JP2021013131A - 撮像装置及びその駆動方法 - Google Patents

撮像装置及びその駆動方法 Download PDF

Info

Publication number
JP2021013131A
JP2021013131A JP2019127445A JP2019127445A JP2021013131A JP 2021013131 A JP2021013131 A JP 2021013131A JP 2019127445 A JP2019127445 A JP 2019127445A JP 2019127445 A JP2019127445 A JP 2019127445A JP 2021013131 A JP2021013131 A JP 2021013131A
Authority
JP
Japan
Prior art keywords
signal
image
pixel
unit
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019127445A
Other languages
English (en)
Other versions
JP7374630B2 (ja
JP2021013131A5 (ja
Inventor
信司 山中
Shinji Yamanaka
信司 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019127445A priority Critical patent/JP7374630B2/ja
Priority to US16/922,724 priority patent/US11258967B2/en
Publication of JP2021013131A publication Critical patent/JP2021013131A/ja
Publication of JP2021013131A5 publication Critical patent/JP2021013131A5/ja
Application granted granted Critical
Publication of JP7374630B2 publication Critical patent/JP7374630B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/587Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields
    • H04N25/589Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields with different integration times, e.g. short and long exposures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6811Motion detection based on the image signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/741Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/131Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing infrared wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/581Control of the dynamic range involving two or more exposures acquired simultaneously
    • H04N25/583Control of the dynamic range involving two or more exposures acquired simultaneously with different integration times
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/59Control of the dynamic range by controlling the amount of charge storable in the pixel, e.g. modification of the charge conversion ratio of the floating node capacitance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/702SSIS architectures characterised by non-identical, non-equidistant or non-planar pixel layout
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/707Pixels for event detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

【課題】撮影時に被写体の相対位置が変化した場合にも良好なHDR画像を取得しうる撮像装置を提供する。【解決手段】撮像装置は、光電変換部を各々が含む複数の画素と、複数の画素の各々から、第1の露光期間に光電変換部で生成された電荷に基づく第1の信号と、第1の露光期間よりも短い第2の露光期間に光電変換部で生成された電荷に基づく第2の信号と、を出力するように複数の画素を駆動する駆動部と、第1の信号と第2の信号とを用いて被写体と撮像装置との相対位置の変化を検知する検知部と、第1の信号及び第2の信号を用いて画像を生成する画像生成部と、を有する。画像生成部は、画像の生成において、検知部が相対位置の変化が相対的に小さいことを検知した画素に対して第1の信号を選択し、検知部が相対位置の変化が相対的に大きいことを検知した画素に対して第2の信号を選択する。【選択図】図6

