JP2021014630A - Method of recovering lithium from lithium ion battery - Google Patents

Method of recovering lithium from lithium ion battery Download PDF

Info

Publication number
JP2021014630A
JP2021014630A JP2019131212A JP2019131212A JP2021014630A JP 2021014630 A JP2021014630 A JP 2021014630A JP 2019131212 A JP2019131212 A JP 2019131212A JP 2019131212 A JP2019131212 A JP 2019131212A JP 2021014630 A JP2021014630 A JP 2021014630A
Authority
JP
Japan
Prior art keywords
lithium
ion battery
crushed product
crushed
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019131212A
Other languages
Japanese (ja)
Other versions
JP7286085B2 (en
Inventor
充志 中村
Mitsuji Nakamura
充志 中村
本間 健一
Kenichi Honma
健一 本間
泰之 石田
Yasuyuki Ishida
泰之 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Shimane University
Original Assignee
Taiheiyo Cement Corp
Shimane University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Shimane University filed Critical Taiheiyo Cement Corp
Priority to JP2019131212A priority Critical patent/JP7286085B2/en
Publication of JP2021014630A publication Critical patent/JP2021014630A/en
Application granted granted Critical
Publication of JP7286085B2 publication Critical patent/JP7286085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

To provide a method of efficiently recovering lithium from a lithium ion battery.SOLUTION: A method of recovering lithium from lithium ion batteries contains a process of hydrothermally processing the following (1) or (2). (1) Water to which a crushed material of a roasted body of lithium ion batteries having a phosphorus content of 20 mg/g or smaller is added, (2) an aqueous solution to which a crushed material of a roasted body of the lithium ion batteries having a phosphorous content of 20 mg/g or smaller is added and which contains one or more kinds of additives selected from hydroxide and oxide of group 2 elements of periodic table.SELECTED DRAWING: None

Description

本発明は、リチウムイオン電池からのリチウムの回収方法に関する。 The present invention relates to a method for recovering lithium from a lithium ion battery.

近年、携帯電話、家庭用電気製品、自動車等の産業分野でリチウムイオン電池の需要が増大している。しかしながら、そこに含まれるリチウムは高価な有価金属であるため、資源の有効活用の観点から、不良品又は使用済のリチウムイオン電池からリチウムを回収する方法が検討されている。 In recent years, the demand for lithium-ion batteries has been increasing in industrial fields such as mobile phones, household electric appliances, and automobiles. However, since lithium contained therein is an expensive valuable metal, a method of recovering lithium from a defective product or a used lithium ion battery is being studied from the viewpoint of effective utilization of resources.

例えば、リチウムイオン電池を400℃以下の温度で予備焙焼して得られた粉状品を400℃以上の温度で酸化焙焼し、その後、400〜750℃の温度で還元焙焼して還元焙焼品を生成し、アルカリ土類金属の水酸化物を懸濁させた水溶液に還元焙焼品を浸漬させて還元焙焼品中のリチウムを水に溶出させ、リチウムを回収する方法が提案されている(特許文献1)。また、リチウムイオン電池を焙焼し焙焼物を破砕して篩分けし、粒径を制御した粉粒体を、特定金属のハロゲン化物、硝酸塩又は酢酸塩を含む水溶液に添加し、それを水熱処理してリチウムを回収する方法も提案されている(特許文献2)。 For example, a powdery product obtained by pre-roasting a lithium ion battery at a temperature of 400 ° C. or lower is oxidatively roasted at a temperature of 400 ° C. or higher, and then reduced by reduction roasting at a temperature of 400 to 750 ° C. A proposed method is to produce a roasted product, immerse the reduced roasted product in an aqueous solution in which a hydroxide of an alkaline earth metal is suspended, elute the lithium in the reduced roasted product into water, and recover the lithium. (Patent Document 1). In addition, a lithium ion battery is roasted, the roasted product is crushed and sieved, and powders and granules having a controlled particle size are added to an aqueous solution containing a halide, nitrate or acetate of a specific metal, and the mixture is hydrothermally treated. A method for recovering lithium has also been proposed (Patent Document 2).

特開2012−229481号公報Japanese Unexamined Patent Publication No. 2012-229 特開2017−52997号公報JP-A-2017-52997

特許文献1に記載された回収方法は、リチウムイオン電池に含まれるコバルト、ニッケル、マンガン、リチウム等の有価金属を段階的に分別回収するため、操作が複雑であり、効率的でなく、また浸漬後の水溶液中に還元焙焼品から溶出したリチウムは濃度が低いため、回収コストの点で不利である。また、特許文献2に記載された回収方法は、80%前後の高い収率でリチウムを回収することが可能であるが、そのためには高温かつ長時間の水熱処理を要するため、回収効率の観点から改善の余地がある。
本発明の課題は、リチウムイオン電池からリチウムを効率的に回収する方法を提供することにある。
The recovery method described in Patent Document 1 separates and recovers valuable metals such as cobalt, nickel, manganese, and lithium contained in a lithium ion battery in a stepwise manner, so that the operation is complicated, inefficient, and immersion. Lithium eluted from the reduced roasted product in the subsequent aqueous solution has a low concentration, which is disadvantageous in terms of recovery cost. Further, the recovery method described in Patent Document 2 can recover lithium in a high yield of about 80%, but it requires high temperature and long time hydrothermal treatment, so that from the viewpoint of recovery efficiency. There is room for improvement.
An object of the present invention is to provide a method for efficiently recovering lithium from a lithium ion battery.

本発明者らは、リン含有量が特定値以下に制御された、リチウムイオン電池の焙焼体の破砕物を水又は特定添加剤を含む水溶液に添加し、それを比較的低い温度で、短時間水熱処理することにより、リチウムイオン電池中のリチウムを高い収率で効率よく回収できることを見出した。 The present inventors add a crushed product of a roasted lithium-ion battery having a phosphorus content controlled to a specific value or less to water or an aqueous solution containing a specific additive, and add it to an aqueous solution containing a specific additive at a relatively low temperature for a short period of time. It has been found that lithium in a lithium ion battery can be efficiently recovered in a high yield by performing hydrothermal treatment for a long time.

