JP2021015024A - Spiral type ultrasonic flowmeter - Google Patents

Spiral type ultrasonic flowmeter Download PDF

Info

Publication number
JP2021015024A
JP2021015024A JP2019129193A JP2019129193A JP2021015024A JP 2021015024 A JP2021015024 A JP 2021015024A JP 2019129193 A JP2019129193 A JP 2019129193A JP 2019129193 A JP2019129193 A JP 2019129193A JP 2021015024 A JP2021015024 A JP 2021015024A
Authority
JP
Japan
Prior art keywords
ultrasonic
measuring tube
spiral
ultrasonic flowmeter
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019129193A
Other languages
Japanese (ja)
Other versions
JP7246275B2 (en
Inventor
吉野 研郎
Kenro Yoshino
研郎 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Yukizai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Yukizai Corp filed Critical Asahi Yukizai Corp
Priority to JP2019129193A priority Critical patent/JP7246275B2/en
Publication of JP2021015024A publication Critical patent/JP2021015024A/en
Application granted granted Critical
Publication of JP7246275B2 publication Critical patent/JP7246275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

To enable reduction in an impact of noise even if a slender measurement pipe formed from a resin material is formed in an ultrasonic flowmeter, and suppress deterioration of accuracy of a flow measurement.SOLUTION: An ultrasonic flowmeter 11 comprises: a measurement pipe 13 that causes a fluid to distribute inside along a flow axis line; and a pair of ultrasonic oscillators 17 that is attached apart at a prescribed interval in a flow axis line direction in an outside part of the measurement pipe 13. The measurement pipe 13 includes a plurality of spiral-like elements 19 spirally extending around a central axis line O, and the pair of ultrasonic oscillators 17 is attached to an outside part of the plurality of spiral-like elements 19 at a prescribed interval in the flow axis line direction so as to be across a plurality of adjacent spiral-like elements 19 in a direction of the central axis line O, and a plurality of lateral lines are configured to be formed between the pair of ultrasonic oscillators 17.SELECTED DRAWING: Figure 1

Description

本発明は、化学工場、半導体製造分野、食品分野、バイオ分野、医療分野などの各種産業における流体輸送において、流体中に超音波振動を伝搬させ、超音波伝搬時間から流体の流速又は流量を計測する超音波流量計に関し、特に微小流量の計測に適した超音波流量計に関する。 The present invention propagates ultrasonic vibrations in a fluid and measures the flow velocity or flow rate of the fluid from the ultrasonic propagation time in fluid transportation in various industries such as chemical factories, semiconductor manufacturing fields, food fields, biotechnology fields, and medical fields. The present invention relates to an ultrasonic flow meter, and particularly to an ultrasonic flow meter suitable for measuring a minute flow rate.

従来、測定対象流体中に超音波振動を伝搬させることにより流量を測定する超音波流量計が知られている。例えば特許文献1や特許文献2に記載のタイプの超音波流量計では、直管状の測定管の外周部に二つの超音波送受信器が取り付けられており、一方の超音波送受信器から発せられた超音波を測定管壁を通して測定管内の測定対象流体へ伝搬し、測定管の管壁で反射されながら測定管内の流体の流れの方向に対して斜めに伝搬して、他方の超音波送受信器により受信する。その後瞬時に、送信側と受信側が切り換えられ、同様に、他方の超音波送受信器から発せられた超音波を一方の超音波送受信器により受信し、上流側の超音波送受信器から下流側の超音波送受信器への超音波伝搬時間と下流側の超音波送受信器から上流側の超音波送受信器への超音波伝搬時間の差に基づいて、測定管内の流体の流速を求めて流量を測定する。 Conventionally, an ultrasonic flow meter that measures a flow rate by propagating ultrasonic vibration into a fluid to be measured has been known. For example, in the ultrasonic flowmeters of the types described in Patent Document 1 and Patent Document 2, two ultrasonic transmitters / receivers are attached to the outer peripheral portion of a straight tubular measuring tube, and are emitted from one of the ultrasonic transmitters / receivers. Ultrasonic waves are propagated through the measuring tube wall to the fluid to be measured in the measuring tube, and while being reflected by the tube wall of the measuring tube, propagate diagonally with respect to the direction of the fluid flow in the measuring tube, and are propagated by the other ultrasonic transmitter / receiver. Receive. Immediately after that, the transmitting side and the receiving side are switched, and similarly, the ultrasonic waves emitted from the other ultrasonic transmitter / receiver are received by one ultrasonic transmitter / receiver, and the ultrasonic waves on the upstream side to the ultrasonic receiver on the downstream side. Based on the difference between the ultrasonic propagation time to the ultrasonic transmitter / receiver and the ultrasonic propagation time from the downstream ultrasonic transmitter / receiver to the upstream ultrasonic transmitter / receiver, the flow velocity of the fluid in the measuring tube is calculated and the flow rate is measured. ..

このような超音波流量計は、流体に直接接触することなく流量を測定できることから、様々な分野で使用されている。一方、医療分野などの技術分野において、微小流量を測定することが要求されることがある。ところが、流量が小さくなると、流速が遅くなる。したがって、上述のような超音波流量計では、測定原理上、上流側から下流側への超音波振動の伝搬時間と下流側から上流側への超音波の伝搬時間の差が小さくなり、測定誤差を生じやすくなる。このため、測定管を細くして流速を高めることが好ましい。しかしながら、測定管を細くすると、管壁による反射の回数が多くなって超音波振動を減衰させる。また、超音波振動は二つの超音波送受信器の間の測定管の管壁内も伝搬する。管壁内の超音波振動の伝搬は、測定管内の流体の流速の影響を受けないため、測定管内の流体の速度の測定においては雑音(ノイズ)となる。したがって、測定管が細くされて、超音波振動が減衰すると、測定管内の流体を伝搬する超音波振動に対する測定管の管壁内を伝搬する超音波振動の影響、すなわち信号対雑音比(SN比)が大きくなって、測定精度を低下させるという問題を生じる。 Such an ultrasonic flow meter is used in various fields because it can measure the flow rate without directly contacting the fluid. On the other hand, in a technical field such as a medical field, it may be required to measure a minute flow rate. However, when the flow rate becomes small, the flow velocity becomes slow. Therefore, in the ultrasonic flowmeter as described above, the difference between the propagation time of ultrasonic vibration from the upstream side to the downstream side and the propagation time of ultrasonic waves from the downstream side to the upstream side becomes small due to the measurement principle, and the measurement error. Is likely to occur. Therefore, it is preferable to make the measuring tube thinner to increase the flow velocity. However, when the measuring tube is made thin, the number of reflections by the tube wall increases and the ultrasonic vibration is attenuated. The ultrasonic vibration also propagates in the tube wall of the measuring tube between the two ultrasonic transmitters and receivers. Since the propagation of ultrasonic vibration in the tube wall is not affected by the flow velocity of the fluid in the measuring tube, it becomes noise in the measurement of the velocity of the fluid in the measuring tube. Therefore, when the measuring tube is thinned and the ultrasonic vibration is attenuated, the effect of the ultrasonic vibration propagating in the tube wall of the measuring tube on the ultrasonic vibration propagating in the fluid in the measuring tube, that is, the signal-to-noise ratio (SN ratio). ) Becomes large, which causes a problem that the measurement accuracy is lowered.

このような問題を解決するために、特許文献3は、測定管がステンレス鋼などの金属やこれと同等の剛性を有するシリカなどの素材からなると共に、シリコンゴムその他の弾性層の間に押圧状態で保持されているようにした超音波流量計を提案している。測定管の素材が樹脂のように柔らか過ぎると、これ自体が振動体吸収体として作用し、あたかも振動吸収体を通して流体中に超音波を伝達するような結果となって励振効率が大幅に低下する。これに対して、特許文献3に記載の超音波流量計では、金属又はこれと同等の剛性を有する素材で測定管を構成することによって、流体への超音波の伝達効率を高めている。また、測定管を弾性層の間に押圧状態で保持することによって、弾性層を振動吸収体層として機能させて、管壁内を伝搬する超音波信号成分を減衰させ、雑音信号の低減を図っている。特許文献3に記載の超音波流量計では、このようにSN比を改善することによって、流量測定の誤差を低減させている。 In order to solve such a problem, Patent Document 3 states that the measuring tube is made of a metal such as stainless steel or a material such as silica having a rigidity equivalent thereto, and is pressed between silicon rubber and other elastic layers. We are proposing an ultrasonic flowmeter that is held by. If the material of the measuring tube is too soft like resin, it acts as a vibrating body absorber, and as a result, ultrasonic waves are transmitted into the fluid through the vibrating body, resulting in a significant decrease in excitation efficiency. .. On the other hand, in the ultrasonic flow meter described in Patent Document 3, the efficiency of transmitting ultrasonic waves to a fluid is improved by forming the measuring tube with a metal or a material having a rigidity equivalent to that of the metal. In addition, by holding the measuring tube between the elastic layers in a pressed state, the elastic layer functions as a vibration absorber layer to attenuate the ultrasonic signal component propagating in the tube wall and reduce noise signals. ing. In the ultrasonic flowmeter described in Patent Document 3, the error in flow rate measurement is reduced by improving the SN ratio in this way.

特開2005−188974号公報Japanese Unexamined Patent Publication No. 2005-188974 特開2011−112499号公報Japanese Unexamined Patent Publication No. 2011-12499 特開2003−83787号公報Japanese Unexamined Patent Publication No. 2003-83787

しかしながら、特許文献3に記載の超音波流量計でも、測定管を細くした場合に、一方の超音波送受信器から他方の超音波送受信器に超音波が到達するまでに超音波が測定管の管壁で反射される回数が増加することによって、超音波振動が減衰し、SN比の悪化を招く問題は依然として残っている。また、測定管が細いと、測定管内の流体に伝達される超音波振動のエネルギも小さくなるため、超音波信号の強度が低下し、雑音の影響を受けやすくなるという問題もある。 However, even in the ultrasonic flowmeter described in Patent Document 3, when the measuring tube is thinned, the ultrasonic wave reaches the tube of the measuring tube from one ultrasonic transmitter / receiver to the other ultrasonic transmitter / receiver. As the number of times reflected by the wall increases, the ultrasonic vibration is attenuated, and the problem of deteriorating the SN ratio still remains. Further, if the measuring tube is thin, the energy of ultrasonic vibration transmitted to the fluid in the measuring tube is also reduced, so that there is a problem that the strength of the ultrasonic signal is lowered and it is easily affected by noise.

よって、本発明の目的は、従来技術に存する問題を解決するために、超音波流量計において樹脂材料から細い測定管を形成しても、雑音の影響を低減させ、流量測定の精度の低下を抑制することを可能とさせることにある。 Therefore, an object of the present invention is to reduce the influence of noise and reduce the accuracy of flow rate measurement even if a thin measuring tube is formed from a resin material in an ultrasonic flow meter in order to solve a problem existing in the prior art. It is to make it possible to suppress.