Description

本発明は、撮像装置及びその駆動方法に関する。
近年、CMOSイメージセンサ等の撮像装置において、異なる条件で撮影された複数の画像を合成することにより、より広いダイナミックレンジ(HDR:High Dynamic Range)を得る技術が提案されている。特許文献1には、異なるタイミングで取得された2つの画像からHDR画像を生成する撮像装置が記載されている。
特開2017−120971号公報 特開2016−213650号公報
しかしながら、特許文献1に記載された撮像装置は、異なる条件で撮影された2種類の画像を取得し、一方の画像の飽和した画素の画素値を、他方の画像の対応する画素の画素値に対して所定のデジタル処理を施した画素値で置換するものである。そのため、これら2種類の画像を取得する間に被写体が移動するなど、被写体と撮像装置との間の相対位置が変化した場合、適切なHDR合成を行うことができなかった。
本発明の目的は、撮影時に被写体と撮像装置との間の相対位置が変化した場合にも良好な画像を取得しうる撮像装置及びその駆動方法を提供することにある。
本発明の一観点によれば、撮像装置であって、前記撮像装置は、光電変換部を各々が含む複数の画素が配された画素部と、前記複数の画素の各々から、第1の露光期間に前記光電変換部で生成された電荷に基づく第1の信号と、前記第1の露光期間よりも短い第2の露光期間に前記光電変換部で生成された電荷に基づく第2の信号と、を出力するように前記複数の画素を駆動する駆動部と、前記第1の信号と前記第2の信号とを用いて被写体と前記撮像装置との相対位置の変化を検知する検知部と、前記第1の信号及び前記第2の信号を用いて画像を生成する画像生成部と、を有し、前記画像生成部は、前記画像の生成において、前記検知部が前記相対位置の変化が相対的に小さいことを検知した画素に対して前記第1の信号を選択し、前記検知部が前記相対位置の変化が相対的に大きいことを検知した画素に対して前記第2の信号を選択する撮像装置が提供される。
また、本発明の他の一観点によれば、撮像素子の複数の画素の各々から出力される、第1の露光期間に光電変換部で生成された電荷に基づく第1の信号と、前記第1の露光期間よりも短い第2の露光期間に前記光電変換部で生成された電荷に基づく第2の信号と、を処理する信号処理装置であって、前記第1の信号と前記第2の信号とを用いて被写体と前記撮像素子との相対位置の変化を検知する検知部と、前記第1の信号及び前記第2の信号を用いて画像を生成する画像生成部と、を有し、前記画像生成部は、前記画像の生成において、前記検知部が前記相対位置の変化が相対的に小さいことを検知した画素に対して前記第1の信号を選択し、前記検知部が前記相対位置の変化が相対的に大きいことを検知した画素に対して前記第2の信号を選択する信号処理装置が提供される。
また、本発明の更に他の一観点によれば、光電変換部を各々が含む複数の画素を有する撮像素子と、前記撮像素子から出力される信号を処理する信号処理部と、を有する撮像装置の駆動方法であって、前記複数の画素の各々から、第1の露光期間に前記光電変換部で生成された電荷に基づく第1の信号と、前記第1の露光期間よりも短い第2の露光期間に前記光電変換部で生成された電荷に基づく第2の信号と、を出力するステップと、前記第1の信号と前記第2の信号とを用いて被写体と前記撮像装置との相対位置の変化を検知するステップと、前記第1の信号及び前記第2の信号を用いて画像を生成するステップと、を有し、前記画像を合成するステップでは、前記相対位置の変化が相対的に小さいことを検知した画素に対して前記第1の信号を選択し、前記相対位置の変化が相対的に大きいことを検知した画素に対して前記第2の信号を選択する撮像装置の駆動方法が提供される。
本発明によれば、撮影時に被写体と撮像装置との間の相対位置が変化した場合にも良好な画像を取得することができる。
本発明の第1実施形態による撮像装置の概略構成を示すブロック図である。 本発明の第1実施形態による撮像装置における撮像素子の概略構成を示すブロック図である。 本発明の第1実施形態による撮像装置における撮像素子の画素の構成例を示す等価回路図である。 HDR画像の合成方法を説明する図である。 HDR画像の撮影時における課題を説明する図(その1)である。 本発明の第1実施形態による撮像装置の駆動方法を示すフローチャート(その1)である。 本発明の第1実施形態による撮像装置における移動検知方法を説明する図である。 本発明の第1実施形態による撮像装置における効果を説明する図である。 撮像素子が備える光学フィルタの構成例を示す図である。 本発明の第1実施形態による撮像装置の駆動方法を示すフローチャート(その2)である。 RGBIR配列のカラーフィルタを備えた撮像素子における現像処理方法を説明する図である。 本発明の第1実施形態による撮像装置の駆動方法を示すフローチャート(その3)である。 本発明の第1実施形態による撮像装置の駆動方法を示すフローチャート(その4)である。 本発明の第2実施形態による撮像装置における撮像素子の画素の構成例を示す等価回路示す図である。 本発明の第2実施形態による撮像装置の駆動方法を説明する図である。 HDR画像の撮影時における課題を説明する図(その2)である。 本発明の第3実施形態による撮像装置の駆動方法を説明する図である。 本発明の第4実施形態による撮像システムの概略構成を示すブロック図である。 本発明の第5実施形態による撮像システム及び移動体の構成例を示す図である。
[第1実施形態]
本発明の第1実施形態による撮像装置及びその駆動方法について、図1乃至図13を用いて説明する。
はじめに、本実施形態による撮像装置の概略構成について、図1乃至図3を用いて説明する。図1は、本実施形態による撮像装置の概略構成を示すブロック図である。図2は、本実施形態による撮像装置における撮像素子の概略構成を示すブロック図である。図3は、本実施形態による撮像装置における撮像素子の画素の構成例を示す等価回路図である。
本実施形態による撮像装置は、図1に示すように、撮像素子1と、検出部20と、制御部21と、信号処理部22と、を有する。
撮像素子1は、例えばCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの固体撮像素子である。撮像素子1は、図示しない光学系により結像された被写体像を受け、当該被写体像に応じた画像信号を出力する。
検出部20は、移動検知部201を有する。移動検知部201は、撮像素子1から出力される露光期間の長さが異なる2つの画像信号から、撮影時における被写体と撮像装置との間の相対位置の変化(移動)を検出する。ここで、被写体と撮像装置との間の相対位置の変化には、被写体が移動している場合、撮像装置が移動している場合、被写体及び撮像装置の双方が移動している場合、が含まれる。移動検知部201は、長秒画像信号と短秒画像信号とを比較し、同一の場所(座標)の画素値の比や差分、相関などに基づいて、被写体と撮像装置との間の相対位置の変化を検出する。なお、長秒画像信号とは、短秒画像信号との比較において、露光期間が相対的に長い条件で撮像を行った場合の画像信号である。短秒画像信号とは、長秒画像信号との比較において、露光期間が相対的に短い条件で撮像を行った場合の画像信号である。
制御部21は、露光期間制御部211と、同期信号発生回路212と、を有する。露光期間制御部211は、図示しない点滅検出部などの検出結果に基づき、露光期間及び露光の開始タイミングを決定する。同期信号発生回路212は、図示しないクロック回路及びゲート回路を有し、垂直同期信号と水平同期信号とを生成する。
信号処理部22は、DSP(Digital Signal Processor)などのデジタル回路により構成され、画像生成回路(画像生成部)221と、画像処理回路222と、を有する。画像生成回路221は、露光期間の長さが異なる2つの信号を合成し、広ダイナミックレンジ(HDR:High Dynamic Range)画像を生成する。画像処理回路222は、撮像素子1から出力される画像信号に対して、色キャリア除去、ノイズ除去、アパーチャー補正、ガンマ補正、色補間、データ圧縮などの処理を施し、動画ビットストリームとして出力する。なお、信号処理部22は必ずしも撮像装置に含まれることを要せず、撮像装置とは別の装置に設けられてもよい。
撮像素子1は、図2に示すように、画素部100と、垂直走査回路(駆動部)101と、読み出し回路102と、水平走査回路103と、出力回路104と、制御回路105と、を有する。
画素部100には、複数の行及び複数の列に渡って行列状に配された複数の画素10が設けられている。なお、本明細書において、行方向とは図面における水平方向を示し、列方向とは図面において垂直方向を示すものとする。各々の画素10の上には、マイクロレンズやカラーフィルタ等の光学構造体が配置されうる。カラーフィルタは、例えば赤、青、緑の原色フィルタであって、ベイヤー配列に従って各画素10に配置することができる。画素部100を構成する複数の画素10のうちの一部は、基準信号を出力するためのOB画素(オプティカル・ブラック画素)として、遮光領域に配置されていてもよい。また、画素部100を構成する複数の画素10のうちの他の一部は、光電変換部を持たないダミー画素などのように画像信号を出力しない画素であってもよい。画素部100は、画像を生成するための画素信号を出力する撮像画素が配された複数の撮像行と、焦点検出用の画素信号を出力する焦点検出画素が配された測距行と、を含みうる。
画素部100の各行には、行方向に延在する制御線120が配されている。それぞれの行の制御線120は、対応する行に属する画素10に接続され、これらに共通の信号線をなしている。制御線120は、垂直走査回路101に接続されている。
垂直走査回路101は、シフトレジスタ、ゲート回路、バッファ回路などにより構成され、垂直同期信号、水平同期信号、クロック信号などに基づき画素10を駆動するための制御信号を生成する。垂直走査回路101は、制御線120を介して制御信号を画素10に出力し、行毎に画素10を駆動する。
画素部100の各列には、列方向に延在する列信号線110が配されている。それぞれの列の列信号線110は、対応する列に属する画素10に接続され、これらに共通の信号線をなしている。垂直走査回路101により選択された行の画素10は、それぞれが対応する列信号線110に同時に画素信号を出力する。列信号線110は、読み出し回路102に接続されている。
読み出し回路102は、画素10から読み出された画素信号に対して所定の処理、例えば、増幅処理、相関二重サンプリング(CDS:Correlated Double Sampling)処理等の信号処理を実施する回路部である。
水平走査回路103は、読み出し回路102で処理された画素信号を列毎に順次、出力回路104に転送するための制御信号を、読み出し回路102に供給する。
出力回路104はバッファアンプ、差動増幅器などから構成され、読み出し回路102からの画素信号を撮像装置の外部の信号処理部に出力する。AD変換部を例えば読み出し回路102に設け、デジタル信号に変換した画素信号を撮像装置から出力するように構成してもよい。
制御回路105は、クロック信号、同期信号などに基づき様々な制御信号や駆動信号を生成し、これら制御信号や駆動信号によって垂直走査回路101、読み出し回路102、水平走査回路103を制御する。
図3は、画素10の構成例を示す等価回路図である。図3には、画素部100を構成する複数の画素10のうち、2行×2列の行列状に配された4つの画素10を示している。なお、画素部100を構成する画素10の数は、特に限定されるものではない。
各々の画素10は、図3に示すように、光電変換部PDと、転送トランジスタM1と、増幅トランジスタM3と、選択トランジスタM4と、リセットトランジスタM5と、を有する。光電変換部PDは、例えばフォトダイオードである。光電変換部PDを構成するフォトダイオードは、アノードが基準電圧ノードに接続され、カソードが転送トランジスタM1のソースに接続されている。転送トランジスタM1のドレインは、増幅トランジスタM3のゲート及びリセットトランジスタM5のソースに接続されている。転送トランジスタM1のドレイン、増幅トランジスタM3のゲート及びリセットトランジスタM5のソースの接続ノードは、いわゆる浮遊拡散(フローティングディフュージョン)部FDである。浮遊拡散部FDが他の配線や拡散領域との間に作る寄生容量(FD容量)は、電荷の保持部としての機能を備える。図3には、この容量を、浮遊拡散部FDに接続された容量Cにより表している。増幅トランジスタM3のドレイン及びリセットトランジスタM5のドレインは、電源ノード(電圧VDD)に接続されている。増幅トランジスタM3のソースは、選択トランジスタM4のドレインに接続されている。選択トランジスタM4のソースは、列信号線110に接続されている。各列の列信号線110には、電流源16が接続されている。なお、図3の等価回路図では各々の画素10が増幅トランジスタM3を有する例を示しているが、複数の画素10で1つの増幅トランジスタM3を共有するように構成してもよい。
