JP2021017796A - Indoor surface construction method and heat storage laminate - Google Patents

Indoor surface construction method and heat storage laminate Download PDF

Info

Publication number
JP2021017796A
JP2021017796A JP2019202339A JP2019202339A JP2021017796A JP 2021017796 A JP2021017796 A JP 2021017796A JP 2019202339 A JP2019202339 A JP 2019202339A JP 2019202339 A JP2019202339 A JP 2019202339A JP 2021017796 A JP2021017796 A JP 2021017796A
Authority
JP
Japan
Prior art keywords
heat storage
indoor
heat
wall surface
surface material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019202339A
Other languages
Japanese (ja)
Inventor
藤崎 健一
Kenichi Fujisaki
健一 藤崎
小関 祐子
Yuko Koseki
祐子 小関
忠朗 静谷
Tadaaki Shizuya
忠朗 静谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Publication of JP2021017796A publication Critical patent/JP2021017796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)

Abstract

To provide a construction method capable of implementing a wall surface structure having a high thermal insulation performance even with a thin thickness, and a heat storage compact capable of implementing the wall surface structure having the high thermal insulation performance even with the thin thickness.SOLUTION: An indoor surface construction method for arranging an inner wall surface material having a higher specific heat and a lower thermal resistance than that of a wall surface member constituting a wall surface layer and a heat storage laminate arranged at an indoor wall surface structure, ceiling structure or floor structure of the indoor space in an indoor surface structure constituting an indoor space where a thermal insulation material is arranged in a cross section structure, wherein the inner wall surface material having specific heat of 300-3000 kJ/m3 K and heat resistance of 0.3-10 m2 K/W and the heat storage laminate which is a laminate with a heat storage performance material can implement the wall surface structure having a high thermal insulation performance even with a thin thickness.SELECTED DRAWING: None

Description

本発明は、建築物や車両等の屋内空間の断熱性保持に適した屋内の壁面や天井、床等の屋内面施工方法、及び、当該施工方法に用いられる蓄熱積層体に関する。 The present invention relates to an indoor surface construction method such as an indoor wall surface, ceiling, floor, etc. suitable for maintaining heat insulation of an indoor space such as a building or a vehicle, and a heat storage laminate used in the construction method.

建築物や車両等の屋内空間においては、屋外の寒気や暖気の影響を緩和するために、断熱性の壁面構造が設けられている。当該壁面構造においては、断熱材や断熱空間等の断熱部と、当該断熱部の屋内側に屋内壁面を構成する壁面部材が設けられる構成が広く使用されている(例えば、特許文献1〜2参照)。 In indoor spaces such as buildings and vehicles, a heat insulating wall surface structure is provided in order to mitigate the influence of outdoor cold air and warm air. In the wall surface structure, a configuration in which a heat insulating portion such as a heat insulating material or a heat insulating space and a wall surface member constituting the indoor wall surface are provided on the indoor side of the heat insulating portion is widely used (see, for example, Patent Documents 1 and 2). ).

特開2000−328689号公報Japanese Unexamined Patent Publication No. 2000-328689 特開2018−9311号公報JP-A-2018-9311

上記のような壁面構造では、断熱性能を向上させようとすると、断熱材や断熱空間の厚みを厚くする必要があり、屋内空間の容積の減少が生じることから、薄い厚みで高い断熱性能を実現できる壁面構成が求められていた。また、断熱材や断熱空間を厚くすると、部材コストの増加や施工性の悪化が生じる問題があった。 In the wall structure as described above, in order to improve the heat insulating performance, it is necessary to increase the thickness of the heat insulating material and the heat insulating space, and the volume of the indoor space is reduced. Therefore, high heat insulating performance is realized with a thin thickness. There was a need for a wall structure that could be used. Further, when the heat insulating material and the heat insulating space are thickened, there is a problem that the member cost increases and the workability deteriorates.

本願発明が解決しようとする課題は、薄い厚みでも高い断熱性能を有する壁面構造や天井構造や床構造を実現可能な屋内面施工方法、及び、薄い厚みでも高い断熱性能を有する壁面構造や天井構造や床構造を実現可能な蓄熱積層体を提供することにある。 The problems to be solved by the present invention are an indoor surface construction method capable of realizing a wall structure, a ceiling structure and a floor structure having high heat insulation performance even with a thin thickness, and a wall structure and a ceiling structure having high heat insulation performance even with a thin thickness. The purpose is to provide a heat storage laminate capable of realizing a floor structure.

本発明は、断面構造中に断熱材が設けられた屋内空間を構成する屋内の屋内面構造に、前記壁面表層を構成する壁面部材よりも比熱が高くかつ熱抵抗が低い屋内面材と、蓄熱性面材とを設ける屋内面施工方法により上記課題を解決するものである。 According to the present invention, an indoor surface material constituting an indoor space in which a heat insulating material is provided in a cross-sectional structure, an indoor surface material having a higher specific heat and a lower thermal resistance than a wall surface member constituting the wall surface layer, and heat storage. The above-mentioned problem is solved by an indoor surface construction method in which a sex surface material is provided.

また、本発明は、屋内空間の屋内の屋内面構造に設けられる蓄熱積層体であって、比熱が300〜3000kJ/m・K、かつ熱抵抗が0.3〜10m・K/Wである屋内面材と、蓄熱性面材との積層体である蓄熱積層体により上記課題を解決するものである。 Further, the present invention is a heat storage laminate provided in an indoor indoor surface structure of an indoor space, having a specific heat of 300 to 3000 kJ / m 3 · K and a thermal resistance of 0.3 to 10 m 2 · K / W. The above problem is solved by a heat storage laminate which is a laminate of a certain indoor surface material and a heat storage surface material.

本発明の施工方法や本発明の蓄熱積層体を使用した壁面構造や天井構造や床構造によれば、断熱構造の厚みを厚くすることなく好適な断熱性の壁面構造を構成できることから、高い断熱性能の確保に際しても屋内空間の容積の減少や施工性の悪化を抑制できる。 According to the construction method of the present invention and the wall surface structure, the ceiling structure, and the floor structure using the heat storage laminate of the present invention, a suitable heat insulating wall surface structure can be constructed without increasing the thickness of the heat insulating structure, and thus high heat insulation is achieved. When ensuring performance, it is possible to suppress a decrease in the volume of the indoor space and deterioration of workability.

本発明の屋内面施工方法は、断面構造中に断熱材が設けられた屋内空間を構成する屋内の屋内面構造に、当該屋内の屋内面構造中の断熱材よりも比熱が高くかつ熱抵抗が低い屋内面材と、蓄熱性面材とを設ける屋内面施工方法である。ここで、屋内空間を構成する屋内面構造とは、屋内の壁面構造や天井構造、床構造等の屋内空間を構成する構造であり、屋内面材とは屋内の壁面構造を構成する内壁面材や天井構造を構成する天井面材、床面を構成する床面材等の屋内面に設けられる面材である。 In the indoor surface construction method of the present invention, the indoor indoor surface structure constituting the indoor space in which the heat insulating material is provided in the cross-sectional structure has a higher specific heat and thermal resistance than the heat insulating material in the indoor indoor surface structure. This is an indoor surface construction method in which a low indoor surface material and a heat storage surface material are provided. Here, the indoor surface structure constituting the indoor space is a structure constituting an indoor space such as an indoor wall surface structure, a ceiling structure, and a floor structure, and the indoor surface material is an inner wall surface material constituting the indoor wall surface structure. It is a face material provided on an indoor surface such as a ceiling surface material constituting a ceiling structure or a floor surface material constituting a floor surface.

本発明の施工方法に使用する屋内面材は、断面構造中に断熱材が設けられた屋内空間を構成する屋内の屋内面構造表層の断熱材よりも比熱が高く、かつ、熱抵抗が低いものであればよい。断面構造中に断熱材が複数層設けられる場合には、最も近接した断熱材よりも比熱が高く、かつ、熱抵抗が低いものであればよい。なお、断熱材が複数層設けられる場合であっても、複数の断熱材が直接積層されている場合には、当該積層された断熱材を一体の断熱材として、比熱及び熱抵抗を対比すればよい。当該屋内面材としては、無機系の材料から構成される面材を好ましく使用でき、例えば、石膏ボード、珪酸カルシウム板等を例示できる。 The indoor surface material used in the construction method of the present invention has a higher specific heat and a lower thermal resistance than the heat insulating material on the surface layer of the indoor indoor surface structure constituting an indoor space in which a heat insulating material is provided in the cross-sectional structure. It should be. When a plurality of layers of the heat insulating material are provided in the cross-sectional structure, the heat insulating material may have a higher specific heat and a lower thermal resistance than the closest heat insulating material. Even when a plurality of layers of heat insulating materials are provided, if a plurality of heat insulating materials are directly laminated, the laminated heat insulating materials can be used as an integral heat insulating material to compare the specific heat and thermal resistance. Good. As the indoor face material, a face material composed of an inorganic material can be preferably used, and examples thereof include gypsum board and calcium silicate board.

