JP2021010005A - Adsorption member, adsorption device, and adsorption method - Google Patents

Adsorption member, adsorption device, and adsorption method Download PDF

Info

Publication number
JP2021010005A
JP2021010005A JP2020110954A JP2020110954A JP2021010005A JP 2021010005 A JP2021010005 A JP 2021010005A JP 2020110954 A JP2020110954 A JP 2020110954A JP 2020110954 A JP2020110954 A JP 2020110954A JP 2021010005 A JP2021010005 A JP 2021010005A
Authority
JP
Japan
Prior art keywords
silicon carbide
adsorption
adsorption member
member according
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020110954A
Other languages
Japanese (ja)
Inventor
威男 馬目
Takeo Umame
威男 馬目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JP2021010005A publication Critical patent/JP2021010005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

To provide an adsorption member that is excellent in wear resistance and can reduce heat deformation, such as warpage due to a change in temperature, and an adsorption device and an adsorption method using the same.SOLUTION: An adsorption member comprises a base part and a plurality of projections for support arranged on a surface of the base part, and is formed of silicon carbide. The base part and the projections both have a porosity of less than 0.1% in terms of the area rate, have a purity of 99 mass% or more, and have long crystal grains in a thickness direction of the base part.SELECTED DRAWING: Figure 1

Description

本開示は、例えば、半導体製造に用いられる半導体ウエハや、液晶製造に用いられる液晶ガラス基板などを、支持、吸着・保持または吸着搬送等することが可能な吸着部材、これを利用する吸着装置および吸着方法に関する。 The present disclosure describes, for example, an adsorption member capable of supporting, adsorbing / holding or adsorbing and transporting a semiconductor wafer used in semiconductor manufacturing, a liquid crystal glass substrate used in liquid crystal manufacturing, and the like, and an adsorption device using the adsorption member. Regarding the adsorption method.

半導体の製造工程や検査工程等において、シリコン等を原料とする半導体ウエハなどの試料は製造装置や検査装置の吸着部材上に、順次吸着・保持されることが一般的である。 In a semiconductor manufacturing process, an inspection process, or the like, a sample such as a semiconductor wafer made of silicon or the like is generally sucked and held sequentially on a suction member of a manufacturing apparatus or an inspection apparatus.

吸着部材に被吸着体を載置する際に、被吸着体裏面と載置面との間にパーティクルが挟み込まれると、被吸着体の局所的な盛り上がりが発生し、例えば露光などを行う場合、露光の焦点が合わなくなり、露光パターンがぼけてしまい、被吸着体に形成する回路パターンが短絡するなどの半導体不良が発生することがある。 When particles are sandwiched between the back surface of the object to be adsorbed and the surface to be adsorbed when the object to be adsorbed is placed on the adsorption member, local swelling of the object to be adsorbed occurs, for example, when exposure is performed. The exposure may be out of focus, the exposure pattern may be blurred, and semiconductor defects such as a short circuit of the circuit pattern formed on the adsorbed body may occur.

このような半導体不良を軽減するためには、被吸着体裏面と吸着部材の載置面との接触面積を小さくする手法が有効である。そのため、特許文献1には、炭化珪素質焼結体からなる基体の表面に多数の支持用突起を形成した吸着部材が提案されている。 In order to reduce such semiconductor defects, it is effective to reduce the contact area between the back surface of the object to be adsorbed and the mounting surface of the adsorption member. Therefore, Patent Document 1 proposes an adsorption member in which a large number of supporting protrusions are formed on the surface of a substrate made of a silicon carbide sintered body.

さらに、特許文献1には、セラミックを加工して突起を形成する際に、傷、クラック、ボイド等からなる微細なパーティクルが発生することに鑑み、突起の表面に保護膜を設けることが記載されている。しかし、吸着部材本体と保護膜とで、材質、密度、気孔率等が異なると、熱膨張率に差が生じるため、使用中の温度変化によって、吸着部材に反り(熱変形)が生じる場合がある。また、保護膜形成時の温度履歴によって、吸着部材に応力や反りが生じる場合がある。 Further, Patent Document 1 describes that a protective film is provided on the surface of the protrusions in view of the generation of fine particles consisting of scratches, cracks, voids, etc. when the ceramic is processed to form the protrusions. ing. However, if the material, density, porosity, etc. of the adsorption member body and the protective film are different, the coefficient of thermal expansion will differ, so the adsorption member may warp (thermal deformation) due to temperature changes during use. is there. In addition, stress or warpage may occur in the adsorption member depending on the temperature history when the protective film is formed.

