JP2021001338A - Resin composition and resin film - Google Patents

Resin composition and resin film Download PDF

Info

Publication number
JP2021001338A
JP2021001338A JP2020140546A JP2020140546A JP2021001338A JP 2021001338 A JP2021001338 A JP 2021001338A JP 2020140546 A JP2020140546 A JP 2020140546A JP 2020140546 A JP2020140546 A JP 2020140546A JP 2021001338 A JP2021001338 A JP 2021001338A
Authority
JP
Japan
Prior art keywords
resin
resin composition
film
following formula
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020140546A
Other languages
Japanese (ja)
Other versions
JP7222955B2 (en
Inventor
揚一郎 市岡
Yoichiro ICHIOKA
揚一郎 市岡
直行 串原
Naoyuki Kushihara
直行 串原
和紀 近藤
Kazunori Kondo
和紀 近藤
隅田 和昌
Kazumasa Sumida
和昌 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2020140546A priority Critical patent/JP7222955B2/en
Publication of JP2021001338A publication Critical patent/JP2021001338A/en
Application granted granted Critical
Publication of JP7222955B2 publication Critical patent/JP7222955B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a resin composition with high strength, reduced warpage, and excellent adhesion, a high strength resin film obtained by making the composition into a film, a semiconductor laminate containing a cured material of the resin film and a method for manufacturing the same, as well as a semiconductor device obtained by separating the semiconductor laminate into individual pieces and a method for manufacturing the same.SOLUTION: A resin composition includes (A) a silicone modified epoxy resin, (B) a divinyl group and/or tetravinyl group-containing epoxy compound, (C) a bisphenol epoxy compound, (D) a phenolic curing agent, and (E) a curing accelerator, the silicone modified epoxy resin being represented by the following formula (4) and having a weight average molecular weight of 3,000-500,000.SELECTED DRAWING: None

Description

本発明は、樹脂組成物、樹脂フィルム、半導体積層体、半導体積層体の製造方法及び半導体装置の製造方法に関する。 The present invention relates to a resin composition, a resin film, a semiconductor laminate, a method for producing a semiconductor laminate, and a method for producing a semiconductor device.

近年、半導体業界ではスマートフォンなどのモバイル機器の小型化・低コスト化に対応するため、チップ基板となるシリコンウエハの薄型化や、製造効率向上を目的とした大型プラスチック基板への転換が検討されている。しかし、薄型基板や柔軟なプラスチック基板では反りの影響が顕著になるため、封止材にクラックが生じないよう、封止材の強度が重要となる。これまでに、封止材の強度向上のため、ビスフェノールA、ビフェニル等のフェノール化合物や、ノボラック樹脂、クレゾールノボラック樹脂等のフェノール樹脂等の硬化剤を用いて種々検討が進められてきたが、更なる高強度の封止材が求められている(特許文献1)。また、基板が柔軟になるため曲がりやすくなるが、歪曲時にはチップ端やチップ下部に大きな応力がかかり、封止材・チップ間、又は封止材・基板間での剥離が生じやすくなるため、封止材そのものの接着力を上げる必要や硬化収縮による反りを減らす必要が生じていた。 In recent years, in the semiconductor industry, in order to respond to the miniaturization and cost reduction of mobile devices such as smartphones, thinning of silicon wafers as chip substrates and conversion to large plastic substrates for the purpose of improving manufacturing efficiency have been considered. There is. However, since the effect of warpage becomes remarkable on a thin substrate or a flexible plastic substrate, the strength of the encapsulant is important so that the encapsulant does not crack. So far, various studies have been carried out using phenolic compounds such as bisphenol A and biphenyl and curing agents such as phenolic resins such as novolak resin and cresol novolak resin in order to improve the strength of the encapsulant. There is a demand for a high-strength sealing material (Patent Document 1). In addition, since the substrate becomes flexible, it is easy to bend, but when it is distorted, a large stress is applied to the end of the chip and the lower part of the chip, and peeling between the sealing material and the chip or between the sealing material and the substrate is likely to occur. There was a need to increase the adhesive strength of the stopper itself and to reduce warpage due to curing shrinkage.

