JP2021021586A - Torque converter - Google Patents

Torque converter Download PDF

Info

Publication number
JP2021021586A
JP2021021586A JP2019136779A JP2019136779A JP2021021586A JP 2021021586 A JP2021021586 A JP 2021021586A JP 2019136779 A JP2019136779 A JP 2019136779A JP 2019136779 A JP2019136779 A JP 2019136779A JP 2021021586 A JP2021021586 A JP 2021021586A
Authority
JP
Japan
Prior art keywords
strain
torque
torque converter
circuit
causing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019136779A
Other languages
Japanese (ja)
Other versions
JP7339618B2 (en
Inventor
璋好 小林
Akiyoshi Kobayashi
璋好 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unipulse Corp
Original Assignee
Unipulse Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unipulse Corp filed Critical Unipulse Corp
Priority to JP2019136779A priority Critical patent/JP7339618B2/en
Publication of JP2021021586A publication Critical patent/JP2021021586A/en
Application granted granted Critical
Publication of JP7339618B2 publication Critical patent/JP7339618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

To provide a precise torque converter even at a high-speed rotation.SOLUTION: In a torque converter 1 that has a hollow cylindrical strain part 2 and converts torsional torque operating on the strain part 2 to an electric signal, plural strain-sensitive resistors G (G1 to G8) are welded to the strain part 2, and the strain-sensitive resistors G (G1 to G8) are disposed in a pair while an angle θ formed by a center axis AX of the strain part 2 and a direction of the maximum sensitivity of the strain-sensitive resistors G (G1 to G8) is determined by a Poisson ratio of the strain part 2.SELECTED DRAWING: Figure 2

Description

本発明は、トルクを測定して電気信号に変換するトルク変換器に関するものである。 The present invention relates to a torque converter that measures torque and converts it into an electrical signal.

高速回転する自動車の車輪等に生じるトルクを測定する測定器としては、両端に接続用のフランジ部を有し、このフランジ間に円筒状の起歪部を連結する構造のトルク変換器が公知である。このトルク変換器は、円筒状の起歪部に感歪抵抗体を添着して、駆動側フランジ部から従動側フランジ部に伝達されるトルクに比例した起歪部の歪み量を電気的に変換している。そして高速回転と共に、急激なトルク変化を測定することが求められていて、起歪部には高剛性が求められると同時に、高い応答性を確保する必要がある。 As a measuring instrument for measuring the torque generated in the wheels of an automobile rotating at high speed, a torque converter having a structure in which flanges for connection are provided at both ends and a cylindrical strain generating portion is connected between the flanges is known. is there. This torque converter attaches a resistance thermometer to a cylindrical strain-causing portion and electrically converts the amount of strain in the strain-causing portion proportional to the torque transmitted from the driving side flange portion to the driven side flange portion. doing. Then, it is required to measure a sudden torque change with high-speed rotation, and it is necessary to ensure high rigidity and high responsiveness at the strain-causing portion.

特開平6−229853号公報Japanese Unexamined Patent Publication No. 6-229853

このようなトルク変換器は、特許文献1のように、感歪抵抗体の最大感度方向が起歪部の中心軸に対して45度の角度になるように添着されているのが一般的である。しかしながら、例えば20000rpm等の高速回転においてトルクを検出する際には、起歪部に遠心力が働き、トルクが加わっていないのにもかかわらず歪みを検出してしまう場合があって改善の余地がある。 As in Patent Document 1, such a torque converter is generally attached so that the maximum sensitivity direction of the resistance temperature detector is at an angle of 45 degrees with respect to the central axis of the strain generating portion. is there. However, when detecting torque at high speed rotation such as 20000 rpm, centrifugal force acts on the strain generating part, and strain may be detected even though torque is not applied, and there is room for improvement. is there.

このような問題に鑑みて、本発明は、高速回転においても精確なトルク変換器を提供することを目的としている。 In view of such a problem, an object of the present invention is to provide an accurate torque transducer even at high speed rotation.

請求項1に記載のトルク変換器は、上記の目的を達成するために、
中空円柱形の起歪部を備えて起歪部に作用するねじりトルクを電気信号に変換するトルク変換器であって、
起歪部には複数の感歪抵抗体が添着され、
感歪抵抗体は、起歪部の中心軸と感歪抵抗体の最大感度方向のなす角度が、起歪部のポアソン比から定められて配置されている。
The torque transducer according to claim 1 is used to achieve the above object.
A torque converter that has a hollow cylindrical strain-causing part and converts the torsional torque acting on the strain-causing part into an electric signal.
Multiple resistance temperature detectors are attached to the strain-causing part,
The resistance temperature detector is arranged so that the angle formed by the central axis of the strain generating portion and the maximum sensitivity direction of the strain sensitive resistor is determined from the Poisson's ratio of the strain generating portion.

請求項2に記載のトルク変換器は、上記の目的を達成するために、
中空円柱形の起歪部を備えて起歪部に作用するねじりトルクを電気信号に変換するトルク変換器であって、
起歪部には複数の感歪抵抗体が添着され、
感歪抵抗体が、起歪部の円周方向に働く引張応力によって生じる歪みをキャンセルする角度にて配置されている。
The torque transducer according to claim 2 is used to achieve the above object.
A torque converter that has a hollow cylindrical strain-causing part and converts the torsional torque acting on the strain-causing part into an electric signal.
Multiple resistance temperature detectors are attached to the strain-causing part,
The strain-sensitive resistor is arranged at an angle that cancels the strain caused by the tensile stress acting in the circumferential direction of the strain-causing portion.

