JP2021007744A - Resin for golf ball - Google Patents

Resin for golf ball Download PDF

Info

Publication number
JP2021007744A
JP2021007744A JP2020112734A JP2020112734A JP2021007744A JP 2021007744 A JP2021007744 A JP 2021007744A JP 2020112734 A JP2020112734 A JP 2020112734A JP 2020112734 A JP2020112734 A JP 2020112734A JP 2021007744 A JP2021007744 A JP 2021007744A
Authority
JP
Japan
Prior art keywords
group
copolymer
resin
structural unit
ionomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020112734A
Other languages
Japanese (ja)
Inventor
正弘 上松
Masahiro Uematsu
正弘 上松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Japan Polyethylene Corp
Original Assignee
Japan Polypropylene Corp
Japan Polyethylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp, Japan Polyethylene Corp filed Critical Japan Polypropylene Corp
Publication of JP2021007744A publication Critical patent/JP2021007744A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

To provide a resin for a golf ball, having excellent abrasion resistance, and excellent in a balance among abrasion resistance, rebound resilience and rigidity.SOLUTION: A resin for a golf ball contains an ionomer in which: at least a part of a carboxyl group and/or a dicarboxylic acid anhydride group in a copolymer (P) which includes as the essential constitutional units, a structural unit (A) derived from ethylene and/or α-olefin of carbon number 3-20, and a structural unit (B) derived from a monomer having a carboxyl group and/or a dicarboxylic acid anhydride group, is converted into a metal-containing carboxylate containing at least one kind of a metal ion selected from group 1, group 2 or group 12 in the periodic table; and a phase angle δ in an absolute value G*=0.1 MPa of a complex elastic modulus measured with a rotary rheometer is 50-75 degrees.SELECTED DRAWING: None

Description

本発明は、耐摩耗性が良好なゴルフボール用樹脂及び該ゴルフボール用樹脂を用いたゴルフボールに関するものであり、さらに詳しくは耐摩耗性、反発弾性、硬度のバランスに優れたゴルフボールを提供することができる樹脂として好適なアイオノマーに関するものである。 The present invention relates to a golf ball resin having good wear resistance and a golf ball using the golf ball resin. More specifically, the present invention provides a golf ball having an excellent balance of wear resistance, impact resilience, and hardness. It relates to an ionomer suitable as a resin that can be used.

近年、ゴルフボール用樹脂として、アイオノマーが広く用いられている。このアイオノマーは、例えばエチレンのようなオレフィンと、アクリル酸、メタクリル酸、或いはマレイン酸等のような不飽和カルボン酸からなるイオン性共重合体の酸性基のある部分を、ナトリウム、亜鉛などのような金属イオンによって中和したものである(特許文献1)。強靭で反発弾性と硬度のバランスに優れた性質を有し、ゴルフボール用樹脂として好適なものとされている。競技者によって要求されるボールの特性により使用箇所に違いはあるものの、ゴルフボールが通常有する2層以上の層のうち、コアと呼ばれる内側の構造、カバーと呼ばれる外側の構造のいずれにも、アイオノマーは用いられる。 In recent years, ionomers have been widely used as resins for golf balls. This ionomer has an acidic group-containing portion of an ionic copolymer composed of an olefin such as ethylene and an unsaturated carboxylic acid such as acrylic acid, methacrylic acid, or maleic acid, such as sodium and zinc. It is neutralized with a simple metal ion (Patent Document 1). It is tough and has an excellent balance of impact resilience and hardness, and is considered to be suitable as a resin for golf balls. Although there are differences in the place of use depending on the characteristics of the ball required by the player, among the two or more layers that a golf ball usually has, both the inner structure called the core and the outer structure called the cover are ionomers. Is used.

現在、市販されているアイオノマーとしては、Dupont社が開発したエチレン−メタクリル酸共重合体のナトリウム塩や亜鉛塩「Surlyn(登録商標)」、及び、三井・ダウポリケミカル社が販売している「ハイミラン(登録商標)」等が知られている。 Currently, commercially available ionomers include the ethylene-methacrylic acid copolymer sodium salt and zinc salt "Surlyn (registered trademark)" developed by DuPont, and "Surlyn (registered trademark)" sold by Mitsui Dow Polychemicals. High Milan (registered trademark) "and the like are known.

しかしながら、これら現在市販されているアイオノマーに用いられるベース樹脂のエチレン−不飽和カルボン酸共重合体には、いずれも、エチレンと不飽和カルボン酸等の極性基含有モノマーを、高圧ラジカル重合法により重合した極性基含有オレフィン共重合体が用いられている。この、高圧ラジカル重合法で製造される極性基含有オレフィン共重合体の分子構造は、図1に示すイメージ図のように、多くの長鎖分岐及び短鎖分岐を不規則に有する構造であり、強度や耐摩耗性が不十分であるという欠点がある。 However, in each of these currently commercially available base resin ethylene-unsaturated carboxylic acid copolymers used for ionomers, ethylene and a polar group-containing monomer such as unsaturated carboxylic acid are polymerized by a high-pressure radical polymerization method. A polar group-containing olefin copolymer is used. The molecular structure of the polar group-containing olefin copolymer produced by the high-pressure radical polymerization method is a structure having many long-chain branches and short-chain branches irregularly as shown in the image diagram shown in FIG. 1, and has strength. It has the disadvantage of insufficient wear resistance.

飛距離が出るため初心者に好まれるディスタンス系と呼ばれるボールはカバー部にアイオノマーを用いるため、アイオノマーに耐摩耗性が要求される。耐摩耗性の向上を目的として、アイオノマーにポリエチレン及びエポキシ基含有ポリエチレン又はポリエチレンワックスをブレンドする手法(特許文献2)が開示されている。その他の樹脂をブレンドする方法としては、アイオノマーにゴム成分をブレンドしパーオキサイドで架橋する手法(特許文献3)も開示されている。これらの手法は、耐摩耗性の他にもゴルフボールに本来要求される反発弾性、硬度などのパラメーターを考慮して行われなければならない。 Balls called distance type, which are preferred by beginners because of their long flight distance, use ionomers for the cover, so wear resistance is required for the ionomers. A method of blending polyethylene and an epoxy group-containing polyethylene or polyethylene wax with an ionomer for the purpose of improving wear resistance is disclosed (Patent Document 2). As a method of blending other resins, a method of blending a rubber component with an ionomer and cross-linking with a peroxide is also disclosed (Patent Document 3). In addition to wear resistance, these methods must be performed in consideration of parameters such as impact resilience and hardness originally required for golf balls.

米国特許第3264272号明細書U.S. Pat. No. 3,264,272 特開2000−102628号公報Japanese Unexamined Patent Publication No. 2000-102628 特開2003−206376号公報Japanese Unexamined Patent Publication No. 2003-206376

ゴルフは広く一般にも行われるようになっている競技でありボールに対する需要も幅広く多いものである。しかし、その素材として現在用いられているアイオノマーは、高圧ラジカル重合法により重合した極性基含有オレフィン共重合体をベース樹脂としたものであるため強度や耐摩耗性に制限があった。従来のアイオノマー単独で反発弾性と硬度に加え、耐摩耗性も満足するようなゴルフボール用樹脂を設計することは困難であった。一方で複数の樹脂をブレンドする方法も、特許文献2記載のものは耐摩耗性と硬度に関しての情報のみで反発弾性を含めた物性バランスに関する記載はなく、特許文献3記載のものは耐摩耗性の向上が十分ではないため、十分な物性を備えたものではなかった。さらに、これらのブレンドによる方法はアイオノマーに他の成分をブレンドすることで製造コストが高くなるという問題もある。 Golf is a sport that has become widely practiced and there is a wide range of demand for balls. However, since the ionomer currently used as the material is based on a polar group-containing olefin copolymer polymerized by a high-pressure radical polymerization method, its strength and abrasion resistance are limited. It has been difficult to design a resin for golf balls that satisfies not only resilience and hardness but also wear resistance with the conventional ionomer alone. On the other hand, as for the method of blending a plurality of resins, the one described in Patent Document 2 contains only information on abrasion resistance and hardness, and does not describe the physical property balance including impact resilience, and the one described in Patent Document 3 has abrasion resistance. The improvement was not enough, so it did not have sufficient physical properties. Further, the method using these blends has a problem that the manufacturing cost is increased by blending other components with the ionomer.

上記の状況から、単独で耐摩耗性に優れ、かつ耐摩耗性、反発弾性、硬度のバランスに優れるアイオノマー及びそれを用いたゴルフボール用樹脂が望まれていた。
本願は、かかる従来技術の状況に鑑み、格段に優れた耐摩耗性を有し、かつ耐摩耗性、反発弾性、硬度のバランスが良好なアイオノマーを用いたゴルフボール用樹脂を提供することを目的とする。
From the above situation, an ionomer having excellent wear resistance alone and having an excellent balance of wear resistance, impact resilience and hardness, and a resin for golf balls using the ionomer have been desired.
In view of the situation of the prior art, an object of the present application is to provide a resin for a golf ball using an ionomer having a remarkably excellent wear resistance and a good balance of wear resistance, impact resilience and hardness. And.

上記課題の解決のため本発明者らが検討を重ねた結果、特定のアイオノマー樹脂を用いることで、ゴルフボールに求められる物性が改善する効果を有することを見出した。該エチレン系アイオノマーは、ベース樹脂が図2のように実質的に直鎖状の分子構造を有すると共にアイオノマーとしての機能も有する、従来にはない新規のエチレン系アイオノマーであり、その物性等は従来の多分岐型の分子構造を有するエチレン系アイオノマーとは大きく異なり、特有の特性及び適した用途についても未知である。本発明は、実質的に直鎖状のエチレン系アイオノマーが、従来のアイオノマーより優れた物性を示すことを見出したことに基づくものである。 As a result of repeated studies by the present inventors to solve the above problems, it has been found that the use of a specific ionomer resin has an effect of improving the physical characteristics required for a golf ball. The ethylene-based ionomer is a novel ethylene-based ionomer in which the base resin has a substantially linear molecular structure as shown in FIG. 2 and also has a function as an ionomer, and its physical properties and the like are conventional. Unlike the ethylene ionomer, which has a multi-branched molecular structure, its unique properties and suitable applications are unknown. The present invention is based on the finding that a substantially linear ethylene-based ionomer exhibits superior physical properties to conventional ionomers.

すなわち本発明の第1の態様は、エチレン及び/又は炭素数3〜20のα−オレフィンに由来する構造単位(A)と、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位(B)を必須構成単位として含む共重合体(P)中の、カルボキシル基及び/又はジカルボン酸無水物基の少なくとも一部が周期表1族、2族、又は12族から選ばれる少なくとも1種の金属イオンを含有する金属含有カルボン酸塩に変換されてなり、回転式レオメータで測定した複素弾性率の絶対値G=0.1MPaにおける位相角δが、50度〜75度であるアイオノマーを含む、ゴルフボール用樹脂である。
本発明の第2の態様は、前記共重合体(P)の13C−NMRにより算出されるメチル分岐数が、炭素1,000個当たり50個以下であることを特徴とする、前記第1の態様記載のゴルフボール用樹脂である。
本発明の第3の態様は、前記共重合体(P)の13C−NMRにより算出されるメチル分岐数が、炭素1,000個当たり5個以下であることを特徴とする、前記第1の態様記載のゴルフボール用樹脂である。
本発明の第4の態様は、前記共重合体(P)が、共重合体中に前記構造単位(B)を2〜20mol%含むことを特徴とする、前記第1〜3の態様のいずれかに記載のゴルフボール用樹脂である。
本発明の第5の態様は、前記構造単位(A)が、エチレンに由来する構造単位であることを特徴とする、前記第1〜4の態様のいずれかに記載のゴルフボール用樹脂である。
本発明の第6の態様は、前記共重合体(P)が周期表第8〜11族の遷移金属を含む遷移金属触媒を用いて製造されることを特徴とする、前記第1〜5の態様のいずれかに記載のゴルフボール用樹脂である。
本発明の第7の態様は、前記遷移金属触媒がリンスルホン酸又はリンフェノール配位子とニッケル又はパラジウムからなる遷移金属触媒であることを特徴とする、前記第6の態様記載のゴルフボール用樹脂である。
本発明の第8の様態は、前記第1〜7の様態に記載されたゴルフボール用樹脂を含むことを特徴とするゴルフボール用樹脂組成物である。
本発明の第9の様態は、前記第1〜8の様態に記載されたゴルフボール用樹脂又はゴルフボール用樹脂組成物を含むことを特徴とするゴルフボールである。
That is, the first aspect of the present invention is a structure derived from a structural unit (A) derived from ethylene and / or an α-olefin having 3 to 20 carbon atoms and a monomer having a carboxyl group and / or a dicarboxylic acid anhydride group. At least a part of the carboxyl group and / or the dicarboxylic acid anhydride group in the copolymer (P) containing the unit (B) as an essential constituent unit is selected from Group 1, Group 2, or Group 12 of the periodic table. Ionomers that are converted to metal-containing carboxylic acid salts containing seed metal ions and have a phase angle δ of 50 to 75 degrees at the absolute value G * = 0.1 MPa of the heteroelasticity measured by a rotary leometer It is a resin for a golf ball containing.
A second aspect of the present invention is characterized in that the number of methyl branches calculated by 13 C-NMR of the copolymer (P) is 50 or less per 1,000 carbons. The resin for golf balls according to the above embodiment.
A third aspect of the present invention is characterized in that the number of methyl branches calculated by 13 C-NMR of the copolymer (P) is 5 or less per 1,000 carbons. The resin for golf balls according to the above embodiment.
A fourth aspect of the present invention is any of the first to third aspects, wherein the copolymer (P) contains 2 to 20 mol% of the structural unit (B) in the copolymer. The resin for golf balls described in Crab.
A fifth aspect of the present invention is the golf ball resin according to any one of the first to fourth aspects, wherein the structural unit (A) is a structural unit derived from ethylene. ..
A sixth aspect of the present invention is characterized in that the copolymer (P) is produced using a transition metal catalyst containing a transition metal of groups 8 to 11 of the periodic table. The resin for a golf ball according to any one of the embodiments.
A seventh aspect of the present invention is for a golf ball according to the sixth aspect, wherein the transition metal catalyst is a transition metal catalyst composed of a phosphorus sulfonic acid or a phosphorus phenol ligand and nickel or palladium. It is a resin.
The eighth aspect of the present invention is a golf ball resin composition, which comprises the golf ball resin described in the first to seventh aspects.
A ninth aspect of the present invention is a golf ball comprising the golf ball resin or the golf ball resin composition described in the first to eighth aspects.

本発明によれば実質的に直鎖状構造であるアイオノマーを用いることで、従来の多分岐状構造であるアイオノマーを用いる場合に比べ、格段に優れた耐摩耗性を有し、かつ耐摩耗性、反発弾性、硬度のバランスが良好なゴルフボール用樹脂を提供することができる。 According to the present invention, by using an ionomer having a substantially linear structure, it has much better wear resistance and wear resistance than when using a conventional ionomer having a multi-branched structure. , A resin for golf balls having a good balance of impact resilience and hardness can be provided.

高圧ラジカル法重合プロセスにより重合された多分岐状オレフィン共重合体の分子構造のイメージ図である。It is an image figure of the molecular structure of the polybranched olefin copolymer polymerized by the high pressure radical method polymerization process. 金属触媒を用いて重合された直鎖状オレフィン共重合体の分子構造のイメージ図である。It is an image diagram of the molecular structure of the linear olefin copolymer polymerized by using a metal catalyst. 実施例1〜15、比較例1〜4の摩耗量と反発弾性率との関係を示す図である。It is a figure which shows the relationship between the wear amount and the rebound resilience of Examples 1 to 15 and Comparative Examples 1 to 4.

本発明はエチレン及び/又は炭素数3〜20のα−オレフィンに由来する構造単位(A)と、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位(B)とを必須構成単位として含み、これらが実質的に直鎖状に共重合、好ましくはランダム共重合した共重合体(P)をベース樹脂とし、該構造単位(B)のカルボキシル基及び/又はジカルボン酸無水物基の少なくとも一部が周期表1族、2族、又は12族から選ばれる少なくとも1種の金属イオンを含有する金属含有カルボン酸塩に変換されていることを特徴とするアイオノマーを用いたゴルフボール用樹脂である。 The present invention requires a structural unit (A) derived from ethylene and / or an α-olefin having 3 to 20 carbon atoms and a structural unit (B) derived from a monomer having a carboxyl group and / or a dicarboxylic acid anhydride group. A copolymer (P) containing as a structural unit and copolymerized substantially linearly, preferably randomly copolymerized, is used as a base resin, and the carboxyl group and / or dicarboxylic acid anhydride of the structural unit (B). A golf ball using an ionomer, wherein at least a part of the group is converted into a metal-containing carboxylate containing at least one metal ion selected from Group 1, Group 2, or Group 12 of the periodic table. Resin for use.

以下、本発明に関わるアイオノマー、該アイオノマーを用いたゴルフボール用樹脂及び、その用途などについて、項目毎に詳細に説明する。なお、本明細書において、「(メタ)アクリル酸」とは、アクリル酸又はメタクリル酸を意味する。また、本明細書において数値範囲を示す「〜」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。また、本明細書において、共重合体とは、少なくとも一種の単位(A)と、少なくとも一種の単位(B)とを含む、二元系以上の共重合体を意味する。
また、本明細書において、アイオノマーとは、前記構造単位(A)と、前記構造単位(B)の少なくとも一部が金属含有カルボン酸塩に変換されている構造単位(B’)とを含み、更に前記構造単位(B)を含んでいてもよい、2元系以上の共重合体のアイオノマーを意味する。
Hereinafter, the ionomer related to the present invention, the resin for golf balls using the ionomer, its use, and the like will be described in detail for each item. In addition, in this specification, "(meth) acrylic acid" means acrylic acid or methacrylic acid. Further, in the present specification, "~" indicating a numerical range is used to mean that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value. Further, in the present specification, the copolymer means a copolymer of two or more systems including at least one unit (A) and at least one unit (B).
Further, in the present specification, the ionomer includes the structural unit (A) and the structural unit (B') in which at least a part of the structural unit (B) is converted into a metal-containing carboxylate. Further, it means an ionomer of a binary or higher copolymer which may further contain the structural unit (B).

1.アイオノマー
本発明のアイオノマーは、エチレン及び/又は炭素数3〜20のα−オレフィンに由来する構造単位(A)と、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位(B)とを必須構成単位として含み、これらが実質的に直鎖状にランダム共重合した共重合体(P)をベース樹脂とし、該構造単位(B)のカルボキシル基及び/又はジカルボン酸無水物基の少なくとも一部が周期表1族、2族、又は12族から選ばれる少なくとも1種の金属イオンを含有する金属含有カルボン酸塩に変換されていることを特徴とする。
1. 1. Ionomer The ionomer of the present invention is a structural unit (A) derived from ethylene and / or an α-olefin having 3 to 20 carbon atoms, and a structural unit (B) derived from a monomer having a carboxyl group and / or a dicarboxylic acid anhydride group. ) As an essential structural unit, and a copolymer (P) obtained by random copolymerization of these in a substantially linear manner is used as a base resin, and the carboxyl group and / or dicarboxylic acid anhydride group of the structural unit (B) is used. It is characterized in that at least a part of the above is converted into a metal-containing carboxylate containing at least one metal ion selected from Group 1, Group 2, or Group 12 of the periodic table.

(1)構造単位(A)
構造単位(A)はエチレンに由来する構造単位及び炭素数3〜20のα−オレフィンに由来する構造単位からなる群より選ばれる少なくとも一種の構造単位である。
本発明に関わるα−オレフィンは構造式:CH=CHR18で表される、炭素数3〜20のα−オレフィンである(R18は炭素数1〜18の炭化水素基であり、直鎖構造であっても分岐を有していてもよい)。α−オレフィンの炭素数は、より好ましくは、3〜12である。
(1) Structural unit (A)
The structural unit (A) is at least one structural unit selected from the group consisting of a structural unit derived from ethylene and a structural unit derived from an α-olefin having 3 to 20 carbon atoms.
The α-olefin according to the present invention is an α-olefin having 3 to 20 carbon atoms represented by the structural formula: CH 2 = CHR 18 (R 18 is a hydrocarbon group having 1 to 18 carbon atoms and is a straight chain. It may be structural or have branches). The number of carbon atoms of the α-olefin is more preferably 3 to 12.

構造単位(A)の具体例として、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、3−メチル−1−ブテン、及び4−メチル−1−ペンテン等が挙げられ、エチレンであってもよい。エチレンとしては、石油原料由来の他、植物原料由来等の非石油原料由来のエチレンを用いることができる。
また、構造単位(A)は、一種類であってもよいし、複数種であってもよい。
二種の組み合わせとしては、例えば、エチレン−プロピレン、エチレン−1−ブテン、エチレン−1−ヘキセン、エチレン−1−オクテン、プロピレン−1−ブテン、プロピレン−1−ヘキセン、及びプロピレン−1−オクテン等が挙げられる。
三種の組み合わせとしては、例えば、エチレン−プロピレン−1−ブテン、エチレン−プロピレン−1−ヘキセン、エチレン−プロピレン−1−オクテン、プロピレン−1−ブテン−ヘキセン、及びプロピレン−1−ブテン−1−オクテン等が挙げられる。
Specific examples of the structural unit (A) include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 3-methyl-1-butene, and 4-methyl-1-pentene. Etc., and may be ethylene. As the ethylene, ethylene derived from a non-petroleum raw material such as a plant raw material can be used as well as ethylene derived from a petroleum raw material.
Further, the structural unit (A) may be of one type or a plurality of types.
Examples of the combination of the two include ethylene-propylene, ethylene-1-butene, ethylene-1-hexene, ethylene-1-octene, propylene-1-butene, propylene-1-hexene, and propylene-1-octene. Can be mentioned.
The three combinations include, for example, ethylene-propylene-1-butene, ethylene-propylene-1-hexene, ethylene-propylene-1-octene, propylene-1-butene-hexene, and propylene-1-butene-1-octene. And so on.

本発明においては、構造単位(A)としては、好ましくは、エチレンを必須で含み、必要に応じて1種以上の炭素数3〜20のα−オレフィンをさらに含んでもよい。
構造単位(A)中のエチレンは、構造単位(A)の全molに対して、65〜100mol%であってもよく、70〜100mol%であってもよい。
耐衝撃性の点から前期構造単位(A)が、エチレンに由来する構造単位であってもよい。
In the present invention, the structural unit (A) preferably contains ethylene indispensably, and may further contain one or more α-olefins having 3 to 20 carbon atoms, if necessary.
The ethylene content in the structural unit (A) may be 65 to 100 mol% or 70 to 100 mol% with respect to the total mol of the structural unit (A).
From the viewpoint of impact resistance, the early structural unit (A) may be a structural unit derived from ethylene.