また、製造効率を上げるため、プラスチック基板は角基板を用いることが多いが、これを封止する際、液状封止材では基板の内側と外側でムラが生じやすくなるため、これを容易に均一封止できるフィルムタイプが望まれていた。 In addition, in order to improve manufacturing efficiency, a square substrate is often used as the plastic substrate, but when sealing this, unevenness is likely to occur on the inside and outside of the substrate with the liquid encapsulant, so this can be easily made uniform. A film type that can be sealed has been desired.

そこで、歪曲時もクラックが入りづらいよう、高強度で、反りが小さく、かつ、反っても剥離の生じない高接着樹脂組成物、及びこれを用いた良好なウエハ保護性能を有するウエハモールド材の開発、及び、そのフィルム化が望まれていた。 Therefore, a high-adhesive resin composition having high strength, small warpage, and no peeling even when warped, and a wafer mold material having good wafer protection performance using the same, so that cracks are hard to occur even when distorted. Development and its film production have been desired.

特開2012−158730号公報Japanese Unexamined Patent Publication No. 2012-158730

本発明は、上記問題点に鑑みてなされたものであって、高強度であって、反りが小さく、接着力に優れる樹脂組成物、該組成物がフィルム化されたものである高強度樹脂フィルム、該樹脂フィルムの硬化物を有するものである半導体積層体及びその製造方法、並びに該半導体積層体が個片化されたものである半導体装置及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and is a resin composition having high strength, low warpage, and excellent adhesive strength, and a high-strength resin film obtained by forming the composition into a film. An object of the present invention is to provide a semiconductor laminate having a cured product of the resin film and a method for producing the same, and a semiconductor device in which the semiconductor laminate is individualized and a method for producing the same.

上記目的を達成するために、本発明では、
(A)エポキシ樹脂、
(B)下記式(1)及び/又は式(2)に記載のエポキシ化合物、
(C)下記式(3)で示されるエポキシ化合物、
(D)フェノール性硬化剤、及び
(E)硬化促進剤
を含むものであることを特徴とする樹脂組成物を提供する。

Figure 2021001338
Figure 2021001338
Figure 2021001338
(式中、Aは、単結合、又は下記式
Figure 2021001338
から選ばれる2価の有機基である。) In order to achieve the above object, in the present invention,
(A) Epoxy resin,
(B) The epoxy compound according to the following formula (1) and / or formula (2).
(C) The epoxy compound represented by the following formula (3),
Provided is a resin composition characterized by containing (D) a phenolic curing agent and (E) a curing accelerator.
Figure 2021001338
Figure 2021001338
Figure 2021001338
(In the formula, A is a single bond or the following formula
Figure 2021001338
It is a divalent organic group selected from. )

このような組成物であれば、その硬化物は高強度であって、反りが小さく、接着力に優れる。 With such a composition, the cured product has high strength, small warpage, and excellent adhesive strength.

また、前記(A)成分がシリコーン変性エポキシ樹脂であることが好ましい。 Further, it is preferable that the component (A) is a silicone-modified epoxy resin.

このように、(A)成分の一例としては、シリコーン変性エポキシ樹脂が挙げられる。 As described above, an example of the component (A) is a silicone-modified epoxy resin.

