JP2021002457A - Solid electrolyte battery - Google Patents

Solid electrolyte battery Download PDF

Info

Publication number
JP2021002457A
JP2021002457A JP2019115094A JP2019115094A JP2021002457A JP 2021002457 A JP2021002457 A JP 2021002457A JP 2019115094 A JP2019115094 A JP 2019115094A JP 2019115094 A JP2019115094 A JP 2019115094A JP 2021002457 A JP2021002457 A JP 2021002457A
Authority
JP
Japan
Prior art keywords
power generation
solid electrolyte
generation element
electrode material
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019115094A
Other languages
Japanese (ja)
Other versions
JP7256702B2 (en
Inventor
智仁 関谷
Tomohito Sekiya
智仁 関谷
拓海 大塚
Takumi Otsuka
拓海 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Holdings Ltd filed Critical Maxell Holdings Ltd
Priority to JP2019115094A priority Critical patent/JP7256702B2/en
Publication of JP2021002457A publication Critical patent/JP2021002457A/en
Application granted granted Critical
Publication of JP7256702B2 publication Critical patent/JP7256702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a flat battery capable of maintaining excellent conductivity even when a plurality of power generation elements are connected in series.SOLUTION: A solid electrolyte battery comprises: an outer can 2; an end-sealing can 3 facing the outer can 2; a plurality of power generation elements 4, 5 housed between the outer can 2 and the end-sealing can 3; and one or a plurality of graphite sheets 6 housed between the outer can 2 and the end-sealing can 3. The plurality of power generation elements 4, 5 are connected in series and include positive electrode materials 41, 51, negative electrode materials 42, 52, and solid electrolytes 43, 53 disposed between the positive electrode materials 41, 51 and the negative electrode materials 42, 52, respectively. The one or the plurality of graphite sheets 6 have conductivity and oxidation resistance and are disposed between the plurality of power generation elements 4, 5.SELECTED DRAWING: Figure 1

Description

本開示は、電池内部で複数の発電要素を直列に接続した固体電解質電池に関する。 The present disclosure relates to a solid electrolyte battery in which a plurality of power generation elements are connected in series inside the battery.

従来、電池内部で複数の発電要素を直列に接続した固体電解質電池が提供されている。複数の発電要素を積層した積層型の固体電解質電池は、複数の発電要素が直列に接続されているため、電圧や容量等を向上させることができる。また、積層型の固体電解質電池は、2つの電池を単に直列に接続した場合に比べ、電池全体のサイズを小型化することができる。 Conventionally, a solid electrolyte battery in which a plurality of power generation elements are connected in series inside the battery has been provided. In a laminated solid electrolyte battery in which a plurality of power generation elements are laminated, since the plurality of power generation elements are connected in series, the voltage, capacity, and the like can be improved. Further, the laminated solid electrolyte battery can reduce the size of the entire battery as compared with the case where two batteries are simply connected in series.

特公平1−22709号公報(特許文献1)は、複数の発電要素の間に、合成ゴムに炭素繊維を分散させた導電性の可撓性カーボンフィルムを配置した固体電解質2次電池を開示している。 Japanese Patent Application Laid-Open No. 1-22709 (Patent Document 1) discloses a solid electrolyte secondary battery in which a conductive flexible carbon film in which carbon fibers are dispersed in synthetic rubber is arranged between a plurality of power generation elements. ing.

特公平1−22709号公報Special Fair 1-22709 Gazette

しかしながら、積層型の固体電解質電池は、複数の発電要素を直列に接続するにあたり、隣り合う発電要素のうち一方の発電要素の負極材と他方の発電要素の正極材とを接触させると、充電することができなくなる。具体的には、例えば固体電解質電池としてリチウムイオン二次電池を充電する場合、通常、リチウムイオンが正極材から負極材に移動することによって充電される。しかし、一方の発電要素の負極材と他方の発電要素の正極材とが接触していると、一方の発電要素で正極材から負極材に移動したリチウムイオンが一方の発電要素の負極材に留まらず、そのまま他方の発電要素の正極材に移動して放電してしまう。 However, the laminated solid electrolyte battery charges when a plurality of power generation elements are connected in series and the negative electrode material of one power generation element and the positive electrode material of the other power generation element of the adjacent power generation elements are brought into contact with each other. You will not be able to. Specifically, for example, when a lithium ion secondary battery is charged as a solid electrolyte battery, the lithium ion is usually charged by moving from the positive electrode material to the negative electrode material. However, when the negative electrode material of one power generation element and the positive electrode material of the other power generation element are in contact with each other, the lithium ions transferred from the positive electrode material to the negative electrode material in one power generation element stay in the negative electrode material of one power generation element. Instead, it moves to the positive electrode material of the other power generation element as it is and discharges.

特許文献1の可撓性カーボンフィルムは、合成ゴムに炭素繊維を分散させて形成されているため、導電性を有する。また、可撓性カーボンフィルムは、上述のように一方の発電要素の負極材と他方の発電要素の正極材とを接触させる場合に比べて、他方の発電要素へのリチウムイオンの移動を抑制できる。しかしながら、可撓性カーボンフィルムは、合成ゴムが絶縁体であるために導電性が悪く、また、合成ゴムが酸化によって腐食しやすいためさらに導電性が経年劣化するという問題があった。 Since the flexible carbon film of Patent Document 1 is formed by dispersing carbon fibers in synthetic rubber, it has conductivity. Further, the flexible carbon film can suppress the movement of lithium ions to the other power generation element as compared with the case where the negative electrode material of one power generation element and the positive electrode material of the other power generation element are brought into contact with each other as described above. .. However, the flexible carbon film has a problem that the conductivity is poor because the synthetic rubber is an insulator, and the conductivity is further deteriorated over time because the synthetic rubber is easily corroded by oxidation.