吸着部材には、被吸着体を載置する動作が繰り返されるため、耐摩耗性が要求される。また、温度変化により反りが発生すると、露光精度が悪化し、被吸着体に形成する回路パターンが短絡するなどの半導体不良が発生する原因になることがある。 Abrasion resistance is required because the operation of placing the object to be adsorbed is repeated on the suction member. Further, when warpage occurs due to a temperature change, the exposure accuracy deteriorates, which may cause semiconductor defects such as a short circuit of the circuit pattern formed on the adsorbed body.

特開2009−54723号公報JP-A-2009-54723

本開示の課題は、耐摩耗性に優れ、かつ温度変化による反り等の熱変形を低減できる吸着部材、これを利用する吸着装置および吸着方法を提供することである。 An object of the present disclosure is to provide an adsorption member which is excellent in wear resistance and can reduce thermal deformation such as warpage due to a temperature change, an adsorption device and an adsorption method using the adsorption member.

本開示の吸着部材は、基体部と該基体部の表面に配された複数の支持用の突起部とを備えた、炭化珪素からなる吸着部材であって、前記基体部と前記突起部はともに、気孔率が面積率で0.1%未満であり、純度が99質量%以上で、前記基体部の厚み方向に長い結晶粒を有する。 The adsorption member of the present disclosure is an adsorption member made of silicon carbide provided with a base portion and a plurality of supporting protrusions arranged on the surface of the base portion, and both the base portion and the protrusions are The porosity is less than 0.1% in area ratio, the purity is 99% by mass or more, and the crystal grains are long in the thickness direction of the substrate portion.

本開示の吸着部材の製造方法は、基体部と該基体部の表面に配された複数の支持用の突起部とを備えた上記の吸着部材を製造するものであって、化学的気相成長法により複数の炭化珪素層の積層体を形成する工程と、積層体の表面の一部を除去して前記突起部を形成する工程とを含む。 The method for producing an adsorption member of the present disclosure is to produce the above-mentioned adsorption member provided with a base portion and a plurality of supporting protrusions arranged on the surface of the base portion, and chemically vapor deposition The method includes a step of forming a laminate of a plurality of silicon carbide layers and a step of removing a part of the surface of the laminate to form the protrusions.

本開示の吸着装置は、上記の吸着部材と、該吸着部材に被吸着体を吸着させるための吸着手段とを備える。
本開示の吸着装置は、被吸着体を吸着するための吸気孔を備えてなる上記の吸着部材と、吸気孔から吸気を行わせるための吸気手段とを備える。
本開示の吸着方法は、上記の吸着部材を用いて、被吸着体を前記突起部で支持するようにしたことを特徴とする。
The adsorption device of the present disclosure includes the above-mentioned adsorption member and an adsorption means for adsorbing an object to be adsorbed on the adsorption member.
The adsorption device of the present disclosure includes the above-mentioned adsorption member provided with an intake hole for adsorbing an object to be adsorbed, and an intake means for causing intake from the intake hole.
The adsorption method of the present disclosure is characterized in that the adsorbed body is supported by the protrusions by using the above-mentioned adsorption member.

本開示の吸着部材は、耐摩耗性に優れ、温度変化による反り(熱変形)も低減でき、さらに高くて細い突起部を高精度に加工できる。また、突起部の高さ方向の熱伝導率も良好である。 The suction member of the present disclosure has excellent wear resistance, can reduce warpage (thermal deformation) due to temperature changes, and can process even higher and thinner protrusions with high accuracy. In addition, the thermal conductivity in the height direction of the protrusion is also good.

(a)は本開示の一実施形態に係る吸着部材の一部切り欠き斜視図、(b)は(a)のA部における支持用突起部を示す拡大断面図である。(A) is a partially cutaway perspective view of the suction member according to the embodiment of the present disclosure, and (b) is an enlarged cross-sectional view showing a supporting protrusion in part A of (a). 本開示の吸着部材における複数の炭化珪素層の積層体を模式的に示す説明図である。It is explanatory drawing which shows typically the laminated body of the plurality of silicon carbide layers in the adsorption member of this disclosure. 支持用突起部の他の例を示す断面図である。It is sectional drawing which shows the other example of the support protrusion part.

<吸着部材>
以下、本開示の一実施形態に係る吸着部材を、図面を参照して説明する。図1(a)は、本実施形態の吸着部材10を示している。この吸着部材10は、円盤状をなし、基体部1 の表面に複数の支持用の突起部2が形成されている。
<Adsorption member>
Hereinafter, the adsorption member according to the embodiment of the present disclosure will be described with reference to the drawings. FIG. 1A shows the suction member 10 of the present embodiment. The suction member 10 has a disk shape, and a plurality of supporting protrusions 2 are formed on the surface of the base portion 1.