上記目的に鑑み、本発明は、内部に流れ軸線に沿って流体を流通させる測定管と、該測定管の外側部に前記流れ軸線方向に所定の間隔で離間して取り付けられる一組の超音波送受信器とを備える螺旋式超音波流量計であって、前記測定管が中心軸線周りに螺旋状に延びる複数の螺旋状要素を含み、前記一組の超音波送受信器が、前記流れ軸線方向に前記所定の間隔で、前記中心軸線の方向に隣り合う前記複数の螺旋状要素に跨るように前記複数の螺旋状要素の外側部に取り付けられ、前記一組の超音波送受信器の間に各螺旋状要素の前記流れ軸線に沿った複数の測線が形成されるようになっている螺旋式超音波流量計を提供する。 In view of the above object, the present invention comprises a measuring tube that allows a fluid to flow inside along the flow axis, and a set of ultrasonic waves that are attached to the outer side of the measuring tube at predetermined intervals in the flow axis direction. A spiral ultrasonic flowmeter including a transmitter / receiver, wherein the measuring tube includes a plurality of spiral elements spirally extending around a central axis, and the set of ultrasonic transmitters / receivers is arranged in the flow axis direction. Each spiral is attached to the outer portion of the plurality of spiral elements so as to straddle the plurality of spiral elements adjacent to each other in the direction of the central axis at the predetermined interval, and is provided between the pair of ultrasonic transmitters / receivers. Provided is a spiral ultrasonic flowmeter in which a plurality of survey lines are formed along the flow axis of the shape element.

上記螺旋式超音波流量計では、測定管が中心軸線周りに螺旋状に延びており、一組の超音波送受信器が、それぞれ、中心軸線方向に隣り合う測定管の螺旋状要素に跨るように複数の螺旋状要素の外側部に取り付けられ、一組の超音波送受信器の間に、複数の螺旋状要素の流れ軸線に沿った複数の測線が形成されるようになっている。したがって、一組の超音波送受信器の一方から発せられた超音波振動は、測定管の複数の螺旋状要素の各々の内部の流体を通って他方の超音波送受信器に伝搬し、合成される。また、超音波振動が伝搬する測定管の断面積の合計が増え、一組の超音波送受信器の間で伝搬する超音波振動のエネルギも増加する。すなわち、一つの測定管の外側部に一組の超音波送受信器が取り付けられて一つの測線に沿って超音波の送受信が行われる場合と比較して、信号の強度が増加する。この結果、測定対象の流体を伝搬して超音波送受信器に受信される超音波信号のSN比が改善される。さらに、複数の螺旋状要素で超音波による流速すなわち流量の測定が行われるが、複数の螺旋状要素は螺旋状に延びる一つの測定管の一部であるため、測定部分において流量が減少することがない。したがって、測定管内を流れる流体の流速を速く保ちつつ測定対象の流体が流れる測定管の断面積を増加させることができる。 In the above-mentioned spiral ultrasonic flowmeter, the measuring tube extends spirally around the central axis so that a set of ultrasonic transmitters and receivers straddle the spiral elements of the measuring tubes adjacent to each other in the central axis direction. Attached to the outer side of the plurality of spiral elements, a plurality of survey lines along the flow axis of the plurality of spiral elements are formed between a set of ultrasonic transmitters and receivers. Therefore, the ultrasonic vibration emitted from one of the set of ultrasonic transmitters and receivers propagates to the other ultrasonic transmitter / receiver through the fluid inside each of the plurality of spiral elements of the measuring tube and is synthesized. .. In addition, the total cross-sectional area of the measuring tube to which the ultrasonic vibration propagates increases, and the energy of the ultrasonic vibration propagating between the set of ultrasonic transmitters / receivers also increases. That is, the signal strength is increased as compared with the case where a set of ultrasonic transmitters / receivers is attached to the outer portion of one measuring tube and ultrasonic waves are transmitted / received along one measuring line. As a result, the SN ratio of the ultrasonic signal propagating in the fluid to be measured and received by the ultrasonic transmitter / receiver is improved. Further, the flow velocity, that is, the flow rate is measured by ultrasonic waves with a plurality of spiral elements, but since the plurality of spiral elements are a part of one measuring tube extending in a spiral shape, the flow rate is reduced in the measurement part. There is no. Therefore, it is possible to increase the cross-sectional area of the measuring tube through which the fluid to be measured flows while maintaining a high flow velocity of the fluid flowing in the measuring tube.

上記螺旋式超音波流量計では、前記各螺旋状要素が直線状に延びる直線部を含み、前記一組の超音波送受信器が前記直線部の外側部に取り付けられていることが好ましい。このような構成とすれば、測定管の断面における流速分布がほぼ均一となる螺旋状要素の直線部で測定が行われ、より正確に測定管内の流体の流速を測定できるので、より正確な流量の測定が可能となる。また、前記各螺旋状要素が直線状に延びる直線部と該直線部に隣接する湾曲部とを含み、前記一組の超音波送受信器が前記直線部に隣接する前記湾曲部の端部の外側部に取り付けられているようにしてもよい。この場合も、測定管の断面における流速分布がほぼ均一となる螺旋状要素の直線部で実質的に測定が行われることになるので、上記と同様の効果が得られる。 In the spiral ultrasonic flowmeter, it is preferable that each of the spiral elements includes a linear portion extending linearly, and the set of ultrasonic transmitters / receivers is attached to an outer portion of the linear portion. With such a configuration, the measurement is performed on the straight portion of the spiral element in which the flow velocity distribution in the cross section of the measuring tube is almost uniform, and the flow velocity of the fluid in the measuring tube can be measured more accurately, so that the flow rate is more accurate. Can be measured. Further, each of the spiral elements includes a straight portion extending linearly and a curved portion adjacent to the straight portion, and the set of ultrasonic transmitters / receivers is outside the end portion of the curved portion adjacent to the straight portion. It may be attached to the part. In this case as well, the same effect as described above can be obtained because the measurement is substantially performed on the straight portion of the spiral element in which the flow velocity distribution in the cross section of the measuring tube is substantially uniform.

一つの実施形態として、前記超音波流量計が対向する二つの平面状側面を有する測定管ホルダをさらに備え、前記複数の螺旋状要素が前記二つの平面状側面を含む前記測定管ホルダの外周面に沿って周方向に巻き回されて前記測定管ホルダに支持されているようにすることができる。測定管ホルダの外周に測定管を巻き回すことにより、螺旋状に延びる測定管を容易に実現することが可能となる。また、測定管ホルダが二つの平面状側面を含んでいるので、測定管ホルダの外周に測定管を巻き回せば、各螺旋状要素が直線部を含むようになる。 In one embodiment, the ultrasonic flowmeter further comprises a measuring tube holder having two planar side surfaces facing each other, and the plurality of spiral elements include the two planar side surfaces on the outer peripheral surface of the measuring tube holder. It can be wound in the circumferential direction along the above and supported by the measuring tube holder. By winding the measuring tube around the outer circumference of the measuring tube holder, it is possible to easily realize a measuring tube extending in a spiral shape. Further, since the measuring tube holder includes two planar side surfaces, if the measuring tube is wound around the outer circumference of the measuring tube holder, each spiral element includes a straight portion.

上記の実施形態では、前記測定管ホルダの前記二つの平面状側面の少なくとも一方に、互いと平行に延びる二つの支持突起が設けられており、前記支持突起を介して前記測定管ホルダに前記複数の螺旋状要素が支持され、前記一組の超音波送受信器がそれぞれ前記二つの支持突起と対向するように配置されていることが好ましい。測定管が測定管ホルダの平面状側面に設けられた二つの支持突起を介して測定ホルダに支持され、一組の超音波送受信器がそれぞれ二つの支持突起と対向するように配置されていれば、内部を流通する流体を超音波が伝搬する測定管の直線部を測定管ホルダの周面から離間して配置することができる。これにより、超音波振動が内部の流体を伝搬する測定管の直線部の管壁と測定管ホルダの外周面との接触部を通じて測定管ホルダに超音波振動が逃げて、測定管内の流体を伝搬する超音波振動を減衰させることを抑制することが可能となる。 In the above embodiment, at least one of the two planar side surfaces of the measuring tube holder is provided with two support protrusions extending in parallel with each other, and the measuring tube holder is provided with the plurality of support protrusions via the support protrusions. It is preferable that the spiral elements of the above are supported, and the pair of ultrasonic transmitters / receivers are arranged so as to face each of the two support protrusions. If the measuring tube is supported by the measuring tube via two support protrusions provided on the planar side surface of the measuring tube holder, and a set of ultrasonic transmitters / receivers are arranged so as to face each of the two support protrusions. , The straight portion of the measuring tube through which ultrasonic waves propagate the fluid flowing inside can be arranged away from the peripheral surface of the measuring tube holder. As a result, the ultrasonic vibration propagates through the fluid inside the measuring tube. The ultrasonic vibration escapes to the measuring tube holder through the contact portion between the tube wall of the straight portion of the measuring tube and the outer peripheral surface of the measuring tube holder, and propagates the fluid in the measuring tube. It is possible to suppress the attenuation of the ultrasonic vibration.

上記実施形態では、前記支持突起の頂部に前記螺旋状要素の外周面の一部と相補的形状の複数の凹部が形成されているようにしてもよい。このような構成により、支持突起の凹部に螺旋状要素が受容されて、測定管ホルダにおける測定管の位置が規定されるので、測定管ホルダに測定管を巻き回すことが容易になる。また、中心軸線方向への測定管の位置ズレが生じることを防止することができる。 In the above embodiment, a plurality of recesses having a shape complementary to a part of the outer peripheral surface of the spiral element may be formed on the top of the support protrusion. With such a configuration, the spiral element is received in the recess of the support protrusion, and the position of the measuring tube in the measuring tube holder is defined, so that the measuring tube can be easily wound around the measuring tube holder. In addition, it is possible to prevent the position of the measuring tube from being displaced in the direction of the central axis.

また、前記測定管ホルダの前記二つの平面状側面が前記周方向に湾曲面によって接続されていることが好ましい。このような構成により、測定管ホルダの周面に角部が形成されることを防ぎ、測定管が柔軟な材料から形成される場合でも、角部により測定管に損傷を与えたり、角部と測定管との接触による潰れで狭窄部を生じさせることを防止することができる。 Further, it is preferable that the two planar side surfaces of the measuring tube holder are connected by a curved surface in the circumferential direction. With such a configuration, it is possible to prevent the formation of corners on the peripheral surface of the measuring tube holder, and even if the measuring tube is made of a flexible material, the corners may damage the measuring tube or the corners may be formed. It is possible to prevent a narrowed portion from being formed due to crushing due to contact with the measuring tube.

前記測定管は、例えば、樹脂製チューブとすることができる。樹脂製チューブを測定管として使用することにより、金属材料から測定管を作製する場合と比較してコストを低減させることができる。 The measuring tube can be, for example, a resin tube. By using the resin tube as the measuring tube, the cost can be reduced as compared with the case where the measuring tube is made of a metal material.