この場合、前記シリコーン変性エポキシ樹脂が、下記式(4)で表され、重量平均分子量が3,000〜500,000であることが好ましい。

Figure 2021001338
[式中、R〜Rは、それぞれ独立に、炭素数1〜20の1価炭化水素基又はアルコキシ基であり、互いに同一でも異なっていてもよい。また、a、b、c、d及びeは、各繰り返し単位の組成比を表し、0<a<1、0≦b<1、0≦c<1、0<d<1、0≦e<1、0.67≦(b+d)/(a+c+e)≦1.67、かつa+b+c+d+e=1を満たす正数である。gは、0〜300の整数である。Xは、下記式(5)で表される2価の有機基である。Yは、下記式(6)で表される2価のシロキサン骨格含有基である。Zは下記式(7)で表される2価の有機基である。]
Figure 2021001338
(式中、Eは、単結合、又は下記式
Figure 2021001338
から選ばれる2価の有機基である。R及びRは、炭素数1〜20の1価炭化水素基又はアルコキシ基であり、互いに同一でも異なっていてもよい。t及びuは、それぞれ独立に、0〜2の整数である。)
Figure 2021001338
(式中、vは、0〜300の整数である。)
Figure 2021001338
(式中、Gは、単結合、又は下記式
Figure 2021001338
から選ばれる2価の有機基である。R及びR10は、炭素数1〜20の1価炭化水素基又はアルコキシ基であり、互いに同一でも異なっていてもよい。w及びxは、それぞれ独立に、0〜2の整数である。) In this case, the silicone-modified epoxy resin is represented by the following formula (4), and the weight average molecular weight is preferably 3,000 to 500,000.
Figure 2021001338
[In the formula, R 1 to R 6 are independently monovalent hydrocarbon groups or alkoxy groups having 1 to 20 carbon atoms, and may be the same or different from each other. Further, a, b, c, d and e represent the composition ratio of each repeating unit, and 0 <a <1, 0 ≦ b <1, 0 ≦ c <1, 0 <d <1, 0 ≦ e <. It is a positive number that satisfies 1, 0.67 ≦ (b + d) / (a + c + e) ≦ 1.67 and a + b + c + d + e = 1. g is an integer from 0 to 300. X is a divalent organic group represented by the following formula (5). Y is a divalent siloxane skeleton-containing group represented by the following formula (6). Z is a divalent organic group represented by the following formula (7). ]
Figure 2021001338
(In the formula, E is a single bond or the following formula
Figure 2021001338
It is a divalent organic group selected from. R 7 and R 8 are monovalent hydrocarbon groups or alkoxy groups having 1 to 20 carbon atoms, and may be the same or different from each other. t and u are independently integers of 0 to 2. )
Figure 2021001338
(In the formula, v is an integer from 0 to 300.)
Figure 2021001338
(In the formula, G is a single bond or the following formula
Figure 2021001338
It is a divalent organic group selected from. R 9 and R 10 are monovalent hydrocarbon groups or alkoxy groups having 1 to 20 carbon atoms, and may be the same or different from each other. w and x are each independently an integer of 0 to 2. )

このような組成物であれば、耐薬品性、耐熱性、耐圧性がより優れる硬化物を与えることができる。 With such a composition, it is possible to provide a cured product having more excellent chemical resistance, heat resistance, and pressure resistance.

また、前記樹脂組成物の硬化後における引張強度が6.0MPa以上であることが好ましい。 Further, it is preferable that the tensile strength of the resin composition after curing is 6.0 MPa or more.

このような組成物であれば、良好な耐クラック性を示す。 Such a composition exhibits good crack resistance.

また、前記(B)成分が、前記(A)成分100質量部に対し、0.5〜100質量部含まれることが好ましい。 Further, it is preferable that the component (B) is contained in an amount of 0.5 to 100 parts by mass with respect to 100 parts by mass of the component (A).

このような組成物であれば、強度向上効果や接着力向上への効果が十分に得られ、耐薬品性、弾性率、線膨張係数に大きな悪影響を与えづらいため好ましい。 Such a composition is preferable because it can sufficiently obtain an effect of improving strength and an effect of improving adhesive strength, and is unlikely to have a large adverse effect on chemical resistance, elastic modulus, and coefficient of linear expansion.

更に、(F)無機充填剤を含むものであることが好ましい。 Further, it preferably contains (F) an inorganic filler.

このような組成物であれば、ウエハ保護性により優れ、更に、耐熱性、耐湿性、強度等により優れる。 Such a composition is excellent in wafer protection, and is also excellent in heat resistance, moisture resistance, strength and the like.

この場合、前記無機充填剤が、シリカであり、前記樹脂組成物中20〜96質量%含まれることが好ましい。 In this case, the inorganic filler is silica, which is preferably contained in an amount of 20 to 96% by mass in the resin composition.

このような組成物であれば、加工性が良好となり強度が向上するため好ましい。 Such a composition is preferable because it has good processability and strength.