すなわち、本発明は、次の〔1〕〜〔8〕を提供するものである。
〔1〕下記の(1)又は(2)を水熱処理する工程を含む、リチウムイオン電池からのリチウムの回収方法。
(1)リチウムイオン電池の焙焼体の破砕物であって、リン含有量が20mg/g以下である破砕物を添加した水
(2)リチウムイオン電池の焙焼体の破砕物であって、リン含有量が20mg/g以下である破砕物を添加した、周期表第2族元素の水酸化物及び酸化物から選択される1種又は2種以上の添加剤を含む水溶液
〔2〕周期表第2族元素の水酸化物が、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム及び水酸化バリウムから選択される1種又は2種以上である、前記〔1〕記載の回収方法。
〔3〕周期表第2族元素の酸化物が、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム及び酸化バリウムから選択される1種又は2種以上である、前記〔1〕又は〔2〕記載の回収方法。
〔4〕添加剤の使用量が、破砕物に含まれるリンに対する周期表第2族元素のモル比として0.2〜3.5である、前記〔1〕〜〔3〕のいずれか一に記載の回収方法。
〔5〕水熱処理の温度が100〜200℃である、〔1〕〜〔4〕のいずれか一に記載の回収方法。
〔6〕水熱処理の処理時間が0.5〜24時間である、〔1〕〜〔5〕のいずれか一に記載の回収方法。
〔7〕(A)破砕物と、(B)水又は添加剤を含む水溶液との固液比[(A)/(B)]が2.0〜20g/Lである、〔1〕〜〔6〕のいずれか一に記載の回収方法。
〔8〕破砕物の粒径が1.0mm以下である、〔1〕〜〔7〕のいずれか一に記載の回収方法。
That is, the present invention provides the following [1] to [8].
[1] A method for recovering lithium from a lithium ion battery, which comprises a step of hydrothermally treating (1) or (2) below.
(1) Crushed product of roasted body of lithium ion battery, water to which crushed product having a phosphorus content of 20 mg / g or less is added (2) Crushed product of roasted body of lithium ion battery. Periodic Table of the Periodic Table to which crushed material having a phosphorus content of 20 mg / g or less is added. [2] Periodic Table of an aqueous solution containing one or more additives selected from hydroxides and oxides of Group 2 elements. The recovery method according to the above [1], wherein the hydroxide of the Group 2 element is one or more selected from magnesium hydroxide, calcium hydroxide, strontium hydroxide and barium hydroxide.
[3] The recovery method according to the above [1] or [2], wherein the oxide of the Group 2 element of the periodic table is one or more selected from magnesium oxide, calcium oxide, strontium oxide and barium oxide. ..
[4] In any one of the above [1] to [3], the amount of the additive used is 0.2 to 3.5 as the molar ratio of the Group 2 element of the periodic table to phosphorus contained in the crushed product. The described collection method.
[5] The recovery method according to any one of [1] to [4], wherein the temperature of the hydrothermal treatment is 100 to 200 ° C.
[6] The recovery method according to any one of [1] to [5], wherein the treatment time of the hydrothermal treatment is 0.5 to 24 hours.
[7] The solid-liquid ratio [(A) / (B)] of (A) the crushed product to (B) water or an aqueous solution containing an additive is 2.0 to 20 g / L, [1] to [ The collection method according to any one of 6].
[8] The recovery method according to any one of [1] to [7], wherein the crushed product has a particle size of 1.0 mm or less.

本発明によれば、短時間で効率よくリチウムを高収率にて回収することができる。また、本発明の回収方法は、リチウムイオン電池に含まれる正極材、負極材、電解液、セパレータ等を分離処理することなく、リチウムイオン電池中のリチウムを効率的に回収できるため、リチウムの回収コストを低減することができる。 According to the present invention, lithium can be efficiently recovered in a high yield in a short time. Further, in the recovery method of the present invention, lithium in the lithium ion battery can be efficiently recovered without separating the positive electrode material, the negative electrode material, the electrolytic solution, the separator and the like contained in the lithium ion battery, so that the lithium can be recovered. The cost can be reduced.

以下、本発明について詳細に説明する。
本発明のリチウムの回収方法は、リチウムイオン電池の焙焼体の破砕物であって、リン含有量が20mg/g以下である破砕物を、水又は特定添加剤を含む水溶液に添加し、それを水熱処理に供する工程を含むものである。
本発明においては、先ずリチウムイオン電池を焙焼して焙焼体を得、次いで焙焼体を破砕して、リチウムイオン電池の焙焼体の破砕物を準備する。
Hereinafter, the present invention will be described in detail.
In the method for recovering lithium of the present invention, a crushed product of a roasted body of a lithium ion battery, wherein the crushed product having a phosphorus content of 20 mg / g or less is added to water or an aqueous solution containing a specific additive, and the like is added. Includes a step of subjecting the material to hydrothermal treatment.
In the present invention, a lithium ion battery is first roasted to obtain a roasted body, and then the roasted body is crushed to prepare a crushed product of the roasted body of the lithium ion battery.

〔リチウムイオン電池〕
本発明で対象とするリチウムイオン電池は、携帯電話その他の種々の電子機器等で使用され得るリチウムイオン電池であって、製品寿命、製造不良又はその他の理由によって廃棄されるものである。このような廃棄リチウムイオン電池からリチウムを回収することは、資源の有効活用の観点から好ましい。なお、リチウムイオン電池は、1種又は2種以上使用することができる。
[Lithium-ion battery]
The lithium-ion battery targeted by the present invention is a lithium-ion battery that can be used in mobile phones and other various electronic devices, and is discarded due to product life, manufacturing defects, or other reasons. Recovering lithium from such a waste lithium-ion battery is preferable from the viewpoint of effective utilization of resources. One type or two or more types of lithium ion batteries can be used.

リチウムイオン電池は、本発明の効果を享受しやすい点で、正極材がリンを含まないものが好ましく、例えば、リン酸鉄系(LiFePO4)以外のものを挙げることができる。具体的には、例えば、コバルト系(LiCoO2)、ニッケル系(LiNiO2)、マンガン系(LiMn24)、三元系(Li(Ni−Mn−Co)O2)等が挙げられる。ここで、本明細書において「三元系」とは、コバルト酸リチウムのコバルトの一部をニッケルとマンガンで置換したものをいう。なお、正極材は、例えば、ポリフッ化ビニリデン等の有機バインダー等によって固着されたアルミニウム箔(正極集電体)を含んでいてもよい。また、負極材は、カーボン等を挙げることができる。電解液は特に限定されず、例えば、電解質として有機溶媒にリチウム塩を溶解させた有機電解液を挙げることができる。セパレータは、例えば、ポリエチレンフィルム、ポリプロピレンフィルム等を挙げることができる。
リチウムイオン電池の周囲を包み込む外装として、アルミニウムのみからなる筐体や、アルミニウム及び鉄、あるいはアルミラミネート等を含む筐体を有してもよい。また、リチウムイオン電池中には、銅、鉄等の他の金属が含まれていても構わない。
The lithium ion battery is preferably one in which the positive electrode material does not contain phosphorus from the viewpoint that the effects of the present invention can be easily enjoyed, and examples thereof include those other than iron phosphate type (LiFePO 4 ). Specific examples thereof include cobalt-based (LiCoO 2 ), nickel-based (LiNiO 2 ), manganese-based (LiMn 2 O 4 ), and ternary-based (Li (Ni-Mn-Co) O 2 ). Here, the term "ternary system" as used herein refers to a lithium cobalt oxide in which a part of cobalt is replaced with nickel and manganese. The positive electrode material may contain, for example, an aluminum foil (positive electrode current collector) fixed with an organic binder such as polyvinylidene fluoride. Further, the negative electrode material may be carbon or the like. The electrolytic solution is not particularly limited, and examples thereof include an organic electrolytic solution in which a lithium salt is dissolved in an organic solvent as an electrolyte. Examples of the separator include a polyethylene film and a polypropylene film.
As an exterior that wraps around the lithium ion battery, a housing made of only aluminum or a housing containing aluminum and iron, aluminum laminate, or the like may be provided. Further, the lithium ion battery may contain other metals such as copper and iron.