図3の画素構成の場合、各行に配された制御線120は、信号線TX,RES,SELを含む。信号線TXは、対応する行に属する画素10の転送トランジスタM1のゲートに接続されている。信号線RESは、対応する行に属する画素10のリセットトランジスタM5のゲートに接続されている。信号線SELは、対応する行に属する画素10の選択トランジスタM4のゲートに接続されている。図3には、第m行に属する画素10に接続される制御線120として信号線TX[m],RES[m],SEL[m]を、第m+1行に属する画素10に接続される制御線120として信号線TX[m+1],RES[m+1],SEL[m+1]を示している。
信号線TXには、垂直走査回路101から、転送トランジスタM1を制御するための駆動パルスが出力される。信号線RESには、垂直走査回路101から、リセットトランジスタM5を制御するための駆動パルスが出力される。信号線SELには、垂直走査回路101から、選択トランジスタM4を制御するための駆動パルスが出力される。同一行の画素10に対しては、共通の駆動パルスが垂直走査回路101から供給される。各トランジスタがN型トランジスタで構成される場合、垂直走査回路101からハイレベルの制御信号が供給されると対応するトランジスタがオンとなり、垂直走査回路101からローレベルの制御信号が供給されると対応するトランジスタがオフとなる。各行の制御信号を同時に制御することにより、複数の画素10の露光期間を同時に制御することも可能である。これにより、例えばグローバル電子シャッタを実現することができる。
光電変換部PDは、入射光をその光量に応じた量の電荷に変換(光電変換)するとともに、生じた電荷を蓄積する。リセットトランジスタM5は、オンになることにより浮遊拡散部FDを電圧VDDに応じた電圧にリセットする。転送トランジスタM1は、オンになることにより光電変換部PDに蓄積された電荷を浮遊拡散部FDに転送する。これにより浮遊拡散部FDは、容量Cによる電荷電圧変換によって、光電変換部PDから転送された電荷の量に応じた電圧となる。増幅トランジスタM3は、ドレインに電圧VDDが供給され、ソースに選択トランジスタM4及び列信号線110を介して電流源16からバイアス電流が供給される構成となっており、ゲートを入力ノードとする増幅部(ソースフォロワ回路)を構成する。これにより増幅トランジスタM3は、浮遊拡散部FDの電圧に応じた信号を、選択トランジスタM4を介して列信号線110に出力する。列信号線110に出力された画素信号は、読み出し回路102に入力される。
次に、HDR画像の合成方法について、図4を用いて説明する。図4は、HDR画像の合成方法を説明する図である。横軸は画素10に入射する光の量(被写体の明るさ)を示し、縦軸は画素10から出力される画素信号のレベルを示している。
HDR画像の合成は、相対的に長い電荷蓄積期間に生成された電荷に基づく画素信号と、相対的に短い電荷蓄積期間に生成された電荷に基づく画素信号とを、組み合わせることにより行われる。図4において、画素信号40aは、相対的に長い電荷蓄積期間に生成された電荷に基づく画素信号である。画素信号40bは、相対的に短い電荷蓄積期間に生成された電荷に基づく画素信号である。
以下の説明では、画素信号40aの電荷蓄積期間(第1の露光期間)を長秒露光期間と称し、画素信号40bの電荷蓄積期間(第2の露光期間)を短秒露光期間と称するものとする。また、相対的に長い時間の電荷蓄積を行う動作を長秒露光と称し、相対的に短い期間の電荷蓄積を行う動作を短秒露光と称するものとする。長秒露光期間の長さは、例えば短秒露光期間の長さの200倍程度であり得るが、撮像装置に応じて適宜変更が可能である。
図4に「飽和」として示す画素出力のレベルは、光電変換部PDの飽和電荷量に対応する画素出力のレベルに相当する。画素信号40aは、画素信号40bと比較して相対的に電荷蓄積時間が長いため、画素信号40bよりも光量に対する画素出力の増加の割合(傾き)が大きく、画素信号40bよりも少ない光量で飽和レベルに達する。
図4に領域401として示されるように被写体が暗い場合、画素信号40a及び画素信号40bは、飽和しない。この場合、画素信号40aを用いることで、信号対雑音比の高い画像を得ることができる。一方、図4に領域402として示されるように被写体が明るい場合、画素信号40bは飽和しないが、画素信号40aは飽和する。そこで、画像生成回路221は、領域402における画素信号40bをデジタル信号処理によって増幅し、飽和した画素信号40aを、画素信号40bを増幅した画像信号40cで置き換える。これにより、画素信号40aの飽和レベルを超えた広ダイナミックレンジ画像(HDR画像)を生成することができる。
図5は、HDR画像の撮影時における課題を説明する図である。図5には、被写体が移動している場合に長秒露光及び短秒露光で撮影される画像を模式的に示している。ここでは説明を簡易にするために、時刻t0から時刻t3までの期間において被写体501が等速で移動しているものと仮定する。
時刻t0において、被写体501は画像502に示される位置で撮像される。続く時刻t1において、被写体501は画像503に示される位置で撮像される。続く時刻t2において、被写体501は画像504に示される位置で撮像される。したがって、時刻t0から時刻t2までの期間において連続的に露光を行った場合、画像502の位置から画像504の位置に至る被写体501が総て撮像されることとなり、その結果、撮影される画像505には被写体501の残像508が現れることになる。ここで、時刻t0から時刻t2までの期間を長秒露光期間Tとし、画像505を以後、長秒画像505と呼ぶものとする。長秒画像505は、長秒露光期間Tの間に光電変換部PDに蓄積された電荷の量に応じた画素信号により構成される画像である。
時刻t3において、被写体501は画像506に示される位置で撮像される。時刻t2から時刻t3までの期間は、時刻t0から時刻t2までの期間に比べて短く、被写体の移動距離も短い。したがって、時刻t2から時刻t3までの期間において連続的に露光することにより撮影される画像507は、長秒画像505と比較して残像の少ないものとなる。ここで、時刻t2から時刻t3までの期間を短秒露光期間Tとし、画像507を以後、短秒画像507と呼ぶものとする。短秒画像507は、短秒露光期間Tの間に光電変換部PDに蓄積された電荷の量に応じた画素信号により構成される画像である。
上述したHDR画像の生成方法(HDR合成)を用いて長秒画像505と短秒画像507とを合成する場合、長秒画像505において飽和している画素の画素値は、短秒画像507の同一座標の画素の画素値にデジタル信号処理(増幅処理)を施した値に置換される。しかしながら、長秒画像505において残像508が撮影されている部分は、被写体501が通過している時刻には被写体501が撮影され、それ以外の時刻には背景が撮影されているため、様々な情報が入り混じった画素値になることが想定される。したがって、残像508の部分に様々な情報が入り混じり且つ残像508の部分が飽和しなかった場合、当該部分の画素値は短秒画像507の画素値に基づく値に置換されることなくHDR合成に使用されることになる。その結果、HDR合成において残像508の部分に適切でない画素値が使用され、HDR合成画像509として所望の画像を得られない可能性がある。
このような観点から、本実施形態による撮像装置においては、図6に示されるフローチャートに従ってHDR合成処理を実行することにより、上記課題を解決する。HDR合成処理は、信号処理部22により行われる。
まず、ステップS601において、信号処理部22は、長秒画像505の画素値が飽和しているか否かを判別する。判別の結果、長秒画像505の画素値が飽和している場合(YES)には、ステップS602に移行し、飽和している長秒画像505の画素値を短秒画像507の画素値に基づく値に置換してHDR合成に用いることを決定する。判別の結果、長秒画像505の画素値が飽和していない場合(NO)には、ステップS603に移行する。
ステップS603では、被写体501の移動検知を行い、撮影時に被写体501と撮像装置との間の相対位置が変化しているか否かを判別する。判別の結果、被写体501と撮像装置との間の相対位置の変化が相対的に小さい(静止している)場合(NO)にはステップS604に移行し、長秒画像505の画素値をHDR合成に用いることを決定する。判別の結果、被写体501と撮像装置との間の相対位置の変化が相対的に大きい(移動している)場合(YES)には、ステップS605に移行する。
ステップS605では、ステップS603において移動が検知された長秒画像505の画素値を短秒画像507の画素値に基づく値で置換してHDR合成に用いることを決定する。
ステップS603における移動検知は、検出部20の移動検知部201によって行われる。ここで、移動検知部201における移動検知方法について、図7を用いて説明する。
一般的に、HDR合成において長秒露光期間と短秒露光期間とは、特定の相関関係となるように設定される。例えば、長秒露光期間は、短秒露光期間の定数倍(この倍率をExp_Ratioとする)に設定される。この相関関係は、静止している被写体を撮影した場合、一般的な輝度リニアリティを有する画素10であれば、同一座標の長秒画像の画素値と短秒画像の画素値との相関関係と同一になると考えられる。上述のように長秒露光期間を短秒露光期間の定数倍とする場合、長秒画像の画素値(長秒画素値)と短秒画像の画素値(短秒画素値)との関係は、以下の式(1)のように表される。
長秒画素値=短秒画素値×Exp_Ratio …(1)
短秒画像の画素値を横軸、長秒画像の画素値を縦軸として、長秒画像及び短秒画像における同一座標の画素値をグラフに表すと、式(1)で表される上記関係は、図7のように表される。つまり、長秒画像及び短秒画像における同一座標の画素値で表されるポイントが図7に示す直線の近傍に位置している場合には、撮像装置と被写体との間の相対的な位置関係が変化していないと考えることができる。例えば、長秒画像の画素値と短秒画像の画素値とにより表されるポイントが図7において範囲701に位置する場合には、被写体501と撮像装置との間の相対位置の変化が相対的に小さい(静止している)と判定することができる。
一方、長秒画像及び短秒画像における同一座標の画素値で表されるポイントが図7に示す直線から離間している場合には、長秒画像の撮影時と短秒画像の撮影時において異なる被写体を撮影していると考えることができる。例えば、長秒画像の画素値と短秒画像の画素値とにより表されるポイントが図7において範囲702や範囲703に位置する場合には、被写体501と撮像装置との間の相対位置の変化が相対的に大きい(移動している)と判定することができる。
このようにして、移動検知部201は、長秒画像及び短秒画像における同一座標の画素値で表されるポイントが範囲701に位置しているときには、被写体501及び撮像装置が静止していると判定することができる。また、移動検知部201は、長秒画像及び短秒画像における同一座標の画素値で表されるポイントが範囲702,703に位置しているときには、被写体501又は撮像装置が移動していると判定することができる。図7において、範囲701,702,703は、任意に設定することができる。
なお、短秒画像の画素値と長秒画像の画素値との間の相関関係の確認方法は、図7に示した例に限定されるものではない。例えば、短秒画像の画素値と長秒画像の画素値との差分を取り、差分の大きさに応じて相関関係を判断することも可能である。この際、閾値となる差分の大きさは、適宜設定することができる。この閾値の設定は、例えば、長秒画像、短秒画像の少なくとも一方の露光期間の長さに応じて変更する。例えば、夜間などの暗いシーンでの撮像では、長秒画像の露光期間の長さを長く設定する。長秒画像の露光期間の長さが長くなることに応じて、被写体501と撮像装置の相対的な移動が長秒画像のブレに影響を及ぼしやすくなる。したがって、長秒画像の露光期間の長さが長くなることに対応して、閾値を小さく設定する。また、短秒画像の露光期間の長さに応じて閾値を変更するようにしても良い。また、短秒画像、長秒画像の両方の露光期間の長さに基づいて、閾値を変更するようにしても良い。
次に、図6に示すフローを用いたHDR合成処理により得られる効果について、図8を用いて説明する。
図8に示すように、長秒画像505及び短秒画像507を撮影した場合において、長秒画像505に残像508が現れているが、残像508の部分は飽和していない場合を想定する。この場合、残像508の部分の画素について、ステップS601では画素値が飽和していないと判別され、ステップS603ヘと移行する。ステップS603では、移動検知部201において長秒画像505の画素値と短秒画像507の画素値との比較が行われる。このとき、長秒画像505の残像508の部分は移動物の残像と背景とが重なった画像に応じた画素値となっており、短秒画像507の対応部分は背景801の画像に応じた画素値となっている。したがって、長秒画像505の残像508の部分は、移動検知部201において長秒画像505と短秒画像507との間に相関なし、すなわち被写体又は撮像装置が移動していると判別され、ステップS605ヘと移行する。そしてステップS605において、残像508の部分の画素値は、短秒画像507の画素値に応じた値に置き換えられる。これにより、残像のない所望のHDR合成画像802を得ることができる。