そこで、本開示は、複数の発電要素を直列に接続させても、優れた導電性を維持することができる固体電解質電池を提供することを課題とする。 Therefore, an object of the present disclosure is to provide a solid electrolyte battery capable of maintaining excellent conductivity even when a plurality of power generation elements are connected in series.

上記課題を解決するために、本開示は次のように構成した。すなわち、本開示に係る固体電解質電池は、外装缶と、外装缶に対向する封口缶と、外装缶と封口缶との間に収容され、直列に接続され、各々が正極材と負極材と正極材と負極材との間に配置された固体電解質とを含む複数の発電要素と、複数の発電要素の間に配置された1又は複数の黒鉛シートとを備えてよい。 In order to solve the above problems, the present disclosure is structured as follows. That is, the solid electrolyte battery according to the present disclosure is housed between the outer can, the sealing can facing the outer can, and the outer can and the sealing can, and is connected in series, and each of them is a positive electrode material, a negative electrode material, and a positive electrode. A plurality of power generation elements including a solid electrolyte disposed between the material and the negative electrode material, and one or a plurality of graphite sheets arranged between the plurality of power generation elements may be provided.

また、好ましくは、固体電解質電池は、さらに、外装缶と外装缶に隣接する発電要素との間に配置された第1炭素シートと、封口缶と封口缶に隣接する発電要素との間に配置された第2炭素シートとを備えてよい。 Further, preferably, the solid electrolyte battery is further arranged between the first carbon sheet arranged between the outer can and the power generation element adjacent to the outer can, and between the sealing can and the power generation element adjacent to the sealing can. It may be provided with the second carbon sheet.

本開示に係る固体電解質電池によれば、複数の発電要素を直列に接続させても、優れた導電性を維持することができる。 According to the solid electrolyte battery according to the present disclosure, excellent conductivity can be maintained even when a plurality of power generation elements are connected in series.

図1は、実施形態1に係る固体電解質電池の構造を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing the structure of the solid electrolyte battery according to the first embodiment. 図2は、実施形態2に係る固体電解質電池の構造を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing the structure of the solid electrolyte battery according to the second embodiment. 図3は、実施形態3に係る固体電解質電池の構造を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing the structure of the solid electrolyte battery according to the third embodiment.

(実施形態1)
以下、本開示の実施形態1について、図1を用いて具体的に説明する。まず、図1に示すように、固体電解質電池1は、基本的には、外装缶2と、封口缶3と、外装缶2側の発電要素4と、封口缶3側の発電要素5と、発電要素4と発電要素5との間に配置された黒鉛シート6とから構成されている。複数の発電要素は、発電要素4と発電要素5とによって構成されている。なお、本実施形態では、固体電解質電池1は、扁平形電池である。
(Embodiment 1)
Hereinafter, the first embodiment of the present disclosure will be specifically described with reference to FIG. First, as shown in FIG. 1, the solid electrolyte battery 1 basically includes an outer can 2, a sealing can 3, a power generation element 4 on the outer can 2 side, and a power generation element 5 on the sealing can 3 side. It is composed of a graphite sheet 6 arranged between the power generation element 4 and the power generation element 5. The plurality of power generation elements are composed of a power generation element 4 and a power generation element 5. In the present embodiment, the solid electrolyte battery 1 is a flat battery.

外装缶2は、円形状の底部21と、底部21の外周から連続して形成される円筒状の筒状側壁部22とを備える。筒状側壁部22は、縦断面視で、底部21に対して略垂直に延びるように設けられている。外装缶2は、ステンレスなどの金属材料によって形成されている。 The outer can 2 includes a circular bottom portion 21 and a cylindrical tubular side wall portion 22 formed continuously from the outer periphery of the bottom portion 21. The tubular side wall portion 22 is provided so as to extend substantially perpendicular to the bottom portion 21 in a vertical cross-sectional view. The outer can 2 is made of a metal material such as stainless steel.

封口缶3は、円形状の平面部31と、平面部31の外周から連続して形成される円筒状の周壁部32とを備える。封口缶3の開口は、外装缶2の開口と対向している。封口缶は、ステンレスなどの金属材料によって形成されている。 The sealing can 3 includes a circular flat surface portion 31 and a cylindrical peripheral wall portion 32 formed continuously from the outer periphery of the flat surface portion 31. The opening of the sealing can 3 faces the opening of the outer can 2. The sealing can is made of a metal material such as stainless steel.

