品が発生しやすくなり、歩留まりの低下に繋がる。
After the above-mentioned 0.13 mass% / min is calculated, it is advisable to actually carry out an experiment to determine the degree of vacuum at which the rate of change of the Al concentration is 0.13 mass% / min or less. The degree of vacuum of the casting thus obtained by the experiment is 80 torr to 700 torr described above. The experiment for determining the range of the degree of vacuum described above will be described in detail in Examples described later.
When casting is performed under the condition that the above-mentioned degree of vacuum (atmospheric pressure in the vacuum vessel) is 80 torr or less, a large amount of Al in the molten metal evaporates during casting, so that the composition of the molten metal fluctuates greatly during casting, and the cast product Fluctuations in composition cannot be ignored. As a result, the composition (Al concentration) of the cast product deviates from the standard value, and a cast product having a defect in composition is likely to occur, leading to a decrease in yield.

また、真空度(真空容器内の気圧)が700torr以上となる条件で鋳造を行うと、Ti−Al基合金の鋳造をガスが多く存在する環境で行うことになり、溶湯が鋳型内で凝固する際に周囲に存在するガスを巻き込む可能性が高くなって、ガス欠陥が増加してかえって歩留まりが低下する。
このガス欠陥は、溶湯が鋳型4内で凝固する際に、周囲に存在するガスを巻き込むことで発生するものであり、鋳型表層部に形成される場合が多い。そのため、溶解・鋳造時の炉内の真空度が高ければ、巻き込まれるガスも少なくなる。つまり、炉内の真空度を上げることで、ガス欠陥を低減させることは可能である。ガス欠陥が低減すると、ガス欠陥を鋳造品から取り除くべく鋳造品を切削する量も減少するため、鋳造品の歩留まりが向上可能となる。
Further, if casting is performed under the condition that the degree of vacuum (atmospheric pressure in the vacuum vessel) is 700 torr or more, the Ti—Al group alloy is cast in an environment where a large amount of gas is present, and the molten metal solidifies in the mold. In some cases, the possibility of entraining the surrounding gas increases, gas defects increase, and the yield decreases.
This gas defect is generated by entraining the gas existing in the surroundings when the molten metal solidifies in the mold 4, and is often formed on the surface layer of the mold. Therefore, the higher the degree of vacuum in the furnace during melting and casting, the less gas is involved. That is, it is possible to reduce gas defects by increasing the degree of vacuum in the furnace. When the gas defects are reduced, the amount of cutting the casting to remove the gas defects from the casting is also reduced, so that the yield of the casting can be improved.

なお、大気圧で鋳造した場合のガス欠陥の数の定量評価結果が無いため定性的な議論となるが、鋳造する鋳造環境を大気圧から真空にすればするほど、ガス欠陥の数は減少する傾向がある。従って、溶解乃至は鋳造を行う際の真空度を上述した700torrより高真空度(700torrより小さく)することにより、760torr(大気圧)以上の場合に比較してガス欠陥の数を大幅に低減することが可能と考えることができる。 It is a qualitative discussion because there is no quantitative evaluation result of the number of gas defects when casting at atmospheric pressure, but the number of gas defects decreases as the casting environment for casting is changed from atmospheric pressure to vacuum. Tend. Therefore, by making the degree of vacuum at the time of melting or casting higher than the above-mentioned 700 torr (less than 700 torr), the number of gas defects is significantly reduced as compared with the case of 760 torr (atmospheric pressure) or more. Can be considered possible.

以上のことから、真空度(真空容器内の気圧)を80torr〜700torrにして鋳造を行うことで、ガス欠陥の発生を抑えつつ、鋳造品の組成(Al濃度)を規格値に適正に制御することが可能となり、組成に関する不良も考慮した総合的な品質を大きく向上させることができる。 From the above, by casting with the degree of vacuum (atmospheric pressure in the vacuum vessel) set to 80 torr to 700 torr, the composition (Al concentration) of the cast product is appropriately controlled to the standard value while suppressing the occurrence of gas defects. This makes it possible to greatly improve the overall quality in consideration of defects in composition.

実施例は、最大50kgのTi−Al基合金の材料(Ti-33.3Al-4.8Nb-2.55Cr(mass%))を溶解し、溶解によって得られた溶湯を鋳造に用いたものである。
具体的には、図1に示すコールドクルーシブル式の誘導溶解炉3内で、上述した材料を水冷銅の坩堝2を用いて加熱し、真空度を0.001torr〜700torrの範囲で変化させた炉内に、加熱により溶解した溶湯を保持して、溶湯のAl濃度を計測し、炉内の真空度とAl蒸発速度との関係を調査した。結果を図2に示す。
In the example, a maximum of 50 kg of a Ti—Al base alloy material (Ti-33.3Al-4.8Nb-2.55Cr (mass%)) was melted, and the molten metal obtained by the melting was used for casting.
Specifically, in the cold crucible type induction melting furnace 3 shown in FIG. 1, the above-mentioned material is heated using a water-cooled copper crucible 2 and the degree of vacuum is changed in the range of 0.001 torr to 700 torr. In addition, the molten metal melted by heating was retained, the Al concentration of the molten metal was measured, and the relationship between the degree of vacuum in the furnace and the Al evaporation rate was investigated. The results are shown in FIG.