本実施形態による撮像装置は上述の手順によりHDR合成処理を行うことを基本とするが、この手順は画素部100に設けられるカラーフィルタアレイの構成等に応じて適宜変更することが好ましい。ここでは、カラーフィルタの構成の異なる4種類の撮像素子1を例示し、これらに好適なHDR合成処理手順を説明する。
図9は、撮像素子1の画素部100に設けられる光学フィルタの構成例を示す図である。図9の各図には、画素部100を構成する複数の画素10のうち、隣接する4行×4列の16個の画素10に配される光学フィルタを示している。
図9(a)は、モノクロセンサの場合である。モノクロセンサの画素部100は、光学的特性の等しい複数の画素10により構成される。すなわち、モノクロセンサは、必ずしも光学フィルタを備えている必要はなく、各々の画素が光透過特性の等しい光学フィルタを備えていてもよい。図9(a)では画素部100を構成する画素10の光学的特性が等しいことを示すため、各画素に「Mono」と表記している。
図9(b)は、いわゆるベイヤー配列のカラーフィルタを備えたカラーセンサの場合である。ベイヤー配列のカラーフィルタを備えたセンサは、2行×2列の4個の画素10からなる単位画素ブロックが行方向及び列方向に繰り返し配列されてなる。単位画素ブロックを構成する4つの画素10のうち、一方の対角方向に緑色フィルタ(G)を有する2つの画素(G画素)が配され、他方の対角方向に赤色フィルタ(R)を有する画素(R画素)と青色フィルタ(B)を有する画素(B画素)とが配される。
図9(c)は、RGBIR配列のカラーフィルタを備えたカラーセンサの場合である。RGBIR配列のカラーフィルタを備えたセンサは、ベイヤー配列の単位画素ブロックを構成する2つのG画素のうちの一方を近赤外線検出用の画素(IR(Infrared)画素)に置き換えたものである。
図9(d)は、RGBW12配列のカラーフィルタを備えたカラーセンサの場合である。RGBW12配列のカラーフィルタを備えたセンサは、4行×4列の16個の画素10からなる単位画素ブロックが行方向及び列方向に繰り返し配列されてなる。RGBW12配列は、R画素と、G画素と、B画素と、入射光を色分離せず直接検出する画素(W画素)と、を1:2:1:12の割合で含む。
モノクロセンサの場合、カラー現像を必要とせず、図6のフローチャートを用いて説明した上述の手順によってHDR合成処理が可能である。
しかしながら、例えばベイヤー配列のカラーフィルタ(図9(b))を備えたセンサにおいては、一般的にR画素やB画素よりもG画素の感度が高く、R画素やB画素よりもG画素が先に飽和しやすい。そのため、このようなセンサにおいて図6のフローを用いてHDR合成を行った場合、G画素の画素値として短秒画素の画素値が使用される一方、R画素及びB画素の画素値として長秒画像の画素値が使用されることがある。その結果、単位画素ブロックの中で短秒画像の画素値を使用する画素と長秒画像の画素値を使用する画素とが入り混じってしまい、カラー現像処理を行う際に所望の色とならない可能性がある。
このような場合、例えば図10に示すフローを用いてHDR合成を行うことが有効である。図10に示すフローチャートでは、カラーフィルタアレイを構成する単位画素ブロック毎に、長秒画像505の画素値を用いるのか短秒画像507の画素値を用いるのかを決定する。単位画素ブロックは、カラー現像の際に色比を算出する領域に対応する単位ブロックでもある。なお、図10では、図6のステップと同様の処理を行うステップには図6と同一の符号を付している。
まず、1つの単位画素ブロックに含まれる複数の画素の各々について、ステップS601からステップS1004までの処理を行う(ステップS1001)。例えば、図9(b)に示すベイヤー配列のカラーフィルタを備えたカラーセンサにおいては、1つの単位画素ブロックに含まれる4つの画素の各々について、ステップS601からステップS1004までの処理を行う。
ステップS601では、長秒画像505の画素値が飽和しているか否かを判別する。判別の結果、長秒画像505の画素値が飽和している場合(YES)には、ステップS1002に移行し、飽和している長秒画像505の画素値を短秒画像507の画素値に基づく値に置換してHDR合成に使用することを記憶する。判別の結果、長秒画像505の画素値が飽和していない場合(NO)には、ステップS603に移行する。
ステップS603では、被写体501の移動検知を行い、撮影時に被写体501と撮像装置との間の相対的な位置が変化しているか否かを判別する。判別の結果、被写体501と撮像装置との間の相対位置の変化が相対的に小さい(静止している)場合(NO)にはステップS1003に移行し、長秒画像505の画素値をHDR合成に使用することを記憶する。判別の結果、被写体501と撮像装置との間の相対位置の変化が相対的に大きい(移動している)場合(YES)には、ステップS1004に移行する。
ステップS1004では、ステップS603において移動が検知された長秒画像505の画素値を短秒画像507の画素値に基づく値で置換してHDR合成に使用することを記憶する。
このようにして、1つの単位画素ブロックに含まれる総ての画素について、長秒画像505の画素値及び短秒画像507の画素値のうちのどちらを使用するのかを記憶した後、ステップS1005ヘと移行する。
ステップS1005では、1つの単位画素ブロックに含まれる画素の中に、短秒画像507の画素値を使用することを記憶した画素が含まれているか否かを判別する。判別の結果、当該単位画素ブロックの中に短秒画像507の画素値を使用することを記憶した画素が1つも含まれていない場合(NO)には、ステップS1006に移行する。ステップS1006では、当該単位画素ブロックに含まれる総ての画素について、長秒画像505の画素値を用いることを決定する。
ステップS1005における判別の結果、当該単位画素ブロックの中に短秒画像507の画素値を使用することを記憶した画素が1つでも含まれている場合(YES)には、ステップS1007に移行する。ステップS1007では、当該単位画素ブロックに含まれる総ての画素について、短秒画像507の画素値を用いることを決定する。
このようにして、1つの画像に含まれる単位画素ブロックの各々について、ステップS1001からステップS1007までの処理を繰り返し行い、長秒画像505の画素値を用いるのか短秒画像507の画素値を用いるのかを決定する。これにより、各々の単位画素ブロックの中に長秒画像505の画素値と短秒画像507の画素値とが入り混じるのを防止することができ、カラー現像において所望の色が得られなくなるのを防止することができる。
RGBIR配列のカラーフィルタ(図9(c))を備えたセンサにおいては、例えば図11に示す方法で現像処理などが行われる。
まず、R画素、G画素、B画素及びIR画素の画素値を含むデータ1101を、R画素、G画素及びB画素の画素値を含むデータと、IR画素の画素値を含むデータ1103とに分離する(図11におけるカラー分離及びIR分離)。
次いで、カラー分離したデータにおいて、IR画素の画素値を分離したことにより欠損した部分の画素値を、対応する単位画素ブロックに含まれるG画素の画素値で補填し、データ1102を生成する。なお、欠損部分の画素値の補填方法は特に限定されるものではなく、所望の画像に応じて選択される。
また、IR分離したデータ1103は画像サイズが全体の4分の1に縮小されるため、必要に応じて当初の画像と同じ画像サイズまで引き延ばす。図11には、データ1103を4倍に拡大したデータ1104を示している。なお、データ1103は、必ずしも拡大する必要はない。
このようにして、データ1104からIR画像1105を取得し、データ1102をカラー現像することによりカラー画像1106を取得する。このように取得したIR画像1105とカラー画像1106とを重ね合わせることで、不審物の探知などに用いることができる。
図11に示す現像処理においては、IR画素の画素値は独立した画像(IR画像1105)となる。したがって、RGBIR配列のカラーフィルタを備えたカラーセンサにおいては、R画素、G画素及びB画素の画素値に対しては図10のフローを用い、IR画素の画素値に対しては図6のフローを用いるなど、目的に応じて処理フローを適宜選択可能である。
また、RGBW12配列のカラーフィルタ(図9(d))を備えたセンサにおいては、色データをR画素、G画素、B画素から取得し、輝度データをW画素から取得する。これら画素のうち、W画素の感度が最も高い。したがって、R画素、G画素及びB画素の画素値に対しては、例えば図10のフローを適用可能である。また、W画素の画素値に対しては、例えば図6のフローを適用可能である。なお、RGBW12配列のカラーフィルタを備えたカラーセンサにおける現像方法は、例えば特許文献2に記載されている。
また、暗部を撮影する場合に図6に示すフローを用いてHDR合成処理を行うと、長秒画像の画素値は飽和しないためステップS601において「NO」の判定となり、ステップS603ヘと移行する。そして、暗部の撮影では蓄積される電荷の絶対量が少ないため長秒露光時にも画素値は大きくならず、短秒画素値との相関、すなわち式(1)の関係が満たされず、静止時であっても移動していると誤検知される虞がある。その場合、ステップS603において「YES」の判定となり、短秒画像の画素値が選択されることになる。しかしながら、暗部撮影時における短秒画像の画素値はほぼダークに近い値(ダイナミックレンジの下限値)になることから、この画素値に対してデジタル処理を行うと、ノイズ感の大きな画像になってしまうことが想定される。
このような場合、例えば図12に示すフローを用いてHDR合成を行うことが有効である。図12に示すフローチャートは、図6のフローチャートにおけるステップS601とステップS603との間に、ステップS1201を更に有している。
ステップS601において長秒画像の画素値が飽和しているか否かを判断し、飽和している場合(ステップS601の「YES」)にステップS602において短秒画像の画素値で置き換えるフローは、図6と同様である。
長秒画像の画素値が飽和していない場合(ステップS601の「NO」)には、ステップS1201ヘと移行し、短秒画像の画素値が予め定めた閾値以上であるか否かを判別する。この閾値は、特に限定されるものではないが、例えばデジタル処理を行った後にノイズ感の出ない最低レベルの画素値に設定することができる。
ステップS1201において短秒画像の画素値が閾値未満であると判別された場合(ステップS1201の「NO」)には、ステップS604ヘと移行し、長秒画像の画素値を使用することを決定する。
ステップS1201において短秒画像の画素値が閾値以上であると判別された場合(ステップS1201の「YES」)にはステップS603の移動検知へと移行し、以後、図6と同様の処理を行う。
図12に示すフローは、図9(a)〜(d)のいずれのフィルタ配列を備えたセンサにも適用可能である。また、図13に示すように、ステップS1201を図10のフローに追加することも可能である。図9(c)及び図9(d)のフィルタ配列を使用する場合には、当該フローを適用する画素群を適宜選択することが望ましい。
このように、本実施形態によれば、撮影時に被写体と撮像装置との間の相対的な位置が変化した場合にも良好なHDR画像を取得することができる。
[第2実施形態]
本発明の第2実施形態による撮像装置及びその駆動方法について、図14及び図15を用いて説明する。第1実施形態による撮像装置と同様の構成要素には同様の符号を付し、説明を省略し或いは簡潔にする。
被写体と撮像装置との間の相対的な位置が変化している状態で撮影を行う場合のHDR合成においては、長秒画像と短秒画像との間の時間同時性が高いことが望まれる。しかしながら、第1実施形態における撮像装置では1行毎に長秒露光及び短秒露光のタイミングを制御するため、1枚の画像における時間同時性は必ずしも高いとは言えない。本実施形態では、移動している被写体の撮影を行う場合により好適なHDR合成処理が可能な撮像装置及びその駆動方法を説明する。
本実施形態による撮像装置は、撮像素子1の画素部100を構成する画素10の回路構成を除き、基本的な構成は図1及び図2に示す第1実施形態による撮像装置と同様である。
図14は、本実施形態による撮像装置における撮像素子1の画素10の構成例を示す等価回路図である。図14には、画素部100を構成する複数の画素10のうち、2行×2列の行列状に配された4つの画素10を示している。なお、画素部100を構成する画素10の数は、特に限定されるものではない。
本実施形態による撮像装置における撮像素子1の各々の画素10は、図14に示すように、光電変換部PDと、転送トランジスタM11,M12,M21,M22と、増幅トランジスタM3と、選択トランジスタM4と、リセットトランジスタM5と、を有する。