更に本発明では、上記本発明の樹脂組成物がフィルム化されたものであることを特徴とする樹脂フィルムを提供する。 Further, the present invention provides a resin film characterized in that the resin composition of the present invention is made into a film.

このような樹脂フィルムは、強度や接着力が高いため、各種エラーの起きづらいウエハモールド材となる。 Since such a resin film has high strength and adhesive strength, it is a wafer molding material in which various errors are unlikely to occur.

また、前記樹脂フィルムの硬化後における引張強度が6.0MPa以上であることが好ましい。 Further, it is preferable that the tensile strength of the resin film after curing is 6.0 MPa or more.

このような樹脂フィルムであれば、良好な耐クラック性を示す。 Such a resin film exhibits good crack resistance.

更に本発明では、半導体ウエハ上に上記本発明の樹脂フィルムの硬化物を有するものであることを特徴とする半導体積層体を提供する。 Further, the present invention provides a semiconductor laminate characterized in that a cured product of the resin film of the present invention is provided on a semiconductor wafer.

このような半導体積層体であれば、樹脂フィルムの強度と接着力が高いため、樹脂フィルムにより半導体ウエハが十分に保護されたものとなる。 In such a semiconductor laminate, the strength and adhesive strength of the resin film are high, so that the semiconductor wafer is sufficiently protected by the resin film.

更に本発明では、上記本発明の半導体積層体が個片化されたものであることを特徴とする半導体装置を提供する。 Further, the present invention provides a semiconductor device characterized in that the semiconductor laminate of the present invention is individualized.

このような半導体装置であれば、高品質なものとなる。 Such a semiconductor device will be of high quality.

更に本発明では、上記本発明の樹脂フィルムを半導体ウエハに貼り付け、該半導体ウエハをモールドする工程と、前記樹脂フィルムを加熱硬化する工程とを有することを特徴とする半導体積層体の製造方法を提供する。 Further, the present invention relates to a method for producing a semiconductor laminate, which comprises a step of attaching the resin film of the present invention to a semiconductor wafer and molding the semiconductor wafer, and a step of heating and curing the resin film. provide.

このような半導体積層体の製造方法であれば、樹脂フィルムにより半導体ウエハが十分に保護された半導体積層体を製造することができる。 With such a method for manufacturing a semiconductor laminate, it is possible to manufacture a semiconductor laminate in which a semiconductor wafer is sufficiently protected by a resin film.

更に本発明では、上記本発明の半導体積層体の製造方法によって製造した半導体積層体を個片化する工程を有することを特徴とする半導体装置の製造方法を提供する。 Further, the present invention provides a method for manufacturing a semiconductor device, which comprises a step of individualizing the semiconductor laminate manufactured by the method for manufacturing a semiconductor laminate of the present invention.

このような半導体装置の製造方法であれば、高品質な半導体装置を製造することができる。 With such a method for manufacturing a semiconductor device, a high-quality semiconductor device can be manufactured.

本発明の樹脂組成物は、硬化物の強度を大幅に上げることができる。さらに密着性、低反り性、接着性、ウエハ保護性に優れ、ウエハを一括してモールドすることが可能となるため、ウエハレベルパッケージに好適に用いることができる樹脂フィルムとなる。これら発明を用いることで、歩留まりよく高品質な半導体装置を提供することができる。 The resin composition of the present invention can significantly increase the strength of the cured product. Further, it is excellent in adhesion, low warpage, adhesiveness, and wafer protection, and it is possible to mold wafers at once, so that it is a resin film that can be suitably used for wafer level packaging. By using these inventions, it is possible to provide a high-quality semiconductor device with a high yield.

以下、本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail.

上記のように、高強度であって、反りが小さく、接着力に優れる樹脂組成物、該組成物がフィルム化されたものである高強度樹脂フィルム、該樹脂フィルムの硬化物を有するものである半導体積層体及びその製造方法、並びに該半導体積層体が個片化されたものである半導体装置及びその製造方法が求められている。 As described above, it has a resin composition having high strength, small warpage, and excellent adhesive strength, a high-strength resin film obtained by forming the composition into a film, and a cured product of the resin film. There is a demand for a semiconductor laminate and a method for producing the same, and a semiconductor device in which the semiconductor laminate is individualized and a method for producing the same.