(2)構造単位(B)
構造単位(B)は、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位である。なお、構造単位(B)は、カルボキシ基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位と同じ構造であることを表し、後述の製造方法において述べるように、必ずしもカルボキシ基及び/又はジカルボン酸無水物基を有するモノマーを用いて製造されたものでなくてもよい。
(2) Structural unit (B)
The structural unit (B) is a structural unit derived from a monomer having a carboxyl group and / or a dicarboxylic acid anhydride group. The structural unit (B) has the same structure as the structural unit derived from the monomer having a carboxy group and / or a dicarboxylic acid anhydride group, and is not necessarily a carboxy group and / or as described in the production method described later. Alternatively, it does not have to be produced using a monomer having a dicarboxylic acid anhydride group.

カルボキシル基を有するモノマーに由来する構造単位としては例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ノルボルネンジカルボン酸、ビシクロ[2,2,1]ヘプタ−2−エン−5,6−ジカルボン酸などの不飽和カルボン酸が挙げられ、ジカルボン酸無水物基を有するモノマーに由来する構造単位としては例えば、無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、5−ノルボルネン−2,3−ジカルボン酸無水物、3,6−エポキシ−1,2,3,6−テトラヒドロフタル酸無水物、テトラシクロ[6.2.1.13,6.02,7]ドデカ−9−エン−4,5−ジカルボン酸無水物、2,7−オクタジエン−1−イルコハク酸無水物などの不飽和ジカルボン酸無水物が挙げられる。
カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位として、工業的入手の容易さの点から好ましくは、アクリル酸、メタクリル酸、又は5−ノルボルネン−2,3−ジカルボン酸無水物に由来する構造単位が挙げられ、特にアクリル酸に由来する構造単位であってもよい。
また、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位は、一種類であってもよいし、複数種であってもよい。
Examples of the structural unit derived from the monomer having a carboxyl group include acrylic acid, methacrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, norbornenedicarboxylic acid, and bicyclo [2. 2,1] Unsaturated carboxylic acids such as hepta-2-ene-5,6-dicarboxylic acid can be mentioned, and examples of the structural unit derived from the monomer having a dicarboxylic acid anhydride group include maleic anhydride and itaconic anhydride. , Citraconic anhydride, tetrahydrophthalic anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride, 3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride, tetracyclo [6.2.1] .1 3,6 . 0 2,7 ] Examples thereof include unsaturated dicarboxylic acid anhydrides such as dodeca-9-ene-4,5-dicarboxylic acid anhydride and 2,7-octadien-1-ylsuccinic anhydride.
As a structural unit derived from a monomer having a carboxyl group and / or a dicarboxylic acid anhydride group, acrylic acid, methacrylic acid, or 5-norbornene-2,3-dicarboxylic acid anhydride is preferable from the viewpoint of industrial availability. Examples thereof include structural units derived from substances, and in particular, structural units derived from acrylic acid may be used.
Further, the structural unit derived from the monomer having a carboxyl group and / or a dicarboxylic acid anhydride group may be one kind or a plurality of kinds.

なお、ジカルボン酸無水物基は空気中の水分と反応して開環し、一部がジカルボン酸となる場合があるが、本発明の主旨を逸脱しない範囲においてならば、ジカルボン酸無水物基が開環していてもよい。 The dicarboxylic acid anhydride group may react with moisture in the air to open a ring and partially become a dicarboxylic acid. However, as long as the gist of the present invention is not deviated, the dicarboxylic acid anhydride group may be used. The ring may be opened.

(3)その他の構造単位(C)
本発明に関わる共重合体(P)は構造単位(A)及び、構造単位(B)で示される構造単位以外の構造単位(C)を含んでいてもよい。構造単位(C)を与えるモノマーは、構造単位(A)及び、構造単位(B)を与えるモノマーに包含されるものでなければ、任意のモノマーを使用できる。構造単位(C)を与えるモノマーは、分子構造中に炭素−炭素二重結合を1つ以上有する化合物であれば限定されないが、例えば下記一般式(1)で表される非環状モノマーや下記一般式(2)で表される環状モノマーなどが挙げられる。
(3) Other structural units (C)
The copolymer (P) according to the present invention may contain a structural unit (A) and a structural unit (C) other than the structural unit represented by the structural unit (B). As the monomer giving the structural unit (C), any monomer can be used as long as it is not included in the structural unit (A) and the monomer giving the structural unit (B). The monomer that gives the structural unit (C) is not limited as long as it is a compound having one or more carbon-carbon double bonds in the molecular structure, but for example, an acyclic monomer represented by the following general formula (1) or the following general Examples thereof include a cyclic monomer represented by the formula (2).

・非環状モノマー

[一般式(1)中、T〜Tはそれぞれ独立して、水素原子、炭素数1〜20の炭化水素基、水酸基で置換された炭素数1〜20の炭化水素基、炭素数1〜20のアルコキシ基で置換された炭素数2〜20の炭化水素基、炭素数2〜20のエステル基で置換された炭素数3〜20の炭化水素基、ハロゲン原子で置換された炭素数1〜20の炭化水素基、炭素数1〜20のアルコキシ基、炭素数6〜20のアリール基、炭素数2〜20のエステル基、炭素数炭素数3〜20のシリル基、ハロゲン原子、又は、シアノ基からなる群より選択される置換基であり、
は、水酸基で置換された炭素数1〜20の炭化水素基、炭素数1〜20のアルコキシ基で置換された炭素数2〜20の炭化水素基、炭素数2〜20のエステル基で置換された炭素数3〜20の炭化水素基、ハロゲン原子で置換された炭素数1〜20の炭化水素基、炭素数1〜20のアルコキシ基、炭素数6〜20のアリール基、炭素数2〜20のエステル基、炭素数炭素数3〜20のシリル基、ハロゲン原子、又は、シアノ基からなる群より選択される置換基である。]
・ Acyclic monomer

[In the general formula (1), T 1 to T 3 are independently hydrogen atoms, hydrocarbon groups having 1 to 20 carbon atoms, hydrocarbon groups having 1 to 20 carbon atoms substituted with hydroxyl groups, and 1 carbon group. A hydrocarbon group having 2 to 20 carbon atoms substituted with an alkoxy group of ~ 20, a hydrocarbon group having 3 to 20 carbon atoms substituted with an ester group having 2 to 20 carbon atoms, and a carbon number 1 substituted with a halogen atom. ~ 20 hydrocarbon groups, 1 to 20 carbons alkoxy groups, 6 to 20 carbons aryl groups, 2 to 20 carbons ester groups, 3 to 20 carbons silyl groups, halogen atoms, or It is a substituent selected from the group consisting of cyano groups.
T 4 is a hydrocarbon group having 1 to 20 carbon atoms substituted with a hydroxyl group, a hydrocarbon group having 2 to 20 carbon atoms substituted with an alkoxy group having 1 to 20 carbon atoms, and an ester group having 2 to 20 carbon atoms. Substituted hydrocarbon groups with 3 to 20 carbon atoms, hydrocarbon groups with 1 to 20 carbon atoms substituted with halogen atoms, alkoxy groups with 1 to 20 carbon atoms, aryl groups with 6 to 20 carbon atoms, 2 carbon atoms It is a substituent selected from the group consisting of an ester group of ~ 20, a silyl group having 3 to 20 carbon atoms, a halogen atom, or a cyano group. ]

〜Tに関する炭化水素基、置換アルコキシ基、置換エステル基、アルコキシ基、アリール基、エステル基、シリル基が有する炭素骨格は、分岐、環、及び/又は不飽和結合を有してもよい。
〜Tに関する炭化水素基の炭素数は、下限値が1以上であればよく、上限値は20以下であればよく、10以下であってもよい。
〜Tに関する置換アルコキシ基の炭素数は、下限値が1以上であればよく、上限値は20以下であればよく、10以下であってもよい。
〜Tに関する置換エステル基の炭素数は、下限値が2以上であればよく、上限値は20以下であればよく、10以下であってもよい。
〜Tに関するアルコキシ基の炭素数は、下限値が1以上であればよく、上限値は20以下であればよく、10以下であってもよい。
〜Tに関するアリール基の炭素数は、下限値が6以上であればよく、上限値は20以下であればよく、11以下であってもよい。
〜Tに関するエステル基の炭素数は、下限値が2以上であればよく、上限値は20以下であればよく、10以下であってもよい。
〜Tに関するシリル基の炭素数は、下限値が3以上であればよく、上限値は18以下であればよく、12以下であってもよい。シリル基としては、トリメチルシリル基、トリエチルシリル基、トリn−プロピルシリル基、トリイソプロピルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、及びトリフェニルシリル基等が挙げられる。
The carbon skeleton of a hydrocarbon group, a substituted alkoxy group, a substituted ester group, an alkoxy group, an aryl group, an ester group, or a silyl group for T 1 to T 4 may have a branched, ring, and / or unsaturated bond. Good.
The number of carbon atoms of the hydrocarbon groups for T 1 to T 4 may be as long as the lower limit is 1 or more, the upper limit may be 20 or less, and may be 10 or less.
The carbon number of the substituted alkoxy group for T 1 to T 4 may be as long as the lower limit is 1 or more, the upper limit may be 20 or less, and may be 10 or less.
The carbon number of the substituted ester group for T 1 to T 4 may be as long as the lower limit is 2 or more, the upper limit may be 20 or less, and may be 10 or less.
The carbon number of the alkoxy group for T 1 to T 4 may be as long as the lower limit is 1 or more, the upper limit may be 20 or less, and may be 10 or less.
The carbon number of the aryl group for T 1 to T 4 may be as long as the lower limit is 6 or more, the upper limit may be 20 or less, and may be 11 or less.
The carbon number of the ester group for T 1 to T 4 may be as long as the lower limit is 2 or more, the upper limit may be 20 or less, and may be 10 or less.
The carbon number of the silyl group for T 1 to T 4 may be as long as the lower limit is 3 or more, the upper limit may be 18 or less, and may be 12 or less. Examples of the silyl group include a trimethylsilyl group, a triethylsilyl group, a trin-propylsilyl group, a triisopropylsilyl group, a dimethylphenylsilyl group, a methyldiphenylsilyl group, and a triphenylsilyl group.

本発明のアイオノマーにおいては、製造の容易さの点から、T及びT2は水素原子であってもよく、Tは水素原子又はメチル基であってもよく、T〜Tが、いずれも水素原子であってもよい。
また、耐衝撃性の点から、Tは炭素数2〜20のエステル基であってもよい。
In the ionomer of the present invention, T 1 and T 2 may be a hydrogen atom, T 3 may be a hydrogen atom or a methyl group, and T 1 to T 3 may be, from the viewpoint of ease of production. Both may be hydrogen atoms.
Further, from the viewpoint of impact resistance, T 4 may be an ester group having 2 to 20 carbon atoms.

非環状モノマーとしては、具体的には、(メタ)アクリル酸エステル等を含むTが炭素数2〜20のエステル基である場合等が挙げられる。
が炭素数2〜20のエステル基である場合、非環状モノマーとしては、構造式:CH=C(R21)CO(R22)で表される化合物が挙げられる。ここで、R21は、水素原子又は炭素数1〜10の炭化水素基であり、分岐、環、及び/又は不飽和結合を有してもよい。R22は、炭素数1〜20の炭化水素基であり、分岐、環、及び/又は不飽和結合を有してもよい。さらに、R22内の任意の位置にヘテロ原子を含有してもよい。
構造式:CH=C(R21)CO(R22)で表される化合物として、R21が、水素原子又は炭素数1〜5の炭化水素基である化合物が挙げられる。また、R21が水素原子であるアクリル酸エステル又はR21がメチル基であるメタクリル酸エステルが挙げられる。
構造式:CH=C(R21)CO(R22)で表される化合物の具体例としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル等が挙げられる。
具体的な化合物として、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル(nBA)、アクリル酸イソブチル(iBA)、アクリル酸t−ブチル(tBA)、及びアクリル酸2−エチルヘキシル等が挙げられ、特にアクリル酸n−ブチル(nBA)、アクリル酸イソブチル(iBA)、及びアクリル酸t−ブチル(tBA)であってもよい。
なお、非環状モノマーは、一種類であってもよいし、複数種であってもよい。
Specific examples of the acyclic monomer include cases where T 4 containing a (meth) acrylic acid ester or the like is an ester group having 2 to 20 carbon atoms.
When T 4 is an ester group having 2 to 20 carbon atoms, examples of the acyclic monomer include a compound represented by the structural formula: CH 2 = C (R 21 ) CO 2 (R 22 ). Here, R 21 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and may have a branch, a ring, and / or an unsaturated bond. R 22 is a hydrocarbon group having 1 to 20 carbon atoms and may have a branched, ring, and / or unsaturated bond. Furthermore, a heteroatom may be contained at any position in R 22 .
Structural formula: Examples of the compound represented by CH 2 = C (R 21 ) CO 2 (R 22 ) include a compound in which R 21 is a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms. Further, an acrylic acid ester in which R 21 is a hydrogen atom or a methacrylic acid ester in which R 21 is a methyl group can be mentioned.
Structural formula: Specific examples of the compound represented by CH 2 = C (R 21 ) CO 2 (R 22 ) include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n (meth) acrylate. -Propyl, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, ( Cyclohexyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate, Examples thereof include phenyl (meth) acrylate, toluyl (meth) acrylate, and benzyl (meth) acrylate.
Specific compounds include methyl acrylate, ethyl acrylate, n-butyl acrylate (nBA), isobutyl acrylate (iBA), t-butyl acrylate (tBA), 2-ethylhexyl acrylate and the like. In particular, n-butyl acrylate (nBA), isobutyl acrylate (iBA), and t-butyl acrylate (tBA) may be used.
The acyclic monomer may be one kind or a plurality of kinds.

・環状モノマー

[一般式(2)中、R〜R12は、それぞれ同一でも異なっていてもよく、水素原子、ハロゲン原子、及び、炭素数1〜20の炭化水素基からなる群より選ばれるものであり、R及びR10、並びに、R11及びR12は、各々一体化して2価の有機基を形成してもよく、R又はR10と、R11又はR12とは、互いに環を形成していてもよい。
また、nは、0又は正の整数を示し、nが2以上の場合には、R〜Rは、それぞれの繰り返し単位の中で、それぞれ同一でも異なっていてもよい。]
・ Cyclic monomer

[In the general formula (2), R 1 to R 12 may be the same or different, and are selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group having 1 to 20 carbon atoms. , R 9 and R 10 , and R 11 and R 12 may be integrated to form a divalent organic group, respectively, and R 9 or R 10 and R 11 or R 12 may ring each other. It may be formed.
Further, n indicates 0 or a positive integer, and when n is 2 or more, R 5 to R 8 may be the same or different in each repeating unit. ]

環状モノマーとしては、ノルボルネン系オレフィン等が挙げられ、ノルボルネン、ビニルノルボルネン、エチリデンノルボルネン、ノルボルナジエン、テトラシクロドデセン、トリシクロ[4.3.0.12,5]デカ−3−エン、などの環状オレフィンの骨格を有する化合物等が挙げられ、2−ノルボルネン(NB)、及び、テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン等であってもよい。 Examples of the cyclic monomer include norbornene-based olefins, and cyclic monomers such as norbornene, vinylnorbornene, etilidennorbornene, norbornadiene, tetracyclododecene, and tricyclo [4.3.0.1 2,5 ] deca-3-ene. Examples thereof include compounds having an olefin skeleton, 2-norbornene (NB), and tetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-en or the like may be used.

(4)金属イオン
カルボン酸塩基の金属イオンとしては、周期表の第1族、第2族及び第12族からなる群より選ばれる族の一価又は二価の金属イオンが挙げられ、具体的には、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、マグネシウム(Mg)、カルシウム(Ca)、及び、亜鉛(Zn)のイオン等が挙げられ、取扱い易さの観点から、特にナトリウム(Na)、又は、亜鉛(Zn)のイオンであってもよい。
カルボン酸塩基は、例えば、共重合体のエステル基を加水分解若しくは加熱分解させた後、又は、加水分解若しくは加熱分解させながら、周期表1族、2族、又は12族の金属イオンを含有する化合物と反応させることで、共重合体中のエステル基部分を金属含有カルボン酸塩に変換することで得られる。
なお、金属イオンは、一種類であってもよいし、複数種であってもよい。
(4) Metal Ion Examples of the metal ion of the carboxylic acid base include monovalent or divalent metal ions of the group selected from the group consisting of Group 1, Group 2 and Group 12 of the periodic table. Examples include ions of lithium (Li), sodium (Na), potassium (K), rubidium (Rb), magnesium (Mg), calcium (Ca), and zinc (Zn), which are easy to handle. From the viewpoint, it may be an ion of sodium (Na) or zinc (Zn) in particular.
The carboxylic acid base contains metal ions of Group 1, Group 2, or Group 12 of the Periodic Table, for example, after hydrolyzing or heat-decomposing the ester group of the copolymer, or while hydrolyzing or heat-decomposing. It is obtained by converting the ester group moiety in the copolymer into a metal-containing carboxylate by reacting with a compound.
The metal ion may be of one type or a plurality of types.

(5)共重合体(P)
本発明で用いるアイオノマーのベース樹脂となる共重合体(P)は、エチレン及び/又は炭素数3〜20のα−オレフィンに由来する構造単位(A)と、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位(B)とを必須構成単位として、さらに場合により任意の構造単位(C)を含み、これら各構造単位が実質的に直鎖状に共重合、好ましくはランダム共重合していることを特徴とする。「実質的に直鎖状」とは、共重合体が分岐を有していないか又は分岐構造が現れる頻度が小さく、共重合体を直鎖状とみなしうる状態であることを指す。具体的には、共重合体の位相角δが50度以上である状態を指す。
(5) Copolymer (P)
The copolymer (P) used as the base resin of the ionomer used in the present invention is a structural unit (A) derived from ethylene and / or α-olefin having 3 to 20 carbon atoms, and a carboxyl group and / or a dicarboxylic acid anhydride. A structural unit (B) derived from a monomer having a group is used as an essential structural unit, and in some cases, an arbitrary structural unit (C) is included, and each of these structural units is copolymerized substantially linearly, preferably random. It is characterized by being copolymerized. "Substantially linear" means that the copolymer does not have a branch or a branched structure appears infrequently, and the copolymer can be regarded as a linear state. Specifically, it refers to a state in which the phase angle δ of the copolymer is 50 degrees or more.

本発明に関わる共重合体は、構造単位(A)及び、構造単位(B)をそれぞれ1種類以上含有し、合計2種以上のモノマー単位を含むことが必要であり、その他の構造単位(C)を含んでいてもよい。
本発明に関わる共重合体の構造単位と構造単位量について説明する。
エチレン及び/又は炭素数3〜20のα−オレフィン(A)、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマー(B)、及び任意のモノマー(C)それぞれ1分子に由来する構造を、共重合体中の1構造単位と定義する。
そして、共重合体中の構造単位全体を100mol%とした時に各構造単位の比率をmol%で表したものが構造単位量である。
The copolymer according to the present invention must contain one or more structural units (A) and one or more structural units (B), and must contain a total of two or more monomer units, and other structural units (C). ) May be included.
The structural unit and the amount of the structural unit of the copolymer according to the present invention will be described.
A structure derived from one molecule each of ethylene and / or an α-olefin (A) having 3 to 20 carbon atoms, a monomer (B) having a carboxyl group and / or a dicarboxylic acid anhydride group, and an arbitrary monomer (C). It is defined as one structural unit in the copolymer.
Then, when the entire structural unit in the copolymer is 100 mol%, the ratio of each structural unit is expressed in mol%, which is the structural unit amount.

エチレン及び/又は炭素数3〜20のα−オレフィン(A)の構造単位量:
本発明に関わる構造単位(A)の構造単位量は、下限が60.0mol%以上、好ましくは70.0mol%以上、より好ましくは80.0mol%以上、さらに好ましくは85.0mol%以上、さらにより好ましくは90.0mol%以上、特に好ましくは91.2mol%以上であり、上限が97.9mol%以下、好ましくは97.5mol%以下、より好ましくは97.0mol%以下、さらに好ましくは96.5mol%以下から選択される。
エチレン及び/又は炭素数3〜20のα−オレフィン(A)に由来する構造単位量が60.0mol%よりも少なければ共重合体の靱性が劣り、97.9mol%よりも多ければ共重合体の結晶化度が高くなり、透明性が悪くなる場合がある。
Structural unit amount of ethylene and / or α-olefin (A) having 3 to 20 carbon atoms:
The lower limit of the structural unit amount of the structural unit (A) according to the present invention is 60.0 mol% or more, preferably 70.0 mol% or more, more preferably 80.0 mol% or more, still more preferably 85.0 mol% or more, and further. It is more preferably 90.0 mol% or more, particularly preferably 91.2 mol% or more, and the upper limit is 97.9 mol% or less, preferably 97.5 mol% or less, more preferably 97.0 mol% or less, still more preferably 96. It is selected from 5 mol% or less.
If the amount of structural units derived from ethylene and / or α-olefin (A) having 3 to 20 carbon atoms is less than 60.0 mol%, the toughness of the copolymer is inferior, and if it is more than 97.9 mol%, the copolymer The crystallinity of ethylene is high, and the transparency may be poor.

・カルボキシル基及び/又はジカルボン酸無水物基を有するモノマー(B)の構造単位量:
本発明に関わる構造単位(B)の構造単位量は、下限が2.0mol%以上、好ましくは2.9mol%以上であり、より好ましくは3.5mol%以上、上限が20.0mol%以下、好ましくは15.0mol%以下、より好ましくは10.0mol%以下、さらに好ましくは8.0mol%以下、特に好ましくは6.0mol%以下、最も好ましくは5.6mol%以下から選択される。
カルボキシル基及び/又はジカルボン酸無水物基を有するモノマー(B)に由来する構造単位量が2.0mol%よりも少なければ、共重合体の極性の高い異種材料との接着性が充分ではなく、20.0mol%より多ければ共重合体の充分な機械物性が得られない場合がある。
更に、用いられるカルボキシル基及び/又はジカルボン酸無水物基を有するモノマーは単独でもよく、2種類以上を合わせて用いてもよい。
-Structural unit amount of the monomer (B) having a carboxyl group and / or a dicarboxylic acid anhydride group:
The lower limit of the structural unit amount of the structural unit (B) according to the present invention is 2.0 mol% or more, preferably 2.9 mol% or more, more preferably 3.5 mol% or more, and the upper limit is 20.0 mol% or less. It is preferably selected from 15.0 mol% or less, more preferably 10.0 mol% or less, still more preferably 8.0 mol% or less, particularly preferably 6.0 mol% or less, and most preferably 5.6 mol% or less.
If the amount of the structural unit derived from the monomer (B) having a carboxyl group and / or a dicarboxylic acid anhydride group is less than 2.0 mol%, the adhesiveness of the copolymer to a highly polar dissimilar material is not sufficient. If it is more than 20.0 mol%, sufficient mechanical properties of the copolymer may not be obtained.
Further, the monomer having a carboxyl group and / or a dicarboxylic acid anhydride group used may be used alone, or two or more kinds may be used in combination.