光電変換部PDは、例えばフォトダイオードである。光電変換部PDを構成するフォトダイオードは、アノードが基準電圧ノードに接続され、カソードが転送トランジスタM11のソース及び転送トランジスタM12のソースに接続されている。
転送トランジスタM11のドレインは、転送トランジスタM21のソースに接続されている。転送トランジスタM11のドレインと転送トランジスタM21のソースとの接続ノードは容量成分を含み、電荷の保持部MEM1としての機能を備える。図14には、この容量を、当該接続ノードに接続された容量C1により表している。
転送トランジスタM12のドレインは、転送トランジスタM22のソースに接続されている。転送トランジスタM12のドレインと転送トランジスタM22のソースとの接続ノードは容量成分を含み、電荷の保持部MEM2としての機能を備える。図14には、この容量を、当該接続ノードに接続された容量C2により表している。
転送トランジスタM21のドレイン、転送トランジスタM22のドレイン、増幅トランジスタM3のゲート及びリセットトランジスタM5のソースの接続ノードは、浮遊拡散部FDである。浮遊拡散部FDが他の配線や拡散領域との間に作る寄生容量(FD容量)は、電荷の保持部としての機能を備える。図14には、この容量を、浮遊拡散部FDに接続された容量Cにより表している。増幅トランジスタM3のドレイン及びリセットトランジスタM5のドレインは、電源ノード(電圧VDD)に接続されている。増幅トランジスタM3のソースは、選択トランジスタM4のドレインに接続されている。選択トランジスタM4のソースは、列信号線110に接続されている。各列の列信号線110には、電流源16が接続されている。
なお、図14の等価回路図では各々の画素10が増幅トランジスタM3を有する例を示しているが、複数の画素10で1つの増幅トランジスタM3を共有するように構成してもよい。また、光電変換部PDのカソードにオーバーフロードレイントランジスタを接続し、オーバーフロードレイントランジスタを介して光電変換部PDをリセットできる構成としてもよい。
図14の画素構成の場合、各行に配された制御線120は、信号線GS1,GS2,TX1,TX2,RES,SELを含む。信号線GS1は、対応する行に属する画素10の転送トランジスタM11のゲートに接続されている。信号線GS2は、対応する行に属する画素10の転送トランジスタM12のゲートに接続されている。信号線TX1は、対応する行に属する画素10の転送トランジスタM21のゲートに接続されている。信号線TX2は、対応する行に属する画素10の転送トランジスタM22のゲートに接続されている。信号線RESは、対応する行に属する画素10のリセットトランジスタM5のゲートに接続されている。信号線SELは、対応する行に属する画素10の選択トランジスタM4のゲートに接続されている。図14には、第m行に属する画素10に接続される制御線120として、信号線GS1[m],GS2[m],TX1[m],TX2[m],RES[m],SEL[m]を示している。また、第m+1行に属する画素10に接続される制御線120として、信号線GS1[m+1],GS2[m+1],TX1[m+1],TX2[m+1],RES[m+1],SEL[m+1]を示している。
信号線GS1には、垂直走査回路101から、転送トランジスタM11を制御するための駆動パルスが出力される。信号線GS2には、垂直走査回路101から、転送トランジスタM12を制御するための駆動パルスが出力される。信号線TX1には、垂直走査回路101から、転送トランジスタM21を制御するための駆動パルスが出力される。信号線TX2には、垂直走査回路101から、転送トランジスタM22を制御するための駆動パルスが出力される。信号線RESには、垂直走査回路101から、リセットトランジスタM5を制御するための駆動パルスが出力される。信号線SELには、垂直走査回路101から、選択トランジスタM4を制御するための駆動パルスが出力される。同一行の画素10に対しては、共通の駆動パルスが垂直走査回路101から供給される。各トランジスタがN型トランジスタで構成される場合、垂直走査回路101からハイレベルの制御信号が供給されると対応するトランジスタがオンとなり、垂直走査回路101からローレベルの制御信号が供給されると対応するトランジスタがオフとなる。各行の制御信号を同時に制御することにより、複数の画素10の露光期間を同時に制御することも可能である。
光電変換部PDは、入射光をその光量に応じた量の電荷に変換(光電変換)するとともに、生じた電荷を蓄積する。リセットトランジスタM5は、オンになることにより浮遊拡散部FDを電圧VDDに応じた電圧にリセットする。転送トランジスタM11は、オンになることにより光電変換部PDに蓄積された電荷を保持部MEM1に転送する。転送トランジスタM21は、オンになることにより保持部MEM1の電荷を浮遊拡散部FDに転送する。また、転送トランジスタM12は、オンになることにより光電変換部PDに蓄積された電荷を保持部MEM2に転送する。転送トランジスタM22は、オンになることにより保持部MEM2の電荷を浮遊拡散部FDに転送する。
これにより浮遊拡散部FDは、容量Cによる電荷電圧変換によって、保持部MEM1及び/又は保持部MEM2から転送された電荷の量に応じた電圧となる。増幅トランジスタM3は、ドレインに電圧VDDが供給され、ソースに選択トランジスタM4及び列信号線110を介して電流源16からバイアス電流が供給される構成となっており、ゲートを入力ノードとする増幅部(ソースフォロワ回路)を構成する。これにより増幅トランジスタM3は、浮遊拡散部FDの電圧に応じた信号を、選択トランジスタM4を介して列信号線110に出力する。列信号線110に出力された画素信号は、読み出し回路102に入力される。
図14に示す画素10は、光電変換部PDで生じた電荷を一時的に保持することが可能な2つの保持部MEM1,MEM2を備えている。光電変換部PDとは別に電荷を一時的に保持する保持部を有する構成は、いわゆるグローバル電子シャッタ動作を適用するに好適である。また、2つの保持部を有することで、長秒露光期間に光電変換部PDに蓄積された電荷を保持するために保持部MEM1を利用し、短秒露光期間に光電変換部PDに蓄積された電荷を保持するために保持部MEM2を利用することが可能である。この場合、長秒露光期間及び短秒露光期間は、光電変換部PDから保持部MEM1,MEM2への電荷の転送のタイミングを転送トランジスタM11,M12によって制御することによって任意に設定可能である。
例えば、転送トランジスタM11,M12がオフの期間に光電変換部PDで蓄積された電荷を、転送トランジスタM11をオンにすることで保持部MEM1へと転送する。転送トランジスタM11,M12がオフの期間を長秒露光期間に設定することで、保持部MEM1には長秒露光期間に光電変換部PDで生成された電荷が転送される。また、転送トランジスタM11,M12がオフの別の期間に光電変換部PDで蓄積された電荷を、転送トランジスタM12をオンにすることで保持部MEM2へと転送する。転送トランジスタM11,M12がオフの期間を短秒露光期間に設定することで、保持部MEM2には短秒露光期間に光電変換部PDで生成された電荷が転送される。光電変換部PDから保持部MEM1,MEM2への電荷の転送は、複数回に分けて行ってもよい。
或いは、光電変換部PDの露光期間の間に、転送トランジスタM11,M12の状態が互いに逆になるようにオンとオフとを切り替えるように構成してもよい。この場合、転送トランジスタM11をオンにする期間の合計時間を長秒露光期間に設定することで、保持部MEM1には長秒露光期間に光電変換部PDで生成された電荷が転送される。また、転送トランジスタM12をオンにする期間の合計時間を短秒露光期間に設定することで、保持部MEM2には短秒露光期間に光電変換部PDで生成された電荷が転送される。
なお、光電変換部PDから保持部MEM1,MEM2に電荷を転送する順序や回数は、任意に設定することができる。
保持部MEM1が保持する電荷に応じた長秒画像信号は、転送トランジスタM21をオンにして保持部MEM1から浮遊拡散部FDへと電荷を転送することにより、増幅トランジスタM3及び選択トランジスタM4を介して読み出すことができる。また、保持部MEM2が保持する電荷に応じた短秒画像信号は、転送トランジスタM22をオンにして保持部MEM2から浮遊拡散部FDへと電荷を転送することにより、増幅トランジスタM3及び選択トランジスタM4を介して読み出すことができる。
図15は、本実施形態による撮像装置の駆動方法を説明する図である。図15の上段には、移動している被写体を撮影したときの画像内における被写体の位置と時間との関係を模式的に示している。ここでは説明を簡易にするために、時刻t0から時刻t3までの期間において被写体501が等速で移動しているものと仮定する。また、図15の下段には、露光タイミング、読み出しタイミング、長秒画像、短秒画像、HDR合成画像を模式的に示している。なお、本実施形態において、同期信号発生回路212は一定の周期で垂直同期信号を出力するものとする。すなわち、本実施形態において、1フレームの長さは一定である。
時刻t0において、例えば第nフレームにおける長秒露光(長秒露光期間:T)が開始し、光電変換部PDは入射光に応じた電荷を蓄積し始める。
続く時刻t2において、転送トランジスタM11がオンになり、長秒露光期間Tの間に光電変換部PDに蓄積された電荷が保持部MEM1へと転送される。その後、転送トランジスタM11が再びオフになることで、長秒露光が終了するとともに、第nフレームにおける短秒露光(短秒露光期間:T)が開始する。光電変換部PDは、入射光に応じた電荷の蓄積を再び開始する。
続く時刻t3において、転送トランジスタM12がオンになり、短秒露光期間Tの間に光電変換部PDに蓄積された電荷が保持部MEM2へと転送される。その後、転送トランジスタM12が再びオフになることで、短秒露光が終了する。
上述の時刻t0から時刻t3までの動作は、フレーム毎に繰り返し行われる。時刻t0から時刻t3までにおける転送トランジスタM11,M12の駆動は、全行一括で行うことができる。
第nフレームの時刻t0から時刻t3において光電変換部PDが電荷を蓄積している間、第(n−1)フレームの画素信号が行毎に読み出される。例えば、第m行において、転送トランジスタM21がオンになり、保持部MEM1に保持されている電荷が浮遊拡散部FDへと転送される。これにより、増幅トランジスタM3は、長秒露光期間Tの間に光電変換部PDで生じた電荷に基づく画素信号を、選択トランジスタM4を介して列信号線110に出力する。次いで、第m行において、転送トランジスタM22がオンになり、保持部MEM2に保持されている電荷が浮遊拡散部FDへと転送される。これにより、増幅トランジスタM3は、短秒露光期間Tの間に光電変換部PDで生じた電荷に基づく画素信号を、選択トランジスタM4を介して列信号線110に出力する。
信号処理部22は、上述の処理によって撮像素子1から読み出された画素信号をデジタルデータに変換し、図6、図10、図12、図13等から適切なフローを選択してHDR合成処理を実施する。
本実施形態において撮像素子1から読み出される長秒画像信号及び短秒画像信号は、第1実施形態と比較して時間同時性の高い信号である。したがって、本実施形態によれば、第1実施形態よりも時間同時性の高いHDR合成画像を取得することができる。
[第3実施形態]
本発明の第3実施形態による撮像装置及びその駆動方法について、図16及び図17を用いて説明する。第1又は第2実施形態による撮像装置と同様の構成要素には同一の符号を付し、説明を省略し或いは簡潔にする。図16及び図17は、本実施形態による撮像装置の駆動方法を説明する図である。
本実施形態では、第2実施形態による撮像装置の他の駆動方法を説明する。本実施形態による撮像装置の駆動方法は、より高速に移動する被写体の撮影に好適である。
図16は、1フレームにおける転送トランジスタM11,M12のスイッチング回数の初期値が1回に設定されている場合の駆動例を示している。すなわち、転送トランジスタM11,M12のスイッチングは、長秒露光(長秒露光期間:T)、短秒露光(短秒露光期間:T)の順に行われる。例えば、長秒露光期間Tの間は転送トランジスタM11をオン、転送トランジスタM12をオフに設定し、短秒露光期間Tの間は転送トランジスタM11をオフ、転送トランジスタM12をオンに設定する。
被写体501が高速に移動し、長秒露光の期間中にフレームアウトした場合、長秒画像1601には残像508のみが写り、短秒画像1602には背景のみが写る。長秒画像1601と短秒画像1602とを用いて図6のフローでHDR合成処理を行うと、長秒画像の画素値が飽和していなければステップS601では「NO」が選択され、被写体が異なるためステップS603では「YES」が選択される。その結果、残像508と重なる部分におけるHDR合成画像1603の画素値には、短秒画像1602の画素値が選択される。すなわち、HDR合成画像1603は、背景のみの画像となる。