本発明の螺旋式超音波流量計によれば、一組の超音波送受信器の一方から発せられた超音波信号は、測定管の複数の螺旋状要素の各々の内部の流体を通って他方の超音波送受信器に伝搬して合成され、一組の超音波送受信器の間で伝搬する超音波振動のエネルギが増加する、すなわち一組の超音波送受信器の間に複数の測線が形成される。したがって、一つの測定管の外側部に一組の超音波送受信器が取り付けられて一組の測線に沿って超音波の送受信が行われる場合と比較して、信号の強度が増加し、超音波送受信器に受信される超音波信号のSN比が改善される。よって、樹脂材料を用いて細い測定管を形成しても、雑音の影響を低減させ、流量測定の精度の低下を抑制することが可能となる。また、測定管内を流れる流体の流速を速く保ちつつ測定対象の流体が流れる測定管の断面積を増加させることができるので、測定対象の流体の流速の低下による測定精度の低下を招くこともない。 According to the spiral ultrasonic flowmeter of the present invention, the ultrasonic signal emitted from one of the set of ultrasonic transmitters and receivers passes through the fluid inside each of the plurality of spiral elements of the measuring tube and the other. The energy of ultrasonic vibrations propagated and synthesized to the ultrasonic transmitter / receiver and propagated between the pair of ultrasonic transmitters / receivers increases, that is, multiple survey lines are formed between the pair of ultrasonic transmitters / receivers. .. Therefore, compared to the case where a set of ultrasonic transmitters and receivers is attached to the outer part of one measuring tube and ultrasonic waves are transmitted and received along a set of survey lines, the signal strength is increased and the ultrasonic waves are transmitted. The signal-to-noise ratio of the ultrasonic signal received by the transmitter / receiver is improved. Therefore, even if a thin measuring tube is formed by using a resin material, it is possible to reduce the influence of noise and suppress a decrease in the accuracy of flow rate measurement. Further, since the cross-sectional area of the measuring tube through which the fluid to be measured flows can be increased while maintaining the flow velocity of the fluid flowing in the measuring tube at a high speed, the measurement accuracy does not decrease due to the decrease in the flow velocity of the fluid to be measured. ..

本発明による螺旋式超音波流量計の一実施形態の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of one Embodiment of the spiral type ultrasonic flowmeter by this invention. 図1に示されている螺旋式超音波流量計の側面図である。It is a side view of the spiral ultrasonic flowmeter shown in FIG. 図1に示されている螺旋式超音波流量計の測定管ホルダを示す斜視図である。It is a perspective view which shows the measuring tube holder of the spiral type ultrasonic flowmeter shown in FIG. 測定管内を伝搬する超音波振動の測定管の管壁における反射を説明するための説明図であり、(a)は太い測定管の場合、(b)は細い測定管の場合を示している。It is explanatory drawing for demonstrating the reflection of the ultrasonic vibration propagating in the measuring tube on the tube wall, (a) shows the case of a thick measuring tube, and (b) shows the case of a thin measuring tube. 本発明による螺旋式超音波流量計の変形形態を示す側面図である。It is a side view which shows the modified form of the spiral type ultrasonic flowmeter by this invention. 本発明による螺旋式超音波流量計の変形形態を示す側面図である。It is a side view which shows the modified form of the spiral type ultrasonic flowmeter by this invention. 本発明による螺旋式超音波流量計の変形形態を示しており、(a)は上面図、(b)は側面図である。A modified form of the spiral ultrasonic flowmeter according to the present invention is shown, where (a) is a top view and (b) is a side view.

以下、図面を参照して、本発明による螺旋式超音波流量計の実施形態を説明するが、本発明が図示されている実施形態に限定されないことは言うまでもない。 Hereinafter, embodiments of the spiral ultrasonic flowmeter according to the present invention will be described with reference to the drawings, but it goes without saying that the present invention is not limited to the illustrated embodiments.

最初に、図1から図3を参照して、本発明の一実施形態による螺旋式超音波流量計11の全体構成を説明する。超音波流量計11は、測定対象の流体が内部を満水状態で流れ軸線に沿って流れるようになっている測定管13と、流れ軸線方向に離間した位置の測定管13の外側部に密着固定される一組の伝送体15と、一組の伝送体15のそれぞれに取り付けられる超音波送受信器としての一組の超音波振動子17とを備える。なお、「流れ軸線」とは、測定管13の内部の流路に沿って延びる軸線を意味する。 First, the overall configuration of the spiral ultrasonic flowmeter 11 according to the embodiment of the present invention will be described with reference to FIGS. 1 to 3. The ultrasonic flow meter 11 is closely fixed to the measuring tube 13 in which the fluid to be measured is filled with water and flows along the flow axis, and the outer side of the measuring tube 13 at a position separated from the flow axis. It is provided with a set of transmitters 15 and a set of ultrasonic transducers 17 as ultrasonic transmitters / receivers attached to each of the set of transmitters 15. The "flow axis" means an axis extending along the flow path inside the measuring tube 13.

測定管13は、長さ方向に均一な内径を有しており、中心軸線O周りに螺旋状に延びる複数の螺旋状要素19を流れ軸線方向に連続して接続して全体として複数巻きの螺旋状管路を形成している。ここで、「螺旋状要素19」とは、中心軸線O周りに360°分だけ螺旋状に延びる部分を意味し、一巻き分の螺旋を指すものとする。また、「中心軸線O」とは、複数の螺旋状要素19の中心に沿って延びる軸線を意味する。各螺旋状要素19は、直線状に延びる直線部19aと湾曲して概略円弧状に延びる湾曲部19bとを含んでおり、各螺旋状要素19の直線部19aが中心軸線O方向に並列して配置されるようになっている。測定管13の外径は特に限定されるものではないが、超音波振動子17(超音波送受信器)から測定管13内の流体への超音波振動の伝搬を容易にするために、測定管13の管壁の厚さは薄い方が好ましい。 The measuring tube 13 has a uniform inner diameter in the length direction, and a plurality of spiral elements 19 extending spirally around the central axis O are continuously connected in the flow axis direction to form a plurality of spirals as a whole. It forms a spiral line. Here, the "spiral element 19" means a portion that extends spirally by 360 ° around the central axis O, and refers to a spiral for one turn. Further, the "central axis O" means an axis extending along the center of the plurality of spiral elements 19. Each spiral element 19 includes a linear portion 19a extending linearly and a curved portion 19b curved and extending substantially in an arc shape, and the linear portions 19a of each spiral element 19 are arranged in parallel in the central axis O direction. It is designed to be placed. The outer diameter of the measuring tube 13 is not particularly limited, but in order to facilitate the propagation of ultrasonic vibration from the ultrasonic transducer 17 (ultrasonic transmitter / receiver) to the fluid in the measuring tube 13, the measuring tube is used. It is preferable that the thickness of the pipe wall of 13 is thin.

測定管13の材質は、超音波を伝搬することができるものであれば、特に限定されるものではなく、例えば、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、パーフルオロアルコキシアルカン(PFA)、ポリフッ化ビニリデン(PVDF)、パーフルオロエチレンプロペンコポリマ(FEP)、ポリ塩化ビニル(PVC)、ポリプロピレン(PP)などの合成樹脂材料、ジェラルミン、アルミニウム、アルミ合金、チタン、ハステロイ、ステンレス鋼などの金属、ガラス、石英などから作成することができる。しかしながら、螺旋状に巻くことが容易となるように柔軟性を有し且つ耐腐食性を有するフッ素樹脂から作成することが好ましい。 The material of the measuring tube 13 is not particularly limited as long as it can propagate ultrasonic waves, and is, for example, polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), or perfluoroalkoxy alkane. Synthetic resin materials such as alkane (PFA), polyvinylidene fluoride (PVDF), perfluoroethylene propencopolyma (FEP), polyvinyl chloride (PVC), polypropylene (PP), geralmin, aluminum, aluminum alloys, titanium, hasterois, stainless steel. It can be made from metals such as steel, glass, quartz and the like. However, it is preferably made of a fluororesin having flexibility and corrosion resistance so that it can be easily wound in a spiral shape.

各伝送体15の一端部は、測定管13の複数の螺旋状要素19の外側部に密着固定されている。また、各伝送体15の他端部には、超音波振動子17が固着されており、超音波振動子17が伝送体15を介して複数の螺旋状要素19の外側部に取り付けられ、伝送体15を介して、超音波振動子17で発生した超音波を測定管13内の流体へ伝搬させる又は測定管13内の流体を伝搬してきた超音波を超音波振動子17に受信させるようになっている。 One end of each transmission body 15 is closely fixed to the outer side of a plurality of spiral elements 19 of the measuring tube 13. Further, an ultrasonic vibrator 17 is fixed to the other end of each transmission body 15, and the ultrasonic vibrator 17 is attached to the outer side of a plurality of spiral elements 19 via the transmission body 15 for transmission. The ultrasonic waves generated by the ultrasonic vibrator 17 are propagated to the fluid in the measuring tube 13 through the body 15, or the ultrasonic waves propagating in the fluid in the measuring tube 13 are received by the ultrasonic vibrator 17. It has become.

一組の伝送体15は、中心軸線O方向に並列して配置される複数の螺旋状要素19に跨るように、各螺旋状要素19の流れ軸線方向に所定距離だけ離間して互いと平行に配置されており、各伝送体15の一端部が複数の螺旋状要素19の外側部に密着固定されている。図示されている実施形態では、一組の伝送体15は、螺旋状要素19の流れ軸線方向に所定距離だけ離間して互いと平行に且つ中心軸線Oと平行に、複数の螺旋状要素19の直線部19aに跨るように延びている。このような配置により、一組の伝送体15の間には、等しい長さの測線が形成される。しかしながら、一組の伝送体15は、互いと平行に配置され且つ複数の螺旋状要素19に跨るように螺旋状要素19の外側部に密着固定されており、一組の伝送体15の間に各螺旋状要素19に沿って等しい長さの測線が形成されるようになっていれば、各伝送体15が中心軸線Oに対して斜めに且つ互いと平行に延びるように複数の螺旋状要素19の直線部19aに跨って螺旋状要素19の外側部に密着固定されるようになっていてもよく、超音波が実質的に直線部19aに沿って伝搬するように各伝送体15の一端部が直線部19aに隣接する湾曲部19bの端部の外側部に密着固定されていてもよい。また、図示されている実施形態では、各伝送体15において、複数の螺旋状要素19の直線部19aの外側部に取り付けられる端部(前述の一端部)に、直線部19aの外周面と相補的形状の複数の凹部15aが形成されており、各伝送体15を複数の螺旋状要素19の直線部19aの外側部に取り付けやすくなっている(図1参照)。しかしながら、測定管13の外側部に取り付けられる伝送体15の端部は、超音波振動を伝送体15から測定管13に伝達できるように測定管13の外側部に取り付けられていれば、形状を限定されるものではなく、他の形状に形成することも可能である。なお、螺旋状要素19の外側面への取り付けを容易とするために、凹部15aは、螺旋状要素19(図示されている実施形態では、その直線部19a)の外周の半分以下を覆う形状となっていることが好ましい。 The set of transmitters 15 are separated from each other by a predetermined distance in the flow axis direction of each spiral element 19 so as to straddle a plurality of spiral elements 19 arranged in parallel in the central axis O direction and parallel to each other. One end of each transmission body 15 is closely fixed to the outer side of the plurality of spiral elements 19 so as to be arranged. In the illustrated embodiment, the set of transmitters 15 of the plurality of spiral elements 19 are separated from each other by a predetermined distance in the flow axis direction of the spiral elements 19 and parallel to each other and parallel to the central axis O. It extends so as to straddle the straight portion 19a. With such an arrangement, survey lines of equal length are formed between the set of transmitters 15. However, the set of transmitters 15 are arranged parallel to each other and closely fixed to the outer side of the spiral elements 19 so as to straddle the plurality of spiral elements 19, and are sandwiched between the sets of transmitters 15. If lines of equal length are formed along each spiral element 19, a plurality of spiral elements such that each transmitter 15 extends diagonally with respect to the central axis O and parallel to each other. It may be closely fixed to the outer portion of the spiral element 19 across the straight portion 19a of 19, and one end of each transmitter 15 so that the ultrasonic waves substantially propagate along the straight portion 19a. The portion may be closely fixed to the outer portion of the end portion of the curved portion 19b adjacent to the straight portion 19a. Further, in the illustrated embodiment, in each transmission body 15, the end portion (the above-mentioned one end portion) attached to the outer portion of the straight line portion 19a of the plurality of spiral elements 19 is complementary to the outer peripheral surface of the straight line portion 19a. A plurality of recesses 15a having a specific shape are formed, so that each transmitter 15 can be easily attached to the outer side of the straight portion 19a of the plurality of spiral elements 19 (see FIG. 1). However, the end of the transmitter 15 attached to the outer portion of the measuring tube 13 has a shape as long as it is attached to the outer portion of the measuring tube 13 so that ultrasonic vibration can be transmitted from the transmitter 15 to the measuring tube 13. It is not limited, and it can be formed into other shapes. In order to facilitate attachment of the spiral element 19 to the outer surface, the recess 15a has a shape that covers less than half of the outer circumference of the spiral element 19 (in the illustrated embodiment, its straight portion 19a). It is preferable that