〔焙焼〕
リチウムイオン電池の焙焼は、リチウムイオン電池中の電解液、セパレータ、バインダー等の比較的低温度で熱分解する有機物質をガス化燃焼し、系外に除去する目的で行う。なお、リチウムイオン電池は、筐体を取り外して電池本体を取り出すことを要さず、そのまま焙焼しても構わない。
[Roasting]
Roasting of a lithium ion battery is carried out for the purpose of gasifying and burning organic substances such as an electrolytic solution, a separator and a binder that thermally decompose at a relatively low temperature in the lithium ion battery to remove them from the system. The lithium-ion battery does not need to be removed from the housing and the battery body may be roasted as it is.

焙焼は、300〜650℃の温度で1〜8時間行うことが好ましい。このような条件で焙焼とすることで、リチウムイオン電池中の電解液等に含まれる有機物質が容易に熱分解し、系外へ除去しやすくなる。また、焙焼物である焙焼灰を塊状に形成することができるため、ハンドリング性や加工性が向上し、リチウムの回収率を高めることができる。 Roasting is preferably carried out at a temperature of 300 to 650 ° C. for 1 to 8 hours. By roasting under such conditions, the organic substances contained in the electrolytic solution and the like in the lithium ion battery are easily thermally decomposed and easily removed from the system. Further, since the roasted ash, which is a roasted product, can be formed in a lump form, the handleability and processability can be improved, and the lithium recovery rate can be increased.

焙焼は、一般的な焙焼炉を使用することができる。例えば、電気炉、トンネル炉、ロータリーキルン等が挙げられる。炉の雰囲気としては、大気雰囲気、CO、H2等の還元ガス種を含む還元雰囲気、N2、Ar等の不活性ガスからなる不活性雰囲気、真空雰囲気を含む非酸化雰囲気が挙げられる。リチウムイオン電池の筐体が樹脂製の場合、樹脂の着火による熱上昇を抑えるために、還元雰囲気又は不活性雰囲気が好ましい。 For roasting, a general roasting furnace can be used. For example, electric furnaces, tunnel furnaces, rotary kilns and the like can be mentioned. Examples of the atmosphere of the furnace include an atmospheric atmosphere, a reducing atmosphere containing a reducing gas species such as CO and H 2 , an inert atmosphere composed of an inert gas such as N 2 and Ar, and a non-oxidizing atmosphere including a vacuum atmosphere. When the housing of the lithium ion battery is made of resin, a reducing atmosphere or an inert atmosphere is preferable in order to suppress heat rise due to ignition of the resin.

〔破砕〕
リチウムイオン電池の焙焼体の破砕は、リチウムイオン電池の筺体を破壊して筺体から正極材及び負極材を取り出し、正極材を分離する目的で行う。なお、ここでいう「破砕」とは、焙焼物を破砕することだけでなく、焙焼物を解体することも包含する概念である。
破砕は、剪断力、衝突、圧縮等による衝撃を加えて破砕することができれば、一般的な破砕機を使用することができる。例えば、サンプルミル、ハンマーミル、ピンミル、ウィングミル、トルネードミル、ハンマークラッシャ等を挙げることができる。
[Crushing]
The roasted body of the lithium ion battery is crushed for the purpose of destroying the housing of the lithium ion battery, taking out the positive electrode material and the negative electrode material from the housing, and separating the positive electrode material. The term "crushing" as used herein is a concept that includes not only crushing the roasted product but also disassembling the roasted product.
For crushing, a general crusher can be used as long as it can be crushed by applying an impact due to shearing force, collision, compression or the like. For example, a sample mill, a hammer mill, a pin mill, a wing mill, a tornado mill, a hammer crusher and the like can be mentioned.

また、本発明においては、破砕物を篩分けし、破砕物の粒径を制御してもよい。篩分けした破砕物は、粒径が1.0mm以下であることが好ましい。このような粒径とすることで、後述の水熱処理において破砕物からのリチウムの溶出量が増加するため、リチウムの回収率をより一層向上させることができる。また、比重選別、磁力選別等の公知の分別操作により、銅、アルミニウム、鉄等を回収することもできる。 Further, in the present invention, the crushed product may be sieved to control the particle size of the crushed product. The sieved crushed product preferably has a particle size of 1.0 mm or less. With such a particle size, the amount of lithium eluted from the crushed material increases in the hydrothermal treatment described later, so that the lithium recovery rate can be further improved. Further, copper, aluminum, iron and the like can be recovered by known sorting operations such as specific gravity sorting and magnetic force sorting.

リチウムイオン電池の焙焼体の破砕物は、リン含有量が20mg/g以下であるが、リチウムの回収率向上の観点から、15mg/g以下が好ましく、12mg/g以下が更に好まい。このようなリン含有量とするには、例えば、正極材がリンを含まず、負極材がチタン酸リチウム以外のものであるリチウムイオン電池を使用すればよい。 The crushed product of the roasted body of the lithium ion battery has a phosphorus content of 20 mg / g or less, but from the viewpoint of improving the recovery rate of lithium, 15 mg / g or less is preferable, and 12 mg / g or less is more preferable. In order to obtain such a phosphorus content, for example, a lithium ion battery in which the positive electrode material does not contain phosphorus and the negative electrode material is other than lithium titanate may be used.

〔水熱処理〕
水熱処理は、破砕物を添加した、水又は特定添加剤を含む水溶液を圧力容器に投入し、加熱して行う。これにより、破砕物からのリチウムの溶出量が増加し、水又は水溶液中のリチウム濃度が高められ、リチウムを高い収率で回収することができる。ここで、本明細書において「水熱処理」とは、破砕物を添加した、水又は特定の添加剤を含む水溶液を密閉状態の圧力容器内で加熱することをいう。
[Hydraulic heat treatment]
The hydrothermal treatment is carried out by putting water or an aqueous solution containing a specific additive containing a crushed material into a pressure vessel and heating it. As a result, the amount of lithium eluted from the crushed product is increased, the concentration of lithium in water or an aqueous solution is increased, and lithium can be recovered in a high yield. Here, the term "hydrothermal treatment" as used herein means heating water or an aqueous solution containing a specific additive to which a crushed product has been added in a closed pressure vessel.

水としては、例えば、水道水、工業用水、蒸留水、精製水、イオン交換水、純水、超純水等が挙げられる。水は、1種又は2種以上使用することができる。水溶液は、これら水のうち1以上を選択し、それに特定添加剤を添加して調製すればよい。中でも、リチウムの回収率向上の観点から、特定添加剤を含む水溶液が好ましい。 Examples of water include tap water, industrial water, distilled water, purified water, ion-exchanged water, pure water, ultrapure water, and the like. One kind or two or more kinds of water can be used. The aqueous solution may be prepared by selecting one or more of these waters and adding a specific additive to the aqueous solution. Above all, an aqueous solution containing a specific additive is preferable from the viewpoint of improving the recovery rate of lithium.