図17は、1フレームにおける転送トランジスタM11,M12のスイッチング回数の初期値が2回に設定されている場合の駆動例を示している。すなわち、転送トランジスタM11,M12のスイッチングは、長秒露光(長秒露光期間:TL1)、短秒露光(短秒露光期間:TS1)、長秒露光(長秒露光期間:TL2)、短秒露光(短秒露光期間:TS2)の順に行われる。例えば、長秒露光期間TL1,TL2の間は転送トランジスタM11をオン、転送トランジスタM12をオフに設定し、短秒露光期間TS1,TS2の間は転送トランジスタM11をオフ、転送トランジスタM12をオンに設定する。ここで、長秒露光期間TL1,TL2及び短秒露光期間TS1,TS2は、以下の式(2)及び式(3)のように表される。すなわち、撮影時のフレームレートは図16の場合と同じである。
= TL1 + TL2 …(2)
= TS1 + TS2 …(3)
図17では説明の簡略化のため1フレームにおける転送トランジスタM11,M12のスイッチング回数をそれぞれ2回としているが、スイッチング回数に制限はなく、3回以上であってもよい。
図17には長秒露光期間TL1の間に蓄積される電荷による画像1701と長秒露光期間TL2の間に蓄積される電荷による画像1702とを示しているが、実際に撮像素子1から出力される長秒画像はこれらを合算した長秒画像1705である。同様に、図17には短秒露光期間TS1の間に蓄積される電荷による画像1703と短秒露光期間TS2の間に蓄積される電荷による画像1704とを示しているが、実際に撮像素子1から出力される短秒画像はこれらを合算した短秒画像1706である。
本駆動例では、被写体501がフレーム内を移動中に短秒露光(短秒露光期間:TS1)が行われているため、被写体501がフレームアウトすることなく短秒画像1706で撮影することが可能である。長秒画像1705と短秒画像1706とを用いて図6のフローでHDR合成処理を行うと、長秒画像の画素値が飽和していなければステップS601では「NO」が選択され、被写体が異なるためステップS603では「YES」が選択される。その結果、残像508と重なる部分におけるHDR合成画像1707の画素値には短秒画像1706の画素値が選択されるが、短秒画像1706にも被写体501が撮影されているため、HDR合成画像1707において被写体501が消えることがない。転送トランジスタM11,M12のスイッチング回数を複数回にすることには、長秒画像1705における露光期間の時間重心と短秒画像1706における露光期間の時間重心とを近づける効果もある。
図16及び図17の説明ではHDR合成に図6のフローを用いる場合を例示したが、HDR合成にはカラーフィルタの構成等に応じて図6、図10、図12、図13等の中から適切なフローを選択することができる。
このように、本実施形態の駆動方法によれば、転送トランジスタM11,M12のスイッチング回数を適宜設定することにより、撮像装置に対する相対位置の変化が相対的に大きい被写体を撮影する場合にも良好なHDR画像を取得することができる。
なお、本実施形態の駆動方法において、1フレーム中における転送トランジスタM11,M12のスイッチング回数に制約はない。しかしながら、転送トランジスタM11,M12のスイッチングの回数が増加すると、消費電力が増加し、場合によっては放射ノイズが発生することもある。したがって、1フレーム中における転送トランジスタM11,M12のスイッチング回数は、消費電力、発生するノイズのレベル、光源の周期などに応じて最適な回数に適宜設定することが望ましい。
[第4実施形態]
本発明の第4実施形態による撮像システムについて、図18を用いて説明する。図18は、本実施形態による撮像システムの概略構成を示すブロック図である。
上記第1乃至第3実施形態で述べた撮像装置は、種々の撮像システムに適用可能である。適用可能な撮像システムの例としては、デジタルスチルカメラ、デジタルカムコーダ、監視カメラ、複写機、ファックス、携帯電話、車載カメラ、観測衛星などが挙げられる。また、レンズなどの光学系と撮像装置とを備えるカメラモジュールも、撮像システムに含まれる。図18には、これらのうちの一例として、デジタルスチルカメラのブロック図を例示している。
図18に例示した撮像システム1800は、撮像装置1801、被写体の光学像を撮像装置1801に結像させるレンズ1802、レンズ1802を通過する光量を可変にするための絞り1804、レンズ1802の保護のためのバリア1806を有する。レンズ1802及び絞り1804は、撮像装置1801に光を集光する光学系である。撮像装置1801は、第1乃至第3実施形態のいずれかで説明した撮像装置であって、レンズ1802により結像された光学像を画像データに変換する。
撮像システム1800は、また、撮像装置1801より出力される出力信号の処理を行う信号処理部1808を有する。信号処理部1808は、撮像装置1801が出力するアナログ信号をデジタル信号に変換するAD変換を行う。また、信号処理部1808はその他、必要に応じて各種の補正、圧縮を行って画像データを出力する動作を行う。信号処理部1808の一部であるAD変換部は、撮像装置1801が設けられた半導体基板に形成されていてもよいし、撮像装置1801とは別の半導体基板に形成されていてもよい。また、撮像装置1801と信号処理部1808とが同一の半導体基板に形成されていてもよい。
撮像システム1800は、更に、画像データを一時的に記憶するためのメモリ部1810、外部コンピュータ等と通信するための外部インターフェース部(外部I/F部)1812を有する。更に撮像システム1800は、撮像データの記録又は読み出しを行うための半導体メモリ等の記録媒体1814、記録媒体1814に記録又は読み出しを行うための記録媒体制御インターフェース部(記録媒体制御I/F部)1816を有する。なお、記録媒体1814は、撮像システム1800に内蔵されていてもよく、着脱可能であってもよい。
更に撮像システム1800は、各種演算とデジタルスチルカメラ全体を制御する全体制御・演算部1818、撮像装置1801と信号処理部1808に各種タイミング信号を出力するタイミング発生部1820を有する。ここで、タイミング信号などは外部から入力されてもよく、撮像システム1800は少なくとも撮像装置1801と、撮像装置1801から出力された出力信号を処理する信号処理部1808とを有すればよい。
撮像装置1801は、撮像信号を信号処理部1808に出力する。信号処理部1808は、撮像装置1801から出力される撮像信号に対して所定の信号処理を実施し、画像データを出力する。信号処理部1808は、撮像信号を用いて、画像を生成する。
このように、本実施形態によれば、第1乃至第3実施形態による撮像装置を適用した撮像システムを実現することができる。
[第5実施形態]
本発明の第5実施形態による撮像システム及び移動体について、図19を用いて説明する。図19は、本実施形態による撮像システム及び移動体の構成を示す図である。
図19(a)は、車載カメラに関する撮像システムの一例を示したものである。撮像システム1900は、撮像装置1910を有する。撮像装置1910は、上記第1乃至第3実施形態のいずれかに記載の撮像装置である。撮像システム1900は、撮像装置1910により取得された複数の画像データに対し、画像処理を行う画像処理部1912と、撮像システム1900により取得された複数の画像データから視差(視差画像の位相差)の算出を行う視差取得部1914を有する。また、撮像システム1900は、算出された視差に基づいて対象物までの距離を算出する距離取得部1916と、算出された距離に基づいて衝突可能性があるか否かを判定する衝突判定部1918と、を有する。ここで、視差取得部1914や距離取得部1916は、対象物までの距離情報を取得する距離情報取得手段の一例である。すなわち、距離情報とは、視差、デフォーカス量、対象物までの距離等に関する情報である。衝突判定部1918はこれらの距離情報のいずれかを用いて、衝突可能性を判定してもよい。距離情報取得手段は、専用に設計されたハードウェアによって実現されてもよいし、ソフトウェアモジュールによって実現されてもよい。また、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated circuit)等によって実現されてもよいし、これらの組合せによって実現されてもよい。
撮像システム1900は車両情報取得装置1920と接続されており、車速、ヨーレート、舵角などの車両情報を取得することができる。また、撮像システム1900は、衝突判定部1918での判定結果に基づいて、車両に対して制動力を発生させる制御信号を出力する制御装置である制御ECU1930が接続されている。また、撮像システム1900は、衝突判定部1918での判定結果に基づいて、ドライバーへ警報を発する警報装置1940とも接続されている。例えば、衝突判定部1918の判定結果として衝突可能性が高い場合、制御ECU1930はブレーキをかける、アクセルを戻す、エンジン出力を抑制するなどして衝突を回避、被害を軽減する車両制御を行う。警報装置1940は音等の警報を鳴らす、カーナビゲーションシステムなどの画面に警報情報を表示する、シートベルトやステアリングに振動を与えるなどしてユーザに警告を行う。
本実施形態では、車両の周囲、例えば前方又は後方を撮像システム1900で撮像する。図19(b)に、車両前方(撮像範囲1950)を撮像する場合の撮像システムを示した。車両情報取得装置1920が、撮像システム1900ないしは撮像装置1910に指示を送る。このような構成により、測距の精度をより向上させることができる。
上記では、他の車両と衝突しないように制御する例を説明したが、他の車両に追従して自動運転する制御や、車線からはみ出さないように自動運転する制御などにも適用可能である。更に、撮像システムは、自車両等の車両に限らず、例えば、船舶、航空機あるいは産業用ロボットなどの移動体(移動装置)に適用することができる。加えて、移動体に限らず、高度道路交通システム(ITS)等、広く物体認識を利用する機器に適用することができる。
[変形実施形態]
本発明は、上記実施形態に限らず種々の変形が可能である。
例えば、いずれかの実施形態の一部の構成を他の実施形態に追加した例や、他の実施形態の一部の構成と置換した例も、本発明の実施形態である。
また、上記実施形態では長秒画像信号の飽和判定を行った後に被写体の移動検知を行っているが、被写体の移動検知がなされなかった場合に長秒画像信号の飽和判定を行うようにしてもよい。また、図12のフローにおいては、短秒画像の画素値の閾値判定を行った後に被写体の移動検知を行っているが、被写体の移動検知がなされた場合に短秒画像の画素値の閾値判定を行うようにしてもよい。
また、上記実施形態では長秒画像信号の飽和判定を行っているが、例えばダイナミックレンジの向上よりも被写体の移動による画質低下の低減に重点をおく場合、長秒画像信号の飽和判定は必ずしも行う必要はない。
また、上記実施形態では、複数種類の色情報を出力する複数種類の色画素としてR画素、G画素、B画素を含むカラーフィルタを示したが、色画素はRGB以外の組み合わせであってもよい。例えば、色画素として、シアン色のカラーフィルタを備えたC画素と、マゼンダ色のカラーフィルタを備えたM画素と、黄色のカラーフィルタを備えたY画素と、を含むカラーフィルタであってもよい。
また、図9(d)には、輝度情報検出用の画素を含むフィルタ配列としてRGBW12配列の場合を説明したが、必ずしもRGBW12配列のカラーフィルタである必要はない。例えば、W画素の比率の異なるRGBW配列のカラーフィルタ、例えばRGBW8配列のカラーフィルタであってもよい。或いは、シアン色のCFを備えたC画素と、マゼンダ色のCFを備えたM画素と、黄色のCFを備えたY画素と、W画素とを含むCMYW配列のカラーフィルタであってもよい。
また、第2実施形態では、画素10として2つの保持部MEM1,MEM2を有する構成を説明したが、画素10は必ずしも2つの保持部を有する必要はない。例えば、長秒露光期間に光電変換部PDに蓄積された電荷の保持部への転送回数と、短秒露光期間に光電変換部PDに蓄積された電荷の保持部への転送動作とが、ともに1回の場合、画素10は少なくとも1つの保持部を有していればよい。
また、上記第4及び第5実施形態に示した撮像システムは、本発明の光電変換装置を適用しうる撮像システム例を示したものであり、本発明の光電変換装置を適用可能な撮像システムは図18及び図19に示した構成に限定されるものではない。
なお、上記実施形態は、いずれも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
1…撮像素子
10…画素
20…検出部
21…制御部
22…画像処理部
100…画素部
101…垂直走査回路
201…移動検知部
211…露光期間制御部
212…同期信号発生回路
221…画像生成回路
222…画像処理回路