図2に示すように、炉内の真空度とAl蒸発速度との間には、炉内の真空度を高くすればするほど、Al蒸発速度が低下するという関係があることがわかる。また、得られたデータに基づけば、炉内の真空度が0.001torrの場合でもAl蒸発速度は0.13mass%/min以下となるが、鋳造を安全かつ確実に行えるように、80torrの場合をAl蒸発速度が0.13mass%/min以下となる真空度の下限値と考え、真空度の制御範囲を80torr以上とした。 As shown in FIG. 2, it can be seen that there is a relationship between the degree of vacuum in the furnace and the Al evaporation rate that the higher the degree of vacuum in the furnace, the lower the Al evaporation rate. In addition, based on the obtained data, the Al evaporation rate is 0.13 mass% / min or less even when the degree of vacuum in the furnace is 0.001 torr, but in the case of 80 torr, Al is used so that casting can be performed safely and reliably. Considering that the lower limit of the degree of vacuum at which the evaporation rate is 0.13 mass% / min or less, the control range of the degree of vacuum was set to 80 torr or more.

上述した手順で炉内の真空度とAl蒸発速度との関係を予め求めた上で、実際に鋳型4に出湯して鋳造品(鋳塊)の鋳造を行った。
なお、鋳造は、溶湯が封入された坩堝2の底部に設置してある黒鉛製のノズル(出湯口5)から出湯し、坩堝2の下方に位置する黒鉛製の鋳型4で凝固させて鋳造を行った。この鋳造も、減圧されたAr雰囲気下、言い換えれば真空度が0.001 torr〜700 torrの範囲に制御されたAr雰囲気下で行った。また、作製される鋳造品(鋳塊)は、黒鉛製の鋳型4の形状に合わせて変化させることができるが、本実施形態ではノズルの開口形状が矩形のものと、円形のものとの2種類で鋳造を行い鋳塊を作製した。具体的なノズルの開口形状は、矩形の場合は65mmx65mmと、55mmx55mmとの2種類であり、円形の場合はφ72mmとφ50mmとの2種類である。ノズルの開口形状が円形の場合は円柱状の鋳塊が、また開口形状が矩形の場合は角柱状の鋳塊が得られる。
After obtaining the relationship between the degree of vacuum in the furnace and the Al evaporation rate in advance by the above procedure, hot water was actually discharged into the mold 4 to cast a cast product (ingot).
For casting, hot water is discharged from a graphite nozzle (outlet port 5) installed at the bottom of the crucible 2 in which the molten metal is sealed, and solidified with a graphite mold 4 located below the crucible 2 for casting. went. This casting was also performed in an Ar atmosphere under reduced pressure, in other words, in an Ar atmosphere in which the degree of vacuum was controlled in the range of 0.001 torr to 700 torr. Further, the cast product (ingot) to be produced can be changed according to the shape of the graphite mold 4, but in the present embodiment, the nozzle opening shape is rectangular or circular. Ingots were produced by casting by type. There are two types of specific nozzle opening shapes, 65 mmx65 mm and 55 mmx55 mm for a rectangular shape, and φ72 mm and φ50 mm for a circular shape. When the opening shape of the nozzle is circular, a columnar ingot is obtained, and when the opening shape is rectangular, a prismatic ingot is obtained.

また、実験毎に異なるが、鋳塊の高さは620 mmから1520 mmの間であり、また鋳塊の鋳造速度は0.18%/s〜0.4%/sの範囲となっている。
得られた鋳塊品について、本実施形態の真空度の範囲では、Al蒸発速度が抑えられ、Al濃度が目標値に対して±1.0mass%の範囲に制御された鋳塊が得られることを出願人は確認している。Al濃度目標値の33.3mass%のTi-Al合金を本願発明方法で80 torrで鋳造した際に目標値の33.3mass%に対して、±1mass%以内に収まり32.79mass%であった。
The ingot height is between 620 mm and 1520 mm, and the ingot casting speed is in the range of 0.18% / s to 0.4% / s, although it varies from experiment to experiment.
Regarding the obtained ingot product, in the range of the degree of vacuum of the present embodiment, the Al evaporation rate is suppressed, and the ingot whose Al concentration is controlled in the range of ± 1.0 mass% with respect to the target value can be obtained. The applicant has confirmed. When a Ti-Al alloy having an Al concentration target value of 33.3 mass% was cast at 80 torr by the method of the present invention, it was within ± 1 mass% with respect to the target value of 33.3 mass%, which was 32.79 mass%.