本発明者らは、上記目的を達成するために鋭意検討を行った。その結果、(A)エポキシ樹脂、(B)特定の構造のエポキシ化合物、(C)別の特定構造のエポキシ化合物、(D)フェノール性硬化剤、及び(E)硬化促進剤を組み合わせることで、硬化物の引張強度が大きく、接着力も高く、反りも小さい樹脂組成物を得られることを見出した。更に、この前記樹脂組成物をフィルム化することでより容易に取り扱えるウエハモールド材となることを見出し、本発明を完成させた。 The present inventors have conducted diligent studies to achieve the above object. As a result, by combining (A) an epoxy resin, (B) an epoxy compound having a specific structure, (C) another epoxy compound having a specific structure, (D) a phenolic curing agent, and (E) a curing accelerator, It has been found that a resin composition having a high tensile strength of a cured product, a high adhesive strength, and a small warp can be obtained. Further, they have found that by forming the resin composition into a film, it becomes a wafer molding material that can be handled more easily, and completed the present invention.

以下、本発明の実施の形態について具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, embodiments of the present invention will be specifically described, but the present invention is not limited thereto.

[樹脂組成物]
本発明の樹脂組成物は、(A)エポキシ樹脂、(B)特定のアリル基含有エポキシ化合物、(C)特定のアリル基を有さないエポキシ化合物及び(D)フェノール性硬化剤、(E)硬化促進剤を含むものである。
[Resin composition]
The resin composition of the present invention comprises (A) an epoxy resin, (B) a specific allyl group-containing epoxy compound, (C) an epoxy compound having no specific allyl group, and (D) a phenolic curing agent, (E). It contains a curing accelerator.

[(A)成分]
本発明の樹脂組成物において、(A)成分は、エポキシ樹脂である。前記エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環式エポキシ樹脂、ジアリールスルホン型エポキシ樹脂、シリコーン変性エポキシ樹脂等が挙げられるが、これらに限定されない。
[(A) component]
In the resin composition of the present invention, the component (A) is an epoxy resin. Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, phenol novolac type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, alicyclic epoxy resin, and glycidyl ester type epoxy. Examples thereof include, but are not limited to, resins, glycidylamine type epoxy resins, heterocyclic epoxy resins, diarylsulfone type epoxy resins, and silicone-modified epoxy resins.

前記シリコーン変性エポキシ樹脂としては、下記式(4)で表され、重量平均分子量が3,000〜500,000であるものが好ましい。このとき、当該シリコーン変性エポキシ樹脂を含む組成物の硬化物が、より耐薬品性、耐熱性、耐圧性を示す。

Figure 2021001338
式(4)中、R〜Rは、それぞれ独立に、炭素数1〜20の1価炭化水素基又はアルコキシ基であり、互いに同一でも異なっていてもよい。前記1価炭化水素基としては、特に限定されないが、直鎖状、分岐状又は環状のアルキル基、アルケニル基、アルキニル基等が挙げられる。R〜Rとしては、炭素数1〜12の1価炭化水素基又はアルコキシ基が好ましく、炭素数1〜10の1価炭化水素基又はアルコキシ基がより好ましく、炭素数1〜6の1価炭化水素基又はアルコキシ基が特に好ましい。R〜Rとしては、メチル基、エチル基、プロピル基、ヘキシル基、シクロヘキシル基、フェニル基等が好ましく、中でも、メチル基及びフェニル基が原料の入手の容易さから好ましい。 The silicone-modified epoxy resin is preferably represented by the following formula (4) and has a weight average molecular weight of 3,000 to 500,000. At this time, the cured product of the composition containing the silicone-modified epoxy resin exhibits more chemical resistance, heat resistance, and pressure resistance.
Figure 2021001338
In the formula (4), R 1 to R 6 are independently monovalent hydrocarbon groups or alkoxy groups having 1 to 20 carbon atoms, and may be the same or different from each other. The monovalent hydrocarbon group is not particularly limited, and examples thereof include a linear, branched or cyclic alkyl group, an alkenyl group and an alkynyl group. As R 1 to R 6 , a monovalent hydrocarbon group or an alkoxy group having 1 to 12 carbon atoms is preferable, a monovalent hydrocarbon group or an alkoxy group having 1 to 10 carbon atoms is more preferable, and 1 of 1 to 6 carbon atoms is more preferable. A valent hydrocarbon group or an alkoxy group is particularly preferable. As R 1 to R 6 , methyl group, ethyl group, propyl group, hexyl group, cyclohexyl group, phenyl group and the like are preferable, and among them, methyl group and phenyl group are preferable from the viewpoint of easy availability of raw materials.