突起部2は、図1(b)に示すように、円錐台状をなす基部3と、この基部3の表面中央部に形成された突出部4とを含む。突出部4の頂面は、被吸着体を吸着部材10で吸着保持したとき、被吸着体の裏面が載置される面である。 As shown in FIG. 1B, the protrusion 2 includes a truncated cone-shaped base portion 3 and a protrusion 4 formed at the center of the surface of the base portion 3. The top surface of the protruding portion 4 is a surface on which the back surface of the object to be adsorbed is placed when the object to be adsorbed is adsorbed and held by the adsorption member 10.

基体部1と突起部2はともに、表面および内部(断面)の気孔率が面積率で0.1%未満、好ましくは0.05%以下である。これにより、吸着部材10は緻密な組織になるので、耐摩耗性が向上し、パーティクルの発生も少ない。また、熱伝導率も高くなるので、使用中の温度変化を制御しやすい。表面に(基体部1や突起部2と物性値の異なる)保護膜が無いので、温度変化による反り(熱変形)も生じにくい。
ここで、気孔率は、表面または、断面の顕微鏡写真から、気孔の面積率を求めることにより求めることができる。
Both the substrate portion 1 and the protrusion portion 2 have a porosity on the surface and inside (cross section) of less than 0.1%, preferably 0.05% or less in terms of area ratio. As a result, the suction member 10 has a dense structure, so that the wear resistance is improved and the generation of particles is small. In addition, since the thermal conductivity is high, it is easy to control the temperature change during use. Since there is no protective film on the surface (which has different physical properties from the substrate 1 and the protrusion 2), warpage (thermal deformation) due to temperature changes is unlikely to occur.
Here, the porosity can be obtained by obtaining the area ratio of the pores from the micrograph of the surface or the cross section.

このような吸着部材10は、純度が99質量%以上の炭化珪素からなり、図2に示すように、基体部1の厚み方向に長い縦長状の炭化珪素の結晶粒6を有する。このような吸着部材10は、化学的気相成長法(CVD法)によって形成することができる。吸着部材10の純度は、例えば、X線蛍光分析、ICP発光分光分析などで分析できる。
形成された吸着部材10は、複数の炭化珪素層の積層体5からなる。吸着部材10に適した厚みを有する炭化珪素を、CVD法により単層で形成することは、異物の発生などの課題があって難しいが、成膜、パージを繰り返して複数の炭化珪素層の積層体5とすることで、良質な炭化珪素の板状体を得ることができる。
Such an adsorption member 10 is made of silicon carbide having a purity of 99% by mass or more, and has vertically elongated silicon carbide crystal grains 6 which are long in the thickness direction of the substrate portion 1 as shown in FIG. Such an adsorption member 10 can be formed by a chemical vapor deposition method (CVD method). The purity of the adsorption member 10 can be analyzed by, for example, X-ray fluorescence analysis, ICP emission spectroscopic analysis, or the like.
The formed adsorption member 10 is composed of a laminate 5 of a plurality of silicon carbide layers. It is difficult to form silicon carbide having a thickness suitable for the adsorption member 10 as a single layer by the CVD method due to problems such as the generation of foreign substances, but the film formation and purging are repeated to laminate a plurality of silicon carbide layers. By forming the body 5, a high-quality silicon carbide plate-like body can be obtained.

図2は、化学的気相成長法(CVD法)によって形成された3層の炭化珪素層5a、5b、5cの積層体5を示している。図2に示すように、複数の炭化珪素層5a、5b、5cは、基体部1の厚み方向に長い結晶粒6を有する。この積層体5の表面を切削加工、ブラスト加工、レーザー加工などの方法で加工して突起部2を形成する。そのため、突起部2も基体部1の厚み方向と同じ方向に長い結晶粒6を有する。なお、図2では、便宜上、結晶粒6を各炭化珪素層5a、5b、5cの一部のみに記載し、他の部分は省略している。 FIG. 2 shows a laminated body 5 of three silicon carbide layers 5a, 5b, and 5c formed by a chemical vapor deposition method (CVD method). As shown in FIG. 2, the plurality of silicon carbide layers 5a, 5b, and 5c have crystal grains 6 that are long in the thickness direction of the substrate portion 1. The surface of the laminated body 5 is processed by a method such as cutting, blasting, or laser processing to form the protrusion 2. Therefore, the protrusion 2 also has crystal grains 6 that are long in the same direction as the thickness direction of the substrate 1. In FIG. 2, for convenience, the crystal grains 6 are described only in a part of each of the silicon carbide layers 5a, 5b, and 5c, and the other parts are omitted.