また、得られた鋳塊品のうち、真空度が200torrで鋳造された鋳造品について、鋳塊の単位高さ当たりのガス欠陥の数を計測したところ、30個/mm以下となった。これは大気圧下で鋳造した場合のガス欠陥の数が数百個レベルであるのに対して、その数が大幅に低減されており、ガス欠陥の発生が抑制された結果を示すものとなっている。
以上の結果から、水冷銅の坩堝2を用いた誘導溶解炉3において、当該坩堝2の底部に設けられた出湯口5から溶湯を鋳型4に出湯してTi−Al基合金の鋳塊を鋳造する際には、Ti−Al基合金を溶解乃至は鋳造する際における誘導溶解炉3内の真空度を80〜700torrの範囲内とし、鋳造された鋳塊のAl濃度を目標値に対して±1.0mass%以内にすることで、Al濃度が精度良く制御され、形状だけでなく組成の欠陥も考慮した総合的な鋳造品の品質を大きく向上させることができる。
In addition, among the obtained ingot products, the number of gas defects per unit height of the ingot was measured for the cast products cast at a vacuum degree of 200 torr, and the number was 30 pieces / mm or less. This shows that the number of gas defects when casting under atmospheric pressure is on the order of several hundreds, but the number is significantly reduced, and the occurrence of gas defects is suppressed. ing.
From the above results, in the induction melting furnace 3 using the water-cooled copper crucible 2, the molten metal is poured into the mold 4 from the hot water outlet 5 provided at the bottom of the crucible 2 to cast an ingot of Ti—Al base alloy. When melting or casting a Ti—Al base alloy, the degree of vacuum in the induction melting furnace 3 should be within the range of 80 to 700 torr, and the Al concentration of the cast ingot should be ± with respect to the target value. By setting it within 1.0 mass%, the Al concentration can be controlled with high accuracy, and the quality of the overall cast product considering not only the shape but also the defect of the composition can be greatly improved.

なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。 It should be noted that the embodiments disclosed this time are exemplary in all respects and are not restrictive. In particular, in the embodiments disclosed this time, matters not explicitly disclosed, such as operating conditions, operating conditions, various parameters, dimensions, weights, volumes of components, etc., deviate from the scope normally implemented by those skilled in the art. A value that can be easily assumed by a person skilled in the art is adopted.

1 鋳造設備
2 坩堝
3 誘導溶解炉
4 鋳型
5 出湯口
M 溶湯
S 鋳造品(鋳塊)
1 Casting equipment 2 Crucible 3 Induction melting furnace 4 Mold 5 Outlet M Hot metal S Casting product (ingot)

Claims (1)

水冷銅の坩堝を用いた誘導溶解炉において、当該坩堝の底部に設けられた出湯口から溶湯を鋳型に出湯してTi−Al基合金の鋳塊を鋳造するTi−Al基合金の鋳造方法であって、
前記Ti−Al基合金を溶解乃至は鋳造する際における前記誘導溶解炉内の真空度を80〜700torrの範囲内とし、鋳造された鋳塊のAl濃度を目標値に対して±1.0mass%以内にする
ことを特徴とするTi−Al基合金の鋳造方法。
In an induction melting furnace using a water-cooled copper crucible, a Ti-Al-based alloy casting method is used in which molten metal is poured into a mold from a hot water outlet provided at the bottom of the crucible to cast an ingot of a Ti-Al-based alloy. There,
The degree of vacuum in the induction melting furnace when melting or casting the Ti—Al base alloy is set in the range of 80 to 700 torr, and the Al concentration of the cast ingot is ± 1.0 mass% with respect to the target value. A method for casting a Ti—Al based alloy, which is characterized by being within the range.
JP2019143776A 2019-08-05 2019-08-05 Ti-Al BASED ALLOY CASTING METHOD Pending JP2021023967A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019143776A JP2021023967A (en) 2019-08-05 2019-08-05 Ti-Al BASED ALLOY CASTING METHOD
EP20850248.4A EP3995227A4 (en) 2019-08-05 2020-07-10 Method for casting ti-al based alloy
US17/630,322 US20220250141A1 (en) 2019-08-05 2020-07-10 METHOD FOR CASTING Ti-Al BASED ALLOY
PCT/JP2020/027164 WO2021024704A1 (en) 2019-08-05 2020-07-10 METHOD FOR CASTING Ti-AL BASED ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019143776A JP2021023967A (en) 2019-08-05 2019-08-05 Ti-Al BASED ALLOY CASTING METHOD

Publications (1)