本発明によれば、感歪抵抗体の最大感度方向が、起歪部の中心軸に対して、起歪部のポアソン比によって定まる角度にて配置されていることから、高速回転によって起歪部に生じる遠心力の影響を除外することができ、精確なトルク変換器を提供できる。 According to the present invention, the maximum sensitivity direction of the strain-sensitive resistor is arranged at an angle determined by the Poisson's ratio of the strain-causing portion with respect to the central axis of the strain-causing portion. The influence of the centrifugal force generated in the above can be excluded, and an accurate torque converter can be provided.

本発明の実施形態に係るトルク変換器の斜視外観図である。It is a perspective view of the torque converter which concerns on embodiment of this invention. 本発明の実施形態に係るトルク変換器の測定部の断面図である。It is sectional drawing of the measuring part of the torque converter which concerns on embodiment of this invention. 本発明の実施形態に係るトルク変換器の測定部のAA断面図である。It is an AA sectional view of the measuring part of the torque converter which concerns on embodiment of this invention. 本発明の実施形態に係るトルク変換器の感歪抵抗体を含んで構成される回路図である。It is a circuit diagram which includes the distortion sensitive resistor of the torque converter which concerns on embodiment of this invention. 本発明の実施形態に係るトルク変換器の起歪部の一部の模式図(a)〜(c)、モール円を示す図(d)、感歪抵抗体の平面図(e)である。It is a schematic view (a)-(c) of a part of the strain-causing part of the torque converter which concerns on embodiment of this invention, the figure (d) which shows Mohr's circle, and the plan view (e) of a strain-sensitive resistor.

以下、本発明の実施形態に係るトルク変換器について、図面を基に詳細な説明を行う。図1は本発明の第1の実施形態に係るトルク変換器1の斜視外観図である。 Hereinafter, the torque transducer according to the embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective external view of the torque transducer 1 according to the first embodiment of the present invention.

トルク変換器1は、トルク測定部13と、電装品ボックス9とを備えている。トルク測定部13は、起歪部2と、フランジ部3a〜3bと、これらの内部に図1には現れない感歪抵抗体G1〜G8と、回路基板12と含んでいる。電装品ボックス9の天面には給電部7と回転速度検出部8が設けられている。トルク測定部13と電装品ボックス9とは別体で構成されていて、トルク変換器1はこの両者を所定の位置及び間隔にて設置して使用される。トルク変換器1は起歪部2に作用するトルクを電気信号に変換する。 The torque converter 1 includes a torque measuring unit 13 and an electrical component box 9. The torque measuring unit 13 includes a strain generating portion 2, flange portions 3a to 3b, strain-sensitive resistors G1 to G8 which do not appear in FIG. 1 inside, and a circuit board 12. A power feeding unit 7 and a rotation speed detecting unit 8 are provided on the top surface of the electrical component box 9. The torque measuring unit 13 and the electrical component box 9 are formed separately, and the torque converter 1 is used by installing both of them at predetermined positions and intervals. The torque converter 1 converts the torque acting on the strain generating portion 2 into an electric signal.

フランジ部3aは、容易には変形しない高い剛性の環状の金属でできている。フランジ部3aは、等角度間隔で配置されたネジ穴を複数有して、ボルトによって駆動側の駆動部材と連結される。 The flange portion 3a is made of a highly rigid annular metal that does not easily deform. The flange portion 3a has a plurality of screw holes arranged at equal intervals, and is connected to the drive member on the drive side by bolts.

フランジ部3bも、容易には変形しない高い剛性の環状の金属でできている。フランジ部3bは、等角度間隔で配置されたネジ穴を複数有して、ボルトによって従属側の負荷部材と連結される。 The flange portion 3b is also made of a highly rigid annular metal that does not easily deform. The flange portion 3b has a plurality of screw holes arranged at equal intervals, and is connected to the load member on the dependent side by bolts.

歯車4は、フランジ部3a側に設けられた平歯車である。 歯車4は、フランジ部3aの外周より半径方向に突出した形状で、中心軸方向ではフランジ部3aとフランジ部3bの中間に配置されている。 The gear 4 is a spur gear provided on the flange portion 3a side. The gear 4 has a shape protruding in the radial direction from the outer circumference of the flange portion 3a, and is arranged between the flange portions 3a and the flange portions 3b in the central axis direction.

起歪部2は、中心軸方向でフランジ部3aとフランジ部3bの間にあって、フランジ部3a及びフランジ部3bとは同心である。起歪部2は中空円柱形の形状であって、起歪部2の両端にあるフランジ部3aとフランジ部3bとは一体の部材で構成されている。そして起歪部2の外周円柱面の直径は、フランジ部3a及びフランジ部3bの外周の直径よりも小さく、その肉厚も比較的小さく形成されている。起歪部2は例えば炭素鋼で、そのポワソン比は0.27〜0.3である。 The strain generating portion 2 is located between the flange portion 3a and the flange portion 3b in the central axis direction, and is concentric with the flange portion 3a and the flange portion 3b. The strain-causing portion 2 has a hollow cylindrical shape, and the flange portions 3a and the flange portions 3b at both ends of the strain-causing portion 2 are formed of an integral member. The diameter of the outer peripheral cylindrical surface of the strain generating portion 2 is smaller than the diameter of the outer periphery of the flange portion 3a and the flange portion 3b, and the wall thickness thereof is also relatively small. The strain generating portion 2 is, for example, carbon steel, and its Poisson ratio is 0.27 to 0.3.