外装缶2と封口缶3とは、発電要素4と発電要素5と黒鉛シート6とを内部空間に収容したのち、外装缶2の筒状側壁部22と封口缶3の周壁部32との間にガスケット7を介してカシメられる。具体的には、外装缶2と封口缶3とは、外装缶2と封口缶3の互いの開口を対向させ、外装缶2の筒状側壁部22の内側に封口缶3の周壁部32を挿入したのち、筒状側壁部22と周壁部32との間にガスケット7を介してカシメられる。これにより、外装缶2と封口缶3によって形成された内部空間は、密閉状態となる。なお、外装缶2、封口缶3及びガスケット7の構成は、周知の扁平形電池と同様であり、その素材、形状等は特に限定されるものではない。 The outer can 2 and the sealing can 3 are located between the tubular side wall portion 22 of the outer can 2 and the peripheral wall portion 32 of the sealing can 3 after the power generation element 4, the power generation element 5, and the graphite sheet 6 are housed in the internal space. Is crimped via the gasket 7. Specifically, the outer can 2 and the sealing can 3 have the openings of the outer can 2 and the sealing can 3 facing each other, and the peripheral wall portion 32 of the sealing can 3 is provided inside the tubular side wall portion 22 of the outer can 2. After being inserted, it is crimped between the tubular side wall portion 22 and the peripheral wall portion 32 via the gasket 7. As a result, the internal space formed by the outer can 2 and the sealing can 3 is sealed. The configuration of the outer can 2, the sealing can 3, and the gasket 7 is the same as that of a well-known flat battery, and the material, shape, and the like thereof are not particularly limited.

発電要素4は、正極材41と負極材42と固体電解質43とを含んでいる。固体電解質43は、正極材41と負極材42の間に配置されている。発電要素4は、外装缶2の底部21側(図示の下方)から正極材41、固体電解質43、負極材42の順で積層されている。発電要素4は、円柱形状に形成されている。発電要素4は、外装缶2の底部22の内面に配置されている。発電要素4は、外装缶2の底部21と隣接している。発電要素4の下面は、外装缶2の底部21の内面と対向している。よって、外装缶2は、正極缶として機能する。なお、発電要素4、円柱形状に限られず、直方体形状や多角柱形状等、固体電解質電池1の形状に応じて、種々変更することができる。 The power generation element 4 includes a positive electrode material 41, a negative electrode material 42, and a solid electrolyte 43. The solid electrolyte 43 is arranged between the positive electrode material 41 and the negative electrode material 42. The power generation element 4 is laminated in the order of the positive electrode material 41, the solid electrolyte 43, and the negative electrode material 42 from the bottom 21 side (lower part in the drawing) of the outer can 2. The power generation element 4 is formed in a cylindrical shape. The power generation element 4 is arranged on the inner surface of the bottom 22 of the outer can 2. The power generation element 4 is adjacent to the bottom 21 of the outer can 2. The lower surface of the power generation element 4 faces the inner surface of the bottom 21 of the outer can 2. Therefore, the outer can 2 functions as a positive electrode can. The power generation element 4 is not limited to the cylindrical shape, and various changes can be made according to the shape of the solid electrolyte battery 1, such as a rectangular parallelepiped shape and a polygonal prism shape.

発電要素5は、正極材51と負極材52と固体電解質53とを含んでいる。固体電解質53は、正極材51と負極材52の間に配置されている。発電要素5は、外装缶2の底部21側(図示の下方)から正極材51、固体電解質53、負極材52の順で積層されている。発電要素5は、円柱形状に形成されている。発電要素5は、後述する黒鉛シート6を介して発電要素4の上方に配置されている。また、発電要素5は、封口缶3の平面部31と隣接している。発電要素5の上面は、封口缶3の平面部31の内面と対向している。よって、封口缶3は、負極缶として機能する。なお、発電要素5は、円柱形状に限られず、直方体形状や多角柱形状等、固体電解質電池1の形状に応じて、種々変更することができる。 The power generation element 5 includes a positive electrode material 51, a negative electrode material 52, and a solid electrolyte 53. The solid electrolyte 53 is arranged between the positive electrode material 51 and the negative electrode material 52. The power generation element 5 is laminated in the order of the positive electrode material 51, the solid electrolyte 53, and the negative electrode material 52 from the bottom 21 side (lower part in the drawing) of the outer can 2. The power generation element 5 is formed in a cylindrical shape. The power generation element 5 is arranged above the power generation element 4 via a graphite sheet 6 described later. Further, the power generation element 5 is adjacent to the flat surface portion 31 of the sealing can 3. The upper surface of the power generation element 5 faces the inner surface of the flat surface portion 31 of the sealing can 3. Therefore, the sealing can 3 functions as a negative electrode can. The power generation element 5 is not limited to the cylindrical shape, and can be variously changed according to the shape of the solid electrolyte battery 1, such as a rectangular parallelepiped shape or a polygonal prism shape.

正極材41、51は、リチウムイオン二次電池に用いられる正極活物質として、平均粒径3μmのLiNi0.6Co0.2Mn0.2と、硫化物固体電解質(LiPSCl)と、導電助剤であるカーボンナノチューブとを質量比で55:40:5の割合で含有した180mgの正極合剤を直径10mmの金型に入れて円柱形状に成形した正極ペレットである。なお、正極材41、51は、発電要素4、5の正極材として機能することができれば、特に限定されるものではなく、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リチウムニッケルコバルトマンガン複合酸化物、オリビン型複合酸化物等であってもよく、これらを適宜混合したものであってもよい。また、正極材41、51のサイズや形状は、円柱形状に限定されるものではなく、固体電解質電池1のサイズや形状に応じて種々変更可能である。 The positive electrode materials 41 and 51 are LiNi 0.6 Co 0.2 Mn 0.2 O 2 having an average particle size of 3 μm and a sulfide solid electrolyte (Li 6 PS 5) as positive electrode active materials used in a lithium ion secondary battery. It is a positive electrode pellet formed into a cylindrical shape by putting 180 mg of a positive electrode mixture containing Cl) and carbon nanotube as a conductive auxiliary agent in a mass ratio of 55:40: 5 into a mold having a diameter of 10 mm. The positive electrode materials 41 and 51 are not particularly limited as long as they can function as the positive electrode materials of the power generation elements 4 and 5, and are not particularly limited. For example, lithium cobalt oxide, lithium nickel oxide, lithium manganate, and lithium nickel cobalt manganese. It may be a composite oxide, an olivine type composite oxide, or the like, or a mixture thereof as appropriate. Further, the sizes and shapes of the positive electrode materials 41 and 51 are not limited to the cylindrical shape, and can be variously changed according to the size and shape of the solid electrolyte battery 1.