式(4)中、a、b、c、d、及びeは、各繰り返し単位の組成比を表し、0<a<1、0≦b<1、0≦c<1、0<d<1、0≦e<1、0.67≦(b+d)/(a+c+e)≦1.67、かつa+b+c+d+e=1を満たす正数である。式(4)中、gは、0〜300の整数である。 In formula (4), a, b, c, d, and e represent the composition ratio of each repeating unit, and 0 <a <1, 0 ≦ b <1, 0 ≦ c <1, 0 <d <1. , 0 ≦ e <1, 0.67 ≦ (b + d) / (a + c + e) ≦ 1.67, and a + b + c + d + e = 1. In equation (4), g is an integer from 0 to 300.

式(4)中、Xは、下記式(5)で表される2価の有機基である。

Figure 2021001338
(式中、Eは、単結合、又は下記式
Figure 2021001338
から選ばれる2価の有機基である。) In the formula (4), X is a divalent organic group represented by the following formula (5).
Figure 2021001338
(In the formula, E is a single bond or the following formula
Figure 2021001338
It is a divalent organic group selected from. )

式(4)中、Yは、下記式(6)で表される2価のシロキサン骨格含有基である。

Figure 2021001338
(式中、vは、0〜300の整数である。) In the formula (4), Y is a divalent siloxane skeleton-containing group represented by the following formula (6).
Figure 2021001338
(In the formula, v is an integer from 0 to 300.)

式(4)中、Zは、下記式(7)で表される2価の有機基である。

Figure 2021001338
(式中、Gは、単結合、又は下記式
Figure 2021001338
から選ばれる2価の有機基である。) In formula (4), Z is a divalent organic group represented by the following formula (7).
Figure 2021001338
(In the formula, G is a single bond or the following formula
Figure 2021001338
It is a divalent organic group selected from. )

式(5)、(7)中、R、R、R及びR10は、炭素数1〜20の1価炭化水素基又はアルコキシ基であり、互いに同一でも異なっていてもよい。R〜R10としては、好ましくは炭素数1〜4、より好ましくは炭素数1〜2のアルキル基又はアルコキシ基であり、具体的には、メチル基、エチル基、プロピル基、tert−ブチル基、メトキシ基、エトキシ基等が好ましい。 In formulas (5) and (7), R 7 , R 8 , R 9 and R 10 are monovalent hydrocarbon groups or alkoxy groups having 1 to 20 carbon atoms, and may be the same or different from each other. R 7 to R 10 are preferably an alkyl group or an alkoxy group having 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms, and specifically, a methyl group, an ethyl group, a propyl group, or tert-butyl. Groups, methoxy groups, ethoxy groups and the like are preferable.

式(5)、(7)中、t、u、w及びxは、それぞれ独立に、0〜2の整数であるが、0が好ましい。 In the formulas (5) and (7), t, u, w and x are independently integers of 0 to 2, but 0 is preferable.

式(4)で表されるシリコーン変性エポキシ樹脂の重量平均分子量(Mw)は、3,000〜500,000であるが、5,000〜200,000が好ましい。式(4)で表されるシリコーン変性エポキシ樹脂は、ランダム共重合体でも、ブロック重合体でもよい。 The weight average molecular weight (Mw) of the silicone-modified epoxy resin represented by the formula (4) is 3,000 to 500,000, preferably 5,000 to 200,000. The silicone-modified epoxy resin represented by the formula (4) may be a random copolymer or a block polymer.