回転速度検出部8は、歯車4を使用してトルク測定部13の回転速度及び回転方向を検出する。回転速度検出部8は、回転する歯車4に対してその歯先円に近接する円周上に、歯車4と所定の距離に2つの磁気抵抗素子を配置してあって、この磁気抵抗素子間を通過する歯車4の歯先による磁力変化を検出して、回転速度と回転方向を検出する。 The rotation speed detection unit 8 detects the rotation speed and the rotation direction of the torque measurement unit 13 using the gear 4. The rotation speed detection unit 8 has two magnetic resistance elements arranged at a predetermined distance from the gear 4 on the circumference of the rotating gear 4 close to the tooth tip circle, and is between the magnetic resistance elements. The change in magnetic force due to the tooth tip of the gear 4 passing through the gear 4 is detected, and the rotation speed and the rotation direction are detected.

アンテナ14は、トルク測定部13で測定したトルクの値の信号を無線で送信するためのものである。アンテナ14は、例えば導体線を印刷した円環状のプリント配線板であって、フランジ部3aの外周円柱面に嵌挿されて歯車4の側面に固着されている。そしてアンテナ14からの引き出し線は、フランジ部3aの外周円柱面に設けた穴によって、トルク測定部13の内部へ導かれて、トルク測定部13内部に固定されている回路基板12に接続されている。 The antenna 14 is for wirelessly transmitting a signal of the torque value measured by the torque measuring unit 13. The antenna 14 is, for example, an annular printed wiring board on which a conductor wire is printed, and is fitted into the outer peripheral cylindrical surface of the flange portion 3a and fixed to the side surface of the gear 4. Then, the lead wire from the antenna 14 is guided to the inside of the torque measuring unit 13 by a hole provided in the outer peripheral cylindrical surface of the flange portion 3a, and is connected to the circuit board 12 fixed inside the torque measuring unit 13. There is.

受電側コイル5は、フランジ部3bの外周に巻かれたコイルであって、給電部7から電力を受電するためのものである。そして 受電側コイル5からの引き出し線は、フランジ部3bの円柱面に設けた穴によって、トルク測定部13の内部へ導かれ、トルク測定部13内部に固定されている回路基板12に接続されている。 The power receiving side coil 5 is a coil wound around the outer periphery of the flange portion 3b, and is for receiving electric power from the power feeding portion 7. Then, the lead wire from the power receiving side coil 5 is guided to the inside of the torque measuring unit 13 by a hole provided in the cylindrical surface of the flange portion 3b, and is connected to the circuit board 12 fixed inside the torque measuring unit 13. There is.

給電部7には送電側コイルが収容されている。送電側コイルは、受電側コイル5と所定の間隔にて結合して回転トランスを形成する。この回転トランスの構成により電力が電装品ボックス9からトルク測定部13へ非接触で送電される。 A power transmission side coil is housed in the power supply unit 7. The power transmission side coil is coupled with the power reception side coil 5 at predetermined intervals to form a rotary transformer. Due to the configuration of this rotary transformer, electric power is transmitted from the electrical component box 9 to the torque measuring unit 13 in a non-contact manner.

蓋6はトルク測定部13の内部に配置されている部材を、高速回転によって生ずる風力や塵埃から保護するために設けられている。 The lid 6 is provided to protect the member arranged inside the torque measuring unit 13 from wind power and dust generated by high-speed rotation.

電装品ボックス9は、非接触送電回路と、トルク出力回路と、回転検出回路と、電源回路とを含む基板等を収容している。非接触送電回路は、給電部7を介してトルク測定部13へ電力を非接触で送電する。トルク出力回路は、トルク測定部13のアンテナ14からトルクのデジタル信号を受信してこれを復調してトルク値を出力する。回転検出回路は、回転速度検出部8からトルク測定部13の回転速度及び回転方向を検出して出力する。電源回路は、外部から供給される電力を変換して各回路用の電源を供給する。 The electrical component box 9 houses a substrate and the like including a non-contact power transmission circuit, a torque output circuit, a rotation detection circuit, and a power supply circuit. The non-contact power transmission circuit non-contactly transmits electric power to the torque measuring unit 13 via the power feeding unit 7. The torque output circuit receives a digital torque signal from the antenna 14 of the torque measuring unit 13, demodulates the digital signal, and outputs the torque value. The rotation detection circuit detects and outputs the rotation speed and the rotation direction of the torque measuring unit 13 from the rotation speed detecting unit 8. The power supply circuit converts the power supplied from the outside to supply the power supply for each circuit.

図2は本発明の実施形態に係るトルク変換器の測定部の中心軸AXを内包する鉛直平面で切断した断面図である。図3は図2におけるAA断面図である。 FIG. 2 is a cross-sectional view taken along a vertical plane including the central axis AX of the measurement unit of the torque converter according to the embodiment of the present invention. FIG. 3 is a sectional view taken along line AA in FIG.