負極材42、52は、リチウムイオン二次電池に用いられる負極活物質として、LTO(LiTi12、チタン酸リチウム)と、硫化物固体電解質(LiPSCl)と、カーボンナノチューブとを重量比で50:45:5の割合で含有した300mgの負極合剤を円柱形状に成形した負極ペレットである。なお、負極材42、52は、発電要素4、5の負極材として機能することができれば、特に限定されるものではなく、例えば、金属リチウム、リチウム合金、黒鉛、低結晶カーボンなどの炭素材料や、SiO、LTO(LiTi12、チタン酸リチウム)等であってもよく、これらを適宜混合したものであってもよい。また、負極材42、52のサイズや形状は、円柱形状に限定されるものではなく、固体電解質電池1のサイズや形状に応じて種々変更可能である。 The negative electrode materials 42 and 52 contain LTO (Li 4 Ti 5 O 12 , lithium titanate), a sulfide solid electrolyte (Li 6 PS 5 Cl), and carbon nanotubes as negative electrode active materials used in a lithium ion secondary battery. This is a negative electrode pellet obtained by molding a 300 mg negative electrode mixture containing the above in a weight ratio of 50:45: 5 into a cylindrical shape. The negative electrode materials 42 and 52 are not particularly limited as long as they can function as the negative electrode materials of the power generation elements 4 and 5. For example, carbon materials such as metallic lithium, lithium alloy, graphite, and low crystal carbon can be used. , SiO, LTO (Li 4 Ti 5 O 12 , lithium titanate) and the like, and these may be appropriately mixed. Further, the sizes and shapes of the negative electrode materials 42 and 52 are not limited to the cylindrical shape, and can be variously changed according to the size and shape of the solid electrolyte battery 1.

固体電解質43、53は、60mgの硫化物固体電解質(LiPSCl)を円柱形状に成形したものである。なお、固体電解質43、53は、特に限定はされないが、イオン伝導性の点から他のアルジロダイト型などの硫黄系固体電解質であってもよい。硫黄系固体電解質を用いる場合には、正極活物質との反応を防ぐために、正極活物質の表面をニオブ酸化物で被覆することが好ましい。また、固体電解質43、53は、水素化物系固体電解質や酸化物系固体電解質等であってもよい。また、固体電解質43、53のサイズや形状は、円柱形状に限定されるものではなく、固体電解質電池1のサイズや形状に応じて種々変更可能である。 The solid electrolytes 43 and 53 are formed by molding 60 mg of a sulfide solid electrolyte (Li 6 PS 5 Cl) into a cylindrical shape. The solid electrolytes 43 and 53 are not particularly limited, but may be other sulfur-based solid electrolytes such as algyrodite type from the viewpoint of ionic conductivity. When a sulfur-based solid electrolyte is used, it is preferable to coat the surface of the positive electrode active material with niobium oxide in order to prevent the reaction with the positive electrode active material. Further, the solid electrolytes 43 and 53 may be hydride-based solid electrolytes, oxide-based solid electrolytes, or the like. Further, the sizes and shapes of the solid electrolytes 43 and 53 are not limited to the cylindrical shape, and can be variously changed according to the size and shape of the solid electrolyte battery 1.

このように、発電要素4と発電要素5は、外装缶と封口缶3とによって形成された内部空間に、発電要素4と発電要素5との間に黒鉛シート6が配置された状態で、直列に接続されている。これにより、1つの発電要素が内部空間に収容されている場合に比べて、固定電解質電池1の電圧や容量等を向上させることができる In this way, the power generation element 4 and the power generation element 5 are in series with the graphite sheet 6 arranged between the power generation element 4 and the power generation element 5 in the internal space formed by the outer can and the sealing can 3. It is connected to the. As a result, the voltage, capacity, etc. of the fixed electrolyte battery 1 can be improved as compared with the case where one power generation element is housed in the internal space.