特定添加剤は、周期表第2族元素の水酸化物及び酸化物から選択される1種又は2種以上である。周期表第2族元素としては、リチウムの回収率向上の観点から、マグネシウム、カルシウム、ストロンチウム、バリウムが好ましく、マグネシウム、カルシウムがより好ましく、カルシウムが更に好ましい。
周期表第2族元素の水酸化物しては、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム及び水酸化バリウムから選択される1種又は2種以上を挙げることができるが、リチウムの回収率向上の観点から、水酸化マグネシウム及び水酸化カルシウムから選択される1種以上が好ましく、水酸化カルシウムが更に好ましい。
周期表第2族元素の酸化物としいては、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム及び酸化バリウムから選択される1種又は2種以上を挙げることができるが、リチウムの回収率向上の観点から、酸化カルシウムが好ましい。
The specific additive is one or more selected from hydroxides and oxides of Group 2 elements of the periodic table. As the Group 2 element of the periodic table, magnesium, calcium, strontium, and barium are preferable, magnesium and calcium are more preferable, and calcium is further preferable, from the viewpoint of improving the recovery rate of lithium.
Examples of the hydroxide of the Group 2 element of the periodic table include one or more selected from magnesium hydroxide, calcium hydroxide, strontium hydroxide and barium hydroxide, and the recovery rate of lithium. From the viewpoint of improvement, one or more selected from magnesium hydroxide and calcium hydroxide are preferable, and calcium hydroxide is more preferable.
Examples of the oxide of the Group 2 element of the periodic table include one or more selected from magnesium oxide, calcium oxide, strontium oxide and barium oxide, but from the viewpoint of improving the recovery rate of lithium, Calcium oxide is preferred.

粉砕物と水との混合順序は特に限定されず、任意の順序で添加して混合しても、両者を同時に添加して混合してもよい。
また、粉砕物、水及び添加剤の混合順序も特に限定されず、任意の順序で添加して混合しても、3者を同時に添加して混合してもよく、また予め調製した添加剤を含む水溶液に粉粒体を添加して混合してもよい。
The mixing order of the pulverized product and water is not particularly limited, and may be added and mixed in any order, or both may be added and mixed at the same time.
Further, the mixing order of the pulverized material, water and the additive is not particularly limited, and the pulverized product, water and the additive may be added and mixed in any order, the three may be added and mixed at the same time, or the additive prepared in advance may be added. The powder or granular material may be added to the containing aqueous solution and mixed.

特定添加剤の使用量は、破砕物に含まれるリンに対する周期表第2族元素のモル比(周期表2族元素/破砕物中のリン)として0.2〜3.5が好ましく、0.5〜3.0がより好ましく、1.0〜2.5が更に好ましい。このようなモル比とすることで、短時間でリチウムを収率よく回収することができる。 The amount of the specific additive used is preferably 0.2 to 3.5 as the molar ratio of the elements of Group 2 of the periodic table to the phosphorus contained in the crushed product (elements of Group 2 of the periodic table / phosphorus in the crushed product). 5 to 3.0 is more preferable, and 1.0 to 2.5 is even more preferable. With such a molar ratio, lithium can be recovered in a short time with good yield.

また、(A)破砕物と、(B)水又は添加剤を含む水溶液との固液比[(A)/(B)]は、2.0〜20g/Lが好ましく、2.5〜15g/Lがより好ましく、3.3〜10g/Lが更に好ましい。このような固液比とすることで、破砕物からのリチウムの溶出量が増加し、水又は水溶液中のリチウム濃度が高められ、リチウムを高い収率で回収することができる。 The solid-liquid ratio [(A) / (B)] of (A) the crushed product to (B) water or an aqueous solution containing an additive is preferably 2.0 to 20 g / L, preferably 2.5 to 15 g. / L is more preferable, and 3.3 to 10 g / L is even more preferable. With such a solid-liquid ratio, the amount of lithium eluted from the crushed product is increased, the concentration of lithium in water or an aqueous solution is increased, and lithium can be recovered in a high yield.

水熱処理は、100〜200℃が好ましい。このような温度範囲であれば、破砕物からリチウムが十分溶出されるため、水又は水溶液中のリチウム濃度が高められ、リチウムを高い収率で回収することができる。
特定添加剤を含む水溶液に破砕物を添加する場合、水熱処理の温度は、リチウムの回収率向上の観点から、100〜180℃が好ましく、100〜160℃がより好ましく、100〜140℃が更に好ましい。
水に破砕物を添加する場合、水熱処理の温度は、リチウムの回収率向上の観点から、100℃以上が好ましく、そして200℃以下が好ましい。また、かかる水熱処理の温度を、好ましくは120〜200℃、より好ましくは140〜200℃、更に好ましくは160〜200℃とすることもできる。
The hydrothermal treatment is preferably 100 to 200 ° C. Within such a temperature range, lithium is sufficiently eluted from the crushed material, so that the concentration of lithium in water or an aqueous solution is increased, and lithium can be recovered in a high yield.
When a crushed product is added to an aqueous solution containing a specific additive, the temperature of the hydrothermal treatment is preferably 100 to 180 ° C, more preferably 100 to 160 ° C, and further 100 to 140 ° C from the viewpoint of improving the recovery rate of lithium. preferable.
When a crushed product is added to water, the temperature of the hydrothermal treatment is preferably 100 ° C. or higher, and preferably 200 ° C. or lower, from the viewpoint of improving the recovery rate of lithium. Further, the temperature of such hydrothermal treatment can be preferably 120 to 200 ° C., more preferably 140 to 200 ° C., and even more preferably 160 to 200 ° C.

水熱処理の処理時間は、0.5〜24時間が好ましい。このような処理時間であれば、破砕物からリチウムが十分溶出されるため、水又は水溶液中のリチウム濃度が高められ、リチウムを高い収率で回収することができる。
特定添加剤を含む水溶液に破砕物を添加する場合、水熱処理の処理時間は、リチウムの回収率向上の観点から、0.5〜10時間が好ましく、1〜7時間がより好ましく、2〜4時間が更に好ましい。
水に破砕物を添加する場合、水熱処理の処理時間は、リチウムの回収率向上の観点から、0.5以上が好ましく、そして24時間以下が好ましい。また、かかる水熱処理の時間を、好ましくは5〜24時間、より好ましくは10〜24時間、更に好ましくは15〜24時間とすることもできる。
The treatment time of the hydrothermal treatment is preferably 0.5 to 24 hours. With such a treatment time, lithium is sufficiently eluted from the crushed product, so that the concentration of lithium in water or an aqueous solution is increased, and lithium can be recovered in a high yield.
When a crushed product is added to an aqueous solution containing a specific additive, the treatment time for hydrothermal treatment is preferably 0.5 to 10 hours, more preferably 1 to 7 hours, and 2 to 4 hours from the viewpoint of improving the recovery rate of lithium. Time is even more preferred.
When the crushed material is added to water, the treatment time of the hydrothermal treatment is preferably 0.5 or more, and preferably 24 hours or less, from the viewpoint of improving the recovery rate of lithium. Further, the time of such hydrothermal treatment can be preferably 5 to 24 hours, more preferably 10 to 24 hours, and further preferably 15 to 24 hours.