また、各伝送体15は、螺旋状要素19の中心軸線Oに垂直な断面において、好ましくは、図1及び図2に示されている実施形態のように、超音波振動子17が取り付けられる他端部が螺旋状要素19の直線部19aと平行に延び且つ該他端部から測定管13の外側部に密着固定される一端部に向かうにつれて細くなる漏斗状に形成されており、超音波振動子17で発生した超音波振動を強めた状態で測定管13に伝達できるようになっている。しかしながら、伝送体15は、図示されている実施形態の形状に限定されるものではなく、他の形状を有することも可能である。また、図示されている実施形態では、伝送体15は、超音波振動子17によって発生した超音波振動が伝送体15を通って測定管13内の流体へ流れ軸線に概略垂直な方向に伝搬するように、測定管13の外側部に密着固定されている。しかしながら、伝送体15は、超音波振動子17によって発生した超音波振動が伝送体15を通って測定管13内の流体へ流れ軸線に対して斜め方向など図示されている実施形態とは異なる角度に伝搬するように、測定管13の外側部に密着固定されるようになっていてもよい。さらに、伝送体15の端部への超音波振動子17の固着は、特に限定されるものではなく、例えば、接着剤等を用いて行ってもよく、ボルトなどの締結具を用いて行てもよい。 Further, each transmitter 15 is attached with an ultrasonic transducer 17 in a cross section perpendicular to the central axis O of the spiral element 19, preferably as in the embodiment shown in FIGS. 1 and 2. The end is formed in a funnel shape that extends parallel to the straight portion 19a of the spiral element 19 and narrows from the other end toward one end that is closely fixed to the outer portion of the measuring tube 13. The ultrasonic vibration generated by the child 17 can be transmitted to the measuring tube 13 in a strengthened state. However, the transmitter 15 is not limited to the shape of the illustrated embodiment, and may have other shapes. Further, in the illustrated embodiment, in the transmitting body 15, the ultrasonic vibration generated by the ultrasonic vibrator 17 flows through the transmitting body 15 to the fluid in the measuring tube 13 and propagates in a direction substantially perpendicular to the axis. As described above, it is closely fixed to the outer side of the measuring tube 13. However, the transmission body 15 has an angle different from that of the illustrated embodiment, such as an oblique direction with respect to the axis of flow of the ultrasonic vibration generated by the ultrasonic vibrator 17 through the transmission body 15 to the fluid in the measuring tube 13. It may be fixed in close contact with the outer portion of the measuring tube 13 so as to propagate to. Further, the fixation of the ultrasonic vibrator 17 to the end portion of the transmission body 15 is not particularly limited, and may be performed by using, for example, an adhesive or the like, or by using a fastener such as a bolt. May be good.

伝送体15の材料は、超音波を伝搬させることができるものであれば、特に限定されるものではなく、伝送体15は、例えば、パーフルオロアルコキシアルカン(PFA)、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニル(PVC)、ポリプロピレン(PP)などの合成樹脂から作製してもよく、ジュラルミン、アルミニウム、アルミ合金、チタン、ハステロイ、ステンレス鋼(SUS)などの金属、ガラス、石英などから作製してもよい。 The material of the transmitter 15 is not particularly limited as long as it can propagate ultrasonic waves, and the transmitter 15 is, for example, perfluoroalkoxyalkane (PFA), polyvinylidene fluoride (PVDF), and the like. It may be made from synthetic resins such as polyvinyl chloride (PVC) and polypropylene (PP), and it may be made from metals such as duralmin, aluminum, aluminum alloys, titanium, hastelloy and stainless steel (SUS), glass and quartz. May be good.

超音波送受信器として使用される超音波振動子17の材料は、超音波を発生できるものであれば、特に限定されるものではなく、例えばチタン酸ジルコン酸鉛(PZT)などの圧電材料を用いて作製され、電圧を印加したときに軸方向に伸縮することにより超音波を発生する超音波振動子を超音波振動子17として使用することができる。一組の伝送体15に取り付けられた各超音波振動子17は、一方の超音波振動子17で発生された超音波が伝送体15を介して測定管13内の流体に伝達されて測定管13内の流体中を伝搬した後、伝送体15を介して他方の超音波振動子17に伝搬されるように、各伝送体15に取り付けられる。 The material of the ultrasonic transducer 17 used as the ultrasonic transmitter / receiver is not particularly limited as long as it can generate ultrasonic waves, and a piezoelectric material such as lead zirconate titanate (PZT) is used. An ultrasonic transducer that is manufactured by the above method and generates ultrasonic waves by expanding and contracting in the axial direction when a voltage is applied can be used as the ultrasonic transducer 17. In each ultrasonic transducer 17 attached to the set of transmitters 15, the ultrasonic waves generated by one of the ultrasonic transducers 17 are transmitted to the fluid in the measuring tube 13 via the transmitting body 15 and are transmitted to the measuring tube. After propagating in the fluid in 13, it is attached to each transmitting body 15 so as to propagate to the other ultrasonic vibrator 17 via the transmitting body 15.

図示されている実施形態では、超音波流量計11は、測定管ホルダ21をさらに備え、測定管13が測定管ホルダ21の外周面に沿って周方向(中心軸線O周り)に巻き回されて測定管ホルダ21に支持されている。測定管ホルダ21は、上記周方向(中心軸線O周り)に、対向する二つの平面状側面21a,21aと、二つの平面状側面21a,21aの間を接続する二つの湾曲面21b、21bとを有している。このような測定管ホルダ21の外周面に沿って測定管13を巻き回すことによって、螺旋状に延びる複数の螺旋状要素19を流れ軸線方向に連続して接続した複数巻の螺旋状の測定管13を容易に形成することが可能となる。また、各螺旋状要素19に直線部19aを含むように、複数巻の螺旋状の測定管13を形成することも容易となる。 In the illustrated embodiment, the ultrasonic flow meter 11 further includes a measuring tube holder 21, and the measuring tube 13 is wound around the outer peripheral surface of the measuring tube holder 21 in the circumferential direction (around the central axis O). It is supported by the measuring tube holder 21. The measuring tube holder 21 has two curved surfaces 21b and 21b connecting between the two planar side surfaces 21a and 21a facing each other and the two planar side surfaces 21a and 21a in the circumferential direction (around the central axis O). have. By winding the measuring tube 13 along the outer peripheral surface of such a measuring tube holder 21, a plurality of spiral measuring tubes 19 in which a plurality of spirally extending spiral elements 19 are continuously connected in the flow axis direction are connected. 13 can be easily formed. Further, it becomes easy to form a plurality of spiral measuring tubes 13 so that each spiral element 19 includes a straight portion 19a.

測定管ホルダ21の材質は、特に限定されるものではなく、パーフルオロアルコキシアルカン(PFA)、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニル(PVC)、ポリプロピレン(PP)などの合成樹脂から作製してもよく、ジュラルミン、アルミニウム、アルミ合金、チタン、ハステロイ、ステンレス鋼(SUS)などの金属とすることができる。しかしながら、超音波振動の吸収を抑制するために、多孔質PPなど振動吸収性が低い材料から測定管ホルダ21を形成することが好ましい。 The material of the measuring tube holder 21 is not particularly limited, and is made of a synthetic resin such as perfluoroalkoxy alkane (PFA), polyvinylidene fluoride (PVDF), polyvinyl chloride (PVC), polypropylene (PP). It can also be a metal such as duralmin, aluminum, aluminum alloy, titanium, hastelloy, stainless steel (SUS). However, in order to suppress the absorption of ultrasonic vibration, it is preferable to form the measuring tube holder 21 from a material having low vibration absorption such as porous PP.

測定管ホルダ21の二つの平面状側面21a,21aの各々には、図示されている実施形態のように、周方向に離間して互いと平行に延びる二つの支持突起23,23が外周面(平面状側面21a)から突出して設けられており、測定管13の複数の螺旋状要素19(特にその直線部19a)が支持突起23を介して測定管ホルダ21上に支持されていることが好ましい。この場合、各伝送体15は、測定管ホルダ21の一方の平面状側面21a上の各支持突起23との間に直線部19aを挟持するように配置される。このような構成にすることにより、複数の螺旋状要素19の直線部19aが一組の超音波送受信器(超音波振動子17)の間において測定管ホルダ21の外周面(詳細には、その平面状側面21a)から離間して支持される。この結果、測定管13内の流体を伝搬する超音波振動が、測定管13の管壁での反射の際に、一組の超音波送受信器(超音波振動子17)の間に配置される測定管13の螺旋状要素19の直線部19aの管壁と測定管ホルダ21の外周面(詳細には、その平面状側面21a)との接触部を通じて測定管ホルダ21に逃げて、減衰することを抑制することが可能となる。 On each of the two planar side surfaces 21a and 21a of the measuring tube holder 21, two support protrusions 23 and 23 extending in the circumferential direction and parallel to each other are outer peripheral surfaces (as in the illustrated embodiment). It is preferable that the plurality of spiral elements 19 (particularly, the straight portion 19a thereof) of the measuring tube 13 are supported on the measuring tube holder 21 via the supporting protrusions 23, which are provided so as to project from the planar side surface 21a). .. In this case, each transmission body 15 is arranged so as to sandwich the straight portion 19a with each support projection 23 on one of the planar side surfaces 21a of the measuring tube holder 21. With such a configuration, the linear portion 19a of the plurality of spiral elements 19 is formed between the set of ultrasonic transmitters / receivers (ultrasonic oscillator 17) and the outer peripheral surface of the measuring tube holder 21 (specifically, the outer peripheral surface thereof). It is supported apart from the planar side surface 21a). As a result, the ultrasonic vibration propagating in the fluid in the measuring tube 13 is arranged between a set of ultrasonic transmitters / receivers (ultrasonic transducer 17) when reflected on the tube wall of the measuring tube 13. To escape to the measuring tube holder 21 and attenuate through the contact portion between the tube wall of the straight portion 19a of the spiral element 19 of the measuring tube 13 and the outer peripheral surface (specifically, the planar side surface 21a thereof) of the measuring tube holder 21. Can be suppressed.