内壁面材の比熱は、適用する屋内側面表層に応じて適宜調整すればよいが、300〜3000kJ/m・Kであることが好ましく、400〜2000、500〜1500であることがより好ましい。当該範囲とすることで、各種の屋内側面に対して、好適な断熱性を実現しやすいため好ましい。 The specific heat of the inner wall surface material may be appropriately adjusted according to the indoor side surface layer to be applied, but is preferably 300 to 3000 kJ / m 3 · K, and more preferably 400 to 2000 or 500 to 1500. Within this range, it is preferable because it is easy to realize suitable heat insulating properties for various indoor side surfaces.

また、内壁面材の熱抵抗は、適用する屋内側面表層に応じて適宜調整すればよいが、0.01〜0.2m・K/Wであることが好ましく、0.02〜0.15、0.03〜0.1であることがより好ましい。当該範囲とすることで、各種の屋内側面に対して、好適な断熱性を実現しやすいため好ましい。 The thermal resistance of the inner wall surface material may be appropriately adjusted according to the indoor side surface layer to be applied, but is preferably 0.01 to 0.2 m 2 · K / W, and 0.02 to 0.15. , 0.03 to 0.1, more preferably. Within this range, it is preferable because it is easy to realize suitable heat insulating properties for various indoor side surfaces.

内壁面材の厚みは、特に制限されるものではないが、好適な施工性や断熱性能を得やすいことから、3〜20mmであることが好ましく、5〜15mmであることがより好ましい。 The thickness of the inner wall surface material is not particularly limited, but is preferably 3 to 20 mm, more preferably 5 to 15 mm, because it is easy to obtain suitable workability and heat insulating performance.

[蓄熱性面材]
本発明に使用する蓄熱性面材としては、屋内側壁面への施工や、内壁面材との積層ができるものであれば特に制限されないが、その15〜35℃の熱容量が30〜3000kJ/mであることが好ましく、50〜1500kJ/mであることがより好ましく、70〜800kJ/mであることがさらに好ましく、100〜500kJ/mであることが特に好ましい。当該熱容量とすることで、上記内壁面材との組み合わせにて好適な断熱性を得やすくなる。
[Heat storage surface material]
The heat storage surface material used in the present invention is not particularly limited as long as it can be installed on the indoor side wall surface or laminated with the inner wall surface material, but its heat capacity at 15 to 35 ° C. is 30 to 3000 kJ / m. preferably 2 is, more preferably 50~1500kJ / m 2, more preferably from 70~800kJ / m 2, and particularly preferably 100~500kJ / m 2. By setting the heat capacity, it becomes easy to obtain suitable heat insulating properties in combination with the inner wall surface material.

当該蓄熱性面材としては、内壁面材と積層した際の加工性や曲げ耐性等が得やすいことから、シート状、板状の蓄熱性面材を好ましく使用できる。なかでも、施工や積層がしやすいことから、蓄熱シートを使用することが好ましく、壁面施工後にも釘打ちや穴あけ等が容易であることから、樹脂マトリクス中に蓄熱材が分散した蓄熱シートを使用することがより好ましい。 As the heat storage surface material, a sheet-shaped or plate-shaped heat storage surface material can be preferably used because it is easy to obtain processability, bending resistance, etc. when laminated with the inner wall surface material. Of these, it is preferable to use a heat storage sheet because it is easy to install and stack, and because it is easy to nail and drill holes even after wall construction, use a heat storage sheet in which the heat storage material is dispersed in the resin matrix. It is more preferable to do so.

蓄熱シートの厚みは、使用態様に応じて適宜調整すればよいが、屋内空間の容積率の減少を抑制しつつ好適な断熱性を得やすいこと、加工時や搬送時に割れや欠けが生じにくく、優れた加工性や取扱い性を実現しやすいことから、0.3〜15mmであることが好ましく、0.5〜10mmであることがより好ましく、0.7〜8mmであることがさらに好ましく、1〜5mmであることが特に好ましい。 The thickness of the heat storage sheet may be appropriately adjusted according to the usage mode, but it is easy to obtain suitable heat insulating properties while suppressing a decrease in the floor area ratio of the indoor space, and cracks and chips are less likely to occur during processing and transportation. Since it is easy to realize excellent workability and handleability, it is preferably 0.3 to 15 mm, more preferably 0.5 to 10 mm, further preferably 0.7 to 8 mm, and 1 It is particularly preferably ~ 5 mm.

当該蓄熱シートとしては、その引張強さを0.1MPa以上とすることで、柔軟性を有しながらも強靭な層とすることができ、加工時や搬送時等にも割れが生じにく、好適な加工性や取扱い性、搬送適正、曲げ適性等を得やすくなるため好ましい。引張強さは0.3MPa以上であることがより好ましく、0.6MPa以上であることが更に好ましく、1MPa以上であることが特に好ましい。引張強さの上限は特に制限されるものではないが、15MPa以下程度であることが好ましく、10MPa以下であることがより好ましく、5MPa以下であることが特に好ましい。 By setting the tensile strength of the heat storage sheet to 0.1 MPa or more, it is possible to form a tough layer while having flexibility, and cracks are unlikely to occur during processing, transportation, etc. It is preferable because it makes it easy to obtain suitable workability, handleability, transfer suitability, bending suitability, and the like. The tensile strength is more preferably 0.3 MPa or more, further preferably 0.6 MPa or more, and particularly preferably 1 MPa or more. The upper limit of the tensile strength is not particularly limited, but is preferably about 15 MPa or less, more preferably 10 MPa or less, and particularly preferably 5 MPa or less.

また、蓄熱層単体の引張破断時の伸び率を10%以上とすることで、シートの脆化を抑制でき、加工時や搬送時等に曲げや歪みが生じた場合にも、割れや欠けが生じにくいため好ましい。引張破断時の伸び率は15%以上であることがより好ましく、20%以上であることが更に好ましく、25%以上であることが特に好ましい。伸び率の上限は1000%以下であることが好ましく、500%以下であることがより好ましく、300%以下であることが更に好ましい。伸び率を当該範囲とすることで、強靭でありながら好適な柔軟性を実現でき、良好な加工性や取扱い性、搬送適正、曲げ適性等を得やすくなる。引張強さ、引張破断時の伸び率は、JIS K6251に準じて測定される。 Further, by setting the elongation rate of the heat storage layer alone at the time of tensile break to 10% or more, the embrittlement of the sheet can be suppressed, and even if bending or strain occurs during processing or transportation, cracks or chips will occur. It is preferable because it is unlikely to occur. The elongation rate at the time of tensile break is more preferably 15% or more, further preferably 20% or more, and particularly preferably 25% or more. The upper limit of the elongation rate is preferably 1000% or less, more preferably 500% or less, and further preferably 300% or less. By setting the elongation rate within this range, it is possible to realize suitable flexibility while being tough, and it becomes easy to obtain good workability, handleability, transport suitability, bending suitability, and the like. The tensile strength and the elongation rate at the time of tensile breakage are measured according to JIS K6251.

蓄熱層の樹脂マトリクスに使用する樹脂としては、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂等の各種樹脂を使用できる。なかでも、塗膜形成が容易であることから熱可塑性樹脂を好ましく使用できる。塩化ビニル系樹脂、アクリル系樹脂、ウレタン系樹脂、オレフィン系樹脂、エチレン酢酸ビニル共重合、スチレン・ブタジエン系樹脂、ポリスチレン系樹脂、ポリブタジエン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリカーボネート系樹脂、1,2−ポリブタジエン系樹脂、ポリカーボネート系樹脂、ポリイミド系樹脂等を例示できる。なかでも、低温下での成形性や蓄熱材の分散性を得やすいことから塩化ビニル系樹脂を使用することが好ましい。 As the resin used for the resin matrix of the heat storage layer, various resins such as a thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin can be used. Among them, a thermoplastic resin can be preferably used because it is easy to form a coating film. Vinyl chloride resin, acrylic resin, urethane resin, olefin resin, ethylene vinyl acetate copolymer, styrene / butadiene resin, polystyrene resin, polybutadiene resin, polyester resin, polyamide resin, polyimide resin, polycarbonate Examples thereof include based resins, 1,2-polybutadiene resins, polycarbonate resins, and polyimide resins. Of these, it is preferable to use a vinyl chloride resin because it is easy to obtain moldability at low temperature and dispersibility of the heat storage material.