黒鉛シート6は、発電要素4と発電要素5との間に配置されている。黒鉛シート6は、膨張黒鉛を圧延して形成されている。黒鉛シート6の平面視形状は、固体電解質電池1の内部空間の平面視形状と略相似形状に形成されており、短絡防止のため封口缶3とは電気的に接触していない。そのため、黒鉛シート6は、平面視略円形状に形成されている。黒鉛シート6の下面(発電要素4側の面)は、発電要素4の負極材42の上面に接している。また、黒鉛シート6の上面(発電要素5側の面)は、発電要素5の正極材51の下面に接している。黒鉛シート6の下面の面積は、発電要素4の負極材42の上面の面積と同じであってもよく、或いは、発電要素4の負極材42の上面の面積より広くてもよい。また、黒鉛シートの上面の面積は、発電要素5の正極材51の下面の面積と同じであってもよく、或いは、発電要素5の正極材51の下面の面積より広くてもよい。すなわち、黒鉛シート6の下面は、負極材42の上面を覆っていればよい。また、黒鉛シート6の上面は、正極材51の下面を覆っていればよい。なお、黒鉛シート6は、平面視略円形状に限られず、楕円形状、平面視略多角形状等、固体電解質電池1の平面視形状に応じて種々変更することができる。 The graphite sheet 6 is arranged between the power generation element 4 and the power generation element 5. The graphite sheet 6 is formed by rolling expanded graphite. The plan-view shape of the graphite sheet 6 is formed in a shape substantially similar to the plan-view shape of the internal space of the solid electrolyte battery 1, and is not in electrical contact with the sealing can 3 to prevent a short circuit. Therefore, the graphite sheet 6 is formed in a substantially circular shape in a plan view. The lower surface of the graphite sheet 6 (the surface on the power generation element 4 side) is in contact with the upper surface of the negative electrode material 42 of the power generation element 4. Further, the upper surface of the graphite sheet 6 (the surface on the power generation element 5 side) is in contact with the lower surface of the positive electrode material 51 of the power generation element 5. The area of the lower surface of the graphite sheet 6 may be the same as the area of the upper surface of the negative electrode material 42 of the power generation element 4, or may be larger than the area of the upper surface of the negative electrode material 42 of the power generation element 4. Further, the area of the upper surface of the graphite sheet may be the same as the area of the lower surface of the positive electrode material 51 of the power generation element 5, or may be larger than the area of the lower surface of the positive electrode material 51 of the power generation element 5. That is, the lower surface of the graphite sheet 6 may cover the upper surface of the negative electrode material 42. Further, the upper surface of the graphite sheet 6 may cover the lower surface of the positive electrode material 51. The graphite sheet 6 is not limited to a substantially circular shape in a plan view, and can be variously changed according to the plan view shape of the solid electrolyte battery 1, such as an elliptical shape and a substantially polygonal shape in a plan view.

黒鉛シート6は、より具体的には、以下のように製造される。まず、天然黒鉛に酸処理を施した酸処理黒鉛の粒子を加熱する。そうすると、酸処理黒鉛は、その粒子間にある酸が気化して発泡することによって膨張する。この膨張化した黒鉛(膨張黒鉛)をフェルト状に成型し、さらに、ロール圧延機を用いて圧延することによりシート体を形成する。黒鉛シート6は、この膨張黒鉛のシート体を円形状にくり抜くことにより製造される。上述の通り、膨張黒鉛は、酸が気化して酸処理黒鉛が発泡することによって形成される。そのため、黒鉛シート6は、多孔質シートに形成されている。したがって、黒鉛シート6は、黒鉛自体がもつ導電性及び耐酸化性とともに、緩衝性をも有する。なお、黒鉛シート6の製造方法はこれに限られず、どのような方法で黒鉛シート6を製造してもよい。 More specifically, the graphite sheet 6 is manufactured as follows. First, the particles of acid-treated graphite obtained by subjecting natural graphite to acid treatment are heated. Then, the acid-treated graphite expands by vaporizing and foaming the acid between the particles. The expanded graphite (expanded graphite) is molded into a felt shape and further rolled using a roll rolling machine to form a sheet body. The graphite sheet 6 is manufactured by hollowing out the expanded graphite sheet body into a circular shape. As described above, expanded graphite is formed by vaporizing the acid and foaming the acid-treated graphite. Therefore, the graphite sheet 6 is formed into a porous sheet. Therefore, the graphite sheet 6 has cushioning properties as well as the conductivity and oxidation resistance of graphite itself. The method for producing the graphite sheet 6 is not limited to this, and the graphite sheet 6 may be produced by any method.

黒鉛シート6は、発電要素4、5の導電性や緩衝性等の観点から、厚みの下限が10μm、好ましくは50μm、より好ましくは80μmとするのがよく、体積エネルギー密度の観点から、厚みの上限が200μm、好ましくは170μm、より好ましくは、140μmするのがよい。 The lower limit of the thickness of the graphite sheet 6 is preferably 10 μm, preferably 50 μm, more preferably 80 μm from the viewpoint of conductivity and cushioning of the power generation elements 4 and 5, and the thickness of the graphite sheet 6 is preferably from the viewpoint of volumetric energy density. The upper limit is preferably 200 μm, preferably 170 μm, and more preferably 140 μm.

また、黒鉛シート6は、電子を通すが、リチウムイオンを通さない。したがって、固体電解質電池1を充電する際、発電要素5の正極材41から負極材42に移動するリチウムイオンを負極材42に留めることができる。そのため、黒鉛シート6は、リチウムイオンが発電要素5の正極材51に移動して放電することを防止することができる。 Further, the graphite sheet 6 allows electrons to pass through, but does not allow lithium ions to pass through. Therefore, when charging the solid electrolyte battery 1, lithium ions moving from the positive electrode material 41 of the power generation element 5 to the negative electrode material 42 can be retained in the negative electrode material 42. Therefore, the graphite sheet 6 can prevent lithium ions from moving to the positive electrode material 51 of the power generation element 5 and discharging.