また、各支持突起23の頂部には、図3によく示されているように、複数の螺旋状要素19の直線部19aの外周面と相補的形状の複数の凹部23aが形成されており、直線部19aの各々を各凹部23aに受容できるようになっていることがさらに好ましい。この場合、凹部23aは、螺旋状要素19の直線部19aの凹部23aへの収容を容易にするために直線部19aの外周の半分以下を覆う形状となっていることがさらに好ましい。支持突起23の頂部にこのように形成した複数の凹部23aに複数の螺旋状要素19の直線部19aを受容させて配置することによって、測定管ホルダ21における複数の螺旋状要素19の直線部19aの位置が規定されるので、支持突起23を介した測定管ホルダ21への測定管13の巻回し及び支持が容易となると共に、測定管13の軸線方向への位置ずれが生じるのを防止することができる。特に、伝送体15の端部にも同様の複数の凹部15aを形成して、伝送体15と支持突起23との間に測定管13の複数の螺旋状要素19の直線部19aを挟持するようにした場合、上記の効果が高められる。また、伝送体15の端部に複数の凹部15aが設けられ且つ支持突起23の頂部に複数の凹部23aが設けられている場合、螺旋状要素19の圧潰を防止するために、凹部15aと凹部23aが共に螺旋状要素19の外周の半分を覆う形状となっていることがさらに好ましい。 Further, as is well shown in FIG. 3, a plurality of recesses 23a having a shape complementary to the outer peripheral surface of the linear portion 19a of the plurality of spiral elements 19 are formed on the top of each support protrusion 23. It is more preferable that each of the straight portions 19a can be received by each recess 23a. In this case, it is more preferable that the recess 23a has a shape that covers less than half of the outer circumference of the straight portion 19a in order to facilitate the accommodation of the linear portion 19a of the spiral element 19 in the recess 23a. By receiving and arranging the linear portions 19a of the plurality of spiral elements 19 in the plurality of recesses 23a thus formed on the top of the support protrusion 23, the linear portions 19a of the plurality of spiral elements 19 in the measuring tube holder 21 are arranged. Since the position of the measuring tube 13 is defined, the measuring tube 13 can be easily wound and supported around the measuring tube holder 21 via the support protrusion 23, and the position of the measuring tube 13 can be prevented from being displaced in the axial direction. be able to. In particular, a plurality of similar recesses 15a are formed at the end of the transmission body 15 so that the straight portion 19a of the plurality of spiral elements 19 of the measuring tube 13 is sandwiched between the transmission body 15 and the support protrusion 23. When set to, the above effect is enhanced. Further, when a plurality of recesses 15a are provided at the end of the transmission body 15 and a plurality of recesses 23a are provided at the top of the support protrusion 23, the recess 15a and the recess are provided in order to prevent the spiral element 19 from being crushed. It is more preferable that both 23a have a shape that covers half of the outer circumference of the spiral element 19.

測定管ホルダ21の設置を容易にするために、二つの平面状側面21a,21aの一方に少なくとも三つの支持脚25を設けるようにしてもよい。 In order to facilitate the installation of the measuring tube holder 21, at least three support legs 25 may be provided on one of the two planar side surfaces 21a and 21a.

なお、測定管13の螺旋状要素19の直線部19aの外側部への各伝送体15の固定は、伝送体15及び超音波振動子17の端部(図1中の軸線方向端部)に設けられた貫通孔にネジを挿入して支持突起23に設けられたネジ孔に螺合させて、伝送体15と支持突起23との間に測定管13の螺旋状要素19の直線部19aを挟持させることによって行うことが好ましい。これにより、螺旋状要素19の外側部への伝送体15の着脱が容易となり、超音波流量計11における測定管13の交換が可能となる。しかしながら、測定管13の螺旋状要素19の直線部19aの外側部に伝送体15を接着剤等により直接固定するようにしてもよい。 The transmission body 15 is fixed to the outer side of the linear portion 19a of the spiral element 19 of the measuring tube 13 at the ends of the transmission body 15 and the ultrasonic vibrator 17 (the end in the axial direction in FIG. 1). A screw is inserted into the provided through hole and screwed into the screw hole provided in the support protrusion 23, so that the linear portion 19a of the spiral element 19 of the measuring tube 13 is inserted between the transmitter 15 and the support protrusion 23. It is preferable to carry out by sandwiching. As a result, the transmission body 15 can be easily attached to and detached from the outer portion of the spiral element 19, and the measuring tube 13 in the ultrasonic flow meter 11 can be replaced. However, the transmitter 15 may be directly fixed to the outer side of the straight portion 19a of the spiral element 19 of the measuring tube 13 with an adhesive or the like.

二つの平面状側面21a,21aの間は湾曲面21b,21bによって接続されている。測定管ホルダ21の外周面に角部が形成されていると、測定管ホルダ21の外周面に沿って測定管13を巻き回したときに、角部が測定管13に損傷を与えたり、角部と測定管13との接触により測定管13が潰れて狭窄部を生じたりして、流速の測定精度に悪影響を与えることがある。しかしながら、二つの平面状側面21a,21aの間が湾曲面21b,21bによって接続されていれば、測定管ホルダ21の外周面に角部が形成されず、測定管ホルダ21の外周面に沿って測定管13を巻き回したときに、測定管13に損傷を与えたり、狭窄部を生じさせたりすることを防止することができ、測定精度への悪影響を抑制することができる。 The two planar side surfaces 21a and 21a are connected by curved surfaces 21b and 21b. If a corner is formed on the outer peripheral surface of the measuring tube holder 21, the corner may damage the measuring tube 13 or the corner may be damaged when the measuring tube 13 is wound along the outer peripheral surface of the measuring tube holder 21. The contact between the portion and the measuring tube 13 may cause the measuring tube 13 to be crushed to form a narrowed portion, which may adversely affect the measurement accuracy of the flow velocity. However, if the two planar side surfaces 21a and 21a are connected by curved surfaces 21b and 21b, no corners are formed on the outer peripheral surface of the measuring tube holder 21 and along the outer peripheral surface of the measuring tube holder 21. When the measuring tube 13 is wound around, it is possible to prevent the measuring tube 13 from being damaged or to cause a narrowed portion, and it is possible to suppress an adverse effect on the measurement accuracy.

次に、図1から図3に示されている超音波流量計11の動作を説明する。 Next, the operation of the ultrasonic flowmeter 11 shown in FIGS. 1 to 3 will be described.

超音波流量計11では、上述したように、測定管ホルダ21の対向する二つの平面状側面21a,21aの各々に、周方向に離間して互いと平行に延びる二つの支持突起23、23が平面状側面21aから突出して設けられており、測定管13が測定管ホルダ21の外周に中心軸線O周りに巻き回され、支持突起23を介して測定管ホルダ21上に支持されている。また、伝送体15が、それぞれの支持突起23と対向する位置で、測定管13の複数の螺旋状要素19の直線部19aの外側部に跨るように配置されて、各伝送体15の一端部が複数の螺旋状要素19の直線部19aの外側部に密着固定され、伝送体15と支持突起23との間に複数の直線部19aを挟持するようになっている。さらに、各伝送体15の他端部に超音波振動子17が取り付けられている。このような構成により、各超音波振動子17から伝送体15を介して測定管13の複数の螺旋状要素19の直線部19a内を流通する流体に超音波を伝搬させることができると共に、一組の超音波振動子17,17の間の螺旋状要素19の直線部19aの管壁が測定管ホルダ21の外周面から離間して配置されるようになっている。 In the ultrasonic flow meter 11, as described above, two support protrusions 23, 23 extending in the circumferential direction and parallel to each other are provided on each of the two opposing planar side surfaces 21a, 21a of the measuring tube holder 21. It is provided so as to project from the flat side surface 21a, and the measuring tube 13 is wound around the central axis O around the outer periphery of the measuring tube holder 21 and supported on the measuring tube holder 21 via the support protrusion 23. Further, the transmission body 15 is arranged so as to straddle the outer side portion of the straight line portion 19a of the plurality of spiral elements 19 of the measuring tube 13 at a position facing each of the support protrusions 23, and one end portion of each transmission body 15. Is tightly fixed to the outer side of the straight line portion 19a of the plurality of spiral elements 19, and the plurality of straight line portions 19a are sandwiched between the transmitter 15 and the support protrusion 23. Further, an ultrasonic vibrator 17 is attached to the other end of each transmission body 15. With such a configuration, ultrasonic waves can be propagated from each ultrasonic vibrator 17 to the fluid flowing in the linear portion 19a of the plurality of spiral elements 19 of the measuring tube 13 via the transmitter 15. The tube wall of the straight portion 19a of the spiral element 19 between the sets of ultrasonic transducers 17 and 17 is arranged so as to be separated from the outer peripheral surface of the measuring tube holder 21.

超音波流量計11において、測定管13内の流体の流れに対して上流側に位置する超音波振動子17(一組の超音波振動子17,17の一方)に電圧パルス又は周波数成分を持たない電圧が印加されると、超音波振動子17には、その厚さ方向(すなわち、電圧を印加する方向)に超音波振動が発生する。超音波振動子17に発生した超音波振動は、超音波振動子17が固着された伝送体15と伝送体15が密着固定されている測定管13の管壁を介して、測定管13の螺旋状要素19の直線部19a内の流体に伝達される。測定管13内の流体に伝達された超音波振動は、図4に示されているように、測定管13の管壁(詳細にはその内周面)で反射されることを繰り返しながら測定管13内の流体中を伝搬した後、測定管13内の流体の流れに対して下流側に位置する伝送体15を通して、これに固着される超音波振動子17(一組の超音波振動子17,17の他方)へ伝達され、電気信号に変換されて、この電気信号が変換器(図示せず)へ出力される。 In the ultrasonic flow meter 11, the ultrasonic vibrator 17 (one of a set of ultrasonic vibrators 17 and 17) located upstream of the flow of fluid in the measuring tube 13 has a voltage pulse or a frequency component. When no voltage is applied, ultrasonic vibration is generated in the ultrasonic vibrator 17 in the thickness direction (that is, the direction in which the voltage is applied). The ultrasonic vibration generated in the ultrasonic vibrator 17 is spiraled in the measuring tube 13 via the tube wall of the transmitting body 15 to which the ultrasonic vibrator 17 is fixed and the measuring tube 13 in which the transmitting body 15 is closely fixed. It is transmitted to the fluid in the linear portion 19a of the shape element 19. As shown in FIG. 4, the ultrasonic vibration transmitted to the fluid in the measuring tube 13 is repeatedly reflected by the tube wall (specifically, the inner peripheral surface thereof) of the measuring tube 13 while repeating the measurement tube. After propagating in the fluid in 13, the ultrasonic transducer 17 (a set of ultrasonic transducers 17) is fixed to the transmitter 15 located on the downstream side of the flow of the fluid in the measuring tube 13. , 17), is converted into an electric signal, and this electric signal is output to a converter (not shown).