・その他のモノマー(C)の構造単位量:
本発明に関わる構造単位(C)の構造単位量は、上限が20.0mol%以下、好ましくは15.0mol%以下、より好ましくは10.0mol%以下、さらに好ましくは5.0mol%以下、特に好ましくは3.6mol%以下から選択され、下限に関しては特に制限はなく、0mol%でも構わない。任意のモノマー(C)に由来する構造単位量が20.0mol%以下であると共重合体の充分な機械物性が得られやすい。
更に、用いられる任意のモノマー(C)は単独でもよく、2種類以上を合わせて用いてもよい。
-Amount of structural unit of other monomer (C):
The upper limit of the structural unit amount of the structural unit (C) according to the present invention is 20.0 mol% or less, preferably 15.0 mol% or less, more preferably 10.0 mol% or less, still more preferably 5.0 mol% or less, particularly. It is preferably selected from 3.6 mol% or less, and the lower limit is not particularly limited and may be 0 mol%. When the amount of structural units derived from the arbitrary monomer (C) is 20.0 mol% or less, sufficient mechanical properties of the copolymer can be easily obtained.
Further, any monomer (C) used may be used alone, or two or more types may be used in combination.

共重合体(P)の炭素1,000個当たりの分岐数:
本発明の共重合体においては、弾性率を高くし、充分な機械物性を得る点から、13C−NMRにより算出されるメチル分岐数が、炭素1,000個当たり、上限が50個以下であってもよく、5.0個以下であってもよく、1.0個以下であってもよく、0.5個以下であってもよく、下限は、特に限定されず、少なければ少ないほどよい。またエチル分岐数が炭素1,000個当たり、上限が3.0個以下であってもよく、2.0個以下であってもよく、1.0個以下であってもよく、0.5個以下であってもよく、下限は、特に限定されず、少なければ少ないほどよい。さらにブチル分岐数が炭素1,000個当たり、上限が7.0個以下であってもよく、5.0個以下であってもよく、3.0個以下であってもよく、0.5個以下であってもよく、下限は、特に限定されず、少なければ少ないほどよい。
Number of branches per 1,000 carbons of copolymer (P):
In the copolymer of the present invention, the number of methyl branches calculated by 13 C-NMR is 50 or less per 1,000 carbons from the viewpoint of increasing the elastic modulus and obtaining sufficient mechanical properties. There may be 5.0 or less, 1.0 or less, 0.5 or less, and the lower limit is not particularly limited, and the smaller the number, the more. Good. Further, the number of ethyl branches may be 3.0 or less, 2.0 or less, 1.0 or less, or 0.5 per 1,000 carbons. The number may be less than the number, and the lower limit is not particularly limited, and the smaller the number, the better. Further, the number of butyl branches may be 7.0 or less, 5.0 or less, 3.0 or less, 0.5 per 1,000 carbons. The number may be less than or equal to 1, and the lower limit is not particularly limited, and the smaller the number, the better.

共重合体中のカルボキシ基及び/又はジカルボン酸無水物基を有するモノマー、及び非環状モノマーに由来する構造単位量、及び分岐数の測定方法:
本発明の共重合体中のカルボキシ基及び/又はジカルボン酸無水物基を有するモノマー、及び非環状モノマーに由来する構造単位量、及び炭素1,000個当たりの分岐数は13C−NMRスペクトルを用いて求められる。13C−NMRは以下の方法によって測定する。
試料200〜300mgをo−ジクロロベンゼン(CCl)と重水素化臭化ベンゼン(CBr)の混合溶媒(CCl/CBr=2/1(体積比))2.4ml及び化学シフトの基準物質であるヘキサメチルジシロキサンと共に内径10mmφのNMR試料管に入れて窒素置換した後封管し、加熱溶解して均一な溶液としてNMR測定試料とする。
NMR測定は10mmφのクライオプローブを装着したブルカー・ジャパン(株)のAV400M型NMR装置を用いて120℃で行う。
13C−NMRは、試料の温度120℃、パルス角を90°、パルス間隔を51.5秒、積算回数を512回以上、逆ゲートデカップリング法で測定する。
化学シフトはヘキサメチルジシロキサンの13Cシグナルを1.98ppmに設定し、他の13Cによるシグナルの化学シフトはこれを基準とする。
得られた13C−NMRにおいて、共重合体が有するモノマー又は分岐に特有のシグナルを同定し、その強度を比較することで、共重合体中の各モノマーの構造単位量、及び分岐数を解析することができる。モノマー又は分岐に特有のシグナルの位置は公知の資料を参照することもできるし、試料に応じて独自に同定することもできる。このような解析手法は、当業者にとって一般的に行いうるものである。
Method for measuring the amount of structural units derived from the monomer having a carboxy group and / or the dicarboxylic acid anhydride group in the copolymer and the acyclic monomer, and the number of branches:
The amount of structural units derived from the monomer having a carboxy group and / or the dicarboxylic acid anhydride group in the copolymer of the present invention and the acyclic monomer, and the number of branches per 1,000 carbons are 13 C-NMR spectra. Obtained using. 13 C-NMR is measured by the following method.
Sample 200-300 mg in a mixed solvent (C 6 H 4 Cl 2 / C 6 D 5 Br = 2 /) of o-dichlorobenzene (C 6 H 4 Cl 2 ) and benzene dehydride (C 6 D 5 Br) 1 (Volume ratio)) 2.4 ml and hexamethyldisiloxane, which is a reference substance for chemical shift, are placed in an NMR sample tube with an inner diameter of 10 mmφ, replaced with nitrogen, sealed, and heat-dissolved to form a uniform solution for NMR measurement. And.
The NMR measurement is performed at 120 ° C. using an AV400M type NMR apparatus of Bruker Japan Co., Ltd. equipped with a 10 mmφ cryoprobe.
13 C-NMR measures the sample temperature at 120 ° C., the pulse angle at 90 °, the pulse interval at 51.5 seconds, the number of integrations at 512 times or more, and the reverse gate decoupling method.
The chemical shift sets the 13 C signal of hexamethyldisiloxane to 1.98 ppm, and the chemical shift of the signal by other 13 C is based on this.
In the obtained 13 C-NMR, the structural unit amount and the number of branches of each monomer in the copolymer were analyzed by identifying the monomer or the signal peculiar to the branching of the copolymer and comparing the intensities thereof. can do. The position of the signal peculiar to the monomer or branch can be referred to a known material, or can be uniquely identified depending on the sample. Such an analysis method can be generally performed by those skilled in the art.

・重量平均分子量(Mw)と分子量分布(Mw/Mn):
本発明に関わる共重合体の重量平均分子量(Mw)は、下限が通常1,000以上であり、好ましくは6,000以上であり、より好ましくは10,000以上であり、上限が通常2,000,000以下であり、好ましくは1,500,000以下であり、更に好ましくは1,000,000以下であり、特に好適なのは800,000以下であり、最も好ましくは100,000以下である。
Mwが1,000未満では共重合体の機械的強度や耐衝撃性などの物性が充分ではなく、Mwが2,000,000を超えると共重合体の溶融粘度が非常に高くなり、共重合体の成形加工が困難となる場合がある。
-Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn):
The lower limit of the weight average molecular weight (Mw) of the copolymer according to the present invention is usually 1,000 or more, preferably 6,000 or more, more preferably 10,000 or more, and the upper limit is usually 2,. It is ,000,000 or less, preferably 1,500,000 or less, more preferably 1,000,000 or less, particularly preferably 800,000 or less, and most preferably 100,000 or less.
If Mw is less than 1,000, the physical properties such as mechanical strength and impact resistance of the copolymer are not sufficient, and if Mw exceeds 2,000,000, the melt viscosity of the copolymer becomes very high and the copolymer weight is equal. Molding of coalescence may be difficult.

本発明に関わる共重合体の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は、通常1.5〜4.0、好ましくは1.6〜3.5、更に好ましくは1.9〜2.3の範囲である。Mw/Mnが1.5未満では共重合体の成形を始めとして各種加工性が充分でなく、4.0を超えると共重合体の機械物性が劣るものとなる場合がある。
本発明においては(Mw/Mn)を分子量分布パラメーターと表現することがある。
The ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the copolymer according to the present invention is usually 1.5 to 4.0, preferably 1.6 to 3.5, and further. It is preferably in the range of 1.9 to 2.3. If Mw / Mn is less than 1.5, various processability including molding of the copolymer is not sufficient, and if it exceeds 4.0, the mechanical properties of the copolymer may be inferior.
In the present invention, (Mw / Mn) may be expressed as a molecular weight distribution parameter.

本発明に関わる重量平均分子量(Mw)及び数平均分子量(Mn)はゲルパーミエイションクロマトグラフィー(GPC)によって求められる。また、分子量分布パラメーター(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)によって、更に数平均分子量(Mn)を求め、MwとMnの比、Mw/Mnを算出するものである。 The weight average molecular weight (Mw) and the number average molecular weight (Mn) according to the present invention are determined by gel permeation chromatography (GPC). Further, for the molecular weight distribution parameter (Mw / Mn), the number average molecular weight (Mn) is further obtained by gel permeation chromatography (GPC), and the ratio of Mw to Mn and Mw / Mn are calculated.

本発明に関わるGPCの測定方法の一例は以下の通りである。
(測定条件)
使用機種:ウォーターズ社製150C
検出器:FOXBORO社製MIRAN1A・IR検出器(測定波長:3.42μm)
測定温度:140℃
溶媒:オルトジクロロベンゼン(ODCB)
カラム:昭和電工社製AD806M/S(3本)
流速:1.0mL/分
注入量:0.2mL
(試料の調製)
試料はODCB(0.5mg/mLのBHT(2,6−ジ−t−ブチル−4−メチルフェノール)を含む)を用いて1mg/mLの溶液を調製し、140℃で約1時間を要して溶解させる。
(分子量(M)の算出)
標準ポリスチレン法により行い、保持容量から分子量への換算は、予め作成しておいた標準ポリスチレンによる検量線を用いて行う。使用する標準ポリスチレンは例えば、東ソー社製の、(F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000)の銘柄、昭和電工製単分散ポリスチレン(S−7300、S−3900、S−1950、S−1460、S−1010、S−565、S−152、S−66.0、S−28.5、S−5.05、の各0.07mg/ml溶液)などである。各々が0.5mg/mLとなるようにODCB(0.5mg/mLのBHTを含む)に溶解した溶液を0.2mL注入して較正曲線を作成する。較正曲線は最小二乗法で近似して得られる三次式、又は溶出時間と分子量の対数値を4次式で近似したものなどを用いる。分子量(M)への換算に使用する粘度式[η]=K×Mαは以下の数値を用いる。
ポリスチレン(PS):K=1.38×10−4、α=0.7
ポリエチレン(PE):K=3.92×10−4、α=0.733
ポリプロピレン(PP):K=1.03×10−4、α=0.78
An example of the GPC measuring method according to the present invention is as follows.
(Measurement condition)
Model used: Waters 150C
Detector: MIRAN1A / IR detector manufactured by FOXBORO (measurement wavelength: 3.42 μm)
Measurement temperature: 140 ° C
Solvent: Ortodichlorobenzene (ODCB)
Column: Showa Denko AD806M / S (3)
Flow velocity: 1.0 mL / min Injection volume: 0.2 mL
(Sample preparation)
As a sample, prepare a 1 mg / mL solution using ODCB (containing 0.5 mg / mL BHT (2,6-di-t-butyl-4-methylphenol)), and it takes about 1 hour at 140 ° C. And dissolve.
(Calculation of molecular weight (M))
It is performed by the standard polystyrene method, and the conversion from the holding capacity to the molecular weight is performed using a calibration curve prepared in advance using standard polystyrene. The standard polystyrene used is, for example, a brand of (F380, F288, F128, F80, F40, F20, F10, F4, F1, A5000, A2500, A1000) manufactured by Tosoh Corporation, and monodisperse polystyrene manufactured by Showa Denko (S-7300). , S-3900, S-1950, S-1460, S-1010, S-565, S-152, S-66.0, S-28.5, S-5.05, 0.07 mg / ml each. Solution) and so on. A calibration curve is created by injecting 0.2 mL of a solution dissolved in ODCB (containing 0.5 mg / mL BHT) so that each is 0.5 mg / mL. For the calibration curve, a cubic equation obtained by approximating the least squares method, or a logarithmic approximation of the elution time and the molecular weight using a quaternary equation is used. The following numerical values are used for the viscosity formula [η] = K × Mα used for conversion to the molecular weight (M).
Polystyrene (PS): K = 1.38 × 10 -4 , α = 0.7
Polyethylene (PE): K = 3.92 × 10 -4 , α = 0.733
Polypropylene (PP): K = 1.03 × 10 -4 , α = 0.78

・融点(Tm、℃):
本発明に関わる共重合体の融点は、示差走査型熱量計(DSC)により測定した吸熱曲線の最大ピーク温度によって示される。最大ピーク温度とは、DSC測定において、縦軸に熱流(mW)、横軸に温度(℃)をとった際に得られる吸熱曲線に複数ピークが示された場合、そのうちベースラインからの高さが最大であるピークの温度の事を示し、ピークが1つだった場合には、そのピークの温度の事を示している。
融点は50℃〜140℃であることが好ましく、60℃〜138℃であることが更に好ましく、70℃〜135℃が最も好ましい。この範囲より低ければ耐熱性が充分ではなく、この範囲より高い場合は接着性が劣るものとなる場合がある。
本発明において、融点は、例えば、エスアイアイ・ナノテクノロジー株式会社製のDSC(DSC7020)を使用し、試料約5.0mgをアルミパンに詰め、10℃/分で200℃まで昇温し、200℃で5分間等温保持後、10℃/分で20℃まで降温し、20℃で5分間等温保持後、再度、10℃/分で200℃まで昇温させる際の吸収曲線より求めることができる。
-Melting point (Tm, ° C):
The melting point of the copolymer according to the present invention is indicated by the maximum peak temperature of the endothermic curve measured by a differential scanning calorimeter (DSC). The maximum peak temperature is the height from the baseline when multiple peaks are shown in the endothermic curve obtained when the vertical axis is the heat flow (mW) and the horizontal axis is the temperature (° C) in the DSC measurement. Indicates the maximum peak temperature, and when there is one peak, it indicates the peak temperature.
The melting point is preferably 50 ° C. to 140 ° C., more preferably 60 ° C. to 138 ° C., and most preferably 70 ° C. to 135 ° C. If it is lower than this range, the heat resistance is not sufficient, and if it is higher than this range, the adhesiveness may be inferior.
In the present invention, for example, using DSC (DSC7020) manufactured by SII Nanotechnology Co., Ltd., about 5.0 mg of a sample is packed in an aluminum pan, and the temperature is raised to 200 ° C. at 10 ° C./min to 200. It can be obtained from the absorption curve when the temperature is kept isothermal at 10 ° C./min for 5 minutes, the temperature is lowered to 20 ° C. at 10 ° C./min, the temperature is kept isothermal at 20 ° C. for 5 minutes, and then the temperature is raised again to 200 ° C. at 10 ° C./min. ..

・結晶化度(%):
本発明の共重合体においては、示差走査熱量測定(DSC)により観測される結晶化度は、特に限定されないが、0%を超えていることが好ましい。5%を超えていることがより好ましく、7%以上であることが更に好ましい。結晶化度が0%であると共重合体の靱性が充分とはならなくなる場合がある。結晶化度は透明性の指標でもあり、透明性がある方が好ましいが、結晶化度の上限は特に限定されない。
本発明において、結晶化度は、例えば、上記融点の測定と同じ手順でのDSC測定により得られる融解吸熱ピーク面積から融解熱(ΔH)を求め、その融解熱を高密度ポリエチレン(HDPE)の完全結晶の融解熱293J/gで除することにより求めることができる。
-Crystallinity (%):
In the copolymer of the present invention, the crystallinity observed by differential scanning calorimetry (DSC) is not particularly limited, but is preferably more than 0%. It is more preferably more than 5%, and even more preferably 7% or more. If the crystallinity is 0%, the toughness of the copolymer may not be sufficient. The crystallinity is also an index of transparency, and it is preferable that the crystallinity is transparent, but the upper limit of the crystallinity is not particularly limited.
In the present invention, for the crystallinity, for example, the heat of fusion (ΔH) is obtained from the heat of fusion peak area obtained by DSC measurement in the same procedure as the measurement of the melting point, and the heat of fusion is the perfect heat of fusion (HDPE). It can be determined by dividing by the heat of fusion of the crystal, 293 J / g.

・共重合体の分子構造:
本発明に関わる共重合体の分子鎖末端は、エチレン及び/又は炭素数3〜20のα−オレフィンの構造単位(A)であってもよく、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)であってもよく、任意のモノマーの構造単位(C)であってもよい。
-Molecular structure of copolymer:
The molecular chain terminal of the copolymer according to the present invention may be a structural unit (A) of ethylene and / or an α-olefin having 3 to 20 carbon atoms, and has a carboxyl group and / or a dicarboxylic acid anhydride group. It may be the structural unit (B) of the monomer or the structural unit (C) of any monomer.

また、本発明に関わる共重合体は、エチレン及び/又は炭素数3〜20のα−オレフィンの構造単位(A)、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)、及び任意のモノマーの構造単位(C)のランダム共重合体、ブロック共重合体、並びにグラフト共重合体等が挙げられる。これらの中では、構造単位(B)を多く含むことが可能なランダム共重合体であってもよい。
一般的な三元系の共重合体の分子構造例(1)を下記に示す。
ランダム共重合体とは、下記に示した分子構造例(1)のエチレン及び/又は炭素数3〜20のα−オレフィンの構造単位(A)とカルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)と任意のモノマーの構造単位(C)とが、ある任意の分子鎖中の位置においてそれぞれの構造単位を見出す確率が、その隣接する構造単位の種類と無関係な共重合体である。
下記のように、共重合体の分子構造例(1)は、エチレン及び/又は炭素数3〜20のα−オレフィンの構造単位(A)とカルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)と任意のモノマーの構造単位(C)とが、ランダム共重合体を形成している。
Further, the copolymer according to the present invention is a structural unit (A) of ethylene and / or an α-olefin having 3 to 20 carbon atoms, and a structural unit (B) of a monomer having a carboxyl group and / or a dicarboxylic acid anhydride group. , And random copolymers, block copolymers, graft copolymers, etc. of the structural unit (C) of any monomer. Among these, a random copolymer capable of containing a large amount of the structural unit (B) may be used.
An example of the molecular structure (1) of a general ternary copolymer is shown below.
The random copolymer has a structural unit (A) of ethylene and / or α-olefin having 3 to 20 carbon atoms in the molecular structure example (1) shown below, and a carboxyl group and / or a dicarboxylic acid anhydride group. The probability that the structural unit (B) of the monomer and the structural unit (C) of any monomer find each structural unit at a position in an arbitrary molecular chain is a copolymer regardless of the type of the adjacent structural unit. It is a coalescence.
As described below, the molecular structure example (1) of the copolymer is a monomer having a structural unit (A) of ethylene and / or an α-olefin having 3 to 20 carbon atoms and a carboxyl group and / or a dicarboxylic acid anhydride group. The structural unit (B) of the above and the structural unit (C) of any monomer form a random copolymer.

なお、グラフト変性によってカルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)を導入した共重合体の分子構造例(2)も参考に掲載すると、エチレン及び/又は炭素数3〜20のα−オレフィンの構造単位(A)及び任意のモノマーの構造単位(C)とが共重合された共重合体の一部が、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)にグラフト変性される。
If the molecular structure example (2) of the copolymer in which the structural unit (B) of the monomer having a carboxyl group and / or the dicarboxylic acid anhydride group is introduced by graft modification is also posted for reference, ethylene and / or the number of carbon atoms is 3. A part of the copolymer obtained by copolymerizing the structural unit (A) of α-olefin of ~ 20 and the structural unit (C) of any monomer is a monomer having a carboxyl group and / or a dicarboxylic acid anhydride group. It is graft-modified to the structural unit (B).

また、共重合体におけるランダム共重合性は種々の方法により確認することが可能であるが、共重合体のコモノマー含量と融点との関係からランダム共重合性を判別する手法が特開2015−163691号公報及び特開2016−079408に詳しく述べられている。上記文献から共重合体の融点(Tm、℃)が−3.74×[Z]+130(ただし、[Z]はコモノマー含量/mol%)よりも高い場合はランダム性が低いと判断できる。 Further, the random copolymerizability of the copolymer can be confirmed by various methods, but a method for discriminating the random copolymerizability from the relationship between the comonomer content of the copolymer and the melting point is JP-A-2015-163691. It is described in detail in Japanese Patent Application Laid-Open No. 2016-079408. From the above document, when the melting point (Tm, ° C.) of the copolymer is higher than -3.74 x [Z] +130 (where [Z] is the comonomer content / mol%), it can be judged that the randomness is low.

ランダム共重合体である本発明に関わる共重合体は示差走査熱量測定(DSC)により観測される融点(Tm、℃)と、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)及び任意のモノマーの構造単位(C)の合計の含有量[Z](mol%)とが下記の式(I)を満たすことが好ましい。
50<Tm<−3.74×[Z]+130・・・(I)
共重合体の融点(Tm、℃)が−3.74×[Z]+130(℃)よりも高い場合はランダム共重合性が低い為、衝撃強度など機械物性が劣り、融点が50℃よりも低い場合は剛性が劣る場合がある。
The copolymer according to the present invention, which is a random copolymer, has a melting point (Tm, ° C.) observed by differential scanning calorimetry (DSC) and a structural unit of a monomer having a carboxyl group and / or a dicarboxylic acid anhydride group ( It is preferable that the total content [Z] (mol%) of B) and the structural unit (C) of any monomer satisfies the following formula (I).
50 <Tm <-3.74 × [Z] +130 ... (I)
When the melting point (Tm, ° C) of the copolymer is higher than -3.74 x [Z] +130 (° C), the random copolymerization is low, so the mechanical properties such as impact strength are inferior, and the melting point is higher than 50 ° C. If it is low, the rigidity may be inferior.