〔回収〕
水熱処理の加熱を停止した後、圧力容器内の水又は特定添加剤を含む水溶液を冷却する。冷却後の水又は添加剤を含む水溶液をろ過し、ろ液中のリチウムを回収する。ろ過により、水に対して溶解度の高いリチウム塩をろ液側に移行させることができる。そして、ろ液に、炭酸ガスを吹き込む方法、炭酸アンモニウム、炭酸ナトリウム等の炭酸塩を添加する方法等の公知の方法を用いた炭酸化反応により、炭酸リチウムとしてリチウムを高収率で回収することができる。また、ろ液のpHを調整することにより、水酸化リチウムとしてリチウムを回収することもできる。更に、単にろ液中の水分を蒸発させ、ろ液から塩化リチウムや硝酸リチウム等のリチウム塩としてリチウムを回収してもよい。
[Recovery]
After stopping the heating of the hydrothermal treatment, the water in the pressure vessel or the aqueous solution containing the specific additive is cooled. After cooling, the aqueous solution containing water or additives is filtered to recover lithium in the filtrate. By filtration, the lithium salt having a high solubility in water can be transferred to the filtrate side. Then, lithium is recovered as lithium carbonate in a high yield by a carbonation reaction using a known method such as a method of blowing carbon dioxide gas into the filtrate and a method of adding carbonates such as ammonium carbonate and sodium carbonate. Can be done. In addition, lithium can be recovered as lithium hydroxide by adjusting the pH of the filtrate. Further, the water content in the filtrate may be simply evaporated to recover lithium from the filtrate as a lithium salt such as lithium chloride or lithium nitrate.

また、本発明によれば、高価な薬剤を必要とせず、複雑な設備及び操作を必要としないので、リチウムの回収コストの低減することができる。また、ろ過により得られた固形分から、固形分中に含まれる鉄等の金属を、磁力選別、酸処理及びアルカリ処理により水酸化物沈殿、金属製錬等を用いて回収することもできる。 Further, according to the present invention, since expensive chemicals are not required and complicated equipment and operations are not required, the recovery cost of lithium can be reduced. Further, from the solid content obtained by filtration, a metal such as iron contained in the solid content can be recovered by magnetic force sorting, acid treatment and alkali treatment by hydroxide precipitation, metal smelting and the like.

以下、実施例を挙げて、本発明の実施の形態を更に具体的に説明する。但し、本発明は、下記の実施例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(製造例1)
自動車用の廃棄リチウムイオン電池(アルミ箔型、正極材:三元系、負極材:カーボン)を窒素雰囲気で450℃の温度で6時間焙焼した後、剪断破砕機を用いて焙焼体を破砕した。次いで、分級機を用いて破砕物を篩分けし、粒径1.0mm以下の破砕物を得た。かかる破砕物を「破砕物I」とし、その組成比率を表1に示す。
(Manufacturing Example 1)
After roasting a waste lithium-ion battery for automobiles (aluminum foil type, positive electrode material: ternary system, negative electrode material: carbon) at a temperature of 450 ° C for 6 hours in a nitrogen atmosphere, the roasted body is roasted using a shear crusher. Crushed. Next, the crushed product was sieved using a classifier to obtain a crushed product having a particle size of 1.0 mm or less. Such a crushed product is designated as "crushed product I", and the composition ratio thereof is shown in Table 1.

(製造例2)
自動車用の廃棄リチウムイオン電池(アルミ箔型、正極材:マンガン系、負極材:カーボン)を用いたこと以外は、製造例1と同様の操作により、粒径1.0mm以下の破砕物を得た。かかる破砕物を「破砕物II」とし、その組成比率を表1に示す。
(Manufacturing Example 2)
A crushed material having a particle size of 1.0 mm or less was obtained by the same operation as in Production Example 1 except that a waste lithium ion battery for automobiles (aluminum foil type, positive electrode material: manganese-based, negative electrode material: carbon) was used. It was. Such a crushed product is designated as "crushed product II", and the composition ratio thereof is shown in Table 1.

(製造例3)
自動車用の廃棄リチウムイオン電池(アルミ箔型、正極材:リン酸鉄系、負極材:カーボン)を用いたこと以外は、製造例1と同様の操作により、粒径1.0mm以下の破砕物を得た。かかる破砕物を「破砕物III」とし、その組成比率を表1に示す。
(Manufacturing Example 3)
A crushed product having a particle size of 1.0 mm or less is operated in the same manner as in Production Example 1 except that a waste lithium ion battery for automobiles (aluminum foil type, positive electrode material: iron phosphate, negative electrode material: carbon) is used. Got Such a crushed product is designated as "crushed product III", and the composition ratio thereof is shown in Table 1.

(製造例4)
自動車用の廃棄リチウムイオン電池(ラミネート型、正極材:リン酸鉄系、負極材:カーボン)を用いたこと以外は、製造例1と同様の操作により、粒径1.0mm以下の破砕物を得た。かかる破砕物を「破砕物IV」とし、その組成比率を表1に示す。
(Manufacturing Example 4)
A crushed material having a particle size of 1.0 mm or less was produced by the same operation as in Production Example 1 except that a waste lithium ion battery for automobiles (laminate type, positive electrode material: iron phosphate type, negative electrode material: carbon) was used. Obtained. Such a crushed product is designated as "crushed product IV", and the composition ratio thereof is shown in Table 1.

Figure 2021014630
Figure 2021014630

(実施例1)
(A)破砕物と(B)水酸化カルシウム水溶液との固液比[(A)/(B)]が3.3g/Lとなるように破砕物Iを添加して分散させた後、圧力容器を密封した。なお、破砕物I中のリン量に対するカルシウム量は、モル比で1.5であった。圧力容器の内部の温度(処理温度)を200℃、圧力(処理圧力)を1.55MPaで24時間保持して水熱処理を行った後、破砕物Iが添加された水酸化カルシウム水溶液を30℃以下に冷却した。
(Example 1)
After adding and dispersing the crushed material I so that the solid-liquid ratio [(A) / (B)] of the crushed product (A) and the (B) aqueous calcium hydroxide solution is 3.3 g / L, the pressure is increased. The container was sealed. The amount of calcium relative to the amount of phosphorus in the crushed product I was 1.5 in terms of molar ratio. After hydrothermal treatment was performed by holding the temperature (treatment temperature) inside the pressure vessel at 200 ° C. and the pressure (treatment pressure) at 1.55 MPa for 24 hours, the aqueous calcium hydroxide solution to which the crushed product I was added was added at 30 ° C. It was cooled below.