超音波振動が上流側の超音波振動子17から下流側の超音波振動子17へ伝搬し受信されると、瞬時に変換器内で送受信が切り換えられて、下流側に位置する超音波振動子17に電圧パルス又は周波数成分を持たない電圧が変換器から印加される。すると、上流側超音波振動子17と同様に超音波振動が発生し、この超音波振動が伝送体15及び測定管13の管壁を経て測定管13の螺旋状要素19の直線部19a内の流体に伝達され、流体流を伝搬して再び上流側に位置する伝送体15に固着される超音波振動子17に受信される。上流側の超音波振動子17に受信された超音波振動は電気信号に変換され、この電気信号が変換器へ出力される。このとき、超音波振動は測定管13内の流体の流れに逆らって伝搬していくので、上流側の超音波振動子17から発信された超音波振動を下流側の超音波振動子17で受信したときに比べて流体中での超音波振動の伝搬速度が遅れ、伝搬時間が長くなる。 When the ultrasonic vibration propagates from the ultrasonic vibrator 17 on the upstream side to the ultrasonic vibrator 17 on the downstream side and is received, transmission / reception is instantly switched in the converter, and the ultrasonic vibrator located on the downstream side is switched. A voltage having no voltage pulse or frequency component is applied to 17 from the converter. Then, ultrasonic vibration is generated in the same manner as the upstream ultrasonic vibrator 17, and this ultrasonic vibration passes through the tube wall of the transmitter 15 and the measuring tube 13 and is formed in the linear portion 19a of the spiral element 19 of the measuring tube 13. It is transmitted to the fluid, propagates through the fluid flow, and is received by the ultrasonic vibrator 17 fixed to the transmitter 15 located on the upstream side again. The ultrasonic vibration received by the ultrasonic vibrator 17 on the upstream side is converted into an electric signal, and this electric signal is output to the converter. At this time, since the ultrasonic vibration propagates against the flow of the fluid in the measuring tube 13, the ultrasonic vibration transmitted from the ultrasonic vibrator 17 on the upstream side is received by the ultrasonic vibrator 17 on the downstream side. The propagation speed of ultrasonic vibration in the fluid is delayed and the propagation time is longer than when the ultrasonic vibration is generated.

変換器内では、上流側の超音波振動子17から下流側の超音波振動子17への超音波振動の伝搬時間と下流側の超音波振動子17から上流側の超音波振動子17への超音波振動の伝搬時間との差に基づいて流速及び流量が演算され、高精度な流量の計測を行うことができる。 In the converter, the propagation time of ultrasonic vibration from the upstream ultrasonic vibrator 17 to the downstream ultrasonic vibrator 17 and the propagation time of the ultrasonic vibration from the downstream ultrasonic vibrator 17 to the upstream ultrasonic vibrator 17 The flow velocity and the flow rate are calculated based on the difference from the propagation time of the ultrasonic vibration, and the flow rate can be measured with high accuracy.

微小流量を測定する場合、超音波流量計11では、流速を高めるために細い測定管13が使用される。上述したように、超音波振動子17から測定管13内の流体に伝達された超音波振動は、図4に示されているように、測定管13の管壁での反射を繰り返しながら流体中を伝搬していく。このため、図4(a)に示されているような太い測定管13の場合よりも、図4(b)に示されているような細い測定管13の場合には、一方の超音波振動子17から他方の超音波振動子17へ到達するまでに、測定管13の管壁での超音波振動の反射回数が増加して、超音波振動が減衰する。また、測定管13が細いと、測定管13内の流体に伝達される超音波振動のエネルギも小さくなる。この結果、相対的に雑音信号が大きくなって、SN比が悪化し、測定精度を悪化させてしまう。 When measuring a minute flow rate, the ultrasonic flow meter 11 uses a thin measuring tube 13 to increase the flow velocity. As described above, the ultrasonic vibration transmitted from the ultrasonic transducer 17 to the fluid in the measuring tube 13 is reflected in the fluid while being repeatedly reflected by the tube wall of the measuring tube 13 as shown in FIG. Will be propagated. Therefore, in the case of the thin measuring tube 13 as shown in FIG. 4 (b), one of the ultrasonic vibrations is more than the case of the thick measuring tube 13 as shown in FIG. 4 (a). By the time the child 17 reaches the other ultrasonic vibrator 17, the number of reflections of the ultrasonic vibration on the tube wall of the measuring tube 13 increases, and the ultrasonic vibration is attenuated. Further, when the measuring tube 13 is thin, the energy of ultrasonic vibration transmitted to the fluid in the measuring tube 13 also becomes small. As a result, the noise signal becomes relatively large, the SN ratio deteriorates, and the measurement accuracy deteriorates.

しかしながら、超音波流量計11では、一本の測定管13が測定管ホルダ21の外周面に沿って巻き回され、測定管ホルダ21の中心軸線O方向に並列して配置された複数の螺旋状要素19の直線部19aの外側部に跨って伝送体15が密着固定されている。このため、一方の伝送体15に固着された超音波振動子17によって発信された超音波振動は伝送体15を介して、複数の螺旋状要素19の直線部19aの管壁に同時に伝達され、さらに、直線部19aの内部の流体中を伝搬して、他方の伝送体15に固着された超音波振動子17に受信されるようになる。すなわち、一組の超音波振動子17,17の間に等しい長さの複数の測線が形成される。複数の螺旋状要素19は直列に接続されており等しい内径を有しているので、いずれの螺旋状要素19の内部でも流量及び流速は同じであり、発信側の超音波振動子17の振動が伝達される螺旋状要素19の数の分だけの超音波振動が合成されて、受信側の超音波振動子17によって受信され、測定対象の流体が流れる測定管13の断面積を疑似的に増加させることができる。この結果、受信側の超音波振動子17によって受信される超音波振動信号の強度が増加し、測定対象の流体を伝搬して超音波振動子17に受信される超音波信号のSN比が改善される。よって、微小流体を測定するために、細い測定管13を使用している場合の測定精度を向上させることが可能となる。 However, in the ultrasonic flow meter 11, one measuring tube 13 is wound along the outer peripheral surface of the measuring tube holder 21, and a plurality of spirals arranged in parallel in the central axis O direction of the measuring tube holder 21. The transmitter 15 is closely fixed so as to straddle the outer side of the straight portion 19a of the element 19. Therefore, the ultrasonic vibration transmitted by the ultrasonic vibrator 17 fixed to one of the transmitters 15 is simultaneously transmitted to the tube wall of the straight portion 19a of the plurality of spiral elements 19 via the transmitter 15. Further, it propagates in the fluid inside the linear portion 19a and is received by the ultrasonic vibrator 17 fixed to the other transmitter 15. That is, a plurality of survey lines having the same length are formed between the set of ultrasonic transducers 17, 17. Since the plurality of spiral elements 19 are connected in series and have the same inner diameter, the flow rate and the flow velocity are the same inside each of the spiral elements 19, and the vibration of the ultrasonic transducer 17 on the transmitting side is generated. As many ultrasonic vibrations as the number of transmitted spiral elements 19 are combined and received by the receiving side ultrasonic vibrator 17, and the cross-sectional area of the measuring tube 13 through which the fluid to be measured flows is pseudo-increased. Can be made to. As a result, the intensity of the ultrasonic vibration signal received by the ultrasonic vibrator 17 on the receiving side is increased, and the SN ratio of the ultrasonic signal propagated through the fluid to be measured and received by the ultrasonic vibrator 17 is improved. Will be done. Therefore, it is possible to improve the measurement accuracy when the thin measuring tube 13 is used to measure the minute fluid.

また、超音波振動子17は伝送体15を介して螺旋状要素19の直線部19aの外側部に取り付けられている。したがって、測定管13の断面における流速分布がほぼ均一となる直線部19aで流速の測定を行うことができ、より正確に測定管13内の流体の流速を測定することができ、より正確な流量の測定が可能となる。 Further, the ultrasonic vibrator 17 is attached to the outer side of the linear portion 19a of the spiral element 19 via the transmission body 15. Therefore, the flow velocity can be measured at the straight portion 19a where the flow velocity distribution in the cross section of the measuring tube 13 is substantially uniform, and the flow velocity of the fluid in the measuring tube 13 can be measured more accurately, and the flow velocity can be more accurate. Can be measured.

さらに、超音波振動を伝搬する流体が内部を流通する螺旋状要素19の直線部19aは、支持突起23によって、測定管ホルダ21の外周面から離間して測定管ホルダ21に支持されている。したがって、超音波振動が測定管13の管壁で反射を繰り返しながら流体中を伝搬するときに、超音波振動が測定管13の管壁と測定管ホルダ21の外周面との接触部を通して測定管ホルダ21に逃げて、測定管13内の流体を伝搬する超音波振動を減衰させることを抑制することができる。よって、測定精度のさらなる改善を図ることが可能である。 Further, the linear portion 19a of the spiral element 19 through which the fluid propagating the ultrasonic vibration flows inside is supported by the measuring tube holder 21 by the support projection 23, separated from the outer peripheral surface of the measuring tube holder 21. Therefore, when the ultrasonic vibration propagates in the fluid while repeating reflection on the tube wall of the measuring tube 13, the ultrasonic vibration passes through the contact portion between the tube wall of the measuring tube 13 and the outer peripheral surface of the measuring tube holder 21. It is possible to prevent the ultrasonic vibration propagating in the fluid in the measuring tube 13 from being attenuated by escaping to the holder 21. Therefore, it is possible to further improve the measurement accuracy.

加えて、超音波流量計11では、一組の超音波振動子17の間で伝搬する超音波振動の強度を増加させるために、測定管13をシリカやステンレスなどの高剛性材料から作製したり、雑音の影響を減少させるために測定管13を弾性層で覆うことなく、超音波振動の強度を増加させてSN比の改善を行っているので、コストの増加を抑制することができる。 In addition, in the ultrasonic flowmeter 11, the measuring tube 13 is made of a high-rigidity material such as silica or stainless steel in order to increase the intensity of ultrasonic vibration propagating between a set of ultrasonic vibrators 17. In order to reduce the influence of noise, the measuring tube 13 is not covered with an elastic layer, and the intensity of ultrasonic vibration is increased to improve the SN ratio, so that an increase in cost can be suppressed.

本発明による超音波流量計の構成は、図1から図3に示されている実施形態に限定されるものではない。図5から図7は、本発明による超音波流量計の変形形態を示している。図5から図7では、図1から図3に示されている実施形態の超音波流量計11と共通の構成要素について同じ参照符号を付している。図5から図7に示されている変形形態の超音波流量計51,61,71は、複数の螺旋状要素19を有した測定管13と、流れ軸線方向に離間した位置の測定管13の外側部に密着固定される一組の伝送体と、一組の伝送体のそれぞれに取り付けられる一組の超音波振動子17と、対向する二つの平面状側面21a,21aと二つの平面状側面21a,21aの間を接続する二つの湾曲面21b、21bとを有する測定管ホルダ21とを備え、一組の伝送体が、中心軸線O方向に並列して配置される複数の螺旋状要素19に跨るように、各螺旋状要素19の流れ軸線方向に所定距離だけ離間して互いと平行に配置されており、各伝送体15の一端部が複数の螺旋状要素19の外側部に密着固定されている点において、図1から図3に示されている実施形態の超音波流量計11と共通している一方、各伝送体15の形状や螺旋状要素19の外側部への取り付け位置が図1から図3に示されている実施形態の超音波流量計11と異なっている。以下では、図1から図3に示されている実施形態の超音波流量計11と異なる部分のみを説明し、共通する部分については説明を省略する。 The configuration of the ultrasonic flowmeter according to the present invention is not limited to the embodiments shown in FIGS. 1 to 3. 5 to 7 show a modified form of the ultrasonic flowmeter according to the present invention. 5 to 7 have the same reference numerals for components common to the ultrasonic flowmeter 11 of the embodiment shown in FIGS. 1 to 3. The modified ultrasonic flow meters 51, 61, 71 shown in FIGS. 5 to 7 are a measuring tube 13 having a plurality of spiral elements 19 and a measuring tube 13 at a position separated from each other in the flow axis direction. A set of transmitters that are closely fixed to the outer portion, a set of ultrasonic transducers 17 that are attached to each of the sets of transmitters, two opposing planar side surfaces 21a, 21a, and two planar side surfaces. A plurality of spiral elements 19 including a measuring tube holder 21 having two curved surfaces 21b and 21b connecting between 21a and 21a, and a set of transmitters arranged in parallel in the central axis O direction. The spiral elements 19 are arranged in parallel with each other by a predetermined distance in the flow axis direction so as to straddle the above, and one end of each transmission body 15 is closely fixed to the outer portions of the plurality of spiral elements 19. In that respect, while being common to the ultrasonic flowmeter 11 of the embodiment shown in FIGS. 1 to 3, the shape of each transmitter 15 and the attachment position of the spiral element 19 to the outer portion are It is different from the ultrasonic flow meter 11 of the embodiment shown in FIGS. 1 to 3. In the following, only the parts different from the ultrasonic flowmeter 11 of the embodiment shown in FIGS. 1 to 3 will be described, and the common parts will be omitted.