さらに本発明に関わる共重合体は、その分子構造を直鎖状とする観点から、遷移金属触媒の存在下で製造されたものであることが好ましい。
なお、高圧ラジカル重合法プロセスによる重合、金属触媒を用いた重合など、製造方法によって共重合体の分子構造は異なることが知られている。
この分子構造の違いは製造方法を選択する事によって制御が可能であるが、例えば、特開2010−150532号公報に記載されている様に、回転式レオメータで測定した複素弾性率によっても、その分子構造を推定する事ができる。
Further, the copolymer according to the present invention is preferably produced in the presence of a transition metal catalyst from the viewpoint of making its molecular structure linear.
It is known that the molecular structure of a copolymer differs depending on the production method, such as polymerization by a high-pressure radical polymerization method process or polymerization using a metal catalyst.
This difference in molecular structure can be controlled by selecting the production method, but for example, as described in Japanese Patent Application Laid-Open No. 2010-150532, the complex elastic modulus measured by a rotary rheometer can also be used. The molecular structure can be estimated.

・複素弾性率の絶対値G=0.1MPaにおける位相角δ:
本発明の共重合体においては、回転式レオメータで測定した複素弾性率の絶対値G=0.1MPaにおける位相角δは、下限が50度以上であってもよく、51度以上であってもよく、54度以上であってもよく、56度以上であってもよく、58度以上であってもよく、上限が75度以下であってもよく、70度以下であってもよい。
より具体的には、回転式レオメータで測定した複素弾性率の絶対値G=0.1MPaにおける位相角δ(G=0.1MPa)が50度以上である場合、共重合体の分子構造は直鎖状の構造であって、長鎖分岐を全く含まない構造か、機械的強度に影響を与えない程度の少量の長鎖分岐を含む構造を示す。
また、回転式レオメータで測定した複素弾性率の絶対値G=0.1MPaにおける位相角δ(G=0.1MPa)が50度より低い場合、共重合体の分子構造は長鎖分岐を過多に含む構造を示し、機械的強度が劣るものとなる。
回転式レオメータで測定した複素弾性率の絶対値G=0.1MPaにおける位相角δは、分子量分布と長鎖分岐の両方の影響を受ける。しかし、Mw/Mn≦4、より好ましくはMw/Mn≦3である共重合体に限れば長鎖分岐の量の指標になり、その分子構造に含まれる長鎖分岐が多いほどδ(G=0.1MPa)値は小さくなる。なお、共重合体のMw/Mnが1.5以上であれば、当該分子構造が長鎖分岐を含まない構造である場合でもδ(G=0.1MPa)値が75度を上回ることはない。
-Phase angle δ at absolute value G * = 0.1 MPa of complex elastic modulus:
In the copolymer of the present invention, the lower limit of the phase angle δ at the absolute value G * = 0.1 MPa of the complex elastic modulus measured by the rotary rheometer may be 50 degrees or more, and 51 degrees or more. It may be 54 degrees or more, 56 degrees or more, 58 degrees or more, an upper limit of 75 degrees or less, or 70 degrees or less.
More specifically, when the phase angle δ (G * = 0.1 MPa) at the absolute value G * = 0.1 MPa of the complex elastic modulus measured by the rotary rheometer is 50 degrees or more, the molecular structure of the copolymer. Indicates a linear structure that does not contain any long-chain branches or that contains a small amount of long-chain branches that do not affect the mechanical strength.
Further, when the phase angle δ (G * = 0.1 MPa) at the absolute value G * = 0.1 MPa of the complex elastic modulus measured by the rotary rheometer is lower than 50 degrees, the molecular structure of the copolymer has a long-chain branch. The structure is excessively contained, and the mechanical strength is inferior.
The phase angle δ at the absolute value G * = 0.1 MPa of the complex elastic modulus measured by the rotary rheometer is affected by both the molecular weight distribution and the long chain branching. However, if it is limited to a copolymer having Mw / Mn ≦ 4, more preferably Mw / Mn ≦ 3, it can be an index of the amount of long-chain branching, and the more long-chain branching contained in the molecular structure, the more δ (G *). = 0.1 MPa) The value becomes smaller. If the Mw / Mn of the copolymer is 1.5 or more, the δ (G * = 0.1 MPa) value may exceed 75 degrees even if the molecular structure does not include long-chain branches. Absent.

複素弾性率の測定方法は、以下の通りである。
試料を厚さ1.0mmの加熱プレス用モールドに入れ、表面温度180℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで溶融樹脂中の残留気体を脱気し、更に4.9MPaで加圧し、5分間保持する。その後、試料を表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、厚さが約1.0mmの試料からなるプレス板を作成した。試料からなるプレス板を直径25mm円形に加工したものをサンプルとし、動的粘弾性特性の測定装置としてRheometrics社製ARES型回転式レオメータを用い、窒素雰囲気下において以下の条件で動的粘弾性を測定する。
・プレート:φ25mm パラレルプレート
・温度:160℃
・歪み量:10%
・測定角周波数範囲:1.0×10−2〜1.0×10 rad/s
・測定間隔:5点/decade
複素弾性率の絶対値G(Pa)の常用対数logGに対して位相角δをプロットし、logG=5.0に相当する点のδ(度)の値をδ(G=0.1MPa)とする。測定点の中にlogG=5.0に相当する点がないときは、logG=5.0前後の2点を用いて、logG=5.0におけるδ値を線形補間で求める。また、測定点がいずれもlogG<5であるときは、logG値が大きい方から3点の値を用いて2次曲線でlogG=5.0におけるδ値を補外して求める。
The method for measuring the complex elastic modulus is as follows.
The sample is placed in a heat press mold having a thickness of 1.0 mm, preheated in a heat press machine having a surface temperature of 180 ° C. for 5 minutes, and then pressurized and depressurized repeatedly to degas the residual gas in the molten resin. Pressurize at 4.9 MPa and hold for 5 minutes. Then, the sample was transferred to a press machine having a surface temperature of 25 ° C. and cooled by holding at a pressure of 4.9 MPa for 3 minutes to prepare a press plate composed of a sample having a thickness of about 1.0 mm. A press plate made of a sample is processed into a circle with a diameter of 25 mm, and a dynamic viscoelasticity is measured under the following conditions using an ARES type rotary rheometer manufactured by Rheometrics as a measuring device for dynamic viscoelasticity characteristics. Measure.
・ Plate: φ25mm Parallel plate ・ Temperature: 160 ℃
・ Distortion amount: 10%
-Measurement angular frequency range: 1.0 x 10 -2 to 1.0 x 10 2 rad / s
・ Measurement interval: 5 points / decade
The phase angle δ is plotted against the common logarithm logG * of the absolute value G * (Pa) of the complex elastic modulus, and the value of δ (degrees) of the point corresponding to logG * = 5.0 is δ (G * = 0). .1 MPa). When there is no point corresponding to log G * = 5.0 in the measurement point, log G * = 5.0 with two points before and after obtaining the δ value in log G * = 5.0 by linear interpolation. When all the measurement points are logG * <5, the δ value at logG * = 5.0 is subtracted from the quadratic curve using the values of the three points from the largest logG * value.

・共重合体の製造について
本発明に関わる共重合体は、その分子構造を直鎖状とする観点から、遷移金属触媒の存在下で製造されたものであることが好ましい。
-Production of Copolymer The copolymer according to the present invention is preferably produced in the presence of a transition metal catalyst from the viewpoint of making its molecular structure linear.

・重合触媒
本発明に関わる共重合体の製造に用いる重合触媒の種類は、構造単位(A)、構造単位(B)、及び任意の構造単位(C)を共重合することが可能なものであれば特に限定されないが、例えば、キレート性配位子を有する第5〜11族の遷移金属化合物が挙げられる。
好ましい遷移金属の具体例としては、バナジウム原子、ニオビウム原子、タンタル原子、クロム原子、モリブデン原子、タングステン原子、マンガン原子、鉄原子、白金原子、ルテニウム原子、コバルト原子、ロジウム原子、ニッケル原子、パラジウム原子、銅原子などが挙げられる。これらの中で好ましくは、第8〜11族の遷移金属であり、さらに好ましくは第10族の遷移金属であり、特に好ましくはニッケル(Ni)、パラジウム(Pd)である。これらの金属は、単一であっても複数を併用してもよい。
キレート性配位子は、P、N、O、及びSからなる群より選択される少なくとも2個の原子を有しており、二座配位(bidentate)又は多座配位(multidentate)であるリガンドを含み、電子的に中性又は陰イオン性である。Brookhartらによる総説に、キレート性配位子の構造が例示されている(Chem.Rev.,2000,100,1169)。
キレート性配位子としては、好ましくは、二座アニオン性P、O配位子が挙げられる。二座アニオン性P、O配位子として例えば、リンスルホン酸、リンカルボン酸、リンフェノール、リンエノラートが挙げられる。キレート性配位子としては、他に、二座アニオン性N、O配位子が挙げられる。二座アニオン性N、O配位子として例えば、サリチルアルドイミナ−トやピリジンカルボン酸が挙げられる。キレート性配位子としては、他に、ジイミン配位子、ジフェノキサイド配位子、及びジアミド配位子等が挙げられる。
-Polymerization catalyst The type of polymerization catalyst used in the production of the copolymer according to the present invention is that the structural unit (A), the structural unit (B), and any structural unit (C) can be copolymerized. If there is, the present invention is not particularly limited, and examples thereof include Group 5 to 11 transition metal compounds having a chelating ligand.
Specific examples of preferable transition metals include vanadium atom, niobium atom, tantalum atom, chromium atom, molybdenum atom, tungsten atom, manganese atom, iron atom, platinum atom, ruthenium atom, cobalt atom, rhodium atom, nickel atom and palladium atom. , Copper atom and the like. Among these, the transition metal of Group 8 to 11 is preferable, the transition metal of Group 10 is more preferable, and nickel (Ni) and palladium (Pd) are particularly preferable. These metals may be single or in combination of two or more.
The chelating ligand has at least two atoms selected from the group consisting of P, N, O, and S and is either bidentate or multidentate. It contains a ligand and is electronically neutral or anionic. A review by Brookhard et al. Illustrates the structure of chelating ligands (Chem. Rev., 2000, 100, 1169).
Preferred examples of the chelating ligand include bidentate anionic P and O ligands. Examples of the bidentate anionic P and O ligands include phosphorus sulfonic acid, phosphorus carboxylic acid, phosphorus phenol, and phosphorus enolate. Other examples of chelating ligands include bidentate anionic N and O ligands. Examples of the bidentate anionic N and O ligands include salicylic acid and pyridinecarboxylic acid. Other examples of the chelating ligand include a diimine ligand, a diphenoxide ligand, and a diamide ligand.

キレート性配位子から得られる金属錯体の構造は、置換基を有してもよいアリールホスフィン化合物、アリールアルシン化合物又はアリールアンチモン化合物が配位した下記構造式(a)又は(b)で表される。


[構造式(a)、及び構造式(b)において、
Mは、元素の周期表の第5〜11族のいずれかに属する遷移金属、即ち前述したような種々の遷移金属を表す。
は、酸素、硫黄、−SO−、又は−CO−を表す。
は、炭素又はケイ素を表す。
nは、0又は1の整数を表す。
は、リン、砒素又はアンチモンを表す。
53及びR54は、それぞれ独立に、水素又は炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基を表す。
55は、それぞれ独立に、水素、ハロゲン、又は炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基を表す。
56及びR57は、それぞれ独立に、水素、ハロゲン、炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基、OR52、CO52、COM’、C(O)N(R51、C(O)R52、SR52、SO52、SOR52、OSO52、P(O)(OR522−y(R51、CN、NHR52、N(R52、Si(OR513−x(R51、OSi(OR513−x(R51、NO、SOM’、POM’、P(O)(OR52M’又はエポキシ含有基を表す。
51は、水素又は炭素数1ないし20の炭化水素基を表す。
52は、炭素数1ないし20の炭化水素基を表す。
M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウム又はフォスフォニウムを表し、xは、0から3までの整数、yは、0から2までの整数を表す。
なお、R56とR57が互いに連結し、脂環式環、芳香族環、又は酸素、窒素、若しくは硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい。この時、環員数は5〜8であり、該環上に置換基を有していても、有していなくてもよい。
は、Mに配位したリガンドを表す。
また、R53とLが互いに結合して環を形成してもよい。]
The structure of the metal complex obtained from the chelating ligand is represented by the following structural formula (a) or (b) in which an arylphosphine compound, an arylarcin compound or an arylantimon compound which may have a substituent is coordinated. Ru.


[In the structural formula (a) and the structural formula (b),
M represents a transition metal belonging to any of Group 5 to 11 of the periodic table of elements, that is, various transition metals as described above.
X 1 represents oxygen, sulfur, -SO 3- , or -CO 2- .
Y 1 represents carbon or silicon.
n represents an integer of 0 or 1.
E 1 represents phosphorus, arsenic or antimony.
R 53 and R 54 each independently represent a hydrocarbon group that may contain hydrogen or a heteroatom having 1 to 30 carbon atoms.
R 55 represents a hydrocarbon group that may independently contain hydrogen, halogen, or a heteroatom having 1 to 30 carbon atoms.
R 56 and R 57 are each independently a hydrocarbon group which may contain hydrogen, halogen, or a heteroatom having 1 to 30 carbon atoms, OR 52 , CO 2 R 52 , CO 2 M', C (O). N (R 51 ) 2 , C (O) R 52 , SR 52 , SO 2 R 52 , SOR 52 , OSO 2 R 52 , P (O) (OR 52 ) 2-y (R 51 ) y , CN, NHR 52, N (R 52) 2 , Si (OR 51) 3-x (R 51) x, OSi (OR 51) 3-x (R 51) x, NO 2, SO 3 M ', PO 3 M' 2 , P (O) (OR 52 ) 2 M'or represents an epoxy-containing group.
R 51 represents hydrogen or a hydrocarbon group having 1 to 20 carbon atoms.
R 52 represents a hydrocarbon group having 1 to 20 carbon atoms.
M'represents an alkali metal, an alkaline earth metal, ammonium, a quaternary ammonium or phosphonium, x represents an integer from 0 to 3, and y represents an integer from 0 to 2.
R 56 and R 57 may be linked to each other to form an alicyclic ring, an aromatic ring, or a heterocycle containing a hetero atom selected from oxygen, nitrogen, or sulfur. At this time, the number of ring members is 5 to 8, and the ring may or may not have a substituent.
L 1 represents a ligand coordinated to M.
Further, R 53 and L 1 may be bonded to each other to form a ring. ]

より好ましくは、下記構造式(c)で表される遷移金属錯体である。

[構造式(c)において、
Mは、元素の周期表の第5〜11族のいずれかに属する遷移金属、即ち前述したような種々の遷移金属を表す。
は、酸素、硫黄、−SO−、又は−CO−を表す。
は、炭素又はケイ素を表す。
nは、0又は1の整数を表す。
は、リン、砒素又はアンチモンを表す。
53及びR54は、それぞれ独立に、水素又は炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基を表す。
55は、それぞれ独立に、水素、ハロゲン、又は炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基を表す。
58、R59、R60及びR61は、それぞれ独立に、水素、ハロゲン、炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基、OR52、CO52、COM’、C(O)N(R51、C(O)R52、SR52、SO52、SOR52、OSO52、P(O)(OR522−y(R51、CN、NHR52、N(R52、Si(OR513−x(R51、OSi(OR513−x(R51、NO、SOM’、POM’、P(O)(OR52M’又はエポキシ含有基を表す。
51は、水素又は炭素数1ないし20の炭化水素基を表す。
52は、炭素数1ないし20の炭化水素基を表す。
M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウム又はフォスフォニウムを表し、xは、0から3までの整数、yは、0から2までの整数を表す。
なお、R58〜R61から適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、又は酸素、窒素、若しくは硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい。この時、環員数は5〜8であり、該環上に置換基を有していても、有していなくてもよい。
は、Mに配位したリガンドを表す。
また、R53とLが互いに結合して環を形成してもよい。]
More preferably, it is a transition metal complex represented by the following structural formula (c).

[In structural formula (c),
M represents a transition metal belonging to any of Group 5 to 11 of the periodic table of elements, that is, various transition metals as described above.
X 1 represents oxygen, sulfur, -SO 3- , or -CO 2- .
Y 1 represents carbon or silicon.
n represents an integer of 0 or 1.
E 1 represents phosphorus, arsenic or antimony.
R 53 and R 54 each independently represent a hydrocarbon group that may contain hydrogen or a heteroatom having 1 to 30 carbon atoms.
R 55 represents a hydrocarbon group that may independently contain hydrogen, halogen, or a heteroatom having 1 to 30 carbon atoms.
R 58 , R 59 , R 60 and R 61 are hydrocarbon groups, OR 52 , CO 2 R 52 and CO 2 M, which may independently contain hydrogen, halogen and heteroatoms having 1 to 30 carbon atoms, respectively. ', C (O) N (R 51 ) 2 , C (O) R 52 , SR 52 , SO 2 R 52 , SOR 52 , OSO 2 R 52 , P (O) (OR 52 ) 2-y (R 51) ) Y , CN, NHR 52 , N (R 52 ) 2 , Si (OR 51 ) 3-x (R 51 ) x , OSi (OR 51 ) 3-x (R 51 ) x , NO 2 , SO 3 M' represents PO 3 M '2, P ( O) (oR 52) 2 M' or epoxy containing group.
R 51 represents hydrogen or a hydrocarbon group having 1 to 20 carbon atoms.
R 52 represents a hydrocarbon group having 1 to 20 carbon atoms.
M'represents an alkali metal, an alkaline earth metal, ammonium, a quaternary ammonium or phosphonium, x represents an integer from 0 to 3, and y represents an integer from 0 to 2.
A plurality of groups appropriately selected from R 58 to R 61 are linked to each other to form an alicyclic ring, an aromatic ring, or a heterocycle containing a hetero atom selected from oxygen, nitrogen, or sulfur. May be good. At this time, the number of ring members is 5 to 8, and the ring may or may not have a substituent.
L 1 represents a ligand coordinated to M.
Further, R 53 and L 1 may be bonded to each other to form a ring. ]

ここで、キレート性配位子を有する第5〜11族の遷移金属化合物の触媒としては、代表的に、いわゆる、SHOP系触媒及びDrent系触媒等の触媒が知られている。
SHOP系触媒は、置換基を有してもよいアリール基を有するリン系リガンドがニッケル金属に配位した触媒である(例えば、WO2010−050256号公報を参照)。
また、Drent系触媒は、置換基を有してもよいアリール基を有するリン系リガンドがパラジウム金属に配位した触媒である(例えば、特開2010−202647号公報を参照)。
Here, as a catalyst for the transition metal compounds of Groups 5 to 11 having a chelating ligand, catalysts such as so-called SHOP-based catalysts and Drent-based catalysts are typically known.
The SHOP-based catalyst is a catalyst in which a phosphorus-based ligand having an aryl group, which may have a substituent, is coordinated to a nickel metal (see, for example, WO2010-05256).
The Drent-based catalyst is a catalyst in which a phosphorus-based ligand having an aryl group, which may have a substituent, is coordinated with a palladium metal (see, for example, JP-A-2010-20647).

・共重合体の重合方法:
本発明に関わる共重合体の重合方法は限定されない。
重合方法としては、媒体中で少なくとも一部の生成重合体がスラリーとなるスラリー重合、液化したモノマー自身を媒体とするバルク重合、気化したモノマー中で行う気相重合、又は、高温高圧で液化したモノマーに生成重合体の少なくとも一部が溶解する高圧イオン重合などが挙げられる。
重合形式としては、バッチ重合、セミバッチ重合、又は連続重合のいずれの形式でもよい。
また、リビング重合を行ってもよいし、連鎖移動を併発しながら重合を行ってもよい。
更に、重合の際には、いわゆるchain shuttling agent(CSA)を併用し、chain shuttling反応や、coordinative chain transfer polymerization(CCTP)を行ってもよい。
具体的な製造プロセス及び条件については、例えば、特開2010−260913号公報、及び特開2010−202647号公報等に開示されている。
-Polymer polymerization method:
The method for polymerizing the copolymer according to the present invention is not limited.
As a polymerization method, slurry polymerization in which at least a part of the produced polymer becomes a slurry in a medium, bulk polymerization using the liquefied monomer itself as a medium, vapor phase polymerization performed in a vaporized monomer, or liquefaction at high temperature and high pressure Examples thereof include high-pressure ionic polymerization in which at least a part of the produced polymer is dissolved in the monomer.
The polymerization form may be any of batch polymerization, semi-batch polymerization, and continuous polymerization.
Further, the living polymerization may be carried out, or the polymerization may be carried out while causing chain transfer.
Further, at the time of polymerization, a so-called chain shutting agent (CSA) may be used in combination to carry out a chain shutdown reaction or a coordinative chain transfer polymerization (CCTP).
Specific manufacturing processes and conditions are disclosed in, for example, JP-A-2010-260913 and JP-A-2010-202647.

・共重合体へのカルボキシル基及び/又はジカルボン酸無水物基の導入方法:
本発明に関わる共重合体へのカルボキシル基及び/又はジカルボン酸無水物基の導入方法は特に限定されない。
本発明の主旨を逸脱しない範囲においては種々の方法によりカルボキシル基及び/又はジカルボン酸無水物基を導入することができる。
カルボキシル基及び/又はジカルボン酸無水物基の導入方法は、例えば、カルボキシル基及び/又はジカルボン酸無水物基を有するコモノマーを直接共重合する方法や、他のモノマーを共重合した後、変性によりカルボキシル基及び/又はジカルボン酸無水物基を導入する方法などが挙げられる。
-Method of introducing a carboxyl group and / or a dicarboxylic acid anhydride group into the copolymer:
The method for introducing a carboxyl group and / or a dicarboxylic acid anhydride group into the copolymer according to the present invention is not particularly limited.
A carboxyl group and / or a dicarboxylic acid anhydride group can be introduced by various methods as long as the gist of the present invention is not deviated.
The method for introducing the carboxyl group and / or the dicarboxylic acid anhydride group is, for example, a method of directly copolymerizing a comonomer having a carboxyl group and / or a dicarboxylic acid anhydride group, or a method of copolymerizing another monomer and then modifying the carboxyl group. Examples thereof include a method of introducing a group and / or a dicarboxylic acid anhydride group.