塩化ビニル系樹脂を使用する場合には、塩化ビニル樹脂粒子を使用したビニルゾル塗工液を用いて、ゾルキャスト膜を形成することで、低温下での蓄熱シートの形成が可能となるため好ましい。ビニルゾル塗工液は、塩化ビニル樹脂粒子及び可塑剤を含有する樹脂組成物中に蓄熱材が分散、懸濁されたペースト状の塗工液である。 When a vinyl chloride resin is used, it is preferable to form a sol cast film by using a vinyl sol coating liquid using vinyl chloride resin particles because a heat storage sheet can be formed at a low temperature. The vinyl sol coating liquid is a paste-like coating liquid in which a heat storage material is dispersed and suspended in a resin composition containing vinyl chloride resin particles and a plasticizer.

蓄熱材としては、蓄熱性を有するものであれば特に制限されず、潜熱型の蓄熱性材料、顕熱型の蓄熱性材料、化学反応にともなう吸熱や発熱を利用した化学反応型の蓄熱性材料を使用できる。なかでも、潜熱型の蓄熱性材料は、小さい体積で多くのエネルギーを確保しやすく、吸放熱温度を調整しやすいため好ましい。 The heat storage material is not particularly limited as long as it has heat storage properties, and is a latent heat storage material, a sensible heat storage material, or a chemical reaction type heat storage material that utilizes endothermic heat or heat generated by a chemical reaction. Can be used. Of these, the latent heat storage material is preferable because it is easy to secure a large amount of energy in a small volume and it is easy to adjust the heat absorption and dissipation temperature.

潜熱型の蓄熱性材料(潜熱蓄熱材)としては、相変化による溶融時の染み出し等の問題や、混入時の分散性を考慮して、有機材料等からなる外殻中にパラフィンなどの潜熱蓄熱材料を内包した、カプセル化された蓄熱粒子が好ましい。本発明においてこのような外殻を有する蓄熱粒子を使用する場合には、当該蓄熱粒子の外殻に使用する材料のHSPに基づき、上記HSP距離を算出する。本発明に使用する蓄熱層は、有機材料からなる外殻中にパラフィン等の潜熱蓄熱材料を含有する蓄熱材を使用した場合にも可塑剤による外殻の脆化が生じにくく、蓄熱材の破損が生じにくい。 As a latent heat storage material (latent heat storage material), in consideration of problems such as exudation during melting due to phase change and dispersibility during mixing, latent heat such as paraffin in the outer shell made of organic material or the like is considered. Encapsulated heat storage particles containing a heat storage material are preferable. When heat storage particles having such an outer shell are used in the present invention, the HSP distance is calculated based on the HSP of the material used for the outer shell of the heat storage particles. In the heat storage layer used in the present invention, even when a heat storage material containing a latent heat storage material such as paraffin is used in the outer shell made of an organic material, the outer shell is less likely to be embrittled by the plasticizer, and the heat storage material is damaged. Is unlikely to occur.

このような蓄熱粒子としては、例えば、メラミン樹脂からなる外殻を用いたものとして、三菱製紙社製サーモメモリーFP−16,FP−25,FP−27,FP−31,FP−39、三木理研工業社製リケンレジンPMCD−15SP,25SP,32SP等が例示できる。また、シリカからなる外殻を用いたものとして、三木理研工業社製リケンレジンLA−15,LA−25,LA−32等、ポリメチルメタクリレート樹脂からなる外殻を用いたものとして、BASF社製MicronalDS5001X,5040X等が例示できる。 As such heat storage particles, for example, those using an outer shell made of melamine resin, ThermoMemory FP-16, FP-25, FP-27, FP-31, FP-39, Miki Riken, manufactured by Mitsubishi Paper Mills Limited. Examples thereof include liken resin PMCD-15SP, 25SP, 32SP manufactured by Kogyo Co., Ltd. Further, as the one using the outer shell made of silica, the outer shell made of polymethylmethacrylate resin such as Liken Resin LA-15, LA-25, LA-32 manufactured by Miki Riken Kogyo Co., Ltd. was used, and the Micronal DS5001X manufactured by BASF Co., Ltd. was used. , 5040X and the like can be exemplified.

蓄熱粒子の粒径は、特に限定されないが、10〜1000μm程度であることが好ましく、50〜500μmであることがより好ましい。蓄熱粒子の粒子径は、その一次粒子の粒子径が上記範囲であることも好ましいが、一次粒子径が1〜50μm、好ましくは2〜10μmの粒子が凝集して二次粒子を形成し、当該二次粒子の粒径が上記範囲となった蓄熱粒子であることも好ましい。このような蓄熱粒子は、圧力やシェアにより破損しやすいが、本発明の構成によれば、当該蓄熱粒子の破損を好適に抑制でき、蓄熱材料の染み出しや漏れが生じにくくなる。特に、外殻が有機材料から形成される場合には温度による破損のおそれも生じるが、本発明の蓄熱シートは、このような潜熱蓄熱材を使用した場合にも蓄熱材料の染み出しや漏れを好適に抑制しやすい。なお、蓄熱シート中に使用する全蓄熱粒子の粒子径が上記範囲でなくともよく、蓄熱シート中の蓄熱粒子の80質量%以上が上記範囲の蓄熱粒子であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることが特に好ましい。 The particle size of the heat storage particles is not particularly limited, but is preferably about 10 to 1000 μm, and more preferably 50 to 500 μm. The particle size of the heat storage particles is preferably such that the particle size of the primary particles is in the above range, but particles having a primary particle size of 1 to 50 μm, preferably 2 to 10 μm are aggregated to form secondary particles. It is also preferable that the secondary particles are heat storage particles having a particle size in the above range. Such heat storage particles are easily damaged by pressure or shear, but according to the configuration of the present invention, damage to the heat storage particles can be suitably suppressed, and exudation or leakage of the heat storage material is less likely to occur. In particular, when the outer shell is formed of an organic material, there is a risk of damage due to temperature, but the heat storage sheet of the present invention prevents the heat storage material from seeping out or leaking even when such a latent heat storage material is used. It is preferably easy to suppress. The particle size of all the heat storage particles used in the heat storage sheet does not have to be in the above range, and 80% by mass or more of the heat storage particles in the heat storage sheet is preferably 90% by mass or more. It is more preferable that the amount is 95% by mass or more.

潜熱蓄熱材は、特定の温度の融点において相変化する。すなわち、室温が融点を超えた場合は、固体から液体へ相変化し、室温が融点より下がった場合は、液体から固体へ相変化する。潜熱蓄熱材の融点は、その使用態様に応じて調整すればよく、−30℃〜120℃程度の温度範囲にて固/液相転移を示すものを適宜使用できる。例えば、コンクリートや粘着テープ、フィルムロール等の養生用途としては、融点が20〜60℃程度の範囲にある潜熱蓄熱材を使用することが好ましい。また、調理済み食品を包装して配送する際の包装用途等においては、70〜90℃程度の温度範囲を好ましい範囲として例示できる。また、寒冷地や冷凍倉庫の油圧装置等の設備保護用途等においては、融点が−10〜15℃程度の範囲にある潜熱蓄熱材を使用することが好ましい。 The latent heat storage material undergoes a phase change at the melting point of a specific temperature. That is, when the room temperature exceeds the melting point, the phase changes from a solid to a liquid, and when the room temperature falls below the melting point, the phase changes from a liquid to a solid. The melting point of the latent heat storage material may be adjusted according to the mode of use, and a material showing a solid / liquid phase transition in a temperature range of about −30 ° C. to 120 ° C. can be appropriately used. For example, for curing applications such as concrete, adhesive tape, and film roll, it is preferable to use a latent heat storage material having a melting point in the range of about 20 to 60 ° C. Further, in the packaging application when packaging and delivering cooked food, a temperature range of about 70 to 90 ° C. can be exemplified as a preferable range. Further, in equipment protection applications such as hydraulic devices in cold regions and freezing warehouses, it is preferable to use a latent heat storage material having a melting point in the range of about −10 to 15 ° C.