冷却後、圧力容器内の水溶液をろ過し、ろ液中の成分測定を行った。破砕物Iからのリチウム回収率(%)、リン回収率(%)を、以下の計算式にしたがって求めた。その結果を表2に示す。なお、リチウム量及びリン量は、誘導結合プラズマ(ICP)発光分光分析装置を用いて分析した。 After cooling, the aqueous solution in the pressure vessel was filtered, and the components in the filtrate were measured. The lithium recovery rate (%) and phosphorus recovery rate (%) from the crushed material I were calculated according to the following formulas. The results are shown in Table 2. The amount of lithium and the amount of phosphorus were analyzed using an inductively coupled plasma (ICP) emission spectroscopic analyzer.

リチウム回収率(%)=X/Y×100
〔式中、Xはろ液中に溶解しているリチウムの質量(mg)を示し、Yは破砕物中のリチウムの質量(mg)を示す。〕
Lithium recovery rate (%) = X / Y x 100
[In the formula, X indicates the mass (mg) of lithium dissolved in the filtrate, and Y indicates the mass (mg) of lithium in the crushed product. ]

リン回収率(%)=V/W×100
〔式中、Vはろ液中に溶解しているリンの質量(mg)を示し、Wは破砕物中のリンの質量(mg)を示す。〕
Phosphorus recovery rate (%) = V / W x 100
[In the formula, V indicates the mass (mg) of phosphorus dissolved in the filtrate, and W indicates the mass (mg) of phosphorus in the crushed product. ]

(実施例2)
(A)破砕物と(B)水酸化カルシウム水溶液との固液比[(A)/(B)]が10g/Lとなるように破砕物Iを添加したこと以外は、実施例1と同様の操作により水熱処理を行い、ろ液中の成分測定を行った。そして、破砕物Iからのリチウム回収率(%)、リン回収率(%)を求めた。その結果を表2に示す。
(Example 2)
Same as in Example 1 except that the crushed product I was added so that the solid-liquid ratio [(A) / (B)] of the crushed product (A) and the (B) aqueous calcium hydroxide solution was 10 g / L. Hydrothermal treatment was performed by the above operation, and the components in the filtrate were measured. Then, the lithium recovery rate (%) and the phosphorus recovery rate (%) from the crushed material I were determined. The results are shown in Table 2.

(実施例3)
水熱処理の温度を120℃、処理時間を1時間に変更したこと以外は、実施例1と同様の操作により水熱処理を行い、ろ液中の成分測定を行った。そして、破砕物Iからのリチウム回収率(%)、リン回収率(%)を求めた。その結果を表2に示す。
(Example 3)
The hydrothermal treatment was carried out in the same manner as in Example 1 except that the temperature of the hydrothermal treatment was changed to 120 ° C. and the treatment time was changed to 1 hour, and the components in the filtrate were measured. Then, the lithium recovery rate (%) and the phosphorus recovery rate (%) from the crushed material I were determined. The results are shown in Table 2.

(実施例4)
水熱処理の温度を120℃、処理時間を2時間に変更したこと以外は、実施例1と同様の操作により水熱処理を行い、ろ液中の成分測定を行った。そして、破砕物Iからのリチウム回収率(%)、リン回収率(%)を求めた。その結果を表2に示す。
(Example 4)
The hydrothermal treatment was carried out in the same manner as in Example 1 except that the temperature of the hydrothermal treatment was changed to 120 ° C. and the treatment time was changed to 2 hours, and the components in the filtrate were measured. Then, the lithium recovery rate (%) and the phosphorus recovery rate (%) from the crushed material I were determined. The results are shown in Table 2.

(実施例5)
水熱処理の温度を120℃、処理時間を3時間に変更したこと以外は、実施例1と同様の操作により水熱処理を行い、ろ液中の成分測定を行った。そして、破砕物Iからのリチウム回収率(%)、リン回収率(%)を求めた。その結果を表2に示す。
(Example 5)
The hydrothermal treatment was carried out in the same manner as in Example 1 except that the temperature of the hydrothermal treatment was changed to 120 ° C. and the treatment time was changed to 3 hours, and the components in the filtrate were measured. Then, the lithium recovery rate (%) and the phosphorus recovery rate (%) from the crushed material I were determined. The results are shown in Table 2.

(実施例6)
水熱処理の温度を100℃、処理時間を1時間に変更したこと以外は、実施例1と同様の操作により水熱処理を行い、ろ液中の成分測定を行った。そして、破砕物Iからのリチウム回収率(%)、リン回収率(%)を求めた。その結果を表2に示す。
(Example 6)
The hydrothermal treatment was carried out in the same manner as in Example 1 except that the temperature of the hydrothermal treatment was changed to 100 ° C. and the treatment time was changed to 1 hour, and the components in the filtrate were measured. Then, the lithium recovery rate (%) and the phosphorus recovery rate (%) from the crushed material I were determined. The results are shown in Table 2.

(実施例7)
水熱処理の温度を100℃、処理時間を2時間に変更したこと以外は、実施例1と同様の操作により水熱処理を行い、ろ液中の成分測定を行った。そして、破砕物Iからのリチウム回収率(%)、リン回収率(%)を求めた。その結果を表2に示す。
(Example 7)
The hydrothermal treatment was carried out in the same manner as in Example 1 except that the temperature of the hydrothermal treatment was changed to 100 ° C. and the treatment time was changed to 2 hours, and the components in the filtrate were measured. Then, the lithium recovery rate (%) and the phosphorus recovery rate (%) from the crushed material I were determined. The results are shown in Table 2.

(実施例8)
水熱処理の温度を100℃、処理時間を3時間に変更したこと以外は、実施例1と同様の操作により水熱処理を行い、ろ液中の成分測定を行った。そして、破砕物Iからのリチウム回収率(%)、リン回収率(%)を求めた。その結果を表2に示す。
(Example 8)
The hydrothermal treatment was carried out in the same manner as in Example 1 except that the temperature of the hydrothermal treatment was changed to 100 ° C. and the treatment time was changed to 3 hours, and the components in the filtrate were measured. Then, the lithium recovery rate (%) and the phosphorus recovery rate (%) from the crushed material I were determined. The results are shown in Table 2.

(実施例9)
破砕物Iの代わりに、破砕物IIを用いたこと以外は、実施例1と同様の操作により水熱処理を行い、ろ液中の成分測定を行った。そして、破砕物IIからのリチウム回収率(%)、リン回収率(%)を求めた。その結果を表2に示す。
(Example 9)
Hydrothermal treatment was performed in the same manner as in Example 1 except that the crushed material II was used instead of the crushed material I, and the components in the filtrate were measured. Then, the lithium recovery rate (%) and the phosphorus recovery rate (%) from the crushed material II were determined. The results are shown in Table 2.