Claims (18)

  1. 撮像装置であって、前記撮像装置は、
    光電変換部を各々が含む複数の画素が配された画素部と、
    前記複数の画素の各々から、第1の露光期間に前記光電変換部で生成された電荷に基づく第1の信号と、前記第1の露光期間よりも短い第2の露光期間に前記光電変換部で生成された電荷に基づく第2の信号と、を出力するように前記複数の画素を駆動する駆動部と、
    前記第1の信号と前記第2の信号とを用いて被写体と前記撮像装置との相対位置の変化を検知する検知部と、
    前記第1の信号及び前記第2の信号を用いて画像を生成する画像生成部と、を有し、
    前記画像生成部は、前記画像の生成において、前記検知部が前記相対位置の変化が相対的に小さいことを検知した画素に対して前記第1の信号を選択し、前記検知部が前記相対位置の変化が相対的に大きいことを検知した画素に対して前記第2の信号を選択する
    ことを特徴とする撮像装置。
  2. 前記画像生成部は、前記第1の信号が飽和している画素に対しては、前記検知部による検知の結果によらず前記第2の信号を選択する
    ことを特徴とする請求項1記載の撮像装置。
  3. 前記画像生成部は、前記第2の信号が所定の閾値未満の画素に対しては、前記検知部による検知の結果によらず前記第1の信号を選択する
    ことを特徴とする請求項1又は2記載の撮像装置。
  4. 前記画素部は、複数の単位画素ブロックにより構成されており、
    前記画像生成部は、
    前記第2の信号が選択された画素を少なくとも1つ含む単位画素ブロックに属する総ての画素に対して前記第2の信号を適用し、
    前記第2の信号が選択された画素が1つもない単位画素ブロックに属する総ての画素に対して前記第1の信号を適用する
    ことを特徴とする請求項1乃至3のいずれか1項に記載の撮像装置。
  5. 前記複数の画素は、複数種類の色情報を出力する複数種類の色画素を含み、
    前記単位画素ブロックは、カラー現像の際に色比を算出する領域に対応している
    ことを特徴とする請求項4記載の撮像装置。
  6. 前記複数種類の色画素は、ベイヤー配列を構成している
    ことを特徴とする請求項5記載の撮像装置。
  7. 前記複数の画素は、近赤外線検出用の画素を更に含む
    ことを特徴とする請求項5記載の撮像装置。
  8. 前記複数の画素は、輝度情報検出用の画素を更に含む
    ことを特徴とする請求項5記載の撮像装置。
  9. 前記複数の画素の各々は、前記第1の露光期間に前記光電変換部で生成された電荷を保持する第1の保持部と、前記第2の露光期間に前記光電変換部で生成された電荷を保持する第2の保持部と、を更に有する
    ことを特徴とする請求項1乃至8のいずれか1項に記載の撮像装置。
  10. 前記画素部に、複数の行に渡って前記複数の画素が配列されており、
    前記駆動部は、前記光電変換部から前記第1の保持部又は前記第2の保持部への電荷の転送を前記複数の行で同時に実行する
    ことを特徴とする請求項9記載の撮像装置。
  11. 撮像素子の複数の画素の各々から出力される、第1の露光期間に光電変換部で生成された電荷に基づく第1の信号と、前記第1の露光期間よりも短い第2の露光期間に前記光電変換部で生成された電荷に基づく第2の信号と、を処理する信号処理装置であって、
    前記第1の信号と前記第2の信号とを用いて被写体と前記撮像素子との相対位置の変化を検知する検知部と、
    前記第1の信号及び前記第2の信号を用いて画像を生成する画像生成部と、を有し、
    前記画像生成部は、前記画像の生成において、前記検知部が前記相対位置の変化が相対的に小さいことを検知した画素に対して前記第1の信号を選択し、前記検知部が前記相対位置の変化が相対的に大きいことを検知した画素に対して前記第2の信号を選択する
    ことを特徴とする信号処理装置。
  12. 前記画像生成部は、前記第1の信号が飽和している画素に対しては、前記検知部による検知の結果によらず前記第2の信号を選択する
    ことを特徴とする請求項11記載の信号処理装置。
  13. 前記画像生成部は、前記第2の信号が所定の閾値未満の画素に対しては、前記検知部による検知の結果によらず前記第1の信号を選択する
    ことを特徴とする請求項1又は2記載の信号処理装置。
  14. 光電変換部を各々が含む複数の画素を有する撮像素子と、前記撮像素子から出力される信号を処理する信号処理部と、を有する撮像装置の駆動方法であって、
    前記複数の画素の各々から、第1の露光期間に前記光電変換部で生成された電荷に基づく第1の信号と、前記第1の露光期間よりも短い第2の露光期間に前記光電変換部で生成された電荷に基づく第2の信号と、を出力するステップと、
    前記第1の信号と前記第2の信号とを用いて被写体と前記撮像装置との相対位置の変化を検知するステップと、
    前記第1の信号及び前記第2の信号を用いて画像を生成するステップと、を有し、
    前記画像を生成するステップでは、前記相対位置の変化が相対的に小さいことを検知した画素に対して前記第1の信号を選択し、前記相対位置の変化が相対的に大きいことを検知した画素に対して前記第2の信号を選択する
    ことを特徴とする撮像装置の駆動方法。
  15. 前記画像を合成するステップでは、前記第1の信号が飽和している画素に対して、前記被写体の移動の検知の結果によらずに前記第2の信号を選択する
    ことを特徴とする請求項14記載の撮像装置の駆動方法。
  16. 前記画像を合成するステップでは、前記第2の信号が所定の閾値未満の画素に対して、前記被写体の移動の検知の結果によらずに前記第1の信号を選択する
    ことを特徴とする請求項14又は15記載の撮像装置の駆動方法。
  17. 請求項1乃至10のいずれか1項に記載の撮像装置と、
    前記撮像装置の前記画素から出力される信号を処理する信号処理部と
    を有することを特徴とする撮像システム。
  18. 移動体であって、
    請求項1乃至10のいずれか1項に記載の撮像装置と、
    前記撮像装置の前記画素から出力される信号に基づく視差画像から、対象物までの距離情報を取得する距離情報取得手段と、
    前記距離情報に基づいて前記移動体を制御する制御手段と
    を有することを特徴とする移動体。
JP2019127445A 2019-07-09 2019-07-09 撮像装置及びその駆動方法 Active JP7374630B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019127445A JP7374630B2 (ja) 2019-07-09 2019-07-09 撮像装置及びその駆動方法
US16/922,724 US11258967B2 (en) 2019-07-09 2020-07-07 Imaging device and method of driving imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019127445A JP7374630B2 (ja) 2019-07-09 2019-07-09 撮像装置及びその駆動方法