潜熱蓄熱材の種類としては、例えば、n−テトラデカン、n−ペンタデカン、n−ヘキサデカン、n−ヘプタデカン、n−オクタデカン、n−エイコサン、n−ノナデカン、n−イコサン、n−ヘンイコサン、n−ドコサン、n−トリコサン、n−テトラコサン、n−ペンタコサン、n−ヘキサコサン、n−ヘプタコサン、n−オクタコサン、n−ノナコサン、n−トリアコンタン、n−ヘントリアコンタン、n−ドトリアコンタン、n−トリトリアコンタン、オクタトリアコンタン、パラフィンワックス等のパラフィン系化合物;カプリン酸、カプロン酸、カプリル酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、ヒドロキシステアリン酸、オレイン酸、エライジン酸、リノール酸、セバシン酸、クロトン酸、エルカ酸、ネルボン酸等の脂肪酸又はこれらの脂肪酸のメチルエステル化合物又はエチルエステル化合物;ステアリルアルコール、テトラデカノール、ドデカノール、キシリトール、エリスリトール、ペンタエリスリトール等のアルコール類;塩化カルシウム水和物、酢酸ナトリウム水和物、酢酸カリウム水和物、水酸化ナトリウム水和物、水酸化カリウム水和物、水酸化ストロンチウム水和物、水酸化バリウム水和物、塩化ナトリウム水和物、塩化マグネシウム水和物、塩化亜鉛水和物、硝酸リチウム水和物、硝酸マグネシウム水和物、硝酸カルシウム水和物、硝酸アルミニウム水和物、硝酸カドミウム、硝酸鉄水和物、硝酸亜鉛水和物、硝酸マンガン水和物、硫酸リチウム水和物、硫酸ナトリウム水和物、チオ硫酸ナトリウム水和物、硫酸マグネシウム水和物、硫酸カルシウム水和物、硫酸カリウムアルミニウム水和物、硫酸アルミニウムアンモニウム水和物、チオ硫酸ナトリウム水和物、リン酸カリウム水和物、リン酸ナトリウム水和物、リン酸水素カリウム水和物、リン酸水素ナトリウム水和物、ホウ酸ナトリウム水和物、臭化カルシウム水和物、フッ化カリウム水和物、炭酸ナトリウム水和物、塩化カルシウム六水塩、硫酸ナトリウム十水塩等の無機水和物等が挙げられる。 Examples of the types of latent heat storage materials include n-tetradecane, n-pentadecane, n-hexadecan, n-heptadecane, n-octadecan, n-eicosan, n-nonadecan, n-icosan, n-henicosan, n-docosan, and so on. n-Tricosan, n-Tetracosan, n-Pentacosan, n-Hexacosan, n-Heptacosan, n-Octacosan, n-Nonacosan, n-Triacontan, n-Hentriacontan, n-Dotoriacontan, n-Tritoriacontan , Octatriacontan, paraffin wax and other paraffinic compounds; capric acid, caproic acid, capric acid, undesic acid, lauric acid, tridecic acid, myristic acid, pentadecic acid, palmitic acid, margaric acid, stearic acid, hydroxystearic acid, Hydrate such as oleic acid, ellaic acid, linoleic acid, sebacic acid, crotonic acid, erucic acid, nervonic acid or methyl ester compound or ethyl ester compound of these fatty acids; stearyl alcohol, tetradecanol, dodecanol, xylitol, erythritol, penta Alcohols such as erythritol; calcium chloride hydrate, sodium acetate hydrate, potassium acetate hydrate, sodium hydroxide hydrate, potassium hydroxide hydrate, strontium hydroxide hydrate, barium hydroxide hydrate , Sodium chloride hydrate, magnesium chloride hydrate, zinc chloride hydrate, lithium nitrate hydrate, magnesium nitrate hydrate, calcium nitrate hydrate, aluminum nitrate hydrate, cadmium nitrate, iron nitrate water Japanese product, zinc nitrate hydrate, manganese nitrate hydrate, lithium sulfate hydrate, sodium sulfate hydrate, sodium thiosulfate hydrate, magnesium sulfate hydrate, calcium sulfate hydrate, potassium aluminum sulfate water Japanese product, aluminum ammonium sulfate hydrate, sodium thiosulfate hydrate, potassium phosphate hydrate, sodium phosphate hydrate, potassium hydrogen phosphate hydrate, sodium hydrogen phosphate hydrate, sodium borate Examples thereof include inorganic hydrates such as hydrate, calcium bromide hydrate, potassium fluoride hydrate, sodium carbonate hydrate, calcium chloride hexahydrate, and sodium sulphate decahydrate.

蓄熱シート中の蓄熱材の含有量は10〜80質量%であることが好ましく、20〜70質量%であることがより好ましく、30〜60質量%であることがさらに好ましい。当該範囲とすることで、引張強さや引張破断時の伸び率を本発明の範囲に調整しやすくなると共に、良好な蓄熱効果や成形性が得られやすくなる。 The content of the heat storage material in the heat storage sheet is preferably 10 to 80% by mass, more preferably 20 to 70% by mass, and even more preferably 30 to 60% by mass. Within this range, it becomes easy to adjust the tensile strength and the elongation rate at the time of tensile break within the range of the present invention, and it becomes easy to obtain a good heat storage effect and moldability.

蓄熱シートは、樹脂と蓄熱材とを含有する樹脂組成物からなる塗工液を塗布、あるいは任意の形状の型枠へ投入した後、加熱や乾燥させることで得ることができる。好ましい製造例としては、樹脂と蓄熱材とを含有する樹脂組成物からなる塗工液を調整し、支持体上に当該塗工液を塗布して塗工膜を形成した後、塗工膜温度が150℃以下となる温度で加熱して蓄熱シートを形成する方法である。 The heat storage sheet can be obtained by applying a coating liquid made of a resin composition containing a resin and a heat storage material, or putting it into a mold having an arbitrary shape, and then heating or drying it. As a preferable production example, a coating liquid composed of a resin composition containing a resin and a heat storage material is prepared, and the coating liquid is applied onto a support to form a coating film, and then the coating film temperature. This is a method of forming a heat storage sheet by heating at a temperature of 150 ° C. or lower.

使用する支持体は、蓄熱シートを剥離して流通、使用等する場合には、得られる蓄熱シートを剥離可能で、加熱工程の温度での耐熱性を有するものを適宜使用できる。また、不燃紙などの不燃層や断熱層、導電層など、他の機能層を支持体として、当該支持体上に蓄熱シートを積層してもよい。 As the support to be used, when the heat storage sheet is peeled off for distribution, use, etc., the obtained heat storage sheet can be peeled off, and a support having heat resistance at the temperature of the heating step can be appropriately used. Further, a heat storage sheet may be laminated on the non-combustible layer such as non-combustible paper, a heat insulating layer, a conductive layer, or the like as a support.

蓄熱シートを剥離する場合の支持体としては、例えば、各種の工程フィルムとして使用される樹脂フィルムを好ましく使用できる。当該樹脂フィルムとしては、例えば、ポリエチレンテレフタレート樹脂フィルム、ポリブチレンテレフタレート樹脂フィルム等のポリエステル樹脂フィルムなどが挙げられる。樹脂フィルムの厚みは特に制限されないが、25〜100μm程度のものが取扱いや入手が容易である。 As the support for peeling off the heat storage sheet, for example, a resin film used as various process films can be preferably used. Examples of the resin film include a polyester resin film such as a polyethylene terephthalate resin film and a polybutylene terephthalate resin film. The thickness of the resin film is not particularly limited, but a resin film having a thickness of about 25 to 100 μm is easy to handle and obtain.

蓄熱シートを形成する塗工液は、使用する樹脂成分及び蓄熱材に応じて適宜混合して調整すればよい。例えば、熱可塑性樹脂として塩化ビニル樹脂を使用する場合には、塩化ビニル樹脂粒子を使用したビニルゾル塗工液を用いて、ゾルキャストにより蓄熱層を形成する方法が好ましい。当該製造方法とすることで、ミキサー等による混練や押出成形等を経ることなく成形が可能となり、蓄熱材の破壊が生じにくく、得られる蓄熱シートからの蓄熱材の染み出し等が生じにくい。また、当該方法によれば、低温下での成形が容易となることから、熱による蓄熱材の破壊を抑制しやすいため当該方法が特に好ましく使用できる。 The coating liquid for forming the heat storage sheet may be appropriately mixed and adjusted according to the resin component used and the heat storage material. For example, when a vinyl chloride resin is used as the thermoplastic resin, a method of forming a heat storage layer by sol casting using a vinyl sol coating liquid using vinyl chloride resin particles is preferable. By using this manufacturing method, molding can be performed without kneading or extrusion molding with a mixer or the like, the heat storage material is less likely to be destroyed, and the heat storage material is less likely to seep out from the obtained heat storage sheet. Further, according to the method, since molding at a low temperature is easy, it is easy to suppress the destruction of the heat storage material due to heat, so that the method can be particularly preferably used.

[屋内面施工方法]
本発明の屋内面施工方法は、断面構造中に断熱材が設けられた屋内面構造の前記断熱材より屋内側に、当該断熱材よりも比熱が高くかつ熱抵抗が低い屋内面材と、蓄熱性面材とを設ける屋内面施工方法である。当該屋内面施工方法によれば、断熱構造の厚みを厚くすることなく好適な断熱性の屋内面構造を構成でき、高い断熱性能の確保に際しても屋内空間の容積の減少や施工性の悪化を抑制できる。
[Indoor surface construction method]
The indoor surface construction method of the present invention comprises an indoor surface material having a higher specific heat and a lower thermal resistance than the heat insulating material on the indoor side of the heat insulating material having a heat insulating material in the cross-sectional structure, and heat storage. This is an indoor surface construction method in which a sex surface material is provided. According to the indoor surface construction method, it is possible to construct an indoor surface structure having suitable heat insulation without increasing the thickness of the heat insulation structure, and it is possible to suppress a decrease in the volume of the indoor space and deterioration of workability even when ensuring high heat insulation performance. it can.