起歪部2の外周面2aには、例えば溝状の長円型の薄肉部10a〜10dが設けられている。薄肉部10a〜10dは、長円の溝形状であって、長手側は円周方向に沿って伸びている。4つの薄肉部10a〜10dは起歪部2の中心軸AX周りに円周方向に沿って90度の等間隔で配置されている。4つの薄肉部10a〜10dは、それぞれ円周方向の長さC1が等長で、中心軸AX方向の幅Wも同一長さで、さらに中心軸AXの方向でも同一位置で配置されている。4つの薄肉部10a〜10dの円周方向に伸びた面、すなわち薄肉部10a〜10dの底面は円柱面である。この薄肉部10a〜10dの周囲の起歪部2は半径R0の円柱面であって、薄肉部10a〜10dの底部は半径R1の円柱面である。すなわち溝状の各薄肉部10a〜10dの底部は起歪部2の中心軸AXから等距離である。なお各薄肉部の形状はこれに限らず、曲面などであってもよい。 For example, a groove-shaped oval thin-walled portion 10a to 10d is provided on the outer peripheral surface 2a of the strain-causing portion 2. The thin portions 10a to 10d have an oval groove shape, and the longitudinal side extends along the circumferential direction. The four thin-walled portions 10a to 10d are arranged around the central axis AX of the strain-causing portion 2 at equal intervals of 90 degrees along the circumferential direction. The four thin-walled portions 10a to 10d have the same length C1 in the circumferential direction, the same width W in the central axis AX direction, and are arranged at the same position in the direction of the central axis AX. The surfaces of the four thin-walled portions 10a to 10d extending in the circumferential direction, that is, the bottom surfaces of the thin-walled portions 10a to 10d are cylindrical surfaces. The strain generating portion 2 around the thin-walled portions 10a to 10d is a cylindrical surface having a radius R0, and the bottom portion of the thin-walled portions 10a to 10d is a cylindrical surface having a radius R1. That is, the bottoms of the groove-shaped thin portions 10a to 10d are equidistant from the central axis AX of the strain generating portion 2. The shape of each thin-walled portion is not limited to this, and may be a curved surface or the like.

そして各薄肉部10a〜10dの内周面2bには、感歪抵抗体G(G1〜G8)が添着されている。薄肉部10aに対応して感歪抵抗体G1と感歪抵抗体G2が添着されている。薄肉部10bに対応して感歪抵抗体G3と感歪抵抗体G4が添着されている。薄肉部10cに対応して感歪抵抗体G5と感歪抵抗体G6が添着されている。薄肉部10dに対応して感歪抵抗体G7と感歪抵抗体G8が添着されている。感歪抵抗体G1〜G8は、例えば中心軸AXに交差する方向が最大感度となるような歪みゲージである。より詳細には、各感歪抵抗体G1〜G8を中心軸AXから半径方向にそれぞれ見た時、各感歪抵抗体は中心軸AXと所定の角度に最大の感度を有するように添着される。例えば、感歪抵抗体G8は中心軸AXと所定の角度(−θ)に最大の感度を有するように、感歪抵抗体G7は中心軸AXと所定の角度(+θ)に最大の感度を有するようにそれぞれ添着される。感歪抵抗体G1〜G6も薄肉部10a〜10cの内周面2bに同様に添着されている。そして隣り合う感歪抵抗体G8と感歪抵抗体G7とを例えば一つの基材上に形成されたものにすることで、添着する角度の誤差を低減することができる。もちろん、感歪抵抗体G1と感歪抵抗体G2、感歪抵抗体G3と感歪抵抗体G4、感歪抵抗体G5と感歪抵抗体G6、それぞれにおいても同様に一つの基材上に形成されたものを使用することで同様の効果が得られる。なお上記の所定の角度θについての詳細は後述する。 A strain-sensitive resistor G (G1 to G8) is attached to the inner peripheral surfaces 2b of the thin portions 10a to 10d. A strain-sensitive resistor G1 and a resistance thermometer G2 are attached corresponding to the thin portion 10a. A strain-sensitive resistor G3 and a resistance thermometer G4 are attached corresponding to the thin portion 10b. A strain-sensitive resistor G5 and a resistance thermometer G6 are attached corresponding to the thin portion 10c. A strain-sensitive resistor G7 and a resistance thermometer G8 are attached corresponding to the thin portion 10d. The strain-sensitive resistors G1 to G8 are strain gauges such that the maximum sensitivity is obtained in the direction intersecting the central axis AX, for example. More specifically, when each resistance thermometer G1 to G8 is viewed in the radial direction from the central axis AX, each resistance thermometer is attached to the central axis AX so as to have the maximum sensitivity at a predetermined angle. .. For example, the resistance temperature detector G8 has the maximum sensitivity at a predetermined angle (−θ) with the central axis AX, and the resistance thermometer G7 has the maximum sensitivity at a predetermined angle (+ θ) with the central axis AX. Each is attached as. The strain-sensitive resistors G1 to G6 are also attached to the inner peripheral surfaces 2b of the thin-walled portions 10a to 10c in the same manner. Then, by forming the adjacent resistance temperature detectors G8 and the resistance temperature detectors G7 on, for example, one substrate, it is possible to reduce the error of the angle of attachment. Of course, the resistance thermometer G1 and the resistance thermometer G2, the resistance thermometer G3 and the resistance thermometer G4, and the resistance thermometer G5 and the resistance thermometer G6 are also formed on one substrate in the same manner. The same effect can be obtained by using the one that has been used. The details of the above-mentioned predetermined angle θ will be described later.