炭化珪素以外の添加物の多くは、結晶粒界に析出し、熱伝導の妨げになるので、純度が高いと熱伝導率が高くなる。純度が高ければ炭化珪素以外の析出物が少なくなるので、耐摩耗性、剛性などの機械的特性にも優れる。結晶粒6の長い方向では、短い方向と比べて、結晶に対する結晶粒界の比率が小さくなるので、熱伝導率が高くなる。このように、純度が99質量%以上の炭化珪素からなり、基体部1の厚み方向に長い縦長状の結晶粒6を有するので、突起部2の高さ方向(厚み方向)の熱伝導率も良好になる。また、突起部2の耐磨耗性も向上する。また、剛性が高いので、高くて細い突起部2を高精度に加工できる。 Most of the additives other than silicon carbide are deposited at the grain boundaries and hinder heat conduction. Therefore, the higher the purity, the higher the thermal conductivity. The higher the purity, the less the precipitates other than silicon carbide, so the mechanical properties such as wear resistance and rigidity are also excellent. In the long direction of the crystal grains 6, the ratio of the crystal grain boundaries to the crystals is smaller than in the short direction, so that the thermal conductivity is higher. As described above, since it is made of silicon carbide having a purity of 99% by mass or more and has vertically elongated crystal grains 6 which are long in the thickness direction of the substrate portion 1, the thermal conductivity in the height direction (thickness direction) of the protrusion 2 is also high. Become good. In addition, the wear resistance of the protrusion 2 is also improved. Further, since the rigidity is high, the high and thin protrusion 2 can be machined with high accuracy.

積層体5の界面7は、結晶が不連続になっており、加工時に変形や破損の原因となりやすい。従って、積層体5の界面7は、突起部2内になく、基体部1内にあるのが好ましい。これによって、高くて細いピン状の突起部2を、加工時の変形や破損を生じさせることなく、高精度に加工できるようになる。よって、積層体5の最表面側の炭化珪素層5cの厚みは突起部2の高さよりも大きいとよい。炭化珪素層の積層数は、2〜4層であるのがよい。 Crystals are discontinuous at the interface 7 of the laminated body 5, which tends to cause deformation or breakage during processing. Therefore, it is preferable that the interface 7 of the laminated body 5 is not in the protrusion 2 but in the substrate 1. As a result, the tall and thin pin-shaped protrusion 2 can be machined with high accuracy without causing deformation or breakage during machining. Therefore, the thickness of the silicon carbide layer 5c on the outermost surface side of the laminated body 5 is preferably larger than the height of the protrusion 2. The number of laminated silicon carbide layers is preferably 2 to 4 layers.

吸着部材10の裏面に、第2の突起部(不図示)が、複数形成されていてもよい。第2の突起部は、例えば、吸着部材10を載置台に載置、吸着するのに用いられる。吸着部材10が第2の突起部を有する場合も、積層体5の界面7は、第2の突起部内になく、基体部1内にあるのが好ましい。 A plurality of second protrusions (not shown) may be formed on the back surface of the suction member 10. The second protrusion is used, for example, for mounting and sucking the suction member 10 on a mounting table. Even when the suction member 10 has the second protrusion, the interface 7 of the laminated body 5 is preferably not in the second protrusion but in the base portion 1.

積層体5を構成する複数の炭化珪素層は、等方性炭化珪素または配向性性炭化珪素からなる。等方性炭化珪素であるときは、低抵抗で帯電しにくいので、電子線露光に好適である。一方、配向性炭化珪素であるときは、均一な加工ができ、光の反射むらを低減できるので、紫外線露光に好適である。 The plurality of silicon carbide layers constituting the laminate 5 are made of isotropic silicon carbide or oriented silicon carbide. When it is isotropic silicon carbide, it has low resistance and is hard to be charged, so that it is suitable for electron beam exposure. On the other hand, oriented silicon carbide is suitable for ultraviolet exposure because it can be uniformly processed and uneven light reflection can be reduced.

吸着部材10は、被吸着体と吸着部材10との間の空間を吸気して被吸着体を吸着するための吸気孔(図示せず)を備えていてもよい。吸気孔は例えばマシニングセンタ等で形成され、基体部1を厚み方向に貫通する。吸気孔内には被吸着体を吸着、開放する際にガスの流れが生じるため、吸気孔の内壁に露出した結晶粒界からパーティクルが排出されることがある。吸着部材10は、基体部1が厚み方向に長い縦長状の結晶粒6を有するので、吸気孔の内壁に露出した結晶粒界が少なくなり、パーティクル排出を低減することができる。 The suction member 10 may include an intake hole (not shown) for sucking the space between the suction body and the suction member 10 and sucking the suction body. The intake hole is formed by, for example, a machining center or the like, and penetrates the base portion 1 in the thickness direction. Since a gas flow is generated in the intake hole when the adsorbed body is adsorbed and opened, particles may be discharged from the crystal grain boundaries exposed on the inner wall of the intake hole. Since the base portion 1 of the adsorption member 10 has vertically elongated crystal grains 6 that are long in the thickness direction, the crystal grain boundaries exposed on the inner wall of the intake hole are reduced, and particle emission can be reduced.