屋内空間を構成する屋内面構造に、内壁面材と蓄熱性面材を設ける順序は特に制限されず、屋内面構造に、内壁面材、蓄熱性面材の順に設けても、蓄熱性面材、内壁面材の順に設けてもよいが、不燃性や壁面表面強度等を得やすいことから、蓄熱性面材、内壁面材の順に設けることが好ましい。 The order in which the inner wall surface material and the heat storage surface material are provided in the indoor surface structure constituting the indoor space is not particularly limited, and even if the inner wall surface material and the heat storage surface material are provided in this order in the indoor surface structure, the heat storage surface material is provided. , The inner wall surface material may be provided in this order, but it is preferable to provide the heat storage surface material and the inner wall surface material in this order because it is easy to obtain nonflammability and wall surface strength.

また、内壁面材と蓄熱性面材とを積層した蓄熱積層体をあらかじめ作成し、当該蓄熱積層体を屋内面構造に設けることも好ましい。当該蓄熱積層体を使用することで、柔軟な蓄熱シートを使用した場合にも好適な施工性を得やすくなる。 It is also preferable to prepare a heat storage laminate in which the inner wall surface material and the heat storage surface material are laminated in advance, and to provide the heat storage laminate in the indoor surface structure. By using the heat storage laminate, it becomes easy to obtain suitable workability even when a flexible heat storage sheet is used.

屋内空間の屋内面構造に蓄熱積層体を設ける場合には、屋内側壁面に内壁面材側を設けても、屋内側壁面に蓄熱蓄熱性面材側を設けてもよいが、不燃性や壁面表面強度等を得やすいことから、蓄熱性面材側を屋内側壁面に設けることが好ましい。 When the heat storage laminate is provided in the indoor surface structure of the indoor space, the inner wall surface material side may be provided on the indoor side wall surface, or the heat storage heat storage surface material side may be provided on the indoor side wall surface. Since it is easy to obtain surface strength and the like, it is preferable to provide the heat storage surface material side on the indoor side wall surface.

あらかじめ蓄熱積層体を作成する場合には、内壁面材と蓄熱性面材とを接着剤等により積層する方法や、内壁面材上に蓄熱性面材を形成する塗料を塗布成型して積層する方法等により作成できる。 When creating a heat storage laminate in advance, a method of laminating the inner wall surface material and the heat storage surface material with an adhesive or the like, or applying and molding a paint for forming the heat storage surface material on the inner wall surface material and laminating them. It can be created by a method or the like.

本発明の施工方法により得られる壁面構造は、屋内空間の屋内側の壁面や天井面等の屋内面に、少なくとも上記の内壁面材と蓄熱積層体が設けられた構成である。壁面構造や天井構造の断面構造中の断熱材と、上記の屋内側の構成とにより、厚みが薄い構成でありながら、好適な断熱性能を実現できる。 The wall surface structure obtained by the construction method of the present invention has a configuration in which at least the above-mentioned inner wall surface material and heat storage laminate are provided on an indoor surface such as a wall surface or a ceiling surface on the indoor side of an indoor space. By the heat insulating material in the cross-sectional structure of the wall surface structure or the ceiling structure and the above-mentioned indoor side configuration, it is possible to realize suitable heat insulating performance while having a thin structure.

外壁と屋内側壁面や天井面や床面との間に設けられる断熱材は特に制限されず、各種の断熱材を使用できる。当該断熱材としては、例えば、グラスウール、ロックウール、セルロースファイバー等の繊維系断熱材や、押出し法ポリスチレンフォーム、ビーズ法ポリスチレンフォーム、ポリエチレンフォーム、ウレタンフォーム、フェノールフォーム等の断熱ボード等を適宜使用できる。なかでも、断熱ボードは施工性を確保しやすく、熱抵抗が高いため好ましい。 The heat insulating material provided between the outer wall and the indoor side wall surface, the ceiling surface, or the floor surface is not particularly limited, and various heat insulating materials can be used. As the heat insulating material, for example, a fiber-based heat insulating material such as glass wool, rock wool, cellulose fiber, or a heat insulating board such as extruded polystyrene foam, beaded polystyrene foam, polyethylene foam, urethane foam, or phenol foam can be appropriately used. .. Among them, the heat insulating board is preferable because it is easy to secure workability and has high thermal resistance.

断熱材の比熱は適宜調整すればよいが、5〜100kJ/m・Kであることが好ましく、10〜50kJ/m・Kであることがより好ましい。当該範囲とすることで、各種の屋内面に対して、好適な断熱性を実現しやすいためより好ましい。 Specific heat of the heat insulating material may be appropriately adjusted, but is preferably 5~100kJ / m 3 · K, more preferably 10~50kJ / m 3 · K. Within this range, it is more preferable because it is easy to realize suitable heat insulating properties for various indoor surfaces.

また、断熱材の熱抵抗は適宜調整すればよいが、0.3〜10m・K/Wであることが好ましく、1〜8m・K/Wであることがより好ましく、2〜6m・K/Wであることが更に好ましい。熱抵抗が高くなるほど好適な断熱性が実現できるが、断熱材や断熱空間の厚みを厚くする必要があり、屋内空間の容積の減少が生じることから、薄い厚みで高い断熱性能を実現できる当該範囲とすることが好ましい。 Also, thermal resistance of the heat insulating material may be appropriately adjusted, but preferably 0.3~10m 2 · K / W, more preferably 1~8m 2 · K / W, 2~6m 2 -K / W is more preferable. The higher the thermal resistance, the more suitable heat insulating properties can be realized. However, since it is necessary to increase the thickness of the heat insulating material and the heat insulating space and the volume of the indoor space is reduced, the range in which high heat insulating performance can be realized with a thin thickness. Is preferable.

本発明の施工方法により形成される屋内面構造の好ましい構成例としては、例えば、壁面構造表面が断熱材で構成され、当該断熱材表面に蓄熱積層体が設けられた構成、壁面構造中に断熱材が設けられ、当該断熱材表面に石膏ボード等の無機系基材が設けられ、当該無機系基材表面に蓄熱積層体が設けられた構成等が例示できる。また、これら構成において、蓄熱積層体を構成する蓄熱性面材上に不撚紙等の不燃層が設けられた構成も特に好ましい構成として例示できる。 As a preferable configuration example of the indoor surface structure formed by the construction method of the present invention, for example, a structure in which the surface of the wall surface structure is made of a heat insulating material and a heat storage laminate is provided on the surface of the heat insulating material, heat insulating in the wall surface structure Examples thereof include a configuration in which a material is provided, an inorganic base material such as gypsum board is provided on the surface of the heat insulating material, and a heat storage laminate is provided on the surface of the inorganic base material. Further, in these configurations, a configuration in which a non-combustible layer such as non-twisted paper is provided on the heat storage surface material constituting the heat storage laminate can be exemplified as a particularly preferable configuration.

当該壁面構造においては、屋内側の最表面に、化粧シートや壁紙等の加飾層が設けられていることも好ましい。当該化粧シートや壁紙等は、壁面構造を構成する際の最終工程に設けてもよく、壁面構造の屋内側の最表層を構成する内壁面材や蓄熱面材、蓄熱積層体の表面にあらかじめ設けておいてもよい。また、屋内面材や蓄熱性面材、蓄熱積層体の表層に印刷等による加飾層を設けておいてもよい。 In the wall surface structure, it is also preferable that a decorative layer such as a decorative sheet or wallpaper is provided on the outermost surface on the indoor side. The decorative sheet, wallpaper, etc. may be provided in the final process when the wall surface structure is constructed, and may be provided in advance on the inner wall surface material, the heat storage surface material, or the surface of the heat storage laminate constituting the outermost layer on the indoor side of the wall surface structure. You may keep it. Further, a decorative layer by printing or the like may be provided on the surface layer of the indoor surface material, the heat storage surface material, or the heat storage laminate.