変性によりカルボキシル基及び/又はジカルボン酸無水物基を導入する方法としては、例えばカルボン酸を導入する場合、アクリル酸エステルを共重合した後に加水分解し、カルボン酸に変化する方法やアクリル酸t−ブチルを共重合した後、加熱分解によりカルボン酸に変化させる方法等が挙げられる。 As a method of introducing a carboxyl group and / or a dicarboxylic acid anhydride group by modification, for example, in the case of introducing a carboxylic acid, a method of copolymerizing an acrylic acid ester and then hydrolyzing it to change to a carboxylic acid or an acrylic acid t- Examples thereof include a method of copolymerizing butyl and then converting it into a carboxylic acid by thermal decomposition.

上記、加水分解又は加熱分解する際に、反応を促進させる添加剤として、従来公知の酸・塩基触媒を使用してもよい。酸・塩基触媒としては特に制限されないが、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属やアルカリ土類金属の水酸化物、炭酸水素ナトリウムや炭酸ナトリウムなどのアルカリ金属、アルカリ土類金属の炭酸塩、モンモリロナイトなどの固体酸、塩酸、硝酸、硫酸などの無機酸、ギ酸、酢酸、安息香酸、クエン酸、パラトルエンスルホン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸などの有機酸などを適宜用いることが出来る。
反応促進効果、価格、装置腐食性等の観点から水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、パラトルエンスルホン酸、トリフルオロ酢酸が好ましく、パラトルエンスルホン酸、トリフルオロ酢酸がより好ましい。
A conventionally known acid / base catalyst may be used as an additive for accelerating the reaction during the above-mentioned hydrolysis or thermal decomposition. The acid / base catalyst is not particularly limited, but for example, hydroxides of alkali metals and alkaline earth metals such as sodium hydroxide, potassium hydroxide and lithium hydroxide, alkali metals such as sodium hydrogencarbonate and sodium carbonate, and alkaline soil. Carbonic acid of similar metals, solid acid such as montmorillonite, inorganic acid such as hydrochloric acid, nitric acid, sulfuric acid, organic acid such as formic acid, acetic acid, benzoic acid, citric acid, paratoluenesulfonic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, etc. Can be used as appropriate.
Sodium hydroxide, potassium hydroxide, sodium carbonate, paratoluenesulfonic acid, and trifluoroacetic acid are preferable, and paratoluenesulfonic acid and trifluoroacetic acid are more preferable, from the viewpoints of reaction promoting effect, price, device corrosiveness, and the like.

(6)アイオノマー
本発明に係るアイオノマーは、本発明の共重合体の構造単位(B)のカルボキシル基及び/又はジカルボン酸無水物基の少なくとも一部が周期表1族、2族、又は12族から選ばれる少なくとも1種の金属イオンを含有する金属含有カルボン酸塩に変換されており、回転式レオメータで測定した複素弾性率の絶対値G=0.1MPaにおける位相角δが、50度〜75度であり、実質的に直鎖状構造を有するアイオノマーである。
(6) Ionomer In the ionomer according to the present invention, at least a part of the carboxyl group and / or the dicarboxylic acid anhydride group of the structural unit (B) of the copolymer of the present invention is Group 1, Group 2, or Group 12 of the Periodic Table. It has been converted to a metal-containing carboxylic acid salt containing at least one metal ion selected from the above, and the phase angle δ at the absolute value G * = 0.1 MPa of the heteroelasticity measured by a rotary leometer is 50 degrees or more. It is an ionomer at 75 degrees and has a substantially linear structure.

・アイオノマーの構造
本発明に関わるアイオノマーは本発明に関わる共重合体と同様に実質的に直鎖状構造を有することから、回転式レオメータで測定した複素弾性率の絶対値G=0.1MPaにおける位相角δが、50度〜75度の範囲であることを特徴とする。前記位相角δ(G=0.1MPa)が50度より低い場合、アイオノマーの分子構造は長鎖分岐を過多に含む構造を示し、機械的強度が劣るものとなる。また、当該分子構造が長鎖分岐を含まない構造である場合でもδ(G=0.1MPa)値が75度を上回ることはない。
本発明のアイオノマーは、機械的強度を向上する点から、前記位相角δの下限が、51度以上であることが好ましく、54度以上であることがより好ましく、56度以上であることが更に好ましく、58度以上であることがより更に好ましく、上限は、特に限定されず、75度に近ければ近いほどよい。
-Structure of ionomer Since the ionomer according to the present invention has a substantially linear structure like the copolymer according to the present invention, the absolute value of the complex elastic modulus measured by the rotary rheometer G * = 0.1 MPa. The phase angle δ in the above is in the range of 50 degrees to 75 degrees. When the phase angle δ (G * = 0.1 MPa) is lower than 50 degrees, the molecular structure of the ionomer shows a structure containing an excessive number of long-chain branches, and the mechanical strength becomes inferior. Further, even when the molecular structure does not include a long chain branch, the δ (G * = 0.1 MPa) value does not exceed 75 degrees.
In the ionomer of the present invention, the lower limit of the phase angle δ is preferably 51 degrees or more, more preferably 54 degrees or more, and further preferably 56 degrees or more, from the viewpoint of improving the mechanical strength. It is more preferably 58 degrees or more, and the upper limit is not particularly limited, and the closer it is to 75 degrees, the better.

・金属イオン
本発明に関わるアイオノマーに含まれる金属イオンは、特に限定されず、従来公知のアイオノマーに用いられる金属イオンを含むことができる。金属イオンとしては、中でも、周期表1族、2族、又は12族の金属イオンであることが好ましく、Li、Na、K、Rb、Cs、Mg2+、Ca2+、Sr2+、Ba2+及びZn2+からなる群から選ばれる少なくとも1種がより好ましい。特に好ましくは、Li、Na、K、Mg2+、Ca2+、及びZn2+、更に好ましくは、Na、及びZn2+からなる群から選ばれる少なくとも1種が挙げられる。
これらの金属イオンを必要に応じて2種以上混合して含むことができる。
-Metal ion The metal ion contained in the ionomer according to the present invention is not particularly limited, and may include a metal ion used in a conventionally known ionomer. The metal ions are preferably metal ions of Group 1, Group 2, or Group 12 of the periodic table, and are Li + , Na + , K + , Rb + , Cs + , Mg 2+ , Ca 2+ , Sr 2+. , At least one selected from the group consisting of Ba 2+ and Zn 2+ is more preferred. Particularly preferred are at least one selected from the group consisting of Li + , Na + , K + , Mg 2+ , Ca 2+ , and Zn 2+ , and even more preferably Na + and Zn 2+ .
Two or more of these metal ions can be mixed and contained as required.

・中和度(mol%)
金属イオンの含有量としては、ベースポリマーとしての共重合体中のカルボキシル基及び/又はジカルボン酸無水物基の少なくとも一部又は全部を中和する量を含むことが好ましく、好ましい中和度(平均中和度)としては、5〜95mol%、より好ましくは10〜90mol%、さらに好ましくは10〜80mol%である。
なお、中和度は、共重合体中のカルボキシ基及び/又はジカルボン酸無水物基に含まれ得るカルボキシ基の合計mol量に対する、金属イオンの価数×mol量の合計mol量の割合から求めることができる。
ジカルボン酸無水物基はカルボン酸塩を形成する際に、開環してジカルボン酸となるため、ジカルボン酸無水物基1molにつき、2molのカルボキシ基を有するものとして前記カルボキシ基の合計mol量を求める。また、例えばZn2+等の二価の金属イオンは、1molにつき、2molのカルボキシ基と塩を形成できるものとして、2×mol量により中和度の分子の合計mol量を算出する。
中和度が高いと、アイオノマーの引張強度及び引張破壊応力が高く、引張破壊ひずみが小さくなるが、アイオノマーのメルトフローレート(MFR)が小さくなる傾向がある。一方、中和度が低いと、適度なMFRのアイオノマーが得られるが、引張弾性率及び引張破壊応力は低く、引張破壊ひずみが高くなる傾向がある。
・ Neutralization degree (mol%)
The content of the metal ion preferably includes an amount that neutralizes at least a part or all of the carboxyl group and / or the dicarboxylic acid anhydride group in the copolymer as the base polymer, and a preferable degree of neutralization (average). The degree of neutralization) is 5 to 95 mol%, more preferably 10 to 90 mol%, still more preferably 10 to 80 mol%.
The degree of neutralization is determined from the ratio of the total mol amount of the valence of the metal ion x the mol amount to the total mol amount of the carboxy group and / or the dicarboxylic acid anhydride group in the copolymer. be able to.
Since the dicarboxylic acid anhydride group opens a ring to become a dicarboxylic acid when forming a carboxylic acid salt, the total mol amount of the carboxy group is determined assuming that 1 mol of the dicarboxylic acid anhydride group has 2 mol of carboxy group. .. Further, assuming that a divalent metal ion such as Zn 2+ can form a salt with 2 mol of a carboxy group per 1 mol, the total mol amount of molecules having a degree of neutralization is calculated by the amount of 2 × mol.
When the degree of neutralization is high, the tensile strength and tensile fracture stress of the ionomer are high, and the tensile fracture strain is small, but the melt flow rate (MFR) of the ionomer tends to be small. On the other hand, when the degree of neutralization is low, an ionomer having an appropriate MFR can be obtained, but the tensile elastic modulus and the tensile fracture stress tend to be low, and the tensile fracture strain tends to be high.

・アイオノマーの製造方法
本発明に関わるアイオノマーは、上述のとおりの共重合体へのカルボキシル基及び/又はジカルボン酸無水物基の導入方法によって得たエチレン及び/又は炭素数3〜20のα−オレフィン/不飽和カルボン酸の共重合体を、周期表1族、2族、又は12族から選ばれる少なくとも1種の金属イオンを含有する金属塩により処理し金属含有カルボン酸塩に変換する変換工程を経ることにより得てもよい。また、本発明に関わるアイオノマーはエチレン及び/又は炭素数3〜20のα−オレフィン/不飽和カルボン酸エステル共重合体を加熱し、該共重合体中の少なくとも一部のエステル基を、周期表1族、2族、又は12族から選ばれる少なくとも1種の金属イオンを含有する金属含有カルボン酸塩に変換する加熱変換工程を経ることにより得てもよい。
-Method for producing ionomer The ionomer according to the present invention is ethylene and / or α-olefin having 3 to 20 carbon atoms obtained by the method for introducing a carboxyl group and / or a dicarboxylic acid anhydride group into the copolymer as described above. / A conversion step of treating an unsaturated carboxylic acid copolymer with a metal salt containing at least one metal ion selected from Group 1, Group 2, or Group 12 of the Periodic Table to convert it into a metal-containing carboxylic acid salt. It may be obtained by passing. Further, the ionomer according to the present invention heats ethylene and / or an α-olefin / unsaturated carboxylic acid ester copolymer having 3 to 20 carbon atoms, and displays at least a part of the ester groups in the copolymer in the periodic table. It may be obtained by undergoing a heat conversion step of converting into a metal-containing carboxylate containing at least one metal ion selected from Group 1, Group 2, or Group 12.

重合体にカルボキシル基及び/又はジカルボン酸無水物基を導入してからアイオノマーを製造する場合、その製造方法は、例えば、以下のとおりである。すなわち、エチレン/(メタ)アクリル酸((M)AA)共重合体などの金属イオンを捕捉する物質と金属塩を場合により加熱して混練することで金属イオン供給源を作製し、ついでアイオノマーの前駆体樹脂に当該金属イオン供給源を所望の中和度となる量投入し、混練することで得ることができる。 When an ionomer is produced after introducing a carboxyl group and / or a dicarboxylic acid anhydride group into the polymer, the production method thereof is, for example, as follows. That is, a metal ion source is prepared by heating and kneading a metal ion-capturing substance such as an ethylene / (meth) acrylic acid ((M) AA) copolymer and a metal salt in some cases, and then the ionomer. It can be obtained by adding the metal ion supply source to the precursor resin in an amount having a desired degree of neutralization and kneading.

また、加熱変換工程においては、(i)エチレン及び/又は炭素数3〜20のα−オレフィン/不飽和カルボン酸エステル共重合体を加熱し、加水分解又は加熱分解によりエチレン及び/又は炭素数3〜20のα−オレフィン/不飽和カルボン酸共重合体にした後、周期表1族、2族、又は12族の金属イオンを含有する化合物と反応させることで、該エチレン及び/又は炭素数3〜20のα−オレフィン/不飽和カルボン酸共重合体中のカルボン酸を該金属含有カルボン酸塩に変換してもよく、また、(ii)エチレン及び/又は炭素数3〜20のα−オレフィン/不飽和カルボン酸エステル共重合体を加熱し、該共重合体のエステル基を加水分解又は加熱分解させながら、周期表1族、2族、又は12族の金属イオンを含有する化合物と反応させることで、前記エチレン及び/又は炭素数3〜20のα−オレフィン/不飽和カルボン酸エステル共重合体中のエステル基部分を前記金属含有カルボン酸塩に変換してもよい。 Further, in the heat conversion step, (i) ethylene and / or an α-olefin / unsaturated carboxylic acid ester copolymer having 3 to 20 carbon atoms is heated, and ethylene and / or carbon atoms are 3 by hydrolysis or thermal decomposition. After forming an α-olefin / unsaturated carboxylic acid copolymer of ~ 20, the ethylene and / or carbon number 3 is formed by reacting with a compound containing a metal ion of Group 1, Group 2, or Group 12 of the periodic table. The carboxylic acid in the α-olefin / unsaturated carboxylic acid copolymer of ~ 20 may be converted to the metal-containing carboxylic acid salt, and (ii) ethylene and / or α-olefin having 3 to 20 carbon atoms. / The unsaturated carboxylic acid ester copolymer is heated, and the ester group of the copolymer is hydrolyzed or thermally decomposed to react with a compound containing metal ions of Group 1, Group 2, or Group 12 of the periodic table. As a result, the ester group portion in the ethylene and / or α-olefin / unsaturated carboxylic acid ester copolymer having 3 to 20 carbon atoms may be converted into the metal-containing carboxylic acid salt.

さらに金属イオンを含有する化合物は、周期表1族、2族、又は12族の金属の酸化物、水酸化物、炭酸塩、重炭酸塩、酢酸塩、ギ酸塩などであってもよい。
金属イオンを含有する化合物は、粒状あるいは微粉状で反応系に供給してもよく、水や有機溶媒に溶解又は分散させた後、反応系に供給してもよく、エチレン/不飽和カルボン酸共重合体やオレフィン共重合体をベースポリマーとするマスターバッチを作製し、反応系に供給してもよい。反応を円滑に進行させるためにはマスターバッチを作製し、反応系に供給する方法が好ましい。
Further, the compound containing a metal ion may be an oxide, hydroxide, carbonate, bicarbonate, acetate, formate or the like of a metal of Group 1, Group 2, or Group 12 of the Periodic Table.
The compound containing a metal ion may be supplied to the reaction system in the form of granules or fine powder, may be dissolved or dispersed in water or an organic solvent, and then supplied to the reaction system. A master batch using a polymer or an olefin copolymer as a base polymer may be prepared and supplied to the reaction system. In order to allow the reaction to proceed smoothly, a method of preparing a masterbatch and supplying it to the reaction system is preferable.

さらにまた、金属イオンを含有する化合物との反応はベント押出機、バンバリーミキサー、ロールミルの如き種々の型の装置により、溶融混練することによって行ってもよく、反応はバッチ式でも連続法でもよい。反応によって副生する水及び炭酸ガスを脱気装置により排出することにより、円滑に反応を行うことができることからベント押出機のような脱気装置付きの押出機を用い連続的に行うことが好ましい。
金属イオンを含有する化合物との反応に際し、反応を促進させるために、少量の水を注入してもよい。
Furthermore, the reaction with the compound containing metal ions may be carried out by melt-kneading with various types of devices such as a vent extruder, a Banbury mixer and a roll mill, and the reaction may be carried out by a batch method or a continuous method. Since the reaction can be smoothly carried out by discharging the water and carbon dioxide gas produced by the reaction by the deaerator, it is preferable to continuously carry out the reaction using an extruder equipped with a degassing device such as a bent extruder. ..
When reacting with a compound containing a metal ion, a small amount of water may be injected to accelerate the reaction.

エチレン及び/又は炭素数3〜20のα−オレフィン/不飽和カルボン酸エステル共重合体を加熱する温度は、エステルがカルボン酸になる温度であればよく、加熱温度が低すぎる場合はエステルがカルボン酸に変換されず、高すぎる場合には脱カルボニル化や共重合体の分解が進む。従って、本発明の加熱温度は、好ましくは80℃〜350℃、より好ましくは100℃〜340℃、更に好ましくは150℃〜330℃、更により好ましくは200℃〜320℃の範囲で行われる。 The temperature for heating the ethylene and / or α-olefin / unsaturated carboxylic acid ester copolymer having 3 to 20 carbon atoms may be a temperature at which the ester becomes a carboxylic acid, and if the heating temperature is too low, the ester is carboxylic. If it is not converted to an acid and is too high, decarbonylation and decomposition of the copolymer proceed. Therefore, the heating temperature of the present invention is preferably in the range of 80 ° C. to 350 ° C., more preferably 100 ° C. to 340 ° C., still more preferably 150 ° C. to 330 ° C., and even more preferably 200 ° C. to 320 ° C.

反応時間は加熱温度やエステル基部分の反応性等により変わるが、通常1分〜50時間であり、より好ましくは2分〜30時間であり、更に好ましくは2分〜10時間であり、よりさらに好ましくは2分〜3時間であり、特に好ましくは3分〜2時間である。 The reaction time varies depending on the heating temperature, the reactivity of the ester group portion, etc., but is usually 1 minute to 50 hours, more preferably 2 minutes to 30 hours, further preferably 2 minutes to 10 hours, and further. It is preferably 2 minutes to 3 hours, and particularly preferably 3 minutes to 2 hours.

上記工程において、反応雰囲気下に特に制限はないが、一般に不活性ガス気流下で行われるほうが好ましい。不活性ガスの例としては、窒素、アルゴン、二酸化炭素雰囲気が使用できる。少量の酸素や空気の混入があってもよい。 In the above step, the reaction atmosphere is not particularly limited, but it is generally preferable to carry out the step under an inert gas stream. Nitrogen, argon, and carbon dioxide atmospheres can be used as examples of the inert gas. There may be a small amount of oxygen or air mixed in.

上記工程で用いる反応器としては、特に制限は無く、共重合体を実質的に均一に攪拌できる方法であれば何ら限定されない。攪拌器を装備したガラス容器やオートクレーブ(AC)を用いてもよいし、ブラベンダープラストグラフ、一軸あるいは二軸押出機、強力スクリュー型混練機、バンバリーミキサー、ニーダー、ロール等の従来知られているいかなる混練機も使用することができる。 The reactor used in the above step is not particularly limited, and is not limited as long as it is a method capable of stirring the copolymer substantially uniformly. A glass container equipped with a stirrer or an autoclave (AC) may be used, and conventionally known lavender plastographs, single-screw or twin-screw extruders, strong screw-type kneaders, Banbury mixers, kneaders, rolls, etc. Any kneader can be used.

アイオノマーベース樹脂に対し金属イオンが導入され、アイオノマーとなったかどうかは、得られた樹脂のIRスペクトルを測定してカルボン酸(二量体)のカルボニル基に由来するピークの減少を調べることによって確認することができる。中和度も同じく、前述のモル比からの計算のほか、カルボン酸(二量体)のカルボニル基に由来するピークの減少と、カルボン酸塩基のカルボニル基に由来するピークの増加を調べることによって、確認することができる。 Whether or not a metal ion was introduced into an ionomer-based resin and became an ionomer was confirmed by measuring the IR spectrum of the obtained resin and examining the decrease in the peak derived from the carbonyl group of the carboxylic acid (dimer). can do. Similarly, the degree of neutralization is calculated from the above-mentioned molar ratio, and by examining the decrease in the peak derived from the carbonyl group of the carboxylic acid (dimer) and the increase in the peak derived from the carbonyl group of the carboxylic acid base. , Can be confirmed.

・添加剤
本発明に関わるアイオノマーには、本発明の主旨を逸脱しない範囲において、従来公知の酸化防止剤、紫外線吸収剤、滑剤、帯電防止剤、着色剤、顔料、架橋剤、発泡剤、核剤、難燃剤、導電材、及び、充填材等の添加剤を配合してもよい。特に、本発明に関わるアイオノマーをゴルフボールのカバー部に使用する場合には、ボールの外観のための白色顔料を添加してもよい。本発明の一つの態様は、上記アイオノマーとこれら添加剤を含有する、樹脂組成物に関する。
-Additives For ionomers related to the present invention, conventionally known antioxidants, ultraviolet absorbers, lubricants, antistatic agents, colorants, pigments, cross-linking agents, foaming agents, nuclei, as long as the gist of the present invention is not deviated. Additives such as agents, flame retardants, conductive materials, and fillers may be blended. In particular, when the ionomer according to the present invention is used for the cover portion of a golf ball, a white pigment for the appearance of the ball may be added. One aspect of the present invention relates to a resin composition containing the above ionomer and these additives.

<樹脂組成物>
本発明に関わるアイオノマーは、それ単独でゴルフボール用樹脂として優れた物性を示す。そのため、上記添加剤以外の成分は必ずしも必要ではないが、本発明の効果を損なわない範囲内で、従来公知のその他の樹脂を配合した樹脂組成物とすることができる。
その他の樹脂を配合する場合には、本発明に関わるアイオノマーを使用する部位に応じて樹脂の種類を選択することができる。すなわち、ゴルフボールのカバー部に使用する場合には、配合される樹脂としては、ポリエステル、ポリアミド、ポリウレタン、ポリオレフィン及びポリスチレンが例示される。打感の向上を図るために、ポリウレタンが配合されていてもよい。ゴルフボールのコア部に使用する場合には、ナイロン、ポリアリレート、ポリプロピレン樹脂、ポリブタジエン樹脂、熱可塑性ポリウレタンエラストマー及び熱可塑性ポリエステルエラストマーが例示される。ボールの飛距離、スピン量など、競技者やプレイするコースによってもボールに求められる特性が変化するので、それらの要求に合わせて配合を様々に変化させることができる。
<Resin composition>
The ionomer according to the present invention by itself exhibits excellent physical properties as a resin for golf balls. Therefore, although components other than the above additives are not always necessary, a resin composition containing other conventionally known resins can be obtained as long as the effects of the present invention are not impaired.
When other resins are blended, the type of resin can be selected according to the site where the ionomer according to the present invention is used. That is, when used for a cover portion of a golf ball, examples of the resin to be blended include polyester, polyamide, polyurethane, polyolefin and polystyrene. Polyurethane may be blended in order to improve the feel on impact. When used for the core portion of a golf ball, examples thereof include nylon, polyarylate, polypropylene resin, polybutadiene resin, thermoplastic polyurethane elastomer and thermoplastic polyester elastomer. Since the characteristics required of the ball change depending on the player and the course played, such as the flight distance and the amount of spin of the ball, the composition can be variously changed according to those requirements.