回路基板12がトルク測定部13の中空部に配置、固着されている。回路基板12には、感歪抵抗体G1〜G8から引き出された配線が接続されている。回路基板12は、感歪抵抗体G1〜G8を含んだホイートストンブリッジ回路を有している(図4)。回路基板12は、増幅回路15と、アナログ/デジタル変換回路16と、演算回路17と、変調回路18と、送信回路19を含んでいる(図4)。増幅回路15は、感歪抵抗体G1〜G8を含むホイートストンブリッジ回路から出力されるアナログ信号を増幅する。アナログ/デジタル変換回路16は、このアナログ信号をデジタル信号に変換する。演算回路17は、このデジタル信号を演算してトルク値を表す電気信号すなわちトルク信号を生成する。変調回路18はデジタルのトルク信号を変調して被変調信号を生成する。送信回路19は被変調信号を搬送波に乗せて電装品ボックス9内の受信回路へ送信する。また回路基板12は、受電側コイル5から引き出された電線と繋がって、伝送された電力を受取り、これを整流する整流回路により、増幅回路15と、アナログ/デジタル変換回路16と、演算回路17と、変調回路18と、送信回路19と、ホイートストンブリッジ回路と、に電力を供給する。なお演算回路17はCPU(Central Processing Unit)、RAM(Random Access Memory)、書き換え可能なROM(Read Only Memory)、入出力部などで構成されている。 The circuit board 12 is arranged and fixed in the hollow portion of the torque measuring unit 13. Wiring drawn from the resistance temperature detectors G1 to G8 is connected to the circuit board 12. The circuit board 12 has a Wheatstone bridge circuit including resistance temperature detectors G1 to G8 (FIG. 4). The circuit board 12 includes an amplifier circuit 15, an analog / digital conversion circuit 16, an arithmetic circuit 17, a modulation circuit 18, and a transmission circuit 19 (FIG. 4). The amplifier circuit 15 amplifies the analog signal output from the Wheatstone bridge circuit including the resistance temperature detectors G1 to G8. The analog / digital conversion circuit 16 converts this analog signal into a digital signal. The calculation circuit 17 calculates this digital signal to generate an electric signal representing a torque value, that is, a torque signal. The modulation circuit 18 modulates a digital torque signal to generate a modulated signal. The transmission circuit 19 carries the modulated signal on the carrier wave and transmits it to the reception circuit in the electrical component box 9. Further, the circuit board 12 is connected to the electric wire drawn from the power receiving side coil 5, receives the transmitted electric power, and is rectified by a rectifying circuit, whereby the amplifier circuit 15, the analog / digital conversion circuit 16, and the arithmetic circuit 17 are used. To supply power to the amplifier circuit 18, the transmission circuit 19, and the Wheatston bridge circuit. The arithmetic circuit 17 is composed of a CPU (Central Processing Unit), a RAM (Random Access Memory), a rewritable ROM (Read Only Memory), an input / output unit, and the like.

図4は、本発明の実施形態に係るトルク変換器の感歪抵抗体で構成されるホイートストンブリッジ回路を含む回路基板12に実装されている回路を模式的に示す図である。 FIG. 4 is a diagram schematically showing a circuit mounted on a circuit board 12 including a Wheatstone bridge circuit composed of a strain-sensitive resistor of the torque converter according to the embodiment of the present invention.

感歪抵抗体G1と感歪抵抗体G5は、実体的には(図3参照)起歪部2の中心軸AXを挟んで180度の角度で対向して配置され、ホイートストンブリッジ回路では辺S1に直列に配置される。一方、感歪抵抗体G3と感歪抵抗体G7は、実体的には起歪部2の中心軸AXを挟んで180度の角度で対向して配置され、ホイートストンブリッジ回路では辺S3に直列に配置される。そしてホイートストンブリッジ回路で、感歪抵抗体G1と感歪抵抗体G5が直列に配置された辺S1と、感歪抵抗体G3と感歪抵抗体G7が直列に配置された辺S3とが、ホイートストンブリッジ回路の向かい合う辺として構成されている。 The resistance temperature detector G1 and the resistance temperature detector G5 are substantially (see FIG. 3) arranged so as to face each other at an angle of 180 degrees with the central axis AX of the strain generating portion 2 interposed therebetween, and the side S1 in the Wheatstone bridge circuit. Arranged in series with. On the other hand, the resistance thermometer G3 and the resistance thermometer G7 are substantially arranged to face each other at an angle of 180 degrees with the central axis AX of the strain generating portion 2 interposed therebetween, and are connected in series with the side S3 in the Wheatstone bridge circuit. Be placed. Then, in the Wheatstone bridge circuit, the side S1 in which the resistance thermometer G1 and the resistance thermometer G5 are arranged in series and the side S3 in which the resistance thermometer G3 and the resistance thermometer G7 are arranged in series are the Wheatstone bridge circuits. It is configured as the opposite side of the bridge circuit.