当該壁面構造の好適な具体例としては、下記のような構成が例示できる。
(1)断熱材/蓄熱積層体(屋内面材/蓄熱シート/不撚紙)/加飾層
(2)断熱材/蓄熱積層体(不撚紙/蓄熱シート/屋内面材)/加飾層
(3)断熱材/石膏ボード/蓄熱積層体(屋内面材/蓄熱シート/不撚紙)/加飾層
(4)断熱材/石膏ボード/蓄熱積層体(不撚紙/蓄熱シート/屋内面材)/加飾層
これら壁面構造の(1)、(2)においては、断熱材が屋内側壁面を構成し、(3)、(4)においては、石膏ボードが屋内側壁面を構成する。
As a preferable specific example of the wall surface structure, the following configuration can be exemplified.
(1) Insulation material / heat storage laminate (indoor surface material / heat storage sheet / untwisted paper) / decorative layer (2) Insulation material / heat storage laminate (untwisted paper / heat storage sheet / indoor surface material) / decorative layer (3) Insulation material / gypsum board / heat storage laminate (indoor surface material / heat storage sheet / non-twisted paper) / decorative layer (4) Insulation material / gypsum board / heat storage laminate (non-twisted paper / heat storage sheet / indoor surface) Material) / Decorative layer In (1) and (2) of these wall surface structures, the heat insulating material constitutes the indoor side wall surface, and in (3) and (4), the gypsum board constitutes the indoor side wall surface.

(実施例1)
重合度900のポリ塩化ビニル樹脂粒子(新第一塩ビ社製 ZEST PQ92)90質量部、ポリエステル系可塑剤(DIC社製 ポリサイザーW−230H:粘度220mPa・s、ゲル化終点温度136℃)70質量部、熱安定剤(大協化成工業社製 MTX−11P)1質量部、分散剤(BYK社製 Disperplast−1150)5質量部と、脂肪酸エステルをマイクロカプセル化した潜熱蓄熱材(粒子径100〜200μm、凝固点27℃)60質量部を配合し、プラスチゾル塗工液を作成した。これをPETフィルム上にアプリケーター塗工機にて塗布した後、150℃のドライヤー温度で8分間加熱してゲル化させ、PETフィルムを剥離して、厚さ3mmのシート状の蓄熱性面材(1)を形成した。得られた蓄熱性面材の引張り強さは1.2MPa、引張り破断時の伸び率は35%であった。
(Example 1)
90 parts by mass of polyvinyl chloride resin particles with a degree of polymerization of 900 (ZEST PQ92 manufactured by Shin-Daiichi PVC Co., Ltd.), 70 mass by weight of a polyester plasticizer (Polysizer W-230H manufactured by DIC Co., Ltd .: viscosity 220 mPa · s, gelation end point temperature 136 ° C.) 1 part by mass of heat stabilizer (MTX-11P manufactured by Daikyo Kasei Kogyo Co., Ltd.), 5 parts by mass of dispersant (Disperlast-1150 manufactured by BYK Co., Ltd.), and a latent heat storage material (particle size 100 to 100-) in which fatty acid ester is microencapsulated. A plasticizer coating liquid was prepared by blending 60 parts by mass (200 μm, freezing point 27 ° C.). After applying this on a PET film with an applicator coating machine, it is heated at a dryer temperature of 150 ° C. for 8 minutes to gel it, the PET film is peeled off, and a sheet-shaped heat storage surface material having a thickness of 3 mm ( 1) was formed. The tensile strength of the obtained heat storage face material was 1.2 MPa, and the elongation rate at the time of tensile fracture was 35%.

得られた蓄熱性面材(1)と厚さ9.5mmの石膏ボード(比熱830kJ/m・K、熱抵抗0.043m・K/W)をエチレン酢ビエマルジョン系接着剤にて接着し、蓄熱積層体を得た。 The obtained heat storage surface material (1) and a 9.5 mm-thick gypsum board (specific heat 830 kJ / m 3 · K, thermal resistance 0.043 m 2 · K / W) are bonded with an ethylene vinegar biemulsion adhesive. Then, a heat storage laminate was obtained.

得られた蓄熱積層体を内寸300mm×300mm×300mmとなるように立方体型に組み立て、その後、厚さ50mmの断熱材(比熱22kJ/m・K、熱抵抗1.39m・K/W)で全面を被覆し、箱型試験体を得た。この時、断面構造は総厚62.5mmであった。 The obtained heat storage laminate is assembled into a cubic shape so as to have an inner size of 300 mm × 300 mm × 300 mm, and then a heat insulating material having a thickness of 50 mm (specific heat 22 kJ / m 3 · K, thermal resistance 1.39 m 2 · K / W). ) Was applied to the entire surface to obtain a box-shaped test piece. At this time, the cross-sectional structure had a total thickness of 62.5 mm.

(比較例1)
厚さ12.5mmの石膏ボード(比熱830kJ/m・K、熱抵抗0.057m・K/W)を内寸300mm×300mm×300mmとなるように立方体型に組み立て、その後、厚さ50mmの断熱材(比熱22kJ/m・K、熱抵抗1.39m・K/W)で全面を被覆し、箱型試験体を得た。この時、断面構造は総厚62.5mmであった。
(Comparative Example 1)
A 12.5 mm thick gypsum board (specific heat 830 kJ / m 3・ K, thermal resistance 0.057 m 2・ K / W) is assembled into a cubic shape with internal dimensions of 300 mm × 300 mm × 300 mm, and then 50 mm thick. The entire surface was covered with the heat insulating material (specific heat 22 kJ / m 3 · K, thermal resistance 1.39 m 2 · K / W) to obtain a box-shaped test piece. At this time, the cross-sectional structure had a total thickness of 62.5 mm.

(比較例2)
厚さ12.5mmの石膏ボード(比熱830kJ/m・K、熱抵抗0.057m・K/W)を内寸300mm×300mm×300mmとなるように立方体型に組み立て、その後、厚さ100mmの断熱材(比熱22kJ/m・K、熱抵抗2.78m・K/W)で全面を被覆し、箱型試験体を得た。この時、断面構造は総厚112.5mmであった。
(Comparative Example 2)
A 12.5 mm thick gypsum board (specific heat 830 kJ / m 3・ K, thermal resistance 0.057 m 2・ K / W) is assembled into a cubic shape with internal dimensions of 300 mm × 300 mm × 300 mm, and then 100 mm thick. The entire surface was covered with the heat insulating material (specific heat 22 kJ / m 3 · K, thermal resistance 2.78 m 2 · K / W) to obtain a box-shaped test piece. At this time, the cross-sectional structure had a total thickness of 112.5 mm.

上記実施例及び比較例にて作成した箱型試験体の断熱性評価方法は下記のとおりである。 The method for evaluating the heat insulating property of the box-shaped test piece prepared in the above Examples and Comparative Examples is as follows.

<断熱性評価>
実施例及び比較例にて作成した箱型試験体の内部空間中心部に熱伝対を設置し、環境試験機内で外気温を30℃で20時間保持した後、30分間で15℃まで下降させ、さらに15時間15℃を保持した際の温度変化を30秒間隔で測定した。各箱型試験体の内部空間温度が28℃から25℃へ低下するまでに要した時間を環境温度が28℃から25℃へ低下するまでに要した時間と比較し、断熱性を評価した。評価基準は以下のとおりである。
◎:差異時間が3時間以上
○:差異時間が2時間以上3時間未満
×:差異時間が2時間未満
<Insulation evaluation>
A heat transfer pair was installed in the center of the internal space of the box-shaped test piece prepared in Examples and Comparative Examples, and the outside air temperature was maintained at 30 ° C. for 20 hours in the environmental tester, and then lowered to 15 ° C. in 30 minutes. Further, the temperature change when the temperature was maintained at 15 ° C. for 15 hours was measured at 30-second intervals. The heat insulating property was evaluated by comparing the time required for the internal space temperature of each box-shaped test piece to decrease from 28 ° C. to 25 ° C. with the time required for the environmental temperature to decrease from 28 ° C. to 25 ° C. The evaluation criteria are as follows.
⊚: Difference time is 3 hours or more ○: Difference time is 2 hours or more and less than 3 hours ×: Difference time is less than 2 hours

Figure 2021017796
Figure 2021017796

上記表から明らかなとおり、本発明の構造は、一定の温度域における温度保持性能に優れ好適な断熱性を有するものであった。一方、比較例の構造は、断熱性に劣るものであった。 As is clear from the above table, the structure of the present invention has excellent temperature retention performance in a certain temperature range and has suitable heat insulating properties. On the other hand, the structure of the comparative example was inferior in heat insulating property.