図5に示されている変形形態の超音波流量計51及び図6に示されている変形形態の超音波流量計61は、一組の伝送体53の各々の一端部が、測定管ホルダ21の平面状側面21aに設けられた支持突起23との間に測定管13の複数の螺旋状要素19の直線部19aを挟持するように、複数の螺旋状要素19の直線部19aに跨って、複数の螺旋状要素19の外側部に密着固定されている点において、図1から図3に示されている実施形態の超音波流量計11と共通している。 In the deformed ultrasonic flowmeter 51 shown in FIG. 5 and the deformed ultrasonic flowmeter 61 shown in FIG. 6, one end of each of the set of transmitters 53 is a measuring tube holder 21. Straddling the straight portions 19a of the plurality of spiral elements 19 so as to sandwich the straight portions 19a of the plurality of spiral elements 19 of the measuring tube 13 with the support protrusions 23 provided on the planar side surface 21a of the measuring tube 13. It is common to the ultrasonic flowmeter 11 of the embodiment shown in FIGS. 1 to 3 in that it is closely fixed to the outer side of the plurality of spiral elements 19.

一方、図1から図3に示されている実施形態の超音波流量計11では、伝送体15は、一端部を螺旋状要素19の直線部19aの外側部に密着固定したときに、他端部の面が平面状側面21aと平行に延び、他端部に取り付けられた超音波振動子17からの超音波振動が螺旋状要素19の直線部19a内の流体へ流れ軸線に対して概略垂直な方向に伝搬するような形状を有している。これに対し、図5に示されている変形形態の超音波流量計51の伝送体53と図6に示されている変形形態の超音波流量計61の伝送体63とは、図1から図3に示されている実施形態の超音波流量計11の伝送体15と比較して、形状と、伝送体15から螺旋状要素19の直線部内の流体への超音波振動の伝搬方向が異なっている。 On the other hand, in the ultrasonic flowmeter 11 of the embodiment shown in FIGS. 1 to 3, when one end of the transmitter 15 is closely fixed to the outer side of the straight portion 19a of the spiral element 19, the other end of the transmitter 15. The surface of the portion extends parallel to the planar side surface 21a, and the ultrasonic vibration from the ultrasonic transducer 17 attached to the other end flows to the fluid in the linear portion 19a of the spiral element 19 and is approximately perpendicular to the axis. It has a shape that propagates in various directions. On the other hand, the transmitter 53 of the modified ultrasonic flowmeter 51 shown in FIG. 5 and the transmitter 63 of the modified ultrasonic flowmeter 61 shown in FIG. 6 are shown in FIGS. 1 to 1. Compared with the transmission body 15 of the ultrasonic flow meter 11 of the embodiment shown in 3, the shape and the propagation direction of the ultrasonic vibration from the transmission body 15 to the fluid in the linear portion of the spiral element 19 are different. There is.

図5に示されている変形形態の超音波流量計51では、伝送体53は、螺旋状要素19の中心軸線Oに垂直な断面において伝送体15とほぼ同一の漏斗状に形成されているが、螺旋状要素19に密着固定する一端部の形状が異なり、一端部を螺旋状要素19の直線部19aの外側部に密着固定したときに、他端部の面が平面状側面21aに対して斜め方向に延びるようになっており、他端部に取り付けられた超音波振動子17からの超音波振動が螺旋状要素19の直線部19a内の流体へ流れ軸線に対して斜め方向伝搬する。また、図6に示されている変形形態の超音波流量計61では、伝送体63は、概略くさび形状(螺旋状要素19の中心軸線Oに垂直な断面において略三角形状を有する形状)を有し、一端部を螺旋状要素19の直線部19aの外側部に密着固定したときに、他端部の面が平面状側面21aに対して概略垂直方向に延びるようになっており、他端部に取り付けられた超音波振動子17からの超音波振動が螺旋状要素19の直線部19a内の流体へ流れ軸線に対して斜め方向に伝搬する。 In the modified form of the ultrasonic flow meter 51 shown in FIG. 5, the transmitter 53 is formed in a funnel shape substantially the same as the transmitter 15 in a cross section perpendicular to the central axis O of the spiral element 19. , The shape of one end that is closely fixed to the spiral element 19 is different, and when one end is closely fixed to the outer side of the straight portion 19a of the spiral element 19, the surface of the other end is relative to the planar side surface 21a. The ultrasonic vibration from the ultrasonic transducer 17 attached to the other end of the spiral element 19 flows diagonally to the fluid in the linear portion 19a of the spiral element 19 and propagates diagonally with respect to the axis. Further, in the modified ultrasonic flowmeter 61 shown in FIG. 6, the transmitter 63 has a substantially wedge shape (a shape having a substantially triangular shape in a cross section perpendicular to the central axis O of the spiral element 19). However, when one end is closely fixed to the outer side of the straight portion 19a of the spiral element 19, the surface of the other end extends substantially perpendicular to the planar side surface 21a, and the other end is formed. The ultrasonic vibration from the ultrasonic vibrator 17 attached to the spiral element 19 flows to the fluid in the linear portion 19a of the spiral element 19 and propagates diagonally with respect to the axis.

また、図7に示されている変形形態の超音波流量計71は、一組の伝送体53の各々の一端部が、測定管ホルダ21の外周面上に設けられた支持突起23との間に測定管13の複数の螺旋状要素19を挟持するように、複数の螺旋状要素19に跨って、複数の螺旋状要素19の外側部に密着固定されている点において、図1から図3に示されている実施形態の超音波流量計11と共通している。一方、図1から図3に示されている実施形態の超音波流量計11の伝送体15は、測定管ホルダ21の平面状側面21aに設けられた支持突起23との間に測定管13の複数の螺旋状要素19の直線部19aを挟持するように、複数の螺旋状要素19の外側部に密着固定されている。これに対して、図7に示されている変形形態の超音波流量計71の伝送体73は、螺旋状要素19の外側部に固着される位置が図1から図3に示されている実施形態の超音波流量計11の伝送体15とは異なっている。 Further, in the modified form of the ultrasonic flow meter 71 shown in FIG. 7, one end of each of the set of transmitters 53 is between the support projection 23 provided on the outer peripheral surface of the measuring tube holder 21. 1 to 3 are in close contact with and fixed to the outer side of the plurality of spiral elements 19 straddling the plurality of spiral elements 19 so as to sandwich the plurality of spiral elements 19 of the measuring tube 13. It is common with the ultrasonic flow meter 11 of the embodiment shown in. On the other hand, the transmitter 15 of the ultrasonic flow meter 11 of the embodiment shown in FIGS. 1 to 3 has a measuring tube 13 between the transmitting body 15 and the support projection 23 provided on the planar side surface 21a of the measuring tube holder 21. The linear portions 19a of the plurality of spiral elements 19 are closely fixed to the outer portions of the plurality of spiral elements 19 so as to sandwich the straight portions 19a. On the other hand, the position of the transmitter 73 of the modified ultrasonic flow meter 71 shown in FIG. 7 to be fixed to the outer side of the spiral element 19 is shown in FIGS. 1 to 3. It is different from the transmitter 15 of the ultrasonic flow meter 11 of the form.

図7に示されている変形形態の超音波流量計71では、伝送体73は、螺旋状要素19の中心軸線Oに垂直な断面において超音波振動子17が取り付けられる端部から螺旋状要素19の外側部に密着固定される端部へ向かうにつれて細くなるテーパ形状を有している。また、支持突起23が測定管ホルダ21の平面状側面21aに隣接する湾曲面21aの端部に設けられている。上述のような形状の伝送体73は、その一端部が湾曲面21aの端部に設けられた支持突起23との間に螺旋状要素19を挟持するように、螺旋状要素19の直線部19aに隣接する湾曲部19bの端部の外側部に密着固定される。伝送体73は、一端部を螺旋状要素19の湾曲部19bの端部の外側部に密着固定したときに、他端部の面が平面状側面21aに対して概略垂直方向に延びるようになっており、他端部に取り付けられた超音波振動子17からの超音波振動が、伝送体73の一端部を外側部に密着固定された湾曲部19bの端部内の流体を経て当該端部に隣接する螺旋状要素19の直線部19a内の流体へ、流れ軸線と平行な方向に伝搬する。 In the modified form of the ultrasonic flowmeter 71 shown in FIG. 7, the transmitter 73 has a spiral element 19 from the end to which the ultrasonic vibrator 17 is attached in a cross section perpendicular to the central axis O of the spiral element 19. It has a tapered shape that narrows toward the end that is closely fixed to the outer side of the. Further, the support protrusion 23 is provided at the end of the curved surface 21a adjacent to the planar side surface 21a of the measuring tube holder 21. The transmission body 73 having the above-mentioned shape has a linear portion 19a of the spiral element 19 so that one end thereof sandwiches the spiral element 19 with a support projection 23 provided at the end of the curved surface 21a. It is closely fixed to the outer side of the end of the curved portion 19b adjacent to the. When one end of the transmitter 73 is closely fixed to the outer side of the curved portion 19b of the spiral element 19, the surface of the other end extends substantially perpendicular to the planar side surface 21a. The ultrasonic vibration from the ultrasonic vibrator 17 attached to the other end passes through the fluid in the end of the curved portion 19b in which one end of the transmitter 73 is closely fixed to the outer portion, and then reaches the end. It propagates in the direction parallel to the flow axis to the fluid in the straight portion 19a of the adjacent spiral element 19.