エポキシ樹脂は、1種単独でも、2種以上を組み合わせて用いてもよい。 The epoxy resin may be used alone or in combination of two or more.

式(4)で表されるシリコーン変性エポキシ樹脂は、下記式(8)で表されるシルフェニレン化合物及び下記式(9)〜(12)で表される化合物から選択される化合物を用いて、以下に示す方法により製造することができる。 The silicone-modified epoxy resin represented by the formula (4) uses a sylphenylene compound represented by the following formula (8) and a compound selected from the compounds represented by the following formulas (9) to (12). It can be produced by the method shown below.

Figure 2021001338
(式中、R〜R10、E、G、g、t、u、v、w及びxは、前記と同じ。)
Figure 2021001338
(In the formula, R 1 to R 10 , E, G, g, t, u, v, w and x are the same as described above.)

式(4)で表されるシリコーン変性エポキシ樹脂は、原料をヒドロシリル化させることで合成できる。その際、反応容器に全部の原料を入れた状態で反応させてもよく、また一部の原料を先に反応させて、その後に残りの原料を反応させてもよく、原料を1種類ずつ反応させてもよく、反応させる順序も任意に選択できる。各化合物の配合比は、上記式(10)及び式(11)及び式(12)で表される化合物が有するアルケニル基のモル数の合計に対する上記式(8)及び式(9)で表される化合物が有するヒドロシリル基のモル数の合計が0.67〜1.67、好ましくは0.83〜1.25となるように配合するのがよい。 The silicone-modified epoxy resin represented by the formula (4) can be synthesized by hydrosilylating the raw material. At that time, the reaction may be carried out with all the raw materials contained in the reaction vessel, or some raw materials may be reacted first and then the remaining raw materials may be reacted, and the raw materials may be reacted one by one. It may be allowed to react, and the order of reaction can be arbitrarily selected. The compounding ratio of each compound is represented by the above formulas (8) and (9) with respect to the total number of moles of alkenyl groups contained in the compounds represented by the above formulas (10), (11) and (12). It is preferable to mix the compounds so that the total number of moles of hydrosilyl groups is 0.67 to 1.67, preferably 0.83 to 1.25.

この重合反応は、触媒存在下で行う。触媒は、ヒドロシリル化が進行することが広く知られているものが使用できる。具体的には、パラジウム錯体、ロジウム錯体、白金錯体等が用いられるが、これらに限定されない。触媒は、Si−H結合に対し、0.01〜10.0モル%程度加えることが好ましい。0.01モル%以上であれば、反応の進行が遅くならず、反応が十分に進行し、10.0モル%以下であれば、脱水素反応が進行しにくくなり、付加反応の進行を阻害するおそれがない。 This polymerization reaction is carried out in the presence of a catalyst. As the catalyst, those widely known to promote hydrosilylation can be used. Specifically, palladium complex, rhodium complex, platinum complex and the like are used, but the present invention is not limited thereto. The catalyst is preferably added in an amount of about 0.01 to 10.0 mol% with respect to the Si—H bond. If it is 0.01 mol% or more, the progress of the reaction is not slowed down, the reaction proceeds sufficiently, and if it is 10.0 mol% or less, the dehydrogenation reaction is difficult to proceed and the progress of the addition reaction is inhibited. There is no risk of doing so.

重合反応に用いる溶媒としては、ヒドロシリル化を阻害しない有機溶媒が広く使用できる。具体的には、オクタン、トルエン、テトラヒドロフラン、ジオキサン等が挙げられるが、これらに限定されない。溶媒は、溶質が10〜70質量%になるように使用することが好ましい。10質量%以上であれば、反応系が薄くならず、反応の進行が遅くならない。また、70質量%以下であれば、粘度が高くならず、反応途中で系中を十分に攪拌できなくなるおそれがない。 As the solvent used in the polymerization reaction, an organic solvent that does not inhibit hydrosilylation can be widely used. Specific examples thereof include, but are not limited to, octane, toluene, tetrahydrofuran, dioxane and the like. The solvent is preferably used so that the solute content is 10 to 70% by mass. When it is 10% by mass or more, the reaction system is not thinned and the progress of the reaction is not slowed down. Further, if it is 70% by mass or less, the viscosity does not increase, and there is no possibility that the system cannot be sufficiently stirred during the reaction.