2種類以上の樹脂を組み合わせて樹脂組成物とする方法は、特に制限されない。前記のような公知の混錬機械を用いて混合することで、樹脂組成物を得ることができる。 The method of combining two or more kinds of resins to form a resin composition is not particularly limited. A resin composition can be obtained by mixing using a known kneading machine as described above.

<ゴルフボール>
本発明に関わるアイオノマーは、コア部又はカバー部の少なくとも一方に使用される。本発明に関わるアイオノマーを含むゴルフボールもまた、本発明の一態様である。ゴルフボールはコア部とカバー部のみからなるツーピースと呼ばれる2層構造のもの、マルチレイヤーと呼ばれる3層以上の構造を有するものがあるが、本発明に関わるアイオノマーは、そのいずれの層に用いられていてもよい。いずれか一つの層のみに用いられていてもよく、二つ以上の層に用いられていてもよい。二つ以上の層に用いる場合には、アイオノマーの成分を各々変更したり、樹脂組成物としたものを用いたりすることで、各層ごとに有利な特性を備えたアイオノマー又はその樹脂組成物を用いることができる。ゴルフボールの製造方法は、当業者に公知である(例えば、特開2019−010754号広報などを参照されたい)。本発明のアイオノマーは、硬化したときに高い耐摩耗性などの効果を奏するものである。本発明のアイオノマーは、好ましくは、硬化したときに下記JIS K 7204−1999に準拠した条件で測定したテーバー摩耗量が、7.9mg/1000回転以下、好ましくは6.5mg/1000回転以下、更に好ましくは5.6mg/1000回転以下である。
<Golf ball>
The ionomer according to the present invention is used for at least one of a core portion and a cover portion. A golf ball containing an ionomer according to the present invention is also an aspect of the present invention. Some golf balls have a two-layer structure called a two-piece structure consisting of only a core part and a cover part, and some have a three-layer or more structure called a multi-layer. The ionomer according to the present invention is used for any of the layers. You may be. It may be used for only one of the layers, or it may be used for two or more layers. When used for two or more layers, by changing the components of the ionomer or using a resin composition, an ionomer or a resin composition thereof having advantageous properties for each layer is used. be able to. A method for producing a golf ball is known to those skilled in the art (for example, refer to Japanese Patent Application Laid-Open No. 2019-015744). The ionomer of the present invention exerts effects such as high wear resistance when cured. The ionomer of the present invention preferably has a taber wear amount of 7.9 mg / 1000 rpm or less, preferably 6.5 mg / 1000 rpm or less, which is measured under the conditions conforming to the following JIS K 7204-1999 when cured. It is preferably 5.6 mg / 1000 rpm or less.

以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、実施例及び比較例における物性の測定と評価は、以下に示す方法によって実施した。
また、表中のno dataは未測定を意味し、not detectedは検出限界未満を意味する。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
The measurement and evaluation of the physical properties in Examples and Comparative Examples were carried out by the methods shown below.
Further, no data in the table means unmeasured, and not detected means less than the detection limit.

<測定と評価>
(1)複素弾性率の絶対値G=0.1MPaにおける位相角δ(G=0.1MPa)の測定
1)試料の準備、測定
試料を厚さ1.0mmの加熱プレス用モールドに入れ、表面温度180℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで溶融樹脂中の残留気体を脱気し、更に4.9MPaで加圧し、5分間保持した。その後、表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、厚さが約1.0mmの試料からなるプレス板を作製した。試料からなるプレス板を直径25mm円形に加工したものをサンプルとし、動的粘弾性特性の測定装置としてRheometrics社製ARES型回転式レオメータを用い、窒素雰囲気下において以下の条件で動的粘弾性を測定した。
・プレート:φ25mm(直径) パラレルプレート
・温度:160℃
・歪み量:10%
・測定角周波数範囲:1.0×10−2〜1.0×10 rad/s
・測定間隔:5点/decade
複素弾性率の絶対値G(Pa)の常用対数logGに対して位相角δをプロットし、logG=5.0に相当する点のδ(度)の値をδ(G=0.1MPa)とした。測定点の中にlogG=5.0に相当する点がないときは、logG=5.0前後の2点を用いて、logG=5.0におけるδ値を線形補間で求めた。また、測定点がいずれもlogG<5であるときは、logG値が大きい方から3点の値を用いて2次曲線でlogG=5.0におけるδ値を補外して求めた。
<Measurement and evaluation>
(1) Measurement of phase angle δ (G * = 0.1 MPa) at absolute value G * = 0.1 MPa of complex elastic modulus 1) Preparation and measurement of sample Place the sample in a heat press mold with a thickness of 1.0 mm. After preheating in a hot press machine having a surface temperature of 180 ° C. for 5 minutes, the residual gas in the molten resin was degassed by repeating pressurization and depressurization, further pressurized at 4.9 MPa, and held for 5 minutes. Then, it was transferred to a press machine having a surface temperature of 25 ° C. and cooled by holding it at a pressure of 4.9 MPa for 3 minutes to prepare a press plate composed of a sample having a thickness of about 1.0 mm. A press plate made of a sample is processed into a circle with a diameter of 25 mm, and a dynamic viscoelasticity is measured under the following conditions in a nitrogen atmosphere using an ARES type rotary rheometer manufactured by Rheometrics as a measuring device for dynamic viscoelasticity characteristics. It was measured.
・ Plate: φ25mm (diameter) Parallel plate ・ Temperature: 160 ℃
・ Distortion amount: 10%
-Measurement angular frequency range: 1.0 x 10 -2 to 1.0 x 10 2 rad / s
・ Measurement interval: 5 points / decade
The phase angle δ is plotted against the common logarithm logG * of the absolute value G * (Pa) of the complex elastic modulus, and the value of δ (degrees) of the point corresponding to logG * = 5.0 is δ (G * = 0). .1 MPa). When there is no point corresponding to log G * = 5.0 in the measurement point, log G * = 5.0 with two points before and after to determine the δ value in log G * = 5.0 by linear interpolation. When all the measurement points were logG * <5, the δ value at logG * = 5.0 was subtracted from the quadratic curve using the values of the three points from the largest logG * value.

(2)重量平均分子量(Mw)及び分子量分布パラメーター(Mw/Mn)の測定
重量平均分子量(Mw)はゲルパーミエイションクロマトグラフィー(GPC)によって求めた。また、分子量分布パラメーター(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)によって、更に数平均分子量(Mn)を求め、MwとMnの比、Mw/Mnによって算出した。
測定は下記の手順及び条件に従って行った。
(2) Measurement of Weight Average Molecular Weight (Mw) and Molecular Weight Distribution Parameter (Mw / Mn) The weight average molecular weight (Mw) was determined by gel permeation chromatography (GPC). The molecular weight distribution parameter (Mw / Mn) was further determined by gel permeation chromatography (GPC) to obtain a number average molecular weight (Mn), and was calculated by the ratio of Mw to Mn and Mw / Mn.
The measurement was performed according to the following procedure and conditions.

1)試料の前処理
試料にカルボン酸基が含まれる場合は、例えばジアゾメタンやトリメチルシリル(TMS)ジアゾメタンなどを用いたメチルエステル化などのエステル化処理を行い測定に用いた。また、試料にカルボン酸塩基が含まれる場合は酸処理を行い、カルボン酸塩基をカルボン酸基へと変性した後、上記のエステル化処理を行い測定に用いた。
1) Pretreatment of the sample When the sample contained a carboxylic acid group, esterification treatment such as methyl esterification using diazomethane or trimethylsilyl (TMS) diazomethane was performed and used for the measurement. When the sample contained a carboxylic acid base, an acid treatment was performed to modify the carboxylic acid base into a carboxylic acid group, and then the above esterification treatment was performed and used for the measurement.

2)試料溶液の調製
4mLバイアル瓶に試料3mg及びo−ジクロロベンゼン3mLを秤り採り、スクリューキャップ及びテフロン(登録商標)製セプタムで蓋をした後、センシュー科学製SSC−7300型高温振とう機を用いて150℃で2時間振とうを行った。振とう終了後、不溶成分がないことを目視で確認した。
2) Preparation of sample solution Weigh 3 mg of sample and 3 mL of o-dichlorobenzene in a 4 mL vial, cover with a screw cap and Teflon (registered trademark) septum, and then use Senshu Kagaku's SSC-7300 high-temperature shaker. Was shaken at 150 ° C. for 2 hours. After the shaking was completed, it was visually confirmed that there were no insoluble components.

3)測定
ウォーターズ社製Alliance GPCV2000型に昭和電工製高温GPCカラムShowdex HT−G×1本及び同HT−806M×2本を接続し、溶離液にo−ジクロロベンゼンを使用し、温度145℃、流量:1.0mL/分下にて測定を行った。
3) Measurement Connect Showa Denko's high-temperature GPC columns Showex HT-G x 1 and HT-806M x 2 to the Alliance GPCV2000 type manufactured by Waters, and use o-dichlorobenzene as the eluent at a temperature of 145 ° C. The measurement was performed at a flow rate of 1.0 mL / min.

4)較正曲線
カラムの較正は、昭和電工製単分散ポリスチレン(S−7300、S−3900、S−1950、S−1460、S−1010、S−565、S−152、S−66.0、S−28.5、S−5.05、の各0.07mg/ml溶液)、n−エイコサン及びn−テトラコンタンの測定を上記と同様の条件にて行い、溶出時間と分子量の対数値を4次式で近似した。なお、ポリスチレン分子量(MPS)とポリエチレン分子量(MPE)の換算には次式を用いた。
PE=0.468×MPS
4) Calibration curve Column calibration is performed by Showa Denko monodisperse polystyrene (S-7300, S-3900, S-1950, S-1460, S-1010, S-565, S-152, S-66.0, S-28.5 and S-5.05, 0.07 mg / ml solutions each), n-icosane and n-tetracontane were measured under the same conditions as above, and the elution time and molecular weight logarithmic values were measured. It was approximated by a quaternary equation. The following formula was used to convert the polystyrene molecular weight ( MPS ) and the polyethylene molecular weight ( MPE ).
M PE = 0.468 × M PS

(3)メルトフローレート(MFR)
MFRは、JIS K−7210(1999年)の表1−条件7に従い、温度190℃、荷重21.18N(=2.16kg)の条件で測定した。
(3) Melt flow rate (MFR)
The MFR was measured under the conditions of a temperature of 190 ° C. and a load of 21.18 N (= 2.16 kg) according to Table 1-Condition 7 of JIS K-7210 (1999).

(4)融点及び結晶化度
融点は、示差走査型熱量計(DSC)により測定した吸熱曲線のピーク温度によって示される。測定にはエスアイアイ・ナノテクノロジー株式会社製のDSC(DSC7020)を使用し、次の測定条件で実施した。
試料約5.0mgをアルミパンに詰め、10℃/分で200℃まで昇温し、200℃で5分間保持した後に10℃/分で30℃まで降温させた。30℃で5分間保持した後、再度、10℃/分で昇温させる際の吸収曲線のうち、最大ピーク温度を融点Tmとし、融解吸熱ピーク面積から融解熱(ΔH)を求め、その融解熱を高密度ポリエチレン(HDPE)の完全結晶の融解熱293J/gで除することにより、結晶化度(%)を求めた。
(4) Melting point and crystallinity The melting point is indicated by the peak temperature of the endothermic curve measured by a differential scanning calorimeter (DSC). A DSC (DSC7020) manufactured by SII Nanotechnology Co., Ltd. was used for the measurement, and the measurement was carried out under the following measurement conditions.
About 5.0 mg of the sample was packed in an aluminum pan, heated to 200 ° C. at 10 ° C./min, held at 200 ° C. for 5 minutes, and then lowered to 30 ° C. at 10 ° C./min. Of the absorption curve when the temperature is raised again at 10 ° C./min after holding at 30 ° C. for 5 minutes, the maximum peak temperature is set to the melting point Tm, the heat of fusion (ΔH) is obtained from the heat absorption peak area for melting, and the heat of fusion is obtained. The crystallinity (%) was determined by dividing the total crystal of high-density polyethylene (HDPE) by the heat of fusion of 293 J / g.

(5)カルボキシ基及び/又はジカルボン酸無水物基を有するモノマー、及び非環状モノマー由来の構造単位量と炭素1,000個当たりの分岐数の測定方法
本発明の共重合体中のカルボキシ基及び/又はジカルボン酸無水物基を有するモノマー、及び非環状モノマーに由来する構造単位量、及び炭素1,000個当たりの分岐数は13C−NMRスペクトルを用いて求められる。13C−NMRは以下の方法によって測定した。
試料200〜300mgをo−ジクロロベンゼン(CCl)と重水素化臭化ベンゼン(CBr)の混合溶媒(CCl/CBr=2/1(体積比))2.4ml及び化学シフトの基準物質であるヘキサメチルジシロキサンと共に内径10mmφのNMR試料管に入れて窒素置換した後封管し、加熱溶解して均一な溶液としてNMR測定試料とした。
NMR測定は10mmφのクライオプローブを装着したブルカー・ジャパン(株)のAV400M型NMR装置を用いて120℃で行った。
13C−NMRは、試料の温度120℃、パルス角を90°、パルス間隔を51.5秒、積算回数を512回以上、逆ゲートデカップリング法で測定した。
化学シフトはヘキサメチルジシロキサンの13Cシグナルを1.98ppmに設定し、他の13Cによるシグナルの化学シフトはこれを基準とした。
(5) Monomer having a carboxy group and / or a dicarboxylic acid anhydride group, and a method for measuring the amount of structural units derived from an acyclic monomer and the number of branches per 1,000 carbons The carboxy group in the copolymer of the present invention and / Or the amount of structural units derived from the monomer having a dicarboxylic acid anhydride group and the acyclic monomer, and the number of branches per 1,000 carbons can be determined using a 13 C-NMR spectrum. 13 C-NMR was measured by the following method.
Sample 200-300 mg in a mixed solvent (C 6 H 4 Cl 2 / C 6 D 5 Br = 2 /) of o-dichlorobenzene (C 6 H 4 Cl 2 ) and benzene dehydride (C 6 D 5 Br) 1 (Volume ratio)) 2.4 ml and hexamethyldisiloxane, which is a reference substance for chemical shift, are placed in an NMR sample tube with an inner diameter of 10 mmφ, replaced with nitrogen, sealed, and heat-dissolved to form a uniform solution for NMR measurement. And said.
The NMR measurement was performed at 120 ° C. using an AV400M type NMR apparatus of Bruker Japan Co., Ltd. equipped with a 10 mmφ cryoprobe.
13 C-NMR was measured by the reverse gate decoupling method at a sample temperature of 120 ° C., a pulse angle of 90 °, a pulse interval of 51.5 seconds, and an integration number of 512 times or more.
For the chemical shift, the 13 C signal of hexamethyldisiloxane was set to 1.98 ppm, and the chemical shift of the signal due to other 13 C was based on this.

1)試料の前処理
試料にカルボン酸塩基が含まれる場合は酸処理を行うことにより、カルボン酸塩基をカルボキシ基へと変性した後に測定に用いた。また試料にカルボキシ基が含まれる場合は、例えばジアゾメタンやトリメチルシリル(TMS)ジアゾメタンなどを用いたメチルエステル化などのエステル化処理を適宜行ってもよい。
1) Pretreatment of the sample When the sample contained a carboxylic acid base, the carboxylic acid base was denatured into a carboxy group by acid treatment and then used for the measurement. When the sample contains a carboxy group, esterification treatment such as methyl esterification using diazomethane or trimethylsilyl (TMS) diazomethane may be appropriately performed.

2)カルボキシ基及び/又はジカルボン酸無水物基を有するモノマー、及び非環状モノマー由来の構造単位量の算出
<E/tBA>
tBAのt−ブチルアクリレート基の四級炭素シグナルは、13C−NMRスペクトルの79.6〜78.8に検出される。これらのシグナル強度を用い、以下の式からコモノマー量を算出した。
tBA総量(mol%)=I(tBA)×100/〔I(tBA)+I(E)〕
ここで、I(tBA)、I(E)はそれぞれ、以下の式で示される量である。
I(tBA)=I79.6〜78.8
I(E)=(I180.0〜135.0+I120.0〜5.0−I(tBA)×7)/2
2) Calculation of structural unit amount derived from a monomer having a carboxy group and / or a dicarboxylic acid anhydride group and an acyclic monomer <E / tBA>
The quaternary carbon signal of the t-butyl acrylate group of tBA is detected at 79.6-78.8 in the 13 C-NMR spectrum. Using these signal intensities, the amount of comonomer was calculated from the following formula.
Total tBA (mol%) = I (tBA) x 100 / [I (tBA) + I (E)]
Here, I (tBA) and I (E) are quantities represented by the following formulas, respectively.
I (tBA) = I 79.6-78.8
I (E) = (I 180.0 to 135.0 + I 120.0 to 5.0- I (tBA) x 7) / 2

<E/tBA/iBA>
tBAのt−ブチルアクリレート基の四級炭素シグナルは、13C−NMRスペクトルの79.6〜78.8ppm、iBAのイソブトキシ基のメチレンシグナルは70.5〜69.8ppm、イソブトキシ基のメチルシグナルは19.5〜18.9ppmに検出される。これらのシグナル強度を用い、以下の式からコモノマー量を算出した。
tBA総量(mol%)=I(tBA)×100/〔I(tBA)+I(iBA)+I(E)〕
iBA総量(mol%)=I(iBA)×100/〔I(tBA)+I(iBA)+I(E)〕
ここで、I(tBA)、I(iBA)、I(E)はそれぞれ、以下の式で示される量である。
I(tBA)=I79.6〜78.8
I(iBA)=(I70.5〜69.8+I19.5〜18.9)/3
I(E)=(I180.0〜135.0+I120.0〜5.0−I(iBA)×7−I(tBA)×7)/2
<E / tBA / iBA>
The quaternary carbon signal of the t-butyl acrylate group of tBA is 79.6 to 78.8 ppm in the 13 C-NMR spectrum, the methylene signal of the isobutoxy group of iBA is 70.5 to 69.8 ppm, and the methyl signal of the isobutoxy group is. It is detected at 19.5 to 18.9 ppm. Using these signal intensities, the amount of comonomer was calculated from the following formula.
Total tBA (mol%) = I (tBA) x 100 / [I (tBA) + I (iBA) + I (E)]
Total iBA (mol%) = I (iBA) x 100 / [I (tBA) + I (iBA) + I (E)]
Here, I (tBA), I (iBA), and I (E) are quantities represented by the following formulas, respectively.
I (tBA) = I 79.6-78.8
I (iBA) = (I 70.5-69.8 + I 19.5-18.9 ) / 3
I (E) = (I 180.0 to 135.0 + I 120.0 to 5.0- I (iBA) x 7-I (tBA) x 7) / 2

<E/tBA/NB>
tBAのt−ブチルアクリレート基の四級炭素シグナルは、13C−NMRスペクトルの79.6〜78.8ppm、NBのメチン炭素シグナルは41.9〜41.1ppmに検出される。これらのシグナル強度を用い、以下の式からコモノマー量を算出した。
tBA総量(mol%)=I(tBA)×100/〔I(tBA)+I(NB)+I(E)〕
NB総量(mol%)=I(NB)×100/〔I(tBA)+I(NB)+I(E)〕
ここで、I(tBA)、I(NB)、I(E)はそれぞれ、以下の式で示される量である。
I(tBA)=I79.6〜78.8
I(NB)=(I41.9〜41.1)/2
I(E)=(I180.0〜135.0+I120.0〜5.0−I(NB)×7−I(tBA)×7)/2
<E / tBA / NB>
The quaternary carbon signal of the t-butyl acrylate group of tBA is detected at 79.6 to 78.8 ppm in the 13 C-NMR spectrum, and the methine carbon signal of NB is detected at 41.9 to 41.1 ppm. Using these signal intensities, the amount of comonomer was calculated from the following formula.
Total tBA (mol%) = I (tBA) x 100 / [I (tBA) + I (NB) + I (E)]
Total amount of NB (mol%) = I (NB) x 100 / [I (tBA) + I (NB) + I (E)]
Here, I (tBA), I (NB), and I (E) are quantities represented by the following formulas, respectively.
I (tBA) = I 79.6-78.8
I (NB) = (I 41.9-41.1 ) / 2
I (E) = (I 180.0 to 135.0 + I 120.0 to 5.0- I (NB) x 7-I (tBA) x 7) / 2

なお、各モノマーの構造単位量が不等号を含む「<0.1」で示されている場合、共重合体中の構成単位として存在しているが有効数字を考慮して0.1mol%未満の量であることを意味する。 When the structural unit amount of each monomer is indicated by "<0.1" including the inequality sign, it exists as a structural unit in the copolymer, but it is less than 0.1 mol% in consideration of significant figures. It means that it is a quantity.

3)炭素1,000個当たりの分岐数の算出
共重合体には、主鎖に分岐が単独で存在する孤立型と、複合型(主鎖を介して分岐と分岐が対面した対面タイプ、分岐鎖中に分岐のあるbranched−branchタイプ、及び連鎖タイプ)が存在する。
以下は、エチル分岐の構造の例である。なお、対面タイプの例において、Rはアルキル基を表す。
3) Calculation of the number of branches per 1,000 carbons There are two types of copolymers: isolated type, in which a single branch exists in the main chain, and composite type (face-to-face type, in which branches face each other via the main chain, and branches. There are branched-branch types and chain types with branches in the chain.
The following is an example of the structure of the ethyl branch. In the face-to-face type example, R represents an alkyl group.