感歪抵抗体G2及び感歪抵抗体G6も同様に、実体的には起歪部2の中心軸AXを挟んで180度の角度で対向して配置され、ホイートストンブリッジ回路では辺S2に直列に配置される。一方、感歪抵抗体G4及び感歪抵抗体G8は、実体的には起歪部2の中心軸AXを挟んで180度の角度で対向して配置され、ホイートストンブリッジ回路では辺S4に直列に配置される。そしてホイートストンブリッジ回路で、感歪抵抗体G2と感歪抵抗体G6が直列に配置された辺S2と、感歪抵抗体G4と感歪抵抗体G8が直列に配置された辺S4とが、ホイートストンブリッジ回路の向かい合う辺として構成されている。 Similarly, the resistance temperature detector G2 and the resistance temperature detector G6 are arranged so as to face each other at an angle of 180 degrees with the central axis AX of the strain generating portion 2 in between, and in the Wheatstone bridge circuit, they are arranged in series with the side S2. Be placed. On the other hand, the resistance temperature detector G4 and the resistance temperature detector G8 are substantially arranged to face each other at an angle of 180 degrees with the central axis AX of the strain generating portion 2 interposed therebetween, and are arranged in series with the side S4 in the Wheatstone bridge circuit. Be placed. Then, in the Wheatstone bridge circuit, the side S2 in which the resistance thermometer G2 and the resistance thermometer G6 are arranged in series and the side S4 in which the resistance thermometer G4 and the resistance thermometer G8 are arranged in series are formed by Wheatstone. It is configured as the opposite side of the bridge circuit.

図5は本発明の実施形態に係るトルク変換器1の起歪部2の状態を表した模式図である。図5(a)は、図2における起歪部2の薄肉部のうち、頂点a、頂点b、頂点c、頂点dで囲まれた矩形の領域を切り取ったものを表している。図5(a)において頂点a0、頂点b0、頂点c0、頂点d0で囲まれた領域Re1は長方形である。そして仮想線分a0−b0及び仮想線分c0−d0の中点を結ぶ中心線と、仮想線分a0−b0及び仮想線分c0−d0の距離の1/2をLと定義する。 FIG. 5 is a schematic view showing a state of the strain generating portion 2 of the torque converter 1 according to the embodiment of the present invention. FIG. 5A shows a rectangular region surrounded by the apex a, the apex b, the apex c, and the apex d of the thin portion of the strain generating portion 2 in FIG. 2 cut out. In FIG. 5A, the region Re1 surrounded by the apex a0, the apex b0, the apex c0, and the apex d0 is a rectangle. Then, 1/2 of the distance between the center line connecting the midpoints of the virtual line segment a0-b0 and the virtual line segment c0-d0 and the virtual line segment a0-b0 and the virtual line segment c0-d0 is defined as L.

図5(a)は、起歪部2にねじりトルクが加わった状態である。起歪部2にねじりトルクが加わることから起歪部2に剪断歪みが発生する。例えば剪断応力の方向は、仮想線分a1−d1側は鉛直上方向、仮想線分b1−c1側は鉛直下方向である。 FIG. 5A shows a state in which a torsional torque is applied to the strain generating portion 2. Since torsional torque is applied to the strain-causing portion 2, shear strain is generated in the strain-causing portion 2. For example, the direction of shear stress is vertically upward on the virtual line segment a1-d1 side and vertically downward on the virtual line segment b1-c1 side.

図5(b)は、起歪部2にねじりトルクが加わると共に、起歪部2が高速回転して遠心力が増加した状態を誇張して描いたものである。遠心力Fにより、起歪部2にはy軸方向に引張応力σyが発生し、図5(a)で示された領域Re1は、起歪部2の円周方向すなわちy軸方向に伸長する。そして起歪部2は、遠心力Fによってx軸方向に応力は発生せず、y軸方向に伸長すると同時にx軸方向には収縮する。ゆえに領域Re1は、頂点a2、頂点b2、頂点c2、頂点d2に囲まれた領域Re2に変化する。
従来の感歪抵抗体Gの最大感度方向が、中心軸AXに対して±45度の配置であった場合には、この引張応力σyによって上積みされた歪みが感歪抵抗体Gによって検出されてしまうことから、発明者は鋭意検討して本発明を導き出し、次に述べる方法でこれを解決している。
FIG. 5B is an exaggerated drawing of a state in which a torsion torque is applied to the strain generating portion 2 and the strain generating portion 2 rotates at a high speed to increase the centrifugal force. Due to the centrifugal force F, a tensile stress σy is generated in the strain generating portion 2 in the y-axis direction, and the region Re1 shown in FIG. 5A extends in the circumferential direction of the straining portion 2, that is, in the y-axis direction. .. Then, the strain generating portion 2 does not generate stress in the x-axis direction due to the centrifugal force F, and expands in the y-axis direction and contracts in the x-axis direction at the same time. Therefore, the region Re1 changes to the region Re2 surrounded by the vertices a2, b2, c2, and d2.
When the maximum sensitivity direction of the conventional resistance temperature detector G is ± 45 degrees with respect to the central axis AX, the strain added by the tensile stress σy is detected by the resistance temperature detector G. Therefore, the inventor has diligently studied and derived the present invention, and solved this by the method described below.