黒鉛シート6は、上述の通り黒鉛を材料としているため、優れた導電性及び耐酸化性を有する。そのため、固体電解質電池1は、黒鉛シート6の酸化による腐食を抑制でき、導電性が経年劣化せず、優れた導電性を維持することができる。さらに、黒鉛シート6は、上述の通り、緩衝性を有する。そのため、発電要素4、5の充電及び放電による膨張及び収縮を吸収でき、発電要素4、5の損傷や隙間の形成による発電効率の低下を抑制することができる。 Since the graphite sheet 6 is made of graphite as described above, it has excellent conductivity and oxidation resistance. Therefore, the solid electrolyte battery 1 can suppress corrosion due to oxidation of the graphite sheet 6, the conductivity does not deteriorate over time, and excellent conductivity can be maintained. Further, the graphite sheet 6 has a cushioning property as described above. Therefore, expansion and contraction due to charging and discharging of the power generation elements 4 and 5 can be absorbed, and a decrease in power generation efficiency due to damage to the power generation elements 4 and 5 and formation of gaps can be suppressed.

かかる構成の固体電解質電池1によれば、発電要素4と発電要素5の間に、黒鉛シート6を配置したことにより、複数の発電要素を直列に接続させても、優れた導電性を維持することができる。 According to the solid electrolyte battery 1 having such a configuration, by arranging the graphite sheet 6 between the power generation element 4 and the power generation element 5, excellent conductivity is maintained even if a plurality of power generation elements are connected in series. be able to.

(実施形態2)
次に、実施形態2の固体電解質電池1について説明する。この固体電解質電池1は、基本的な構成は上述の固体電解質電池1と同様である、ただし、外装缶2の底部21と発電要素4との間に炭素シート8を備える点と、封口缶3の平面部31と発電要素5との間に炭素シート9を備える点で上述の固定電解質電池1と異なる。そのため、この異なる点についてのみ詳しく説明する。
(Embodiment 2)
Next, the solid electrolyte battery 1 of the second embodiment will be described. The solid electrolyte battery 1 has the same basic configuration as the solid electrolyte battery 1 described above, except that the carbon sheet 8 is provided between the bottom 21 of the outer can 2 and the power generation element 4, and the sealing can 3 is provided. It differs from the above-mentioned fixed electrolyte battery 1 in that a carbon sheet 9 is provided between the flat surface portion 31 and the power generation element 5. Therefore, only this difference will be described in detail.

炭素シート8は、外装缶2の底部21と、外装缶2の底部21に隣接する発電要素4との間に配置されている。炭素シート8の平面視形状は、固体電解質電池1の内部空間の平面視形状と略相似形状に形成されており、外装缶2の底部21の内面と接触している。すなわち、炭素シート8の周端は、封口缶3の周壁部32の内周に沿う。そのため、炭素シート8は、平面視略円形状に形成されている。なお、炭素シート8は、平面視略円形状に限られず、楕円形状、平面視略多角形状等、固体電解質電池1の平面視形状に応じて種々変更することができる。 The carbon sheet 8 is arranged between the bottom portion 21 of the outer can 2 and the power generation element 4 adjacent to the bottom portion 21 of the outer can 2. The plan view shape of the carbon sheet 8 is formed in a shape substantially similar to the plan view shape of the internal space of the solid electrolyte battery 1, and is in contact with the inner surface of the bottom portion 21 of the outer can 2. That is, the peripheral end of the carbon sheet 8 is along the inner circumference of the peripheral wall portion 32 of the sealing can 3. Therefore, the carbon sheet 8 is formed in a substantially circular shape in a plan view. The carbon sheet 8 is not limited to a substantially circular shape in a plan view, and can be variously changed according to the plan view shape of the solid electrolyte battery 1, such as an elliptical shape and a substantially polygonal shape in a plan view.

本例では、炭素シート8は、上述の黒鉛シート6と同じである。そのため、炭素シート8は、導電性とともに緩衝性を有する。 In this example, the carbon sheet 8 is the same as the graphite sheet 6 described above. Therefore, the carbon sheet 8 has both conductivity and cushioning property.

炭素シート9は、封口缶3の平面部31と、封口缶3の平面部31に隣接する発電要素5との間に配置されている。炭素シート9の平面視形状は、固体電解質電池1の内部空間の平面視形状と略相似形状に形成されており、封口缶3の平面部31の内面と接触している。すなわち、炭素シート9の周端は、封口缶3の周壁部32の内周に沿う。そのため、炭素シート9は、平面視略円形状に形成されている。なお、炭素シート9は、平面視略円形状に限られず、楕円形状、平面視略多角形状等、固体電解質電池1の平面視形状に応じて種々変更することができる。 The carbon sheet 9 is arranged between the flat surface portion 31 of the sealing can 3 and the power generation element 5 adjacent to the flat surface portion 31 of the sealing can 3. The plan view shape of the carbon sheet 9 is formed in a shape substantially similar to the plan view shape of the internal space of the solid electrolyte battery 1, and is in contact with the inner surface of the flat surface portion 31 of the sealing can 3. That is, the peripheral end of the carbon sheet 9 is along the inner circumference of the peripheral wall portion 32 of the sealing can 3. Therefore, the carbon sheet 9 is formed in a substantially circular shape in a plan view. The carbon sheet 9 is not limited to a substantially circular shape in a plan view, and can be variously changed according to the plan view shape of the solid electrolyte battery 1, such as an elliptical shape and a substantially polygonal shape in a plan view.

本例では、炭素シート9は、上述の黒鉛シート6と同じである。そのため、炭素シート9は、導電性とともに緩衝性を有する。 In this example, the carbon sheet 9 is the same as the graphite sheet 6 described above. Therefore, the carbon sheet 9 has both conductivity and cushioning property.