(実施例10)
破砕物Iの代わりに、破砕物IIを用いたこと以外は、実施例2と同様の操作により水熱処理を行い、ろ液中の成分測定を行った。そして、破砕物IIからのリチウム回収率(%)、リン回収率(%)を求めた。その結果を表2に示す。
(Example 10)
Hydrothermal treatment was performed in the same manner as in Example 2 except that the crushed material II was used instead of the crushed material I, and the components in the filtrate were measured. Then, the lithium recovery rate (%) and the phosphorus recovery rate (%) from the crushed material II were determined. The results are shown in Table 2.

(実施例11)
破砕物Iの代わりに、破砕物IIを用いたこと以外は、実施例5と同様の操作により水熱処理を行い、ろ液中の成分測定を行った。そして、破砕物IIからのリチウム回収率(%)、リン回収率(%)を求めた。その結果を表2に示す。
(Example 11)
Hydrothermal treatment was carried out in the same manner as in Example 5 except that the crushed material II was used instead of the crushed material I, and the components in the filtrate were measured. Then, the lithium recovery rate (%) and the phosphorus recovery rate (%) from the crushed material II were determined. The results are shown in Table 2.

(実施例12)
破砕物Iの代わりに、破砕物IIを用いたこと以外は、実施例8と同様の操作により水熱処理を行い、ろ液中の成分測定を行った。そして、破砕物IIからのリチウム回収率(%)、リン回収率(%)を求めた。その結果を表2に示す。
(Example 12)
Hydrothermal treatment was performed in the same manner as in Example 8 except that the crushed material II was used instead of the crushed material I, and the components in the filtrate were measured. Then, the lithium recovery rate (%) and the phosphorus recovery rate (%) from the crushed material II were determined. The results are shown in Table 2.

(実施例13)
水酸化カルシウム水溶液の代わりに、水を用いたこと以外は、実施例1と同様の操作により水熱処理を行い、ろ液中の成分測定を行った。そして、破砕物Iからのリチウム回収率(%)、リン回収率(%)を求めた。その結果を表2に示す。
(Example 13)
Hydrothermal treatment was carried out in the same manner as in Example 1 except that water was used instead of the calcium hydroxide aqueous solution, and the components in the filtrate were measured. Then, the lithium recovery rate (%) and the phosphorus recovery rate (%) from the crushed material I were determined. The results are shown in Table 2.

(実施例14)
水酸化カルシウム水溶液の代わりに、水を用いたこと以外は、実施例2と同様の操作により水熱処理を行い、ろ液中の成分測定を行った。そして、破砕物Iからのリチウム回収率(%)、リン回収率(%)を求めた。その結果を表2に示す。
(Example 14)
Hydrothermal treatment was carried out in the same manner as in Example 2 except that water was used instead of the calcium hydroxide aqueous solution, and the components in the filtrate were measured. Then, the lithium recovery rate (%) and the phosphorus recovery rate (%) from the crushed material I were determined. The results are shown in Table 2.

(比較例1)
破砕物Iの代わりに、破砕物IIIを用いたこと以外は、実施例1と同様の操作により水熱処理を行い、ろ液中の成分測定を行った。そして、破砕物IIIからのリチウム回収率(%)、リン回収率(%)を求めた。その結果を表2に示す。
(Comparative Example 1)
Hydrothermal treatment was performed in the same manner as in Example 1 except that the crushed material III was used instead of the crushed material I, and the components in the filtrate were measured. Then, the lithium recovery rate (%) and the phosphorus recovery rate (%) from the crushed product III were determined. The results are shown in Table 2.

(比較例2)
破砕物Iの代わりに、破砕物IIIを用いたこと以外は、実施例2と同様の操作により水熱処理を行い、ろ液中の成分測定を行った。そして、破砕物IIIからのリチウム回収率(%)、リン回収率(%)を求めた。その結果を表2に示す。
(Comparative Example 2)
Hydrothermal treatment was carried out in the same manner as in Example 2 except that the crushed material III was used instead of the crushed material I, and the components in the filtrate were measured. Then, the lithium recovery rate (%) and the phosphorus recovery rate (%) from the crushed product III were determined. The results are shown in Table 2.

(比較例3)
破砕物Iの代わりに、破砕物IVを用いたこと以外は、実施例1と同様の操作により水熱処理を行い、ろ液中の成分測定を行った。そして、破砕物IVからのリチウム回収率(%)、リン回収率(%)を求めた。その結果を表2に示す。
(Comparative Example 3)
Hydrothermal treatment was performed in the same manner as in Example 1 except that the crushed material IV was used instead of the crushed material I, and the components in the filtrate were measured. Then, the lithium recovery rate (%) and the phosphorus recovery rate (%) from the crushed product IV were determined. The results are shown in Table 2.

Figure 2021014630
Figure 2021014630

表2の実施例1〜14に示されるように、リチウムイオン電池の焙焼体の破砕物のリン含有量を20mg/g以下に制御した破砕物を、水又は特定添加剤を含む水溶液に添加し、これを水熱処理することで、リチウムイオン電池中のリチウムを高い収率で回収できることがわかる。とりわけ、実施例3〜8に示されるように、破砕物を特定添加剤を含む水溶液に添加した場合には、100℃程度の比較的低い温度で数時間水熱処理するだけで、リチウムイオン電池中のリチウムを高い収率で効率よく回収できることがわかる。
一方、比較例1〜3に示されるように、リチウムイオン電池の焙焼体の破砕物のリン含有量を20mg/g以下に制御しないと、リチウムの回収率が著しく低下することがわかる。
As shown in Examples 1 to 14 of Table 2, a crushed product in which the phosphorus content of the crushed product of the roasted body of the lithium ion battery is controlled to 20 mg / g or less is added to water or an aqueous solution containing a specific additive. However, it can be seen that lithium in the lithium ion battery can be recovered in a high yield by hydrothermally treating this. In particular, as shown in Examples 3 to 8, when the crushed product is added to an aqueous solution containing a specific additive, it is only hydrothermally treated at a relatively low temperature of about 100 ° C. for several hours in a lithium ion battery. It can be seen that lithium can be efficiently recovered in high yield.
On the other hand, as shown in Comparative Examples 1 to 3, it can be seen that the recovery rate of lithium is remarkably lowered unless the phosphorus content of the crushed product of the roasted body of the lithium ion battery is controlled to 20 mg / g or less.