本開示における突起部2は、図1(b)に示すような形状に限定されるものではなく、例えば図3に示すように、全体が円錐台に近い形状を有する突起部2´であってもよく、特に限定されるものではない。 The protrusion 2 in the present disclosure is not limited to the shape shown in FIG. 1B, and is, for example, a protrusion 2'having a shape similar to a truncated cone as a whole, as shown in FIG. It is also good and is not particularly limited.

<吸着部材の製造方法>
本開示に係る吸着部材10を製造するには、化学的気相成長法(CVD法)により複数の炭化珪素層の積層体5を形成した後、積層体5の表面の一部を除去して突起部2を形成する。
<Manufacturing method of adsorption member>
In order to manufacture the adsorption member 10 according to the present disclosure, a laminated body 5 of a plurality of silicon carbide layers is formed by a chemical vapor deposition method (CVD method), and then a part of the surface of the laminated body 5 is removed. The protrusion 2 is formed.

複数の炭化珪素層の積層体5は、例えば、特開平11−121315号公報、特開2007−49201号公報等に記載のCVD法によって形成することができる。すなわち、まず、高純度黒鉛からなる円板状の黒鉛基材を減圧CVD装置に入れ、装置(炉)内を100Torr以下に減圧し、ついで1000〜1600℃に加熱し、キャリアガス(水素ガス)ともに、原料となるSiClおよびCHを各々所定量導入し、CVD法によって黒鉛基材の表面に第1炭化珪素層5aを成膜する。 The laminate 5 of the plurality of silicon carbide layers can be formed by, for example, the CVD method described in JP-A-11-121315, JP-A-2007-49201, and the like. That is, first, a disk-shaped graphite base material made of high-purity graphite is placed in a decompression CVD apparatus, the inside of the apparatus (furnace) is depressurized to 100 Torr or less, and then heated to 1000 to 1600 ° C. to carry carrier gas (hydrogen gas). In both cases, a predetermined amount of SiCl 4 and CH 4 as raw materials are introduced, and a first silicon carbide layer 5a is formed on the surface of the graphite base material by a CVD method.

第1炭化珪素層5aの成膜終了後、原料ガスの供給を停止し、炉内の原料ガスをパージガスによってパージする。その後、再び原料ガスをキャリアガスとともに供給し、前回と同様にして第1第1炭化珪素層5aの上に第2炭化珪素層5bを成膜する。そして、第2炭化珪素層5bを所定の厚さ成膜したならば、再び原料ガスの供給を停止して炉内の原料ガスのパージを行う。以下、同様にして、第3炭化珪素層5cを積層し、全体の成膜厚さを0.5〜5mm程度にする。CVD法によって形成された炭化珪素層積層体5は、気孔率が小さく(面積率で0.1%未満)、純度が高く(99質量%以上)、成膜方向に長い結晶粒6を有する。 After the film formation of the first silicon carbide layer 5a is completed, the supply of the raw material gas is stopped, and the raw material gas in the furnace is purged with the purge gas. After that, the raw material gas is supplied together with the carrier gas again, and the second silicon carbide layer 5b is formed on the first silicon carbide layer 5a in the same manner as the previous time. Then, when the second silicon carbide layer 5b is formed to a predetermined thickness, the supply of the raw material gas is stopped again and the raw material gas in the furnace is purged. Hereinafter, in the same manner, the third silicon carbide layer 5c is laminated to make the total film thickness of the film about 0.5 to 5 mm. The silicon carbide layer laminate 5 formed by the CVD method has a small porosity (less than 0.1% in area ratio), high purity (99% by mass or more), and has crystal grains 6 long in the film forming direction.

このようにして黒鉛基材58の表面に炭化珪素層5a〜5cを積層したのち、炭化珪素層5a〜5cの周縁部を研削し、黒鉛基材の周面を露出させる。そして、炭化珪素層5a〜5cによって挟まれた状態の黒鉛基材を900〜1400℃の炉に入れ、酸素を供給して黒鉛基材を酸化燃焼して除去し、2枚の炭化珪素層の積層体5を得る。 After the silicon carbide layers 5a to 5c are laminated on the surface of the graphite base material 58 in this way, the peripheral portion of the silicon carbide layers 5a to 5c is ground to expose the peripheral surface of the graphite base material. Then, the graphite base material sandwiched between the silicon carbide layers 5a to 5c is placed in a furnace at 900 to 1400 ° C., oxygen is supplied to oxidize and burn the graphite base material, and the two silicon carbide layers are removed. The laminate 5 is obtained.