一般的に、外装缶2と封口缶3とをカシメる際、外装缶2と封口缶3とによって形成された内部空間に収容された発電要素4と発電要素5、特に発電要素4には、所定のカシメ圧力がかかる。その際、このカシメ圧力が過剰にかかると、発電要素4と発電要素5に欠けや割れなどの損傷が生じるおそれがある。 Generally, when the outer can 2 and the sealing can 3 are crimped, the power generation element 4 and the power generation element 5, particularly the power generation element 4, are contained in the internal space formed by the outer can 2 and the sealing can 3. A predetermined caulking pressure is applied. At that time, if this caulking pressure is excessively applied, damage such as chipping or cracking may occur in the power generation element 4 and the power generation element 5.

炭素シート8と炭素シート9は、上述の通り、緩衝性を有する。そのため、炭素シート8と炭素シート9は、上述の過剰なカシメ圧力を吸収することができ、発電要素4と発電要素5の損傷を抑制することができる。 As described above, the carbon sheet 8 and the carbon sheet 9 have a buffering property. Therefore, the carbon sheet 8 and the carbon sheet 9 can absorb the above-mentioned excessive caulking pressure, and can suppress damage to the power generation element 4 and the power generation element 5.

炭素シート8と炭素シート9は、導電性とともに緩衝性を有していれば特に限定されるものではなく、種々変更可能である。例えば、炭素シート8又は炭素シート9として、導電性発泡基材を用いてもよく、また、繊維状物で構成された導電性多孔質シートを用いてもよい。導電性発泡基材、または、繊維状物で構成された導電性多孔質シートは、具体的には、多孔質金属シート、銅またはアルミニウムなどの金属製発泡基材、銅繊維シート、カーボンフェルト、カーボンナノチューブ繊維の織布または不織布、カーボン多孔体などである。 The carbon sheet 8 and the carbon sheet 9 are not particularly limited as long as they have conductivity and cushioning property, and can be variously changed. For example, as the carbon sheet 8 or the carbon sheet 9, a conductive foamed base material may be used, or a conductive porous sheet made of a fibrous material may be used. Specific examples of the conductive foamed base material or the conductive porous sheet made of a fibrous material include a porous metal sheet, a metal foamed base material such as copper or aluminum, a copper fiber sheet, and carbon felt. A woven or non-woven fabric of carbon nanotube fibers, a porous carbon body, or the like.

(実施形態3)
上述の実施形態1と実施形態2では、複数の発電要素は、発電要素4と発電要素5の2つの発電要素を直列に接続しているが、3つ以上の発電要素を直列に接続してもよい。これにより、より高電圧・高容量の固体電解質電池1を提供することができる。図3は、複数の発電要素として、4つの発電要素11、12、13、14を直列に接続した固体電解質電池1を示す。図3に示すように、4つの発電要素11、12、13、14の間には、黒鉛シート6が配置される。また、上述の実施形態2において、3つ以上(図3では4つ)の発電要素11、12、13、14を直列に接続する場合、3つ以上の発電要素のうち、外装缶2の底部21と外装缶2の底部21に隣接する発電要素11との間に、炭素シート8が配置されている。また、3つ以上(図3では4つ)の発電要素11、12、13、14のうち、封口缶3の平面部31に隣接する発電要素14と封口缶3の平面部31との間に、炭素シート9が配置されている。なお、図3に示す発電要素11、12、13、14は、3つ以上の発電要素を直列に接続した固体電解質電池1を説明するために、便宜上、符号11、12、13、14を付したものである。よって、発電要素11、12、13、14の構成は、発電要素4と発電要素5と同じである。すなわち、発電要素11、12、13、14は、正極材と負極材と固体電解質とを含み、固体電解質が正極材と負極材の間に配置されている。また、発電要素11、12、13、14はそれぞれ、外装缶2の底部21側から正極材、固体電解質、負極材の順で積層されている。
(Embodiment 3)
In the first and second embodiments described above, the plurality of power generation elements connect the two power generation elements of the power generation element 4 and the power generation element 5 in series, but connect three or more power generation elements in series. May be good. This makes it possible to provide the solid electrolyte battery 1 having a higher voltage and a higher capacity. FIG. 3 shows a solid electrolyte battery 1 in which four power generation elements 11, 12, 13, and 14 are connected in series as a plurality of power generation elements. As shown in FIG. 3, a graphite sheet 6 is arranged between the four power generation elements 11, 12, 13, and 14. Further, in the above-described second embodiment, when three or more (four in FIG. 3) power generation elements 11, 12, 13, and 14 are connected in series, the bottom of the outer can 2 is among the three or more power generation elements. A carbon sheet 8 is arranged between the 21 and the power generation element 11 adjacent to the bottom 21 of the outer can 2. Further, among the three or more power generation elements 11, 12, 13, and 14, between the power generation element 14 adjacent to the flat surface portion 31 of the sealing can 3 and the flat surface portion 31 of the sealing can 3. , The carbon sheet 9 is arranged. The power generation elements 11, 12, 13, and 14 shown in FIG. 3 are designated by reference numerals 11, 12, 13, and 14 for convenience in order to explain the solid electrolyte battery 1 in which three or more power generation elements are connected in series. It was done. Therefore, the configurations of the power generation elements 11, 12, 13, and 14 are the same as those of the power generation element 4 and the power generation element 5. That is, the power generation elements 11, 12, 13, and 14 include a positive electrode material, a negative electrode material, and a solid electrolyte, and the solid electrolyte is arranged between the positive electrode material and the negative electrode material. Further, the power generation elements 11, 12, 13, and 14 are laminated in the order of the positive electrode material, the solid electrolyte, and the negative electrode material from the bottom 21 side of the outer can 2, respectively.