炭素1,000個当たりの分岐数は、以下の式のI(分岐)項に、下記のI(B1)、I(B2)、I(B4)のいずれかを代入し求める。B1はメチル分岐、B2はエチル分岐、B4はブチル分岐を表す。メチル分岐数はI(B1)を用い、エチル分岐数はI(B2)を用い、ブチル分岐数はI(B4)を用いて求める。
分岐数(個/炭素1,000個当たり)=I(分岐)×1000/I(total)
ここで、I(total)、I(B1)、I(B2)、I(B4)は以下の式で示される量である。
I(total)=I180.0〜135.0 +I120.0〜5.0
I(B1)=(I20.0〜19.8+I33.2〜33.1+I37.5〜37.3)/4
I(B2)=I8.6〜7.6 +I11.8〜10.5
I(B4)=I14.3〜13.7 −I32.2〜32.0
ここで、Iは積分強度を、Iの下つき添字の数値は化学シフトの範囲を示す。例えばI180.0〜135.0は180.0ppmと135.0ppmの間に検出した13Cシグナルの積分強度を示す。
帰属は、非特許文献Macromolecules 1984, 17, 1756-1761、Macromolecules 1979,12,41を参考にした。
なお、各分岐数が不等号を含む「<0.1」で示されている場合、共重合体中の構成単位として存在しているが有効数字を考慮して0.1mol%未満の量であることを意味する。また、not detectedは検出限界未満を意味する。
The number of branches per 1,000 carbons is obtained by substituting any of the following I (B1), I (B2), and I (B4) into the I (branch) term of the following equation. B1 represents a methyl branch, B2 represents an ethyl branch, and B4 represents a butyl branch. The number of methyl branches is determined by using I (B1), the number of ethyl branches is determined by using I (B2), and the number of butyl branches is determined by using I (B4).
Number of branches (per 1,000 carbons) = I (branches) x 1000 / I (total)
Here, I (total), I (B1), I (B2), and I (B4) are quantities represented by the following equations.
I (total) = I 180.0 to 135.0 + I 120.0 to 5.0
I (B1) = (I 20.0 to 19.8 + I 33.2 to 33.1 + I 37.5 to 37.3 ) / 4
I (B2) = I 8.6 to 7.6 + I 11.8 to 10.5
I (B4) = I 14.3 to 13.7 -I 32.2 to 32.0
Here, I indicates the integrated intensity, and the numerical value of the subscript of I indicates the range of the chemical shift. For example, I 180.0 to 135.0 indicate the integrated intensity of the 13 C signal detected between 180.0 ppm and 135.0 ppm.
Attribution was based on the non-patent documents Macromolecules 1984, 17, 1756-1761 and Macromolecules 1979, 12, 41.
When the number of branches is indicated by "<0.1" including the inequality sign, it exists as a constituent unit in the copolymer, but the amount is less than 0.1 mol% in consideration of significant figures. Means that. Further, not detected means less than the detection limit.

(6)赤外吸収スペクトル
試料を180℃にて3分間溶融し、圧縮成形して、厚さ50μm程度のフィルムを作製する。このフィルムをフーリエ変換赤外分光分析により分析して、赤外吸収スペクトルを得た。
製品名:FT/IR−6100 日本分光株式会社製
測定手法:透過法
検出器:TGS(Triglycine sulfate)
積算回数:16〜512回
分解能:4.0cm−1
測定波長:5000〜500cm−1
(6) Infrared absorption spectrum The sample is melted at 180 ° C. for 3 minutes and compression molded to prepare a film having a thickness of about 50 μm. This film was analyzed by Fourier transform infrared spectroscopy to obtain an infrared absorption spectrum.
Product name: FT / IR-6100 Made by JASCO Corporation Measurement method: Transmission method Detector: TGS (Triglycine sulfate)
Number of integrations: 16 to 512 times Resolution: 4.0 cm -1
Measurement wavelength: 5000-500 cm -1

(7)摩耗量の測定
1)摩耗試験サンプルの作製方法
試料を、寸法:150mm×150mm、厚さ1mmの加熱プレス用モールドに入れ、表面温度180℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで試料を溶融すると共に試料中の残留気体を脱気し、更に4.9MPaで加圧し、3分間保持した。その後、4.9MPaの圧力をかけた状態で、10℃/分の速度で徐々に冷却し、温度が室温付近まで低下したところでモールドから成形板を取り出した。得られた成形板を温度23±2℃、湿度50±5℃の環境下で48時間以上、状態調節した。状態調節後のプレス板を直径約115mmの円形に切り抜き、中心に直径約6.5mmの穴をあけ、摩耗試験サンプルとした。
(7) Measurement of wear amount 1) Preparation method of wear test sample The sample is placed in a heating press mold having dimensions: 150 mm × 150 mm and a thickness of 1 mm, and after preheating in a heat press machine having a surface temperature of 180 ° C. for 5 minutes, The sample was melted by repeating pressurization and depressurization, the residual gas in the sample was degassed, and the pressure was further increased at 4.9 MPa, and the sample was held for 3 minutes. Then, with a pressure of 4.9 MPa applied, the mixture was gradually cooled at a rate of 10 ° C./min, and when the temperature dropped to around room temperature, the molded plate was taken out from the mold. The state of the obtained molded plate was adjusted for 48 hours or more in an environment of a temperature of 23 ± 2 ° C. and a humidity of 50 ± 5 ° C. The pressed plate after adjusting the state was cut out into a circle with a diameter of about 115 mm, and a hole with a diameter of about 6.5 mm was made in the center to prepare a wear test sample.

2)摩耗試験条件
上記試験片を用い、JIS K 7204−1999に準拠し下記条件で摩耗損失量(mg)を測定した。
・装置:テーバー摩耗試験機(ロータリーアブレーションテスタ)_(株)東洋精機製作所製
・摩耗輪:CS−17
・回転数:60回転/min
・試験回数:1000回転
・荷重:4.9N
2) Wear test conditions Using the above test piece, the amount of wear loss (mg) was measured under the following conditions in accordance with JIS K 7204-1999.
・ Equipment: Taber wear tester (rotary ablation tester) _ manufactured by Toyo Seiki Seisakusho Co., Ltd. ・ Wear wheel: CS-17
・ Rotation speed: 60 rotations / min
・ Number of tests: 1000 rotations ・ Load: 4.9N

(8)反発弾性率の測定
1)反発弾性率測定試験サンプルの作製方法
試料を、寸法:100mm×70mm、厚さ3mmの加熱プレス用モールドに入れ、表面温度180℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで試料を溶融すると共に試料中の残留気体を脱気し、更に4.9MPaで加圧し、3分間保持した。その後、4.9MPaの圧力をかけた状態で、10℃/分の速度で徐々に冷却し、温度が室温付近まで低下したところでモールドから成形板を取り出した。取り出した成形板を適当な大きさに打抜き5枚重ねて、寸法:φ29mm(直径)、厚さ12.5mmの加熱プレス用モールドに入れ表面温度180℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで試料を溶融すると共に試料中の残留気体を脱気し、更に4.9MPaで加圧し、3分間保持した。その後、4.9MPaの圧力をかけた状態で、10℃/分の速度で徐々に冷却し、温度が室温付近まで低下したところでモールドから取り出すことで試験片を得た。得られた試験片を温度23±2℃、湿度50±5℃の環境下で48時間以上、状態調節し、反発弾性率測定試験サンプルとした。
(8) Measurement of repulsive elastic modulus 1) Method for preparing a repulsive elastic modulus measurement test sample A sample is placed in a mold for a heating press having a size of 100 mm × 70 mm and a thickness of 3 mm, and 5 After preheating for a minute, the sample was melted by repeating pressurization and depressurization, and the residual gas in the sample was degassed, further pressurized at 4.9 MPa, and held for 3 minutes. Then, with a pressure of 4.9 MPa applied, the mixture was gradually cooled at a rate of 10 ° C./min, and when the temperature dropped to around room temperature, the molded plate was taken out from the mold. Five molded plates taken out are punched to an appropriate size, stacked, placed in a heating press mold with dimensions: φ29 mm (diameter) and thickness of 12.5 mm, and preheated in a heat press machine with a surface temperature of 180 ° C for 5 minutes. The sample was melted by repeating pressurization and depressurization, the residual gas in the sample was degassed, and the pressure was further increased at 4.9 MPa, and the sample was held for 3 minutes. Then, under a pressure of 4.9 MPa, the test piece was gradually cooled at a rate of 10 ° C./min, and when the temperature dropped to around room temperature, the test piece was taken out from the mold to obtain a test piece. The obtained test piece was adjusted for 48 hours or more in an environment of a temperature of 23 ± 2 ° C. and a humidity of 50 ± 5 ° C. to prepare a rebound resilience measurement test sample.

2)反発弾性率測定試験条件
上記試験片を用い、JIS K 6255−2013に準拠し、リュプケ式反発弾性試験機(高分子計器(株)製)にて反発弾性率を測定した。
2) Repulsive elastic modulus measurement test conditions Using the above test piece, the repulsive elastic modulus was measured with a Lübke-type repulsive elasticity tester (manufactured by Polymer Instruments Co., Ltd.) in accordance with JIS K 6255-2013.

(9)硬度(デュロメータ硬さ)の測定
1)硬度測定試験サンプルの作製方法
試料を、寸法:100mm×70mm、厚さ3mmの加熱プレス用モールドに入れ、表面温度180℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで試料を溶融すると共に試料中の残留気体を脱気し、更に4.9MPaで加圧し、3分間保持した。その後、4.9MPaの圧力をかけた状態で、10℃/分の速度で徐々に冷却し、温度が室温付近まで低下したところでモールドから成形板を取り出した。取り出した成形板を適当な大きさに打抜き、温度23±2℃、湿度50±5℃の環境下で88時間以上、状態調節した後、2枚重ねたものを硬度測定試験サンプルとした。
(9) Measurement of hardness (durometer hardness) 1) Preparation method of hardness measurement test sample Place the sample in a mold for heating press with dimensions: 100 mm x 70 mm and thickness 3 mm, and in a heat press machine with a surface temperature of 180 ° C. After preheating for 5 minutes, the sample was melted by repeating pressurization and depressurization, the residual gas in the sample was degassed, further pressurized at 4.9 MPa, and held for 3 minutes. Then, with a pressure of 4.9 MPa applied, the mixture was gradually cooled at a rate of 10 ° C./min, and when the temperature dropped to around room temperature, the molded plate was taken out from the mold. The removed molded plate was punched to an appropriate size, and the condition was adjusted for 88 hours or more in an environment of a temperature of 23 ± 2 ° C. and a humidity of 50 ± 5 ° C.

2)硬度測定試験条件
上記試験片を用い、JIS K 7215−1986に準拠し、(株)テクロック製GS−710を用いて、タイプD圧子を用いデュロメータD硬さ(ショアD硬度とも呼ばれる)を測定した。
2) Hardness measurement test conditions Using the above test piece, according to JIS K 7215-1986, using GS-710 manufactured by Teclock Co., Ltd., using a type D indenter, durometer D hardness (also called shore D hardness). It was measured.

<金属錯体の合成>
(1)B−27DM/Ni錯体の合成
B−27DM/Ni錯体は、国際公開第2010/050256号に記載された合成例4に従い、下記の2−ビス(2,6−ジメトキシフェニル)ホスファノ−6−ペンタフルオロフェニルフェノール配位子(B−27DM)を使用した。国際公開第2010/050256号の実施例1に準じて、ビス(1,5−シクロオクタジエン)ニッケル(0)(Ni(COD)2と称する)を用いて、B−27DMとNi(COD)2とが1対1で反応したニッケル錯体(B−27DM/Ni)を合成した。
<Synthesis of metal complex>
(1) Synthesis of B-27DM / Ni complex The B-27DM / Ni complex has the following 2-bis (2,6-dimethoxyphenyl) phosphane according to Synthesis Example 4 described in International Publication No. 2010/050256. A 6-pentafluorophenylphenol ligand (B-27DM) was used. B-27DM and Ni (COD) using bis (1,5-cyclooctadiene) nickel (0) (referred to as Ni (COD) 2) according to Example 1 of International Publication No. 2010/050256. A nickel complex (B-27DM / Ni) in which 2 was reacted 1: 1 was synthesized.

(2)B−423/Ni錯体の合成
1)配位子B−423:2−ビス(2,6−ジメトキシフェニル)ホスファノ−6−(2,6−ジイソプロピルフェニル)フェノールの合成

以下のスキームに従って配位子B−423を合成した。
なお、以降の化学式中、−OMOMとはメトキシメトキシ基(−OCHOCH)を表す。
(2) Synthesis of B-423 / Ni complex 1) Synthesis of ligand B-423: 2-bis (2,6-dimethoxyphenyl) phosphano-6- (2,6-diisopropylphenyl) phenol

Ligand B-423 was synthesized according to the following scheme.
In the following chemical formulas, -OMOM represents a methoxymethoxy group (-OCH 2 OCH 3 ).

(i)化合物2の合成
特許文献WO2010/050256に従って合成した。
(I) Synthesis of Compound 2 The compound was synthesized according to Patent Document WO2010 / 050256.

(ii)化合物3の合成
化合物2(2.64g、10.0mmol)のTHF(5.0ml)溶液にiso−PrMgCl(2M、5.25ml)を0℃で加えた。反応混合物を25℃で1時間撹拌した後、PCl(618mg、4.50mmol)を−78℃で加えた。
反応混合物を25℃まで3時間かけて昇温し、黄色懸濁液を得た。溶媒を減圧留去し、黄色固体を得た。この混合物を精製することなく、次の反応に用いた。
(Ii) Synthesis of Compound 3 Iso-PrMgCl (2M, 5.25 ml) was added to a solution of Compound 2 (2.64 g, 10.0 mmol) in THF (5.0 ml) at 0 ° C. After stirring the reaction mixture at 25 ° C. for 1 hour, PCL 3 (618 mg, 4.50 mmol) was added at −78 ° C.
The reaction mixture was heated to 25 ° C. over 3 hours to give a yellow suspension. The solvent was distilled off under reduced pressure to obtain a yellow solid. This mixture was used in the next reaction without purification.

(iii)化合物5の合成
化合物4(30g、220mmol)のTHF(250ml)溶液にn−BuLi(2.5M、96ml)を0℃で加え、30℃で1時間撹拌した。この溶液にB(OPr)(123g、651mmol)を−78℃で加え、30℃で2時間撹拌して白色懸濁液を得た。
塩酸(1M)を加えてpH=6〜7に調整し、有機層を濃縮して混合物を得た。
得られた混合物を石油エーテル(80ml)で洗浄し、化合物5を26g得た。
(Iii) Synthesis of Compound 5 n-BuLi (2.5 M, 96 ml) was added to a solution of Compound 4 (30 g, 220 mmol) in THF (250 ml) at 0 ° C., and the mixture was stirred at 30 ° C. for 1 hour. The solution B (O i Pr) 3 ( 123g, 651mmol) was added at -78 ° C., to give a white suspension was stirred for 2 hours at 30 ° C..
Hydrochloric acid (1M) was added to adjust the pH to 6-7, and the organic layer was concentrated to give a mixture.
The resulting mixture was washed with petroleum ether (80 ml) to give 26 g of compound 5.

(iv)化合物7の合成
化合物5(5.00g、27.5mmol)、化合物6(4.42g、18.3mmol)、Pd(dba)(168mg、0.183mmol)、s−Phos(2−ジシロロヘキシルホスフィノ−2’,6’−ジメトキシビフェニル)(376mg、0.916mmol)、KPO(7.35g、34.6mmol)を反応容器に量りとり、トルエン(40ml)を加えた。この溶液を110℃で12時間反応させ、黒色懸濁液を得た。
O(50ml)を加え、EtOAc(55ml×3)で抽出した。
有機層を食塩水(20ml)で洗浄してNaSOで脱水した。
有機層を濾過して溶媒を減圧留去した後、シリカゲルカラムで精製することにより1.3gのオイル状物質を得た。
(Iv) Synthesis of Compound 7 Compound 5 (5.00 g, 27.5 mmol), Compound 6 (4.42 g, 18.3 mmol), Pd 2 (dba) 3 (168 mg, 0.183 mmol), s-Phos (2). - dicyanamide Lolo hexyl phosphino-2 ', 6'-dimethoxy biphenyl) (376mg, 0.916mmol), K 3 PO 4 (7.35g, 34.6mmol) and was weighed in a reaction vessel, adding toluene (40 ml) It was. The solution was reacted at 110 ° C. for 12 hours to give a black suspension.
H 2 O (50ml) was added, and extracted with EtOAc (55ml × 3).
The organic layer was washed with saline (20 ml) and dehydrated with Na 2 SO 4 .
The organic layer was filtered to distill off the solvent under reduced pressure, and then purified by a silica gel column to obtain 1.3 g of an oily substance.

(v)化合物8の合成
化合物7(6.5g、22mmol)のTHF(40ml)溶液にn−BuLi(2.5M、9.15ml)を0℃で滴下し、30℃に昇温して1時間撹拌した。この反応溶液を−78℃に冷却してCuCN(2.1g,23mmol)を加え、30℃で1時間撹拌した。
反応溶液を−78℃に冷却して化合物3(6.7g、20mmol)のTHF(40ml)溶液を加え、30℃で12時間撹拌して白色の懸濁液を得た。
懸濁液にHO(50ml)を加えると白色沈殿が生じた。
白色沈殿を濾過で回収してジクロロメタン(20ml)に溶解させ、アンモニア水(80ml)を加えて3時間撹拌した。
生成物をジクロロメタン(50ml×3)で抽出してNaSOで脱水した後、濃縮して黄色のオイル状物質を得た。このオイル状物質をシリカゲルカラムで精製し、化合物8を2.9g得た。
(V) Synthesis of Compound 8 n-BuLi (2.5 M, 9.15 ml) was added dropwise to a solution of Compound 7 (6.5 g, 22 mmol) in THF (40 ml) at 0 ° C., and the temperature was raised to 30 ° C. to 1 Stirred for hours. The reaction solution was cooled to −78 ° C., CuCN (2.1 g, 23 mmol) was added, and the mixture was stirred at 30 ° C. for 1 hour.
The reaction solution was cooled to −78 ° C., a solution of Compound 3 (6.7 g, 20 mmol) in THF (40 ml) was added, and the mixture was stirred at 30 ° C. for 12 hours to obtain a white suspension.
Addition of H 2 O (50 ml) to the suspension resulted in a white precipitate.
The white precipitate was collected by filtration, dissolved in dichloromethane (20 ml), aqueous ammonia (80 ml) was added, and the mixture was stirred for 3 hours.
The product was extracted with dichloromethane (50 ml x 3), dehydrated with Na 2 SO 4 , and then concentrated to give a yellow oily substance. This oily substance was purified on a silica gel column to obtain 2.9 g of Compound 8.

(vi)B−423の合成
化合物8(2.9g、4.8mmol)のジクロロメタン(20ml)溶液にHCl/EtOAc(4M、50ml)を0℃で加え、30℃で2時間撹拌して淡黄色溶液を得た。
溶媒を減圧留去した後、ジクロロメタン(50ml)を加えた。
飽和NaHCO水溶液(100ml)で洗浄し、B−423を2.5g得た。
得られた配位子B−423のNMR帰属値を以下に示す。
[NMR]
H NMR(CDCl、δ、ppm):7.49(t、1H)、7.33(t、1H)、7.22(m、4H)、6.93(d、1H)、6.81(t、1H)、6.49(dd、4H)、6.46(br、1H)、3.56(s、12H)、2.63(sept、2H)、1.05(d、6H)、1.04(d、6H);
31P NMR(CDCl、δ、ppm):−61.6(s).
(Vi) Synthesis of B-423 HCl / EtOAc (4M, 50 ml) was added to a solution of compound 8 (2.9 g, 4.8 mmol) in dichloromethane (20 ml) at 0 ° C. and stirred at 30 ° C. for 2 hours to give a pale yellow color. A solution was obtained.
After distilling off the solvent under reduced pressure, dichloromethane (50 ml) was added.
Washing with saturated aqueous NaHCO 3 solution (100 ml) gave 2.5 g of B-423.
The NMR attribution values of the obtained ligand B-423 are shown below.
[NMR]
1 1 H NMR (CDCl 3 , δ, ppm): 7.49 (t, 1H), 7.33 (t, 1H), 7.22 (m, 4H), 6.93 (d, 1H), 6. 81 (t, 1H), 6.49 (dd, 4H), 6.46 (br, 1H), 3.56 (s, 12H), 2.63 (sept, 2H), 1.05 (d, 6H) ), 1.04 (d, 6H);
31 P NMR (CDCl 3 , δ, ppm): -61.6 (s).

2)B−423/Ni錯体の合成
B−423/Ni錯体は、B−423配位子を使用し、国際公開第2010/050256号の実施例1に準じて、ビスアセチルアセトナトニッケル(II)(Ni(acac)2と称する)を用いて、B−423とNi(acac)2とが1対1で反応したニッケル錯体(B−423/Ni)を合成した。
2) Synthesis of B-423 / Ni complex The B-423 / Ni complex uses a B-423 ligand and is bisacetylacetonatonickel (II) according to Example 1 of International Publication No. 2010/050256. ) (Called Ni (acac) 2) was used to synthesize a nickel complex (B-423 / Ni) in which B-423 and Ni (acac) 2 reacted in a one-to-one relationship.

<(製造例1〜製造例4):アイオノマーベース樹脂前駆体の製造>
遷移金属錯体(B−27DM/Ni錯体又はB−423/Ni錯体)を用いて、エチレン/アクリル酸tBu共重合体、エチレン/アクリル酸tBu/アクリル酸エステル共重合体、及びエチレン/アクリル酸tBu/ノルボルネン共重合体を製造した。特開2016−79408号公報に記載された製造例1又は製造例3を参考に共重合体の製造を行い、金属触媒種、金属触媒量、トリオクチルアルミニウム(TNOA)量、トルエン量、コモノマー種、コモノマー量、エチレン分圧、重合温度、重合時間など、適宜変更した製造条件及び製造結果を表1、得られた共重合体の物性を表2に示す。
<(Production Examples 1 to 4): Production of ionomer-based resin precursor>
Ethylene / acrylic acid tBu copolymer, ethylene / acrylic acid tBu / acrylic acid ester copolymer, and ethylene / acrylic acid tBu using a transition metal complex (B-27DM / Ni complex or B-423 / Ni complex). / A norbornene copolymer was produced. A copolymer was produced with reference to Production Example 1 or Production Example 3 described in JP-A-2016-79408, and a metal catalyst species, a metal catalyst amount, a trioctyl aluminum (TNOA) amount, a toluene amount, and a comonomer type were produced. Table 1 shows the production conditions and production results that were appropriately changed, such as the amount of comonomer, ethylene partial pressure, polymerization temperature, and polymerization time, and Table 2 shows the physical properties of the obtained copolymer.