次に、得られた積層体5の表面の一部を除去して突起部2を形成する。積層体5の表面の一部を除去するには、例えば、切削加工、ブラスト加工、レーザー加工等が採用可能である。突起部2の基体部1からの高さは、50〜500μm程度である。突起部2を形成する炭化珪素層5cの厚みは、突起部2の高さよりも大きいとよい。基体部1の厚み方向は積層体5の成膜方向であり、結晶粒6の長い方向である。このようにして形成した吸着部材10は、耐摩耗性に優れ、温度変化による反り(熱変形)も低減でき、突起部2を高精度に加工できる。また、突起部2の高さ方向の熱伝導率も良好である。 Next, a part of the surface of the obtained laminate 5 is removed to form the protrusion 2. For removing a part of the surface of the laminated body 5, for example, cutting, blasting, laser machining, or the like can be adopted. The height of the protrusion 2 from the base portion 1 is about 50 to 500 μm. The thickness of the silicon carbide layer 5c forming the protrusion 2 is preferably larger than the height of the protrusion 2. The thickness direction of the substrate portion 1 is the film forming direction of the laminated body 5, and is the long direction of the crystal grains 6. The suction member 10 formed in this way has excellent wear resistance, can reduce warpage (thermal deformation) due to temperature changes, and can process the protrusion 2 with high accuracy. Further, the thermal conductivity of the protrusion 2 in the height direction is also good.

複数の炭化珪素層5a〜5cを等方性炭化珪素から構成するには、配向性炭化珪素が形成される成膜条件と比べて、原料ガスの供給量を増大させて成膜速度を速くしたり、成膜温度を下げたりすればよい。また、複数の炭化珪素層5a〜5cを配向性炭化珪素から構成するには、等方性炭化珪素が形成される製膜条件と比べて、原料ガスの供給量を減少させて成膜速度を遅くしたり、成膜温度を下げたりすればよい。 In order to construct the plurality of silicon carbide layers 5a to 5c from isotropic silicon carbide, the supply amount of the raw material gas is increased and the film formation rate is increased as compared with the film formation conditions in which the oriented silicon carbide is formed. Or, the film formation temperature may be lowered. Further, in order to construct the plurality of silicon carbide layers 5a to 5c from the oriented silicon carbide, the supply amount of the raw material gas is reduced and the film formation rate is increased as compared with the film forming condition in which the isotropic silicon carbide is formed. It may be slowed down or the film formation temperature may be lowered.

<吸着装置および吸着方法>
本開示の吸着装置は、上述した吸着部材10と、この吸着部材10に被吸着体を吸着させるための吸着手段とを備える。ここで、吸着手段としては、被吸着体を保持するための作用力として、バネ等の機械的な力、差圧力、静電気力等を用いることのできる手段をいう。
<Adsorption device and adsorption method>
The adsorption device of the present disclosure includes the above-mentioned adsorption member 10 and an adsorption means for adsorbing the object to be adsorbed on the adsorption member 10. Here, the adsorption means means a means capable of using a mechanical force such as a spring, a differential pressure, an electrostatic force, or the like as an acting force for holding the object to be adsorbed.

本開示の吸着装置として、例えば被吸着体を吸着するための吸気孔を備えてなる吸着部材10と、吸気孔から吸気を行わせるため真空ポンプ等の吸気手段とを備えたものとすることができ、例えば真空チャック装置に適用することも可能である。 The suction device of the present disclosure may include, for example, a suction member 10 provided with an intake hole for sucking an object to be adsorbed, and an intake means such as a vacuum pump for sucking air from the suction hole. It can be applied to, for example, a vacuum chuck device.

また、本開示の吸着方法は、吸着部材10を用いて、被吸着体を突起部2で支持するようにしている。 Further, in the adsorption method of the present disclosure, the adsorption member 10 is used to support the object to be adsorbed by the protrusion 2.

本開示の吸着装置および吸着方法は、半導体の製造工程や検査工程(製造装置や検査装置)等において、シリコン基板等の板状の被吸着体を吸着・保持するのに好適であり、露光装置などに使用される。 The adsorption device and adsorption method of the present disclosure are suitable for adsorbing and holding a plate-shaped adsorbed body such as a silicon substrate in a semiconductor manufacturing process or an inspection process (manufacturing device or inspection device), and are an exposure device. Used for such as.