以上、実施形態について説明したが、本開示は、上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。 Although the embodiments have been described above, the present disclosure is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the embodiments.

1 固体電解質電池
2 外装缶、21 底部、22 筒状側壁部
3 封口缶、31 平面部、32 周壁部
4 発電要素、41 正極材、42 負極材、43 固体電解質
5 発電要素、51 正極材、52 負極材、53 固体電解質
6 黒鉛シート
7 ガスケット
8 炭素シート
9 炭素シート
1 Solid electrolyte battery 2 Exterior can, 21 Bottom, 22 Cylindrical side wall 3 Sealed can, 31 Flat surface, 32 Peripheral wall 4 Power generation element, 41 Positive electrode material, 42 Negative electrode material, 43 Solid electrolyte 5 Power generation element, 51 Positive electrode material, 52 Negative electrode material, 53 Solid electrolyte 6 Graphite sheet 7 Gasket 8 Carbon sheet 9 Carbon sheet

Claims (2)

外装缶と、
前記外装缶に対向する封口缶と、
前記外装缶と前記封口缶との間に収容され、直列に接続され、各々が正極材と負極材と前記正極材と前記負極材との間に配置された固体電解質とを含む複数の発電要素と、
前記複数の発電要素の間に配置された1又は複数の黒鉛シートとを備える、固体電解質電池。
With an outer can
The sealing can facing the outer can and
A plurality of power generation elements housed between the outer can and the sealing can, connected in series, each containing a positive electrode material, a negative electrode material, and a solid electrolyte disposed between the positive electrode material and the negative electrode material. When,
A solid electrolyte battery comprising one or a plurality of graphite sheets arranged between the plurality of power generation elements.
請求項1に記載の固体電解質電池であって、さらに、
前記外装缶と前記外装缶に隣接する発電要素との間に配置された第1炭素シートと、
前記封口缶と前記封口缶に隣接する発電要素との間に配置された第2炭素シートとを備える、固体電解質電池。
The solid electrolyte battery according to claim 1, further
A first carbon sheet arranged between the outer can and a power generation element adjacent to the outer can,
A solid electrolyte battery comprising a second carbon sheet arranged between the sealing can and a power generation element adjacent to the sealing can.
JP2019115094A 2019-06-21 2019-06-21 solid electrolyte battery Active JP7256702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019115094A JP7256702B2 (en) 2019-06-21 2019-06-21 solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019115094A JP7256702B2 (en) 2019-06-21 2019-06-21 solid electrolyte battery

Publications (2)

Publication Number Publication Date
JP2021002457A true JP2021002457A (en) 2021-01-07
JP7256702B2 JP7256702B2 (en) 2023-04-12

Family

ID=73995133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019115094A Active JP7256702B2 (en) 2019-06-21 2019-06-21 solid electrolyte battery

Country Status (1)

Country Link
JP (1) JP7256702B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102056A (en) * 1999-07-29 2001-04-13 Kyocera Corp Lithium cell
JP2017010627A (en) * 2015-06-17 2017-01-12 セイコーインスツル株式会社 Electrochemical cell
JP2017157447A (en) * 2016-03-02 2017-09-07 セイコーインスツル株式会社 Electrochemical cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102056A (en) * 1999-07-29 2001-04-13 Kyocera Corp Lithium cell
JP2017010627A (en) * 2015-06-17 2017-01-12 セイコーインスツル株式会社 Electrochemical cell
JP2017157447A (en) * 2016-03-02 2017-09-07 セイコーインスツル株式会社 Electrochemical cell

Also Published As

Publication number Publication date
JP7256702B2 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
JP3604879B2 (en) Battery manufacturing method
JP2006040879A (en) Lithium-ion secondary battery, case for lithium-ion secondary battery, and manufacturing method of lithium-ion secondary battery
WO2021033601A1 (en) All-solid-state battery
KR20110031883A (en) Rechargeable battery
CN113258033A (en) Nonaqueous electrolyte secondary battery and secondary battery module
JPH11144690A (en) Battery and manufacture thereof
JP2011216295A (en) Cylindrical nonaqueous electrolyte secondary battery
KR20010040849A (en) Prismatic electrochemical cell
US20230411802A1 (en) All-solid-state battery
JP2020061216A (en) Power storage device
KR100284343B1 (en) Flock of Electrode in secondary battery
JP7497970B2 (en) All-solid-state battery
CN113793972B (en) Battery and preparation method thereof
JP2021002457A (en) Solid electrolyte battery
WO2021065420A1 (en) Battery pack
JP6201449B2 (en) battery
JP2000357535A (en) Rectangular lithium secondary battery
US5955216A (en) Sealed alkaline storage battery
US20220200056A1 (en) Solid-state battery
JP7488008B2 (en) Alkaline storage battery
JP2008251199A (en) Electrode for alkaline storage battery, and alkaline storage battery
KR100591424B1 (en) Can-type Lithium-ion Secondary Battery
JP2005243274A (en) Nonaqueous rectangular secondary battery
CN115244774A (en) Battery pack
JP6269141B2 (en) Air battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230331

R150 Certificate of patent or registration of utility model

Ref document number: 7256702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150