そこで図5(c)は図5(b)の模式図の一部を拡大してxy座標系にて表している。ここで頂点a1は遠心力Fが働いていないと仮定した時の位置を示していて、その座標をa1(L,y)とする。そして遠心力Fが働いてy軸方向に伸び、x軸方向に縮んだ頂点a2の座標をa2((1−kν)L,(1+k)y)とする。なおyは未知のa1の座標、νは起歪部2のポアソン比、kはy方向の伸び率である。そして仮想線分O−a1の長さM1と、仮想線分O−a2の長さM2とが同じになるような角度θを求めてこの方向に感歪抵抗体の最大感度方向を合わせると、起歪部2がy方向に伸び率kだけ伸びたとしても、感歪抵抗体の変化量は同じであるため、このy方向の伸びの影響を受けないことになる。 Therefore, FIG. 5 (c) enlarges a part of the schematic diagram of FIG. 5 (b) and represents it in the xy coordinate system. Here, the apex a1 indicates a position when it is assumed that the centrifugal force F is not working, and its coordinates are a1 (L, y). Then, the centrifugal force F acts to extend in the y-axis direction and contract in the x-axis direction, and the coordinates of the apex a2 are a2 ((1-kν) L, (1 + k) y). Note that y is the unknown coordinate of a1, ν is the Poisson's ratio of the strain generating portion 2, and k is the elongation rate in the y direction. Then, when an angle θ is obtained so that the length M1 of the virtual line segment O-a1 and the length M2 of the virtual line segment O-a2 are the same, and the maximum sensitivity direction of the strain-sensitive resistor is adjusted in this direction, Even if the strain-causing portion 2 is stretched by the elongation rate k in the y-direction, the amount of change in the strain-sensitive resistor is the same, so that it is not affected by the elongation in the y-direction.

仮想線分O−a1の長さM1は次式で表される。

Figure 2021021586
The length M1 of the virtual line segment O-a1 is expressed by the following equation.
Figure 2021021586

一方仮想線分O−b2の長さM2は次式で表される。

Figure 2021021586
On the other hand, the length M2 of the virtual line segment Ob2 is expressed by the following equation.
Figure 2021021586

(M1)=(M2)として、次式を満足するyを求める。

Figure 2021021586
(M1) 2 = (M2) 2 to find y that satisfies the following equation.
Figure 2021021586

yについて整理すると

Figure 2021021586
To organize about y
Figure 2021021586

tanθ=y/L であるから

Figure 2021021586
Because tan θ = y / L
Figure 2021021586

ここで、例えば起歪部のポアソン比ν=0.3、伸び率k=0.1とすると、θ=27.9度となる。 Here, for example, if the Poisson's ratio of the strain-causing portion is ν = 0.3 and the elongation rate is k = 0.1, then θ = 27.9 degrees.

図5(d)は、図5(b)の模式図に対応したモール円を示している。従来の方法では引張応力σyを検出してしまうので、モール円は+σ方向にシフトしてしまうが、本発明ではこの影響を例えば対をなして設けられる感歪抵抗体Gにて打ち消すことから、原点Oを中心としたモール円として等価的に表すことができる。なおこの時感歪抵抗体が検出できるトルク値はモール円においてτsin2θ分と読み取れるので、実際のトルク値との差分を演算回路17にて演算してねじりトルク値を得ることになる。 FIG. 5 (d) shows Mohr's circle corresponding to the schematic diagram of FIG. 5 (b). Since the tensile stress σy is detected by the conventional method, the Mohr's circle shifts in the + σ direction. However, in the present invention, this effect is canceled by, for example, paired resistance temperature detectors G. It can be equivalently represented as a Mohr's circle centered on the origin O. Since the torque value that can be detected by the resistance temperature detector at this time can be read as τsin2θ in the Mohr's circle, the difference from the actual torque value is calculated by the calculation circuit 17 to obtain the torsional torque value.

ゆえに、感歪抵抗体は図5(e)に示すように、起歪部2の中心軸AXに対してそれぞれプラスマイナスθの角度に最大感度方向が向くように対をなして添着することで、遠心力Fによる円周方向の引張応力の歪みをキャンセルして検出しないようにすることができる。よって高速回転時においても精確なねじりトルクを検出するトルク変換器を提供できる。 Therefore, as shown in FIG. 5 (e), the strain-sensitive resistors are attached in pairs with respect to the central axis AX of the strain-causing portion 2 so that the maximum sensitivity direction faces the angle of plus or minus θ. , It is possible to cancel the strain of the tensile stress in the circumferential direction due to the centrifugal force F so that it is not detected. Therefore, it is possible to provide a torque converter that detects accurate torsional torque even at high speed rotation.

以上、本発明を好ましい実施形態に基づいて説明したが、本発明は上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の変更が可能である。 Although the present invention has been described above based on the preferred embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist thereof.

本発明の活用例として、高速で回転する自動車の車輪などに生じるトルクを測定する装置への適用が可能である。 As an application example of the present invention, it can be applied to a device for measuring torque generated in a wheel of an automobile rotating at high speed.

1 :トルク変換器
2 :起歪部
2a :外周面
2b :内周面
3a、3b :フランジ部
4 :歯車
5 :受電側コイル
6 :蓋
7 :給電部
8 :回転速度検出部
9 :電装品ボックス
10a〜10d :薄肉部
12 :回路基板
13 :トルク測定部
14 :アンテナ
15 :増幅回路
16 :アナログ/デジタル変換回路
17 :演算回路
18 :変調回路
19 :送信回路
G、G1〜G8 :感歪抵抗体




1: Torque converter 2: Distortion part 2a: Outer peripheral surface 2b: Inner peripheral surface 3a, 3b: Flange part 4: Gear 5: Power receiving side coil 6: Lid 7: Power feeding part 8: Rotation speed detection part 9: Electrical equipment Boxes 10a to 10d: Thin-walled part 12: Circuit board 13: Torque measurement part 14: Antenna 15: Amplifier circuit 16: Analog / digital conversion circuit 17: Arithmetic circuit 18: Modulation circuit 19: Transmission circuit G, G1 to G8: Distortion Resistor