<(樹脂1〜樹脂4):アイオノマーベース樹脂の製造−1>
容量500mlセパラブルフラスコに、得られた製造例1〜製造例4の共重合体を40gとパラトルエンスルホン酸一水和物を0.8g、トルエンを185ml投入し、105℃で4時間撹拌した。イオン交換水185mlを投入し撹拌、静置した後、水層を抜き出した。以後、抜き出した水層のpHが5以上となるまで、イオン交換水の投入と抜き出しを繰り返し行った。残った溶液から溶媒を減圧留去し、恒量になるまで乾燥を行なった。
得られた樹脂のIRスペクトルにおいて、tBu基に由来する850cm−1付近のピークの消失及び、エステルのカルボニル基に由来する1730cm−1付近のピークの減少と、カルボン酸(二量体)のカルボニル基に由来する1700cm−1付近のピークの増加を観測した。
これにより、t-Buエステルの分解及びカルボン酸の生成を確認し、アイオノマーベース樹脂1〜樹脂4を得た。得られた樹脂の物性を表3に示す。
<(Resin 1 to Resin 4): Production of Ionomer Base Resin-1>
40 g of the obtained copolymers of Production Examples 1 to 4, 0.8 g of paratoluenesulfonic acid monohydrate, and 185 ml of toluene were placed in a separable flask having a capacity of 500 ml, and the mixture was stirred at 105 ° C. for 4 hours. .. After adding 185 ml of ion-exchanged water, stirring and allowing to stand, the aqueous layer was extracted. After that, the ion-exchanged water was repeatedly added and extracted until the pH of the extracted aqueous layer became 5 or more. The solvent was distilled off from the remaining solution under reduced pressure, and the mixture was dried until it became constant.
In the IR spectrum of the obtained resin, the peak near 850 cm -1 derived from the tBu group disappeared, the peak near 1730 cm -1 derived from the carbonyl group of the ester decreased, and the carbonyl of the carboxylic acid (dimer). An increase in the peak around 1700 cm -1 derived from the group was observed.
As a result, the decomposition of the t-Bu ester and the formation of the carboxylic acid were confirmed, and ionomer-based resins 1 to 4 were obtained. Table 3 shows the physical characteristics of the obtained resin.

<実施例1〜実施例15:アイオノマーの製造>
1)Naイオン供給源の作製
容量60mlの小型ミキサーを取り付けた東洋精機(株)製ラボプラストミル:ローラミキサR60型に、エチレン/メタクリル酸(MAA)共重合体(三井・ダウポリケミカル(株)製 銘柄:Nucrel N1050H)を22gと炭酸ナトリウムを18g投入し、180℃、40rpmで3分間混練することでNaイオン供給源を作製した。
<Examples 1 to 15: Production of ionomer>
1) Preparation of Na ion supply source Labplast mill manufactured by Toyo Seiki Co., Ltd. equipped with a small mixer with a capacity of 60 ml: Ethylene / methacrylic acid (MAA) copolymer (Mitsui / Dow Polychemical Co., Ltd.) A Na ion supply source was prepared by adding 22 g of Brand: Nucle N1050H) and 18 g of sodium carbonate and kneading at 180 ° C. and 40 rpm for 3 minutes.

2)Znイオン供給源の作製
容量60mlの小型ミキサーを取り付けた東洋精機(株)製ラボプラストミル:ローラミキサR60型に、エチレン/メタクリル酸(MAA)共重合体(三井・ダウポリケミカル(株)製 銘柄:Nucrel N1050H)を21.8gと酸化亜鉛を18gとステアリン酸亜鉛を0.2g投入し、180℃、40rpmで3分間混練することでZnイオン供給源を作製した。
2) Preparation of Zn ion supply source Labplast mill manufactured by Toyo Seiki Co., Ltd. equipped with a small mixer with a capacity of 60 ml: Ethylene / methacrylic acid (MAA) copolymer (Mitsui / Dow Polychemical Co., Ltd.) on roller mixer R60 type A Zn ion supply source was prepared by adding 21.8 g of (brand: Nucle N1050H), 18 g of zinc oxide and 0.2 g of zinc stearate, and kneading at 180 ° C. and 40 rpm for 3 minutes.

3):アイオノマーの作製
容量60mlの小型ミキサーを取り付けた東洋精機(株)製ラボプラストミル:ローラミキサR60型に、樹脂1〜樹脂3を40g投入し、160℃、40rpmで3分間混練し溶解させた。その後、Naイオン供給源又はZnイオン供給源を所望の中和度となるように投入し、250℃、40rpmで5分間混練を行った。
得られた樹脂のIRスペクトルにおいて、カルボン酸(二量体)のカルボニル基に由来する1700cm−1付近のピークが減少し、カルボン酸塩基のカルボニル基に由来する1560cm−1付近のピークが増加していた。カルボン酸(二量体)のカルボニル基に由来する1700cm−1付近のピークの減少量から所望の中和度のアイオノマーが作製できていることを確認した。得られたアイオノマーの物性を表4、表5に示す。
3): Preparation of ionomer Labplast mill manufactured by Toyo Seiki Co., Ltd. equipped with a small mixer with a capacity of 60 ml: 40 g of resin 1 to resin 3 was added to the roller mixer R60 type, and kneaded at 160 ° C. and 40 rpm for 3 minutes to dissolve. It was. Then, a Na ion supply source or a Zn ion supply source was added so as to have a desired degree of neutralization, and kneading was performed at 250 ° C. and 40 rpm for 5 minutes.
In the IR spectrum of the obtained resin, the peak near 1700 cm -1 derived from the carbonyl group of the carboxylic acid (dimer) decreased, and the peak near 1560 cm -1 derived from the carbonyl group of the carboxylic acid base increased. Was there. It was confirmed that an ionomer having a desired degree of neutralization could be produced from the amount of decrease in the peak around 1700 cm -1 derived from the carbonyl group of the carboxylic acid (dimer). The physical characteristics of the obtained ionomer are shown in Tables 4 and 5.

(比較例1):アイオノマーベース樹脂E/AA
アイオノマーベース樹脂である樹脂3を中和度0%アイオノマーとして用いた。物性を表6、表7に示す。
(Comparative Example 1): Ionomer-based resin E / AA
Resin 3, which is an ionomer-based resin, was used as an ionomer with a degree of neutralization of 0%. The physical characteristics are shown in Tables 6 and 7.

(比較例2):E/MAAベース二元アイオノマー
エチレンとメタクリル酸とメタクリル酸Naの共重合体であって、高圧ラジカル法プロセスによって製造されたアイオノマー樹脂(三井・ダウポリケミカル(株)製 銘柄:HIMILAN HIM1555)を参考アイオノマーとして用いた。物性を表6、表7に示す。
(Comparative Example 2): E / MAA-based binary ionomer A copolymer of ethylene, methacrylic acid, and Na methacrylate, which is an ionomer resin manufactured by a high-pressure radical process (a brand manufactured by Mitsui Dow Polychemical Co., Ltd.). : HIMILAN HIM1555) was used as a reference ionomer. The physical characteristics are shown in Tables 6 and 7.

(比較例3):E/MAAベース二元アイオノマー
エチレンとメタクリル酸とメタクリル酸Naの共重合体であって、高圧ラジカル法プロセスによって製造されたアイオノマー樹脂(三井・ダウポリケミカル(株)製 銘柄:HIMILAN HIM1605)を参考アイオノマーとして用いた。物性を表6、表7に示す。
(Comparative Example 3): E / MAA-based binary ionomer A copolymer of ethylene, methacrylic acid, and Na methacrylate, which is an ionomer resin manufactured by a high-pressure radical process (a brand manufactured by Mitsui Dow Polychemical Co., Ltd.). : HIMILAN HIMM1605) was used as a reference ionomer. The physical characteristics are shown in Tables 6 and 7.

(比較例4):E/MAAベース二元アイオノマー
エチレンとメタクリル酸とメタクリル酸Znの共重合体であって、高圧ラジカル法プロセスによって製造されたアイオノマー樹脂(三井・ダウポリケミカル(株)製 銘柄:HIMILAN HIM1652)を参考アイオノマーとして用いた。物性を表6、表7に示す。
(Comparative Example 4): E / MAA-based binary ionomer A copolymer of ethylene, methacrylic acid, and Zn methacrylate, which is an ionomer resin manufactured by a high-pressure radical process (a brand manufactured by Mitsui Dow Polychemical Co., Ltd.). : HIMILAN HIM1652) was used as a reference ionomer. The physical characteristics are shown in Tables 6 and 7.

<実施例と比較例の結果の考察>
[本発明のアイオノマーと従来のアイオノマーの比較]
表4、5における実施例1、6、9は、特定の遷移金属触媒により製造されたベース樹脂と金属イオン源とからなるアイオノマーであるため、その分子構造は実質的に直鎖状であり、位相角δ(G=0.1MPa)は50°以上である。一方、表6、7における比較例2〜4は従来アイオノマーであり、高圧ラジカル法により製造されたベース樹脂と金属イオン源とからなるアイオノマーであるため、その分子構造は多くの長鎖分岐を有し、複素弾性率の絶対値G=0.1MPaにおける位相角δ(位相角δ(G=0.1MPa))は50°未満である。
実施例1と比較例3、実施例6と比較例2、実施例9と比較例4は、それぞれ、構造単位(B)の含有量と金属種、中和度はともに同程度であるため直接比較・評価ができるため、以下に比較を説明する。
実施例1、実施例6、実施例9の本願アイオノマーと比較例3、比較例2、比較例4の従来アイオノマーは反発弾性率と硬度は同程度であるが、実施例1、実施例6、実施例9のほうが比較例3、比較例2、比較例4よりも摩耗量が格段に少ない。そのため、実施例1、実施例6、実施例9の本願アイオノマーは比較例3、比較例2、比較例4の従来アイオノマーよりも耐摩耗性に優れる。
このことは、位相角δ(G=0.1MPa)が50°以上である本発明の直鎖状アイオノマーでは、従来の多分岐状アイオノマーよりも相対的に耐摩耗性、反発弾性、及び硬度のバランスに優れることを示している。
<Discussion of the results of Examples and Comparative Examples>
[Comparison between the ionomer of the present invention and the conventional ionomer]
Since Examples 1, 6 and 9 in Tables 4 and 5 are ionomers composed of a base resin produced by a specific transition metal catalyst and a metal ion source, their molecular structures are substantially linear. The phase angle δ (G * = 0.1 MPa) is 50 ° or more. On the other hand, Comparative Examples 2 to 4 in Tables 6 and 7 are conventional ionomers, which are ionomers composed of a base resin produced by a high-pressure radical method and a metal ion source, and therefore their molecular structure has many long-chain branches. However, the phase angle δ (phase angle δ (G * = 0.1 MPa)) at the absolute value G * = 0.1 MPa of the complex elastic modulus is less than 50 °.
In Example 1 and Comparative Example 3, Example 6 and Comparative Example 2, and Example 9 and Comparative Example 4, the content of the structural unit (B), the metal species, and the degree of neutralization are all about the same, so that they are direct. Since comparison and evaluation are possible, the comparison will be described below.
Although the ionomers of the present application of Example 1, Example 6, and Example 9 and the conventional ionomers of Comparative Example 3, Comparative Example 2, and Comparative Example 4 have similar impact modulus and hardness, Example 1, Example 6, and Example 6 The amount of wear in Example 9 is much smaller than that in Comparative Example 3, Comparative Example 2, and Comparative Example 4. Therefore, the ionomers of the present application of Examples 1, 6 and 9 are superior in wear resistance to the conventional ionomers of Comparative Example 3, Comparative Example 2 and Comparative Example 4.
This means that the linear ionomer of the present invention having a phase angle δ (G * = 0.1 MPa) of 50 ° or more has relatively higher wear resistance, impact resilience, and hardness than the conventional multi-branched ionomer. It shows that the balance is excellent.

さらに、上記で比較したもの以外の実施例についても、図3に示すとおり反発弾性率と摩耗量との関係において、本願アイオノマーではいずれも比較例よりも良好な性能バランスを示すことがわかる。 Further, as shown in FIG. 3, it can be seen that all of the examples other than those compared above also show a better performance balance than the comparative examples in the relationship between the impact elastic modulus and the amount of wear.

[本発明におけるアイオノマーの金属イオン種、中和度について]
表6における比較例1は実施例5〜12のベース樹脂であり、アイオノマーにおける中和度0%に相当する。中和度が0%よりも高い実施例5〜12は、中和度が0%の比較例1よりも摩耗量が格段に少ない。このことは本願のアイオノマーならば中和度が0%よりも高ければ、金属種に関わらず優れた耐摩耗性を有することを示している。
[Regarding the metal ion species and neutralization degree of ionomer in the present invention]
Comparative Example 1 in Table 6 is the base resin of Examples 5 to 12, and corresponds to the neutralization degree of 0% in the ionomer. Examples 5 to 12 having a neutralization degree higher than 0% have a much smaller amount of wear than Comparative Example 1 having a neutralization degree of 0%. This indicates that the ionomer of the present application has excellent wear resistance regardless of the metal type if the degree of neutralization is higher than 0%.

[本発明におけるアイオノマーの組成、中和度、金属イオン種について]
実施例1〜実施例15は、それぞれベース樹脂の組成、中和度、金属イオン種が異なるアイオノマーであるが、どれも比較例の従来アイオノマーと比べ、反発弾性率、硬度は同等で摩耗量は格段に少ない。
このことは、本発明のアイオノマーならばベース樹脂の組成、中和度、金属イオン種によらず、相対的に耐摩耗性、反発弾性、及び硬度のバランスに優れることを示している。
[Regarding the composition, neutralization degree, and metal ion species of ionomers in the present invention]
Examples 1 to 15 are ionomers having different base resin compositions, neutralization degrees, and metal ion species, but all have the same elastic modulus and hardness as the conventional ionomers of the comparative examples, and the amount of wear is the same. Much less.
This indicates that the ionomer of the present invention has a relatively excellent balance of wear resistance, impact resilience, and hardness regardless of the composition, neutralization degree, and metal ion species of the base resin.

本願のアイオノマーが従来のアイオノマーよりも耐摩耗性が優れる理由は、おそらく分子構造の違いが大きく影響しているものと考えられる。本願のアイオノマーは図2に示すように実質的に直鎖状の分子構造を有しており、従来のアイオノマーは図1に示すように多くの長鎖分岐を有する多分岐状の分子構造を有している。直鎖状の分子構造に比べ多分岐状の分子構造の場合、分子中に多数の分子鎖末端を有することになる。摩耗試験は凹凸のある摩耗輪により表面を変形させ破壊する試験であるが、変形を加えられた際に破壊のきっかけとなるのが分子鎖末端であるため、この分子鎖末端の数が少ない直鎖状構造の方が分子鎖末端を多く有する多分岐状構造よりも耐摩耗性に優れると考えられる。 The reason why the ionomers of the present application are superior in wear resistance to the conventional ionomers is probably due to the difference in molecular structure. The ionomer of the present application has a substantially linear molecular structure as shown in FIG. 2, and the conventional ionomer has a multi-branched molecular structure having many long-chain branches as shown in FIG. doing. In the case of a multi-branched molecular structure as compared with a linear molecular structure, the molecule has a large number of molecular chain ends. The wear test is a test in which the surface is deformed and destroyed by an uneven wear ring, but since it is the molecular chain end that triggers the destruction when deformation is applied, the number of molecular chain ends is small. It is considered that the chain structure is superior in abrasion resistance to the multi-branched structure having many molecular chain ends.

本開示のアイオノマーを用いたゴルフボール用樹脂は、従来のアイオノマーと比較して、耐摩耗性が格段に優れ、かつ耐摩耗性(摩耗量)、反発弾性(反発弾性率)及び、硬度(デュロメータ硬度D)のバランスに優れる。そのため、ゴルフボールに有用であり、例えば、繰り返しクラブとの衝突に曝され耐久性が求められる練習用ゴルフボールなどに有用に用いることができる。 The resin for golf balls using the ionomer of the present disclosure has significantly superior wear resistance as compared with the conventional ionomer, and has wear resistance (wear amount), repulsive elasticity (repulsive elastic modulus), and hardness (durometer). Excellent balance of hardness D). Therefore, it is useful for golf balls, and can be usefully used, for example, for practice golf balls that are repeatedly exposed to collisions with clubs and are required to have durability.

Claims (9)

エチレン及び/又は炭素数3〜20のα−オレフィンに由来する構造単位(A)と、
カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位(B)を必須構成単位として含む共重合体(P)中の、カルボキシル基及び/又はジカルボン酸無水物基の少なくとも一部が周期表1族、2族、又は12族から選ばれる少なくとも1種の金属イオンを含有する金属含有カルボン酸塩に変換されてなり、回転式レオメータで測定した複素弾性率の絶対値G=0.1MPaにおける位相角δが、50度〜75度である
アイオノマーを含む、ゴルフボール用樹脂。
A structural unit (A) derived from ethylene and / or an α-olefin having 3 to 20 carbon atoms, and
At least a part of the carboxyl group and / or the dicarboxylic acid anhydride group in the copolymer (P) containing the structural unit (B) derived from the monomer having a carboxyl group and / or the dicarboxylic acid anhydride group as an essential structural unit. Is converted into a metal-containing carboxylic acid salt containing at least one metal ion selected from Group 1, Group 2, or Group 12 of the Periodic Table, and the absolute value of the complex elastic acid G * = measured by a rotary leometer. A resin for a golf ball containing an ionomer having a phase angle δ at 0.1 MPa of 50 to 75 degrees.
前記共重合体(P)の13C−NMRにより算出されるメチル分岐数が、炭素1,000個当たり50個以下であることを特徴とする、請求項1に記載のゴルフボール用樹脂。 The resin for a golf ball according to claim 1, wherein the number of methyl branches calculated by 13 C-NMR of the copolymer (P) is 50 or less per 1,000 carbons. 前記共重合体(P)の13C−NMRにより算出されるメチル分岐数が、炭素1,000個当たり5個以下であることを特徴とする、請求項1に記載のゴルフボール用樹脂。 The resin for a golf ball according to claim 1, wherein the number of methyl branches calculated by 13 C-NMR of the copolymer (P) is 5 or less per 1,000 carbons. 前記共重合体(P)が、共重合体中に前記構造単位(B)を2〜20mol%含むことを特徴とする、請求項1〜3のいずれか1項に記載のゴルフボール用樹脂。 The resin for a golf ball according to any one of claims 1 to 3, wherein the copolymer (P) contains the structural unit (B) in an amount of 2 to 20 mol% in the copolymer. 前記構造単位(A)が、エチレンに由来する構造単位であることを特徴とする、請求項1〜4のいずれか1項に記載のゴルフボール用樹脂。 The resin for a golf ball according to any one of claims 1 to 4, wherein the structural unit (A) is a structural unit derived from ethylene. 前記共重合体(P)が周期表第8〜11族の遷移金属を含む遷移金属触媒を用いて製造されることを特徴とする、請求項1〜5のいずれか1項に記載のゴルフボール用樹脂。 The golf ball according to any one of claims 1 to 5, wherein the copolymer (P) is produced using a transition metal catalyst containing a transition metal of groups 8 to 11 of the periodic table. Resin for. 前記遷移金属触媒がリンスルホン酸又はリンフェノール配位子とニッケル又はパラジウムからなる遷移金属触媒であることを特徴とする、請求項6に記載のゴルフボール用樹脂。 The resin for golf balls according to claim 6, wherein the transition metal catalyst is a transition metal catalyst composed of a phosphorus sulfonic acid or a phosphorus phenol ligand and nickel or palladium. 請求項1〜請求項7に記載のゴルフボール用樹脂を含むことを特徴とする、ゴルフボール用樹脂組成物。 A resin composition for a golf ball, which comprises the resin for a golf ball according to any one of claims 1 to 7. 請求項1〜請求項8に記載のゴルフボール用樹脂又はゴルフボール用樹脂組成物を含むことを特徴とする、ゴルフボール。 A golf ball comprising the resin for golf balls or the resin composition for golf balls according to claims 1 to 8.
JP2020112734A 2019-07-01 2020-06-30 Resin for golf ball Pending JP2021007744A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019122924 2019-07-01
JP2019122924 2019-07-01

Publications (1)

Publication Number Publication Date
JP2021007744A true JP2021007744A (en) 2021-01-28

Family

ID=74199127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020112734A Pending JP2021007744A (en) 2019-07-01 2020-06-30 Resin for golf ball

Country Status (1)

Country Link
JP (1) JP2021007744A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182498A1 (en) * 2022-03-24 2023-09-28 日本ポリエチレン株式会社 Ionomer containing metal of group 2 of periodic table

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182498A1 (en) * 2022-03-24 2023-09-28 日本ポリエチレン株式会社 Ionomer containing metal of group 2 of periodic table

Similar Documents

Publication Publication Date Title
JP7175741B2 (en) Multicomponent Polar Group-Containing Olefin Copolymer
WO2020262482A1 (en) Resin for film-shaped molded body, and molded article comprising said resin
JP7392515B2 (en) multidimensional ionomer
JP2021007744A (en) Resin for golf ball
WO2020262481A1 (en) Resin composition for injection molding or compression molding
JP2021008613A (en) Ethylene-based ionomer for gasket and molding thereof
JP2021008615A (en) Resin for dicing tape base material, resin composition containing the same, dicing tape base material, and dicing tape
WO2020204063A1 (en) Polyamide resin composition comprising specific ionomer
WO2020158688A1 (en) Polar-group-containing olefin copolymer
JP7484495B2 (en) Ethylene-based ionomer for three-dimensional network structure and molded body thereof
JP2021008612A (en) Resin for glass laminate
JP2021001332A (en) Ethylene ionomer for soft sheet and molding thereof
JP6418807B2 (en) Compatibilizer, modifier and resin composition for thermoplastic resin
JP2021001331A (en) Ethylenic ionomer and hollow molding container of the same
JP2021008614A (en) Ethylene ionomer for tubes and molding thereof
WO2023182498A1 (en) Ionomer containing metal of group 2 of periodic table
JP2021001333A (en) Resin composition for film and ethylenic film using the same
WO2020262369A1 (en) Polymer composition for lamination and layered body using same
JP2023018968A (en) Antistatic resin composition
JP2022150804A (en) Resin composition for laminates, laminate and liquid wrapper
CN114008131B (en) Polymer composition for lamination and laminate using same
CN117480228A (en) Hot melt adhesive comprising functionalized polyolefin

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210727

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240423