Publication Number Publication Date
JP2021023967A true JP2021023967A (en) 2021-02-22

Family

ID=74502616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019143776A Pending JP2021023967A (en) 2019-08-05 2019-08-05 Ti-Al BASED ALLOY CASTING METHOD

Country Status (4)

Country Link
US (1) US20220250141A1 (en)
EP (1) EP3995227A4 (en)
JP (1) JP2021023967A (en)
WO (1) WO2021024704A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273562A (en) * 1987-04-30 1988-11-10 Daido Steel Co Ltd Production of ti-al alloy casting
JPH08238553A (en) * 1995-03-02 1996-09-17 Honda Motor Co Ltd Directional solidified casting method
JP2008142717A (en) * 2006-12-06 2008-06-26 Daido Steel Co Ltd METHOD AND APPARATUS FOR MAKING INGOT OF Ti AND Ti ALLOY OR TiAl
WO2018110370A1 (en) * 2016-12-13 2018-06-21 株式会社神戸製鋼所 Casting method for active metal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3125394B2 (en) * 1991-12-06 2001-01-15 日本鋼管株式会社 Casting method of titanium-aluminum alloy casting
JP3125393B2 (en) * 1991-12-06 2001-01-15 日本鋼管株式会社 Casting method of titanium-aluminum alloy casting
JP7043217B2 (en) 2016-12-13 2022-03-29 株式会社神戸製鋼所 How to cast active metal
JP2019143776A (en) 2018-02-23 2019-08-29 Ntn株式会社 Rolling bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273562A (en) * 1987-04-30 1988-11-10 Daido Steel Co Ltd Production of ti-al alloy casting
JPH08238553A (en) * 1995-03-02 1996-09-17 Honda Motor Co Ltd Directional solidified casting method
JP2008142717A (en) * 2006-12-06 2008-06-26 Daido Steel Co Ltd METHOD AND APPARATUS FOR MAKING INGOT OF Ti AND Ti ALLOY OR TiAl
WO2018110370A1 (en) * 2016-12-13 2018-06-21 株式会社神戸製鋼所 Casting method for active metal

Also Published As

Publication number Publication date
US20220250141A1 (en) 2022-08-11
EP3995227A1 (en) 2022-05-11
WO2021024704A1 (en) 2021-02-11
EP3995227A4 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
RU2490350C2 (en) METHOD FOR OBTAINING BASIC β-γ-TiAl-ALLOY
JP2020514551A (en) Aluminum-scandium alloys having high homogeneity and elemental content and articles thereof
CN112430767B (en) Large-size hollow ingot casting and ingot casting method
RU2729246C1 (en) Casting method for active metal
JP6994392B2 (en) Ingot made of an alloy containing titanium as the main component, and its manufacturing method
WO2021024704A1 (en) METHOD FOR CASTING Ti-AL BASED ALLOY
CN101121969A (en) Liquid state hydrogen-replacing thinning solidifying tissue method in Ti-6Al-4V alloy induction shell smelting process
WO2021192875A1 (en) Graphite nozzle for bottom tapping and ti-al alloy casting method
CN112760456B (en) Bismuth-containing oriented silicon steel smelting method enabling bismuth yield to be not less than 70%
JP2018188725A (en) Ingot consisting of alloy of high melting point active metal and manufacturing method therefor
RU2697144C1 (en) Method for semi-continuous casting of ingots from aluminum alloys
JPH08176810A (en) Production of aluminum-high melting point metal alloy ingot and target material
WO2018110370A1 (en) Casting method for active metal
JP7406073B2 (en) Manufacturing method for titanium ingots
JP2008018453A (en) Continuous casting method for molten metal, and immersion lance for continuous casting
JP2023149111A (en) Alloy ingot production method and alloy ingot production bottom tap nozzle
JP7406074B2 (en) Titanium ingot manufacturing method and titanium ingot manufacturing mold
JP7471946B2 (en) Manufacturing method of titanium ingot
RU2762956C1 (en) Method for manufacturing cast billets from antifriction bronze
RU2778039C1 (en) Method for modifying the structure of cast blanks from antifriction bronze for diffusion welding with steel (options)
JP2012228722A (en) Melting furnace for smelting metal
JP7417056B2 (en) titanium alloy ingot
JP7406075B2 (en) Titanium ingot manufacturing method and titanium ingot manufacturing mold
JP2005028452A (en) CONTINUOUS CASTING METHOD OF Al-Mg-Si ALLOY AND Al-Mg-Si ALLOY INGOT, MANUFACTURING METHOD OF Al-Mg-Si ALLOY SHEET AND Al-Mg-Si ALLOY SHEET, AND MANUFACTURING METHOD OF HEAT RADIATION MATERIAL AND HEAT RADIATION MATERIAL
JPH0531568A (en) Plasma melting/casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221101