このように、図5から図7に示されている変形形態の超音波流量計51,61,71では、伝送体53,63,73の形状や螺旋状要素19の外側部への取り付け位置が図1から図3に示されている実施形態の超音波流量計11の伝送体15と異なっている。しかしながら、各伝送体53,63,73が複数の螺旋状要素19の外側部に跨って密着固定されており、一組の伝送体53,63,73に取り付けられる一組の超音波振動子17の間に等しい長さの複数の測線が形成される点で、図5から図7に示されている変形形態の超音波流量計51,61,71は、図1から図3に示されている実施形態の超音波流量計11と共通している。したがって、図5から図7に示されている変形形態の超音波流量計51,61,71でも、図1から図3に示されている実施形態の超音波流量計11と同様の作用及び効果を得ることができる。 As described above, in the modified ultrasonic flow meters 51, 61, 71 shown in FIGS. 5 to 7, the shapes of the transmitters 53, 63, 73 and the attachment positions of the spiral element 19 to the outer portion are different. It is different from the transmitter 15 of the ultrasonic flow meter 11 of the embodiment shown in FIGS. 1 to 3. However, each transmission body 53, 63, 73 is closely fixed across the outer portions of the plurality of spiral elements 19, and a set of ultrasonic vibrators 17 attached to the set of transmission bodies 53, 63, 73. The modified ultrasonic flow meters 51, 61, 71 shown in FIGS. 5 to 7 are shown in FIGS. 1 to 3 in that a plurality of survey lines of equal length are formed between the two. It is common with the ultrasonic flow meter 11 of the present embodiment. Therefore, the modified ultrasonic flowmeters 51, 61, 71 shown in FIGS. 5 to 7 have the same actions and effects as the ultrasonic flowmeters 11 of the embodiments shown in FIGS. 1 to 3. Can be obtained.

以上、図示されている実施形態を参照して、本発明による超音波流量計11を説明したが、本発明は図示されている実施形態に限定されるものではない。例えば、図示されている実施形態では、測定管13の螺旋状要素19の直線部19aが支持突起23を介して測定管ホルダ21に支持されているが、支持突起23を設けず、測定管ホルダ21の外周面に直接接触するように測定管13を測定管ホルダ21の外周面に沿って巻き回すようにしてもよい。 Although the ultrasonic flowmeter 11 according to the present invention has been described above with reference to the illustrated embodiment, the present invention is not limited to the illustrated embodiment. For example, in the illustrated embodiment, the straight portion 19a of the spiral element 19 of the measuring tube 13 is supported by the measuring tube holder 21 via the supporting protrusion 23, but the supporting protrusion 23 is not provided and the measuring tube holder is not provided. The measuring tube 13 may be wound along the outer peripheral surface of the measuring tube holder 21 so as to be in direct contact with the outer peripheral surface of the measuring tube 21.

11 超音波流量計
13 測定管
15 伝送体
17 超音波振動子
19 螺旋状要素
19a 直線部
19b 湾曲部
21 測定管ホルダ
21a 平面状側面
21b 湾曲面
23 支持突起
51 超音波流量計
53 伝送体
61 超音波流量計
63 伝送体
71 超音波流量計
73 伝送体
11 Ultrasonic flowmeter 13 Measuring tube 15 Transmitter 17 Ultrasonic transducer 19 Spiral element 19a Straight part 19b Curved part 21 Measuring tube holder 21a Planar side surface 21b Curved surface 23 Support protrusion 51 Ultrasonic flowmeter 53 Transmitter 61 Ultrasonic flowmeter 63 Transmitter 71 Ultrasonic flowmeter 73 Transmitter

Claims (9)

内部に流れ軸線に沿って流体を流通させる測定管と、該測定管の外側部に前記流れ軸線方向に所定の間隔で離間して取り付けられる一組の超音波送受信器とを備える螺旋式超音波流量計であって、
前記測定管が中心軸線周りに螺旋状に延びる複数の螺旋状要素を含み、前記一組の超音波送受信器が、前記流れ軸線方向に前記所定の間隔で、前記中心軸線の方向に隣り合う前記複数の螺旋状要素に跨るように前記複数の螺旋状要素の外側部に取り付けられ、前記一組の超音波送受信器の間に各螺旋状要素の前記流れ軸線に沿った複数の測線が形成されるようになっていることを特徴とする螺旋式超音波流量計。
Spiral ultrasonic waves including a measuring tube that allows fluid to flow along the flow axis inside, and a set of ultrasonic transmitters and receivers that are attached to the outer side of the measuring tube at predetermined intervals in the flow axis direction. It ’s a flow meter,
The measuring tube contains a plurality of spiral elements spirally extending around the central axis, and the set of ultrasonic transmitters / receivers are adjacent to each other in the direction of the central axis at the predetermined interval in the flow axis direction. It is attached to the outer side of the plurality of spiral elements so as to straddle the plurality of spiral elements, and a plurality of survey lines along the flow axis of each spiral element are formed between the set of ultrasonic transmitters and receivers. A spiral ultrasonic flowmeter characterized by being designed to be.
前記各螺旋状要素が直線状に延びる直線部を含み、前記一組の超音波送受信器が前記直線部の外側部に取り付けられている、請求項1に記載の螺旋式超音波流量計。 The spiral ultrasonic flowmeter according to claim 1, wherein each spiral element includes a linear portion extending linearly, and the set of ultrasonic transmitters / receivers is attached to an outer portion of the linear portion. 前記各螺旋状要素が直線状に延びる直線部と該直線部に隣接する湾曲部とを含み、前記一組の超音波送受信器が前記直線部に隣接する前記湾曲部の端部の外側部に取り付けられている、請求項1に記載の螺旋式超音波流量計。 Each of the spiral elements includes a straight portion extending linearly and a curved portion adjacent to the straight portion, and the set of ultrasonic transmitters / receivers is placed on an outer portion of an end portion of the curved portion adjacent to the straight portion. The spiral ultrasonic flowmeter according to claim 1, which is attached. 前記超音波流量計が対向する二つの平面状側面を有する測定管ホルダをさらに備え、前記複数の螺旋状要素が前記二つの平面状側面を含む前記測定管ホルダの外周面に沿って周方向に巻き回されて前記測定管ホルダに支持されている、請求項2又は請求項3に記載の螺旋式超音波流量計。 The ultrasonic flowmeter further comprises a measuring tube holder having two planar side surfaces facing each other, and the plurality of spiral elements are circumferentially along the outer peripheral surface of the measuring tube holder including the two planar side surfaces. The spiral ultrasonic flowmeter according to claim 2 or 3, which is wound and supported by the measuring tube holder. 前記測定管ホルダの前記二つの平面状側面の少なくとも一方に、互いと平行に延びる二つの支持突起が設けられており、前記支持突起を介して前記測定管ホルダに前記複数の螺旋状要素が支持され、前記一組の超音波送受信器がそれぞれ前記二つの支持突起と対向するように配置されている、請求項4に記載の螺旋式超音波流量計。 Two support protrusions extending in parallel with each other are provided on at least one of the two planar side surfaces of the measuring tube holder, and the plurality of spiral elements are supported on the measuring tube holder via the support protrusions. The spiral ultrasonic flowmeter according to claim 4, wherein the pair of ultrasonic transmitters and receivers are arranged so as to face each of the two support protrusions. 前記支持突起の頂部に前記螺旋状要素の外周面の一部と相補的形状の複数の凹部が形成されている、請求項5に記載の螺旋式超音波流量計。 The spiral ultrasonic flowmeter according to claim 5, wherein a plurality of recesses having a shape complementary to a part of the outer peripheral surface of the spiral element are formed on the top of the support protrusion. 前記測定管ホルダの前記二つの平面状側面が前記周方向に湾曲面によって接続されている、請求項4から請求項6の何れか一項に記載の螺旋式超音波流量計。 The spiral ultrasonic flowmeter according to any one of claims 4 to 6, wherein the two planar side surfaces of the measuring tube holder are connected by a curved surface in the circumferential direction. 前記超音波送受信器が、超音波を伝達するための伝送体を介して前記測定管の外側部に取り付けられており、前記伝送体に、前記螺旋状要素の外側面の一部と相補的形状の複数の凹部が形成されている、請求項1から請求項7の何れか一項に記載の螺旋式超音波流量計。 The ultrasonic transmitter / receiver is attached to the outer side of the measuring tube via a transmitter for transmitting ultrasonic waves, and the transmitter has a shape complementary to a part of the outer surface of the spiral element. The spiral ultrasonic flowmeter according to any one of claims 1 to 7, wherein a plurality of recesses are formed. 前記測定管が樹脂製チューブである、請求項1から請求項8の何れか一項に記載の螺旋式超音波流量計。 The spiral ultrasonic flowmeter according to any one of claims 1 to 8, wherein the measuring tube is a resin tube.
JP2019129193A 2019-07-11 2019-07-11 Spiral ultrasonic flowmeter Active JP7246275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019129193A JP7246275B2 (en) 2019-07-11 2019-07-11 Spiral ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019129193A JP7246275B2 (en) 2019-07-11 2019-07-11 Spiral ultrasonic flowmeter

Publications (2)

Publication Number Publication Date
JP2021015024A true JP2021015024A (en) 2021-02-12
JP7246275B2 JP7246275B2 (en) 2023-03-27

Family

ID=74531929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019129193A Active JP7246275B2 (en) 2019-07-11 2019-07-11 Spiral ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP7246275B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194198A (en) * 2000-01-13 2001-07-19 Natl Inst Of Advanced Industrial Science & Technology Meti Ultrasonic flow meter
WO2008009870A1 (en) * 2006-07-21 2008-01-24 Sentec Limited Gas flow detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194198A (en) * 2000-01-13 2001-07-19 Natl Inst Of Advanced Industrial Science & Technology Meti Ultrasonic flow meter
WO2008009870A1 (en) * 2006-07-21 2008-01-24 Sentec Limited Gas flow detector

Also Published As

Publication number Publication date
JP7246275B2 (en) 2023-03-27

Similar Documents

Publication Publication Date Title
JP4233445B2 (en) Ultrasonic flow meter
JP6172533B2 (en) Ultrasonic transducer and ultrasonic flow meter having the same
US11215489B2 (en) Apparatus and method for measuring the flow velocity of a fluid in a pipe
JP2002365106A (en) Instrument for measuring flow rate, clamp-on type ultrasonic flowmeter
KR20040065555A (en) Method of measuring flow of fluid moving in pipe or groove-like flow passage
TW201319524A (en) Ultrasonic sensor and ultrasonic flowmeter using same
JP2005164571A (en) Ultrasonic flowmeter and ultrasonic sensor
US9279708B2 (en) Ultrasonic flowmeter
JP2015232519A (en) Clamp-on type ultrasonic flow meter and flow measurement method
JP2014085255A (en) Method of manufacturing ultrasonic flowmeter, ultrasonic flowmeter manufactured with the same, and liquid controller having the ultrasonic flowmeter
JP6106338B2 (en) Ultrasonic flow meter
JP6726274B2 (en) Ultrasonic flow meter
JP5634636B1 (en) Ultrasonic flow meter
JP7246275B2 (en) Spiral ultrasonic flowmeter
JP5201525B2 (en) Flow measuring device
JP4444588B2 (en) Ultrasonic flow meter
JPH11230799A (en) Ultrasonic flowmeter
JP6149250B2 (en) Ultrasonic flow meter
JP2011007763A (en) Ultrasonic flowmeter
JPH04231820A (en) Measured value detector for ultrasonic-wave flow-rate measuring apparatus
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
JP6532504B2 (en) Ultrasonic flow meter
JP6141556B1 (en) Ultrasonic flow meter
JP2012230095A (en) Ultrasonic flowmeter
JP2004340622A (en) Method of measuring flow rate of fluid moving in tubular or ditch-like flow passage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220608

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230314

R150 Certificate of patent or registration of utility model

Ref document number: 7246275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150