(調整例1)
重合度900のポリ塩化ビニル樹脂粒子(新第一塩ビ社製 ZEST PQ92)90質量部、ポリエステル系可塑剤(DIC社製 ポリサイザーW−230H:粘度220mPa・s、ゲル化終点温度136℃)70質量部、熱安定剤(大協化成工業社製 MTX−11P)1質量部、分散剤(BYK社製 Disperplast−1150)5質量部と、脂肪酸エステルをマイクロカプセル化した潜熱蓄熱材(粒子径100〜200μm、融解時の相変化開始温度:約27℃、融解時の相変化終了温度:約30℃)60質量部を配合し、プラスチゾル塗工液を作成した。これを不燃紙上に塗工機にて塗布した後、150℃のドライヤー温度で8分間加熱してゲル化させ、厚さ3mmのシート状の蓄熱性面材(2)を形成した。
(Adjustment example 1)
90 parts by mass of polyvinyl chloride resin particles with a degree of polymerization of 900 (ZEST PQ92 manufactured by Shin-Daiichi PVC Co., Ltd.), 70 mass by weight of a polyester plasticizer (Polysizer W-230H manufactured by DIC Co., Ltd .: viscosity 220 mPa · s, gelation end point temperature 136 ° C.) 1 part by mass of heat stabilizer (MTX-11P manufactured by Daikyo Kasei Kogyo Co., Ltd.), 5 parts by mass of dispersant (Disperlast-1150 manufactured by BYK Co., Ltd.), and a latent heat storage material (particle size 100 to 100-) in which fatty acid ester is microencapsulated. 200 μm, phase change start temperature at the time of melting: about 27 ° C., phase change end temperature at the time of melting: about 30 ° C.) 60 parts by mass were blended to prepare a plasticizer coating liquid. After applying this on non-combustible paper with a coating machine, it was heated at a dryer temperature of 150 ° C. for 8 minutes to gel it, and a sheet-shaped heat storage surface material (2) having a thickness of 3 mm was formed.

(調整例2)
重合度900のポリ塩化ビニル樹脂粒子(新第一塩ビ社製 ZEST PQ92)90質量部、ポリエステル系可塑剤(DIC社製 ポリサイザーW−230H:粘度220mPa・s、ゲル化終点温度136℃)70質量部、熱安定剤(大協化成工業社製 MTX−11P)1質量部、分散剤(BYK社製 Disperplast−1150)5質量部と、脂肪酸エステルをマイクロカプセル化した潜熱蓄熱材(粒子径100〜200μm、融解時の相変化開始温度:約20℃、融解時の相変化終了温度:約26℃)60質量部を配合し、プラスチゾル塗工液を作成した。これを不燃紙上に塗工機にて塗布した後、150℃のドライヤー温度で8分間加熱してゲル化させ、厚さ3mmのシート状の蓄熱性面材(3)を形成した。
(Adjustment example 2)
90 parts by mass of polyvinyl chloride resin particles with a degree of polymerization of 900 (ZEST PQ92 manufactured by Shin-Daiichi PVC Co., Ltd.), 70 mass by weight of a polyester plasticizer (Polysizer W-230H manufactured by DIC Co., Ltd .: viscosity 220 mPa · s, gelation end point temperature 136 ° C.) 1 part by mass of heat stabilizer (MTX-11P manufactured by Daikyo Kasei Kogyo Co., Ltd.), 5 parts by mass of dispersant (Disperlast-1150 manufactured by BYK Co., Ltd.), and a latent heat storage material (particle size 100 to 100-) in which fatty acid ester is microencapsulated. 200 μm, phase change start temperature at the time of melting: about 20 ° C., phase change end temperature at the time of melting: about 26 ° C.) 60 parts by mass were blended to prepare a plasticizer coating liquid. After applying this on non-combustible paper with a coating machine, it was heated at a dryer temperature of 150 ° C. for 8 minutes to gel it, and a sheet-shaped heat storage surface material (3) having a thickness of 3 mm was formed.

(実施例2、比較例3、参考例1)
間仕切り壁で仕切られた屋内の隣接した下記3部屋(横3040mm×奥行5600mm×高さ2700mm)にて、下表の日程で、空調の設定温度を冷房28℃に設定して終日連続運転を行い、一日間(午前5時からの24時間)の空調消費電力を測定した。なお、空調は測定開始前から運転を行い、測定開始時には各部屋の室温が同等となっていることを確認の上、測定した。得られた結果は下表のとおりである。各部屋の壁面、天井面の構成は下記のとおりであり、各部屋共に、3040mm×2700mmの壁面の一つに屋外と接する窓(横1590mm×高さ1365mm)を有し、当該窓を有する壁面と対向する壁面に屋内廊下と接したドア(横900mm×高さ2000mm)を有する。
(Example 2, Comparative Example 3, Reference Example 1)
In the following three adjacent indoor rooms (width 3040 mm x depth 5600 mm x height 2700 mm) partitioned by a partition wall, the air conditioning set temperature is set to cooling 28 ° C and continuous operation is performed throughout the day according to the schedule in the table below. , The air-conditioning power consumption for one day (24 hours from 5 am) was measured. The air conditioning was operated before the start of measurement, and the measurement was performed after confirming that the room temperature of each room was the same at the start of measurement. The results obtained are shown in the table below. The composition of the wall surface and ceiling surface of each room is as follows, and each room has a window (width 1590 mm × height 1365 mm) in contact with the outside on one of the walls of 3040 mm × 2700 mm, and the wall surface having the window. It has a door (width 900 mm x height 2000 mm) in contact with the indoor corridor on the wall surface facing the room.

<実施例2の壁面、天井面構成>
壁面構成(窓、ドア部分を除く4面):最表層が石膏ボード(1)(厚み:12.5mm、熱抵抗値:0.06m・K/W、比熱:825kJ/m・K)で構成された壁面表面に、発泡樹脂性断熱材(1)(厚み:20mm、熱抵抗値:1.00m・K/W、比熱42.5kJ/m・K)、蓄熱性面材(3)(厚み:3mm、熱抵抗値:0.03m・K/W、比熱:1730kJ/m・K)、および、厚み石膏ボード(2)(厚み:9.5mm、熱抵抗値:0.04m・K/W、比熱:825kJ/m・K)を順に積層した構成。
天井面構成:ロックウール(1)(厚み:100mm、熱抵抗値:2.63m・K/W、比熱:33.6kJ/m・K)の屋内側に、石膏ボード(2)、蓄熱性面材(2)および石膏ボード(2)を順に積層した構成。
<Wall surface and ceiling surface configuration of Example 2>
Wall composition (4 sides excluding windows and doors): The outermost layer is a gypsum board (1) (thickness: 12.5 mm, thermal resistance value: 0.06 m 2 · K / W, specific heat: 825 kJ / m 3 · K) Foamed resin heat insulating material (1) (thickness: 20 mm, thermal resistance value: 1.00 m 2 · K / W, specific heat 42.5 kJ / m 3 · K), heat storage surface material (heat storage surface material) on the wall surface composed of 3) (Thickness: 3 mm, thermal resistance value: 0.03 m 2 · K / W, specific heat: 1730 kJ / m 3 · K), and thick gypsum board (2) (thickness: 9.5 mm, thermal resistance value: 0) .04m 2・ K / W, specific heat: 825kJ / m 3・ K) are stacked in this order.
Ceiling surface composition: Rock wool (1) (thickness: 100 mm, thermal resistance value: 2.63 m 2 · K / W, specific heat: 33.6 kJ / m 3 · K) on the indoor side, gypsum board (2), heat storage A structure in which the sex surface material (2) and the gypsum board (2) are laminated in order.

<比較例3の壁面、天井面構成>
壁面構成(窓、ドア部分を除く4面):実施例2と同様の最表層が石膏ボード(1)で構成された壁面表面に、発泡樹脂性断熱材(2)(厚み:30mm、熱抵抗値:1.50m・K/W、比熱42.5kJ/m・K)及び石膏ボード(2)を順に積層した構成。
天井面構成:実施例2と同様のロックウール(1)の屋内側に、石膏ボード(2)を積層した構成。
<Wall surface and ceiling surface configuration of Comparative Example 3>
Wall surface configuration (4 surfaces excluding windows and doors): Foamed resin heat insulating material (2) (thickness: 30 mm, thermal resistance) on the wall surface surface in which the outermost surface layer is composed of gypsum board (1) as in Example 2. Value: 1.50 m 2 · K / W, specific heat 42.5 kJ / m 3 · K) and gypsum board (2) are laminated in order.
Ceiling surface configuration: A configuration in which gypsum board (2) is laminated on the indoor side of rock wool (1) as in Example 2.

<参考例1の壁面、天井面構成>
壁面構成(窓、ドア部分を除く4面):実施例2と同様の最表層が石膏ボード(1)で構成された壁面表面に他の層を積層せず、石膏ボード(1)を最表面とした構成。
天井面構成:実施例2と同様のロックウール(1)の屋内側に、石膏ボード(2)を積層した構成。
<Wall surface and ceiling surface configuration of Reference Example 1>
Wall surface configuration (4 surfaces excluding windows and doors): Similar to Example 2, the gypsum board (1) is the outermost surface without laminating other layers on the wall surface surface in which the outermost layer is composed of gypsum board (1). Configuration.
Ceiling surface configuration: A configuration in which gypsum board (2) is laminated on the indoor side of rock wool (1) as in Example 2.