以下、本発明の実施例を説明する。実施例として、炭化珪素層からなる積層体5をCVD法により作製した。また、比較例として、CIP(冷間等方圧プレス)成形した成形体を焼成し、炭化珪素セラミックからなる焼結体を作製した。 Hereinafter, examples of the present invention will be described. As an example, a laminate 5 made of a silicon carbide layer was produced by a CVD method. Further, as a comparative example, a CIP (cold isotropic press) molded molded body was fired to prepare a sintered body made of silicon carbide ceramic.

積層体5および焼結体の表面を研削、研磨して光学顕微鏡で撮影し、画像解析により気孔率を算出したところ、積層体5の気孔率は、0.02%、焼結体の気孔率は、0.1%であった。
なお、光学顕微鏡の撮影倍率は200倍とし、円相当径1μm以上の気孔の面積率を測定した。また、ボールオンディスク摩耗試験機と、炭化珪素からなるボールとを用いて比摩耗量(単位荷重、単位摺動距離当たりの摩耗体積)を測定したところ、積層体5の比摩耗量は、2.0×10-7mm/(N.m)であったのに対し、焼結体の比摩耗量は4.5×10-7mm/(N.m)であり、積層体5の方が耐摩耗性に優れていた。
The surfaces of the laminate 5 and the sintered body were ground and polished, photographed with an optical microscope, and the porosity was calculated by image analysis. The porosity of the laminate 5 was 0.02%, and the porosity of the sintered body was 0.02%. Was 0.1%.
The imaging magnification of the optical microscope was set to 200 times, and the area ratio of pores having a diameter equivalent to a circle of 1 μm or more was measured. Further, when the specific wear amount (unit load, wear volume per unit sliding distance) was measured using a ball-on-disk wear tester and a ball made of silicon carbide, the specific wear amount of the laminated body 5 was 2. to .0 × 10 -7 mm 3 /(N.m) of which was a, specific wear amount of the sintered body is 4.5 × 10 -7 mm 3 /(N.m) , the laminate 5 Was superior in abrasion resistance.

吸着部材10を作製するため、3層の炭化珪素層からなる、外径100mm、厚み4mmの積層体5を準備し、外周面を円筒加工、厚みを研削加工によって整えた後、両主面をラッピング加工により平坦化した。次に、ブラスト加工により、一主面に図1(b)に示すような形状の複数の突起部2を形成した。 In order to produce the adsorption member 10, a laminated body 5 having an outer diameter of 100 mm and a thickness of 4 mm, which is composed of three silicon carbide layers, is prepared, the outer peripheral surface is cylindrically processed, the thickness is adjusted by grinding, and then both main surfaces are formed. Flattened by wrapping. Next, by blasting, a plurality of protrusions 2 having a shape as shown in FIG. 1 (b) were formed on one main surface.

1 基体部
2、2´ 突起部
3 基部
4 突出部
5 積層体
5a、5b、5c 炭化珪素層
6 結晶粒
7 界面
10 吸着部材

1 Base part 2, 2'Protrusion part 3 Base part 4 Projection part 5 Laminated body 5a, 5b, 5c Silicon carbide layer 6 Crystal grain 7 Interface 10 Adsorption member

Claims (12)