Claims (2)

中空円柱形の起歪部を備えて前記起歪部に作用するねじりトルクを電気信号に変換するトルク変換器であって、
前記起歪部には複数の感歪抵抗体が添着され、
前記感歪抵抗体は、前記起歪部の中心軸と前記感歪抵抗体の最大感度方向のなす角度が、前記起歪部のポアソン比から定められて対をなして配置されることを特徴とするトルク変換器。
A torque converter having a hollow cylindrical strain-causing portion and converting a torsional torque acting on the strain-causing portion into an electric signal.
A plurality of resistance temperature detectors are attached to the strain-causing portion.
The strain-sensitive resistor is characterized in that the angle formed by the central axis of the strain-causing portion and the maximum sensitivity direction of the strain-sensitive resistor is determined from the Poisson's ratio of the strain-causing portion and arranged in pairs. Torque converter.
中空円柱形の起歪部を備えて前記起歪部に作用するねじりトルクを電気信号に変換するトルク変換器であって、
前記起歪部には複数の感歪抵抗体が添着され、
前記感歪抵抗体が、前記起歪部の円周方向に働く引張応力によって生じる歪みをキャンセルする角度にて対をなして配置されることを特徴とするトルク変換器。
A torque converter having a hollow cylindrical strain-causing portion and converting a torsional torque acting on the strain-causing portion into an electric signal.
A plurality of resistance temperature detectors are attached to the strain-causing portion.
A torque converter characterized in that the resistance temperature detectors are arranged in pairs at an angle that cancels strain caused by tensile stress acting in the circumferential direction of the strain generating portion.
JP2019136779A 2019-07-25 2019-07-25 torque transducer Active JP7339618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019136779A JP7339618B2 (en) 2019-07-25 2019-07-25 torque transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019136779A JP7339618B2 (en) 2019-07-25 2019-07-25 torque transducer

Publications (2)

Publication Number Publication Date
JP2021021586A true JP2021021586A (en) 2021-02-18
JP7339618B2 JP7339618B2 (en) 2023-09-06

Family

ID=74573688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019136779A Active JP7339618B2 (en) 2019-07-25 2019-07-25 torque transducer

Country Status (1)

Country Link
JP (1) JP7339618B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286406A1 (en) * 2021-07-12 2023-01-19 ミネベアミツミ株式会社 Torque measurement device, magnetic field generation device for torque measurement device, and magnetic field detection device for torque measurement device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287225A (en) * 2008-05-28 2009-12-10 Asahi Kasei Construction Materials Co Ltd Method of measuring actual revolution torque of burying machine, measuring member, and measuring device
JP2010210357A (en) * 2009-03-10 2010-09-24 Kyowa Electron Instr Co Ltd Strain gauge type load transducer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4821563A (en) 1988-01-15 1989-04-18 Teleco Oilfield Services Inc. Apparatus for measuring weight, torque and side force on a drill bit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287225A (en) * 2008-05-28 2009-12-10 Asahi Kasei Construction Materials Co Ltd Method of measuring actual revolution torque of burying machine, measuring member, and measuring device
JP2010210357A (en) * 2009-03-10 2010-09-24 Kyowa Electron Instr Co Ltd Strain gauge type load transducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286406A1 (en) * 2021-07-12 2023-01-19 ミネベアミツミ株式会社 Torque measurement device, magnetic field generation device for torque measurement device, and magnetic field detection device for torque measurement device

Also Published As

Publication number Publication date
JP7339618B2 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
JP6615365B2 (en) Force / torque sensor and method
JP4764619B2 (en) Rotary component force measuring device
KR20210074271A (en) Strain wave gear and method of arranging elastic transmission member, robot arm and strain gauge for same
US9003896B2 (en) Dual-flange disc-shaped torque sensor
EP0579722B1 (en) Axially compact torque transducer
US6484582B2 (en) Rolling bearing with sensing unit which can be remotely interrogated
US10184848B2 (en) Sensor arrangement for indirect detection of a torque of a rotatably mounted shaft
JP7101881B2 (en) Methods for measuring strain wave gears and transmission elements, robot arms, and torques for strain wave gears.
JPH07280674A (en) Deformation measuring device for measuring torque of cylindrical shaft
CN101105202A (en) Intelligent bearing with compound sensor
US4649758A (en) Torque sensing apparatus
JP2007327788A (en) Wheel load/lateral pressure sensor, measurement method therefor, and wheel load/lateral pressure measuring device and measurement method therefor, and derailment coefficient measuring device and measurement method therefor
JP7339618B2 (en) torque transducer
JP2023506872A (en) Method and strain wave gear for checking assembly with at least three strain gauges
JP2001304985A (en) Torque-measuring apparatus
JP3320054B2 (en) Gripping force converter
JP7204091B2 (en) torque transducer
CN111351600A (en) Strain type torque measuring system
JP2021001757A (en) Load converter
US10295418B1 (en) Factory-calibrated multi-spoke strain sensor system
JP3453654B2 (en) Torque converter
JP3175976U (en) Torque sensor
RU219078U1 (en) torque sensor
JP7114032B2 (en) load transducer
JP2020016598A (en) Torque detector and motor evaluation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230816

R150 Certificate of patent or registration of utility model

Ref document number: 7339618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150