Figure 2021017796
Figure 2021017796

上記表から明らかなとおり、実施例2の本発明の構造は、好適な温度保持性能と断熱性により、消費電力抑制効果に優れるものであった。また、一日間のインバーター制御によるコンプレッサー稼働回数は、実施例2は3〜9回(5日間の合計32回)、比較例3は5〜11回(5日間の合計42回)、参考例1は6〜14回(5日間の合計51回)であり、本発明の構造は、特に好適な消費電力の抑制効果を示した。 As is clear from the above table, the structure of the present invention of Example 2 is excellent in the power consumption suppressing effect due to the suitable temperature holding performance and heat insulating property. In addition, the number of times the compressor is operated by inverter control during one day is 3 to 9 times in Example 2 (32 times in total for 5 days), 5 to 11 times in Comparative Example 3 (42 times in total for 5 days), and Reference Example 1. Was 6 to 14 times (51 times in total for 5 days), and the structure of the present invention showed a particularly suitable effect of suppressing power consumption.

Claims (12)

断面構造中に断熱材が設けられた屋内面構造の前記断熱材より屋内側に、前記断熱材よりも比熱が高くかつ熱抵抗値が低い屋内面材と、蓄熱性面材とを設けることを特徴とする屋内面施工方法。 An indoor surface material having a higher specific heat and a lower thermal resistance value than the heat insulating material and a heat storage surface material are provided on the indoor side of the heat insulating material of the indoor surface structure in which the heat insulating material is provided in the cross-sectional structure. Characteristic indoor surface construction method. 前記屋内面材が、比熱が300〜3000kJ/m・K、熱抵抗が0.01〜0.2m・K/Wの無機系基材である請求項1に記載の屋内面施工方法。 The indoor surface construction method according to claim 1, wherein the indoor surface material is an inorganic base material having a specific heat of 300 to 3000 kJ / m 3 · K and a thermal resistance of 0.01 to 0.2 m 2 · K / W. 前記断熱材の比熱が5〜100kJ/m・K、熱抵抗が0.3〜10m・K/Wである請求項1又は2に記載の屋内面施工方法。 The indoor surface construction method according to claim 1 or 2, wherein the heat insulating material has a specific heat of 5 to 100 kJ / m 3 · K and a thermal resistance of 0.3 to 10 m 2 · K / W. 前記蓄熱性面材の厚みが0.3〜15mmである請求項1〜3のいずれかに記載の屋内面施工方法。 The indoor surface construction method according to any one of claims 1 to 3, wherein the heat storage surface material has a thickness of 0.3 to 15 mm. 前記蓄熱性面材が、樹脂マトリクス中に蓄熱材が分散した蓄熱シートである請求項1〜4のいずれかに記載の屋内面施工方法。 The indoor surface construction method according to any one of claims 1 to 4, wherein the heat storage surface material is a heat storage sheet in which the heat storage material is dispersed in a resin matrix. 前記屋内面材と蓄熱性面材を設ける順序が、蓄熱性面材、屋内面材の順である請求項1〜5のいずれかに記載の屋内面施工方法。 The indoor surface construction method according to any one of claims 1 to 5, wherein the order of providing the indoor surface material and the heat storage surface material is the heat storage surface material and the indoor surface material in that order. 前記屋内面材と蓄熱性面材とが積層された蓄熱積層体の屋内面材側を、前記屋内の屋内面構造の屋内面に設ける請求項1〜5のいずれかに記載の屋内面施工方法。 The indoor surface construction method according to any one of claims 1 to 5, wherein the indoor surface material side of the heat storage laminate in which the indoor surface material and the heat storage surface material are laminated is provided on the indoor surface of the indoor indoor surface structure. .. 屋内空間の屋内面構造に設けられる蓄熱積層体であって、
比熱が300〜3000kJ/m・K、かつ熱抵抗が0.3〜10m・K/Wである屋内面材と、蓄熱性面材との積層体であることを特徴とする蓄熱積層体。
It is a heat storage laminate provided in the indoor surface structure of an indoor space.
A heat storage laminate characterized by being a laminate of an indoor surface material having a specific heat of 300 to 3000 kJ / m 3 · K and a thermal resistance of 0.3 to 10 m 2 · K / W and a heat storage surface material. ..
前記蓄熱性面材の15〜35℃の熱容量が30〜3000kJ/mである請求項8に記載の蓄熱性積層体。 The heat storage laminate according to claim 8, wherein the heat storage surface material has a heat capacity of 30 to 3000 kJ / m 2 at 15 to 35 ° C. 前記蓄熱性面材が、樹脂マトリクス中に蓄熱材が分散した蓄熱シートである請求項8又は9に記載の蓄熱積層体。 The heat storage laminate according to claim 8 or 9, wherein the heat storage surface material is a heat storage sheet in which the heat storage material is dispersed in a resin matrix. 前記樹脂マトリクスが、塩化ビニル系樹脂を主たる樹脂成分として含有する請求項10に蓄熱積層体。 The heat storage laminate according to claim 10, wherein the resin matrix contains a vinyl chloride resin as a main resin component. 前記屋内面材の厚みが3〜20mm、前記蓄熱性面材の厚みが0.3〜15mmである請求項6〜10のいずれかに記載の蓄熱積層体。 The heat storage laminate according to any one of claims 6 to 10, wherein the thickness of the indoor surface material is 3 to 20 mm, and the thickness of the heat storage surface material is 0.3 to 15 mm.
JP2019202339A 2019-07-22 2019-11-07 Indoor surface construction method and heat storage laminate Pending JP2021017796A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019134568 2019-07-22
JP2019134568 2019-07-22

Publications (1)

Publication Number Publication Date
JP2021017796A true JP2021017796A (en) 2021-02-15

Family

ID=74564457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019202339A Pending JP2021017796A (en) 2019-07-22 2019-11-07 Indoor surface construction method and heat storage laminate

Country Status (1)

Country Link
JP (1) JP2021017796A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249506A (en) * 2002-11-01 2010-11-04 Sk Kaken Co Ltd Heat storage laminate
US20130251986A1 (en) * 2010-06-18 2013-09-26 Georgia-Pacific Gypsum Llc Building Material Containing Latent Heat Storage Material and Methods of Making the Same
WO2013176050A1 (en) * 2012-05-23 2013-11-28 シャープ株式会社 Latent heat storage member and building material provided with same, microcapsules and thermal storage material using microcapsules
JP2018168605A (en) * 2017-03-30 2018-11-01 ミサワホーム株式会社 Heat storage structure of building

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249506A (en) * 2002-11-01 2010-11-04 Sk Kaken Co Ltd Heat storage laminate
US20130251986A1 (en) * 2010-06-18 2013-09-26 Georgia-Pacific Gypsum Llc Building Material Containing Latent Heat Storage Material and Methods of Making the Same
WO2013176050A1 (en) * 2012-05-23 2013-11-28 シャープ株式会社 Latent heat storage member and building material provided with same, microcapsules and thermal storage material using microcapsules
JP2018168605A (en) * 2017-03-30 2018-11-01 ミサワホーム株式会社 Heat storage structure of building

Similar Documents

Publication Publication Date Title
JP6395021B2 (en) Heat storage sheet
JP6281197B2 (en) Thermal storage laminate
US10968379B2 (en) Heat-storage composition
EP2985139A1 (en) Laminated body
JP7402212B2 (en) architectural panels
JP6528686B2 (en) Heat storage sheet, heat storage laminate, and method of manufacturing heat storage sheet
US10619942B2 (en) Heat storage molded body, heat storage laminate, and heat storage molded body production method
JP4693615B2 (en) Steel fireproof coating sheet
JP2007196465A (en) Non-flammable heat storage panel
JP6460435B2 (en) Thermal storage laminate
JP2021017796A (en) Indoor surface construction method and heat storage laminate
JP2008063547A (en) Heat-storing material composition, heat-storing body and heat-storing laminate
JP2008239860A (en) Heat-storage medium
JP6037192B1 (en) Thermal storage molded body, thermal storage laminate, and method for manufacturing thermal storage molded body
JP2022188924A (en) Heat storage laminate, construction member, and building
JP2018172636A (en) Resin composition and molding
JP2020094205A (en) Heat storage material and manufacturing method of heat storage material
JP6545015B2 (en) Laminate
KR20230171044A (en) A eco-friendly insulation and flame retardancy materials
JP2020111953A (en) Roof member or ceiling member, and building
JP2020040265A (en) Thermal insulation sheet
JP2014037731A (en) Insulation structure for building

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230614

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231031