Publications (3)

Publication Number Publication Date
JP2021013131A true JP2021013131A (ja) 2021-02-04
JP2021013131A5 JP2021013131A5 (ja) 2022-07-07
JP7374630B2 JP7374630B2 (ja) 2023-11-07

Family

ID=74103369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019127445A Active JP7374630B2 (ja) 2019-07-09 2019-07-09 撮像装置及びその駆動方法

Country Status (2)

Country Link
US (1) US11258967B2 (ja)
JP (1) JP7374630B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254151A (ja) * 2003-02-21 2004-09-09 Fuji Film Microdevices Co Ltd 撮像装置及び撮像方法
JP2008028926A (ja) * 2006-07-25 2008-02-07 Akuseru:Kk カラー画像動き検出回路、多重カラー画像統合装置およびカラー画像動き検出方法
JP2008092510A (ja) * 2006-10-05 2008-04-17 Matsushita Electric Ind Co Ltd 撮像装置
JP2014138294A (ja) * 2013-01-17 2014-07-28 Sony Corp 画像処理装置、および画像処理方法、並びにプログラム
JP2018056886A (ja) * 2016-09-30 2018-04-05 キヤノン株式会社 撮像装置及び撮像方法
JP2019004382A (ja) * 2017-06-16 2019-01-10 ソニーセミコンダクタソリューションズ株式会社 撮像装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7548689B2 (en) * 2007-04-13 2009-06-16 Hewlett-Packard Development Company, L.P. Image processing method
JP6678376B2 (ja) 2014-04-11 2020-04-08 ハンファテクウィン株式会社 動き検出装置および動き検出方法
JP6324235B2 (ja) 2014-06-26 2018-05-16 ハンファテクウィン株式会社Hanwha Techwin Co.,Ltd. 画像処理装置および画像処理方法
JP6563646B2 (ja) 2014-12-10 2019-08-21 ハンファテクウィン株式会社 画像処理装置および画像処理方法
JP6584131B2 (ja) 2015-05-08 2019-10-02 キヤノン株式会社 撮像装置、撮像システム、および信号処理方法
JP6674255B2 (ja) 2015-12-28 2020-04-01 キヤノン株式会社 固体撮像素子及び撮像装置
US10991281B2 (en) * 2016-02-22 2021-04-27 Dolby Laboratories Licensing Corporation Apparatus and method for encoding high frame rate content in standard frame rate video using temporal interlacing
JP6789678B2 (ja) * 2016-06-06 2020-11-25 キヤノン株式会社 撮像装置、撮像システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254151A (ja) * 2003-02-21 2004-09-09 Fuji Film Microdevices Co Ltd 撮像装置及び撮像方法
JP2008028926A (ja) * 2006-07-25 2008-02-07 Akuseru:Kk カラー画像動き検出回路、多重カラー画像統合装置およびカラー画像動き検出方法
JP2008092510A (ja) * 2006-10-05 2008-04-17 Matsushita Electric Ind Co Ltd 撮像装置
JP2014138294A (ja) * 2013-01-17 2014-07-28 Sony Corp 画像処理装置、および画像処理方法、並びにプログラム
JP2018056886A (ja) * 2016-09-30 2018-04-05 キヤノン株式会社 撮像装置及び撮像方法
JP2019004382A (ja) * 2017-06-16 2019-01-10 ソニーセミコンダクタソリューションズ株式会社 撮像装置

Also Published As

Publication number Publication date
US11258967B2 (en) 2022-02-22
US20210014439A1 (en) 2021-01-14
JP7374630B2 (ja) 2023-11-07

Similar Documents

Publication Publication Date Title
JP7108421B2 (ja) 撮像装置及び撮像システム
US10249678B2 (en) Imaging device, method of driving imaging device, and imaging system
CN111512627B (zh) 成像装置、成像***以及成像装置的驱动方法
US11202023B2 (en) Imaging device and imaging system
US10979647B2 (en) Imaging device and imaging system
US11412163B2 (en) Imaging device, imaging system, and mobile apparatus having control signal lines supplying control signals to respective pixels
US10742905B2 (en) Imaging device and method of driving imaging device
JP2019135815A (ja) 撮像装置
US11265501B2 (en) Photoelectric conversion device and photoelectric conversion system
JP2019047267A (ja) 固体撮像装置、撮像システム、及び移動体
JP2019193169A (ja) 撮像装置、撮像システム、および、移動体
US10965896B2 (en) Photoelectric conversion device, moving body, and signal processing device
JP7374630B2 (ja) 撮像装置及びその駆動方法
US20200389638A1 (en) Photoelectric conversion apparatus, method of driving photoelectric conversion apparatus, photoelectric conversion system, and moving body
JP2021097382A (ja) 撮像装置及び撮像システム
JP7417560B2 (ja) 光電変換装置、光電変換システム、輸送機器および信号処理装置
US20240031709A1 (en) Photoelectric conversion device, method of driving photoelectric conversion device, and imaging system
JP7514159B2 (ja) 撮像装置及び撮像システム
JP2019036770A (ja) 撮像装置及び撮像システム
US20230276150A1 (en) Photoelectric conversion device and method of driving photoelectric conversion device
US11025849B2 (en) Photoelectric conversion apparatus, signal processing circuit, image capturing system, and moving object
US20230370737A1 (en) Photoelectric conversion device, imaging system, movable object, equipment, signal processing device and signal processing method
JP7129264B2 (ja) 撮像装置
JP2023042891A (ja) 光電変換装置及びその駆動方法
JP2022051408A (ja) 光電変換装置、光電変換システム及び移動体

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220629

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20220630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231025

R151 Written notification of patent or utility model registration

Ref document number: 7374630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151