基体部と該基体部の表面に配された複数の支持用の突起部とを備えた、炭化珪素からなる吸着部材であって、前記基体部と前記突起部はともに、気孔率が面積率で0.1%未満であり、純度が99質量%以上で、前記基体部の厚み方向に長い結晶粒を有する、吸着部材。 It is an adsorption member made of silicon carbide provided with a base portion and a plurality of supporting protrusions arranged on the surface of the base portion, and both the base portion and the protrusions have a porosity of an area ratio. An adsorption member having less than 0.1%, a purity of 99% by mass or more, and having crystal grains long in the thickness direction of the substrate portion. 気孔率が0.05%以下である、請求項1に記載の吸着部材。 The adsorption member according to claim 1, wherein the porosity is 0.05% or less. 複数の炭化珪素層の積層体からなり、複数の前記炭化珪素層は、それぞれ前記基体部の厚み方向に長い結晶粒を有する、請求項1または2に記載の吸着部材。 The adsorption member according to claim 1 or 2, which is composed of a laminate of a plurality of silicon carbide layers, and each of the plurality of silicon carbide layers has crystal grains long in the thickness direction of the substrate portion. 前記突起部内に前記積層体の界面を有さない、請求項3に記載の吸着部材。 The suction member according to claim 3, which does not have an interface of the laminated body in the protrusion. 複数の前記炭化珪素層は、等方性炭化珪素からなる、請求項1〜4のいずれかに記載の吸着部材。 The adsorption member according to any one of claims 1 to 4, wherein the plurality of silicon carbide layers are made of isotropic silicon carbide. 複数の前記炭化珪素層は、配向性性炭化珪素からなる、請求項1〜4のいずれかに記載の吸着部材。 The adsorption member according to any one of claims 1 to 4, wherein the plurality of silicon carbide layers are made of oriented silicon carbide. 前記基体を厚み方向に貫通する吸気孔を備えてなる、請求項1〜6のいずれかに記載の吸着部材。 The suction member according to any one of claims 1 to 6, further comprising an intake hole penetrating the substrate in the thickness direction. 基体部と前記基体部の表面に配された複数の支持用の突起部とを備えた吸着部材の製造方法であって、
化学的気相成長法により複数の炭化珪素層の積層体を形成する工程と、前記積層体の表面の一部を除去して前記突起部を形成する工程とを含む、吸着部材の製造方法。
A method for manufacturing an adsorption member including a base portion and a plurality of supporting protrusions arranged on the surface of the base portion.
A method for manufacturing an adsorption member, which comprises a step of forming a laminate of a plurality of silicon carbide layers by a chemical vapor deposition method and a step of removing a part of the surface of the laminate to form the protrusions.
複数の前記炭化珪素層は、それぞれ前記基体部の厚み方向に長い結晶粒を有する、請求項8に記載の吸着部材の製造方法。 The method for producing an adsorption member according to claim 8, wherein each of the plurality of silicon carbide layers has crystal grains long in the thickness direction of the substrate portion. 請求項1〜7のいずれかに記載の吸着部材と、該吸着部材に被吸着体を吸着させるための吸着手段とを備えた、吸着装置。 An adsorption device comprising the adsorption member according to any one of claims 1 to 7 and an adsorption means for adsorbing an object to be adsorbed on the adsorption member. 請求項7に記載の吸着部材と、前記吸気孔から吸気を行わせるための吸気手段とを備えた、吸着装置。 A suction device including the suction member according to claim 7 and an intake means for causing intake from the intake hole. 請求項1〜7のいずれかに記載の吸着部材を用いて、被吸着体を前記突起部で支持するようにしたことを特徴とする吸着方法。
A suction method comprising the suction member according to any one of claims 1 to 7, wherein the body to be adsorbed is supported by the protrusion.
JP2020110954A 2019-06-28 2020-06-26 Adsorption member, adsorption device, and adsorption method Pending JP2021010005A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019122424 2019-06-28
JP2019122424 2019-06-28

Publications (1)

Publication Number Publication Date
JP2021010005A true JP2021010005A (en) 2021-01-28

Family

ID=74200100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020110954A Pending JP2021010005A (en) 2019-06-28 2020-06-26 Adsorption member, adsorption device, and adsorption method

Country Status (1)

Country Link
JP (1) JP2021010005A (en)

Similar Documents

Publication Publication Date Title
JP5063797B2 (en) Adsorption member, adsorption device, and adsorption method
JP4782744B2 (en) Adsorption member, adsorption device, and adsorption method
JP2010016176A (en) Test piece holder
JP6708460B2 (en) Method for manufacturing joined body
CN101878323A (en) A device for layered deposition of various materials on a semiconductor substrate, as well as a lift pin for use in such a device
JP6592188B2 (en) Adsorption member
JP2006270084A (en) Electrostatic chuck, wafer holding element and method of processing wafer
JP3121886B2 (en) Vacuum suction device
JP6085152B2 (en) Vacuum chuck
JP2012119378A (en) Mounting member and manufacturing method thereof
JP4695145B2 (en) Sample holder, sample adsorption device using the same, sample processing method, and method for manufacturing sample holder
JP5261057B2 (en) Suction board and vacuum suction device
JP2021010005A (en) Adsorption member, adsorption device, and adsorption method
JP7096031B2 (en) Board holding member
US6135054A (en) Semiconductor wafer holder with CVD silicon carbide film coating
EP0901152B1 (en) Semiconductor wafer holder with CVD silicon carbide film coating
JP2008159900A (en) Ceramic heater with electrostatic chuck
JP4321855B2 (en) Ceramic chuck
JP2011100844A (en) Device having electrostatic chucking function and method of manufacturing the same
JP2007299867A (en) Electrostatic chuck and its manufacturing method
CN109119372B (en) Substrate holding member
JP2006182641A (en) Silicon carbide-based sintered compact, its producing method, and member for semiconductor production device using the same
JP2022086147A (en) Method for manufacturing suction member, and suction member
US20240094627A1 (en) Member for exposure device, manufacturing method for member for exposure device, and composite member for exposure device
TWI826731B (en) Wafer chuck, method for producing the same, and exposure apparatus