Claims (8)

下記の(1)又は(2)を水熱処理する工程を含む、リチウムイオン電池からのリチウムの回収方法。
(1)リチウムイオン電池の焙焼体の破砕物であって、リン含有量が20mg/g以下である破砕物を添加した水
(2)リチウムイオン電池の焙焼体の破砕物であって、リン含有量が20mg/g以下である破砕物を添加した、周期表第2族元素の水酸化物及び酸化物から選択される1種又は2種以上の添加剤を含む水溶液
A method for recovering lithium from a lithium ion battery, which comprises a step of hydrothermally treating (1) or (2) below.
(1) Water to which a crushed product of a roasted body of a lithium ion battery is added and a phosphorus content of 20 mg / g or less is added. An aqueous solution containing one or more additives selected from hydroxides and oxides of Group 2 elements of the Periodic Table, to which a crushed product having a phosphorus content of 20 mg / g or less is added.
周期表第2族元素の水酸化物が、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム及び水酸化バリウムから選択される1種又は2種以上である、請求項1記載の回収方法。 The recovery method according to claim 1, wherein the hydroxide of the Group 2 element of the periodic table is one or more selected from magnesium hydroxide, calcium hydroxide, strontium hydroxide and barium hydroxide. 周期表第2族元素の酸化物が、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム及び酸化バリウムから選択される1種又は2種以上である、請求項1又は2記載の回収方法。 The recovery method according to claim 1 or 2, wherein the oxide of the Group 2 element of the periodic table is one or more selected from magnesium oxide, calcium oxide, strontium oxide and barium oxide. 添加剤の使用量が、破砕物に含まれるリンに対する周期表第2族元素のモル比として0.2〜3.5である、請求項1〜3のいずれか1項に記載の回収方法。 The recovery method according to any one of claims 1 to 3, wherein the amount of the additive used is 0.2 to 3.5 as the molar ratio of the Group 2 element of the periodic table to phosphorus contained in the crushed product. 水熱処理の温度が100〜200℃である、請求項1〜4のいずれか1項に記載の回収方法。 The recovery method according to any one of claims 1 to 4, wherein the temperature of the hydrothermal treatment is 100 to 200 ° C. 水熱処理の処理時間が0.5〜24時間である、請求項1〜5のいずれか1項に記載の回収方法。 The recovery method according to any one of claims 1 to 5, wherein the treatment time of the hydrothermal treatment is 0.5 to 24 hours. (A)破砕物と、(B)水又は添加剤を含む水溶液との固液比[(A)/(B)]が2.0〜20g/Lである、請求項1〜6のいずれか1項に記載の回収方法。 Any of claims 1 to 6, wherein the solid-liquid ratio [(A) / (B)] of (A) the crushed product to (B) water or an aqueous solution containing an additive is 2.0 to 20 g / L. The collection method according to item 1. 破砕物の粒径が1.0mm以下である、請求項1〜7のいずれか1項に記載の回収方法。 The recovery method according to any one of claims 1 to 7, wherein the crushed product has a particle size of 1.0 mm or less.
JP2019131212A 2019-07-16 2019-07-16 Method for recovering lithium from lithium-ion batteries Active JP7286085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019131212A JP7286085B2 (en) 2019-07-16 2019-07-16 Method for recovering lithium from lithium-ion batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019131212A JP7286085B2 (en) 2019-07-16 2019-07-16 Method for recovering lithium from lithium-ion batteries

Publications (2)

Publication Number Publication Date
JP2021014630A true JP2021014630A (en) 2021-02-12
JP7286085B2 JP7286085B2 (en) 2023-06-05

Family

ID=74530837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019131212A Active JP7286085B2 (en) 2019-07-16 2019-07-16 Method for recovering lithium from lithium-ion batteries

Country Status (1)

Country Link
JP (1) JP7286085B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023000843A1 (en) * 2021-07-22 2023-01-26 广东邦普循环科技有限公司 Method for selectively extracting lithium from retired battery and application of method
WO2023106758A1 (en) * 2021-12-10 2023-06-15 포스코홀딩스 주식회사 Method for recovering lithium from waste lithium battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4442129B2 (en) 2003-07-02 2010-03-31 トヨタ自動車株式会社 Lithium battery, manufacturing method and processing method thereof
JP5017832B2 (en) 2005-09-27 2012-09-05 セイコーエプソン株式会社 Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
US9484606B1 (en) 2013-03-15 2016-11-01 Hulico LLC Recycling and reconditioning of battery electrode materials
JP6352669B2 (en) 2014-04-11 2018-07-04 Jx金属株式会社 Lithium-ion battery waste treatment method
JP6417253B2 (en) 2015-03-26 2018-11-07 太平洋セメント株式会社 Solution for improving concrete structure and method for producing the same
JP6516240B2 (en) 2015-09-09 2019-05-22 太平洋セメント株式会社 Lithium extraction method
JP6640783B2 (en) 2017-03-31 2020-02-05 Jx金属株式会社 Lithium recovery method
CN109678213A (en) 2018-12-26 2019-04-26 广州能源检测研究院 A kind of recycling and reuse method of lithium-ion battery lithium iron phosphate waste material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023000843A1 (en) * 2021-07-22 2023-01-26 广东邦普循环科技有限公司 Method for selectively extracting lithium from retired battery and application of method
GB2622492A (en) * 2021-07-22 2024-03-20 Guangdong Brunp Recycling Technology Co Ltd Method for selectively extracting lithium from retired battery and application of method
WO2023106758A1 (en) * 2021-12-10 2023-06-15 포스코홀딩스 주식회사 Method for recovering lithium from waste lithium battery

Also Published As

Publication number Publication date
JP7286085B2 (en) 2023-06-05

Similar Documents

Publication Publication Date Title
US20220251681A1 (en) Process for the recovery of lithium and other metals from waste lithium ion batteries
EP3956485B1 (en) Process for the preparation of precursor compounds for lithium battery cathodes
US20220274841A1 (en) Process for the recovery of lithium from waste lithium ion batteries
JP6766014B2 (en) Lithium Ion Rechargeable Battery How to recover lithium from scrap
JP6644314B2 (en) Lithium extraction method
WO2019026978A1 (en) Method for dissolving lithium compound, method for manufacturing lithium carbonate, and method for recovering lithium from lithium ion secondary cell scrap
JP7462570B2 (en) Method for recovering lithium and transition metals using heat
KR20150002147A (en) Recycling methdo of ncm type cathode active material from waste lithium ion battery and ncm type cathode active material recycled by the same
JP6516240B2 (en) Lithium extraction method
Zhang et al. Recycling and upcycling spent LIB cathodes: a comprehensive review
JP2023518880A (en) Reuse of batteries by reduction and carbonylation
JP7286085B2 (en) Method for recovering lithium from lithium-ion batteries
WO2022085222A1 (en) Method for recovering lithium and method for producing lithium carbonate
KR20150075247A (en) Method For Recovering Manganese From Lithium Secondary Battery Cathode
JP7220340B1 (en) METHOD FOR RECOVERING METAL FROM LITHIUM-ION BATTERY
RU2790318C2 (en) Method for extraction of lithium and transition metal, using heating
JP2023177724A (en) Waste residue of lithium ion battery and method for producing the same
Patil et al. Methods and Technologies for Recycling Li-Ion Batteries
EA043847B1 (en) METHOD FOR OBTAINING STARTING COMPOUNDS FOR LITHIUM BATTERY CATHODES
Purwanto An environmentally friendly hydrometallurgy process for the recovery and reuse of metals from spent lithium-ion batteries, using organic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220615

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230516

R150 Certificate of patent or registration of utility model

Ref document number: 7286085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150