反応は、通常40〜150℃、好ましくは60〜120℃、特に好ましくは70〜100℃の温度で行われる。反応温度が150℃以下であれば、分解等の副反応が起こりにくくなり、40℃以上であれば、反応の進行は遅くならない。また、反応時間は、通常0.5〜60時間、好ましくは3〜24時間、特に好ましくは5〜12時間である。 The reaction is usually carried out at a temperature of 40 to 150 ° C., preferably 60 to 120 ° C., particularly preferably 70 to 100 ° C. When the reaction temperature is 150 ° C. or lower, side reactions such as decomposition are unlikely to occur, and when the reaction temperature is 40 ° C. or higher, the progress of the reaction is not slowed down. The reaction time is usually 0.5 to 60 hours, preferably 3 to 24 hours, and particularly preferably 5 to 12 hours.

[(B)成分]
(B)成分は、下記式(1)及び/又は(2)で表されるエポキシ化合物である。

Figure 2021001338
Figure 2021001338
(式中、Aは、単結合、又は下記式
Figure 2021001338
から選ばれる2価の有機基である。) [(B) component]
The component (B) is an epoxy compound represented by the following formulas (1) and / or (2).
Figure 2021001338
Figure 2021001338
(In the formula, A is a single bond or the following formula
Figure 2021001338
It is a divalent organic group selected from. )

具体的には、以下の構造で示される。

Figure 2021001338
Figure 2021001338
Specifically, it is shown by the following structure.
Figure 2021001338
Figure 2021001338

上記Aは2価の有機基の中でも、特に以下のものが好ましい。

Figure 2021001338
これらを用いることで、組成物の硬化物の物性がより良好となる。 Among the divalent organic groups, A is particularly preferably the following.
Figure 2021001338
By using these, the physical characteristics of the cured product of the composition become better.

さらにこれら化合物の持つアリル基がπ−π相互作用することで強度が向上するとともに、架橋間の隙間を埋めるように作用するため、硬化物の均質性が上がり、靱性が上がる。これによって、封止材として使用した場合、基板の反りによるクラックの発生を抑えることができると同時に、剥離も抑制できるので、ウエハレベルパッケージに好適に用いることができる。 Further, the allyl groups of these compounds interact with each other by π-π to improve the strength and to fill the gaps between the crosslinks, so that the homogeneity of the cured product is increased and the toughness is increased. As a result, when used as a sealing material, cracks due to warpage of the substrate can be suppressed, and at the same time, peeling can be suppressed, so that it can be suitably used for a wafer level package.

(B)エポキシ化合物の含有量は、(A)成分含有量100質量部に対し、(B)成分が0.5〜100質量部であるのが好ましく、3〜50質量部がより好ましい。(B)成分の含有量が0.5質量部以上であれば、強度向上効果や接着力向上への効果が十分に得られ、100質量部以下であれば耐薬品性、弾性率、線膨張係数に大きな悪影響を与えづらいため好ましい。 The content of the epoxy compound (B) is preferably 0.5 to 100 parts by mass, more preferably 3 to 50 parts by mass, based on 100 parts by mass of the component (A). When the content of the component (B) is 0.5 parts by mass or more, the effect of improving the strength and the adhesive strength can be sufficiently obtained, and when it is 100 parts by mass or less, the chemical resistance, elastic modulus and linear expansion This is preferable because it is unlikely to have a large adverse effect on the coefficient.

[(C)成分]
(C)成分は、下記式(3)で表されるエポキシ化合物である。

Figure 2021001338
(式中、Aは、単結合、又は下記式
Figure 2021001338
から選ばれる2価の有機基である。) [Component (C)]
The component (C) is an epoxy compound represented by the following formula (3).
Figure 2021001338
(In the formula, A is a single bond or the following formula
Figure 2021001338
It is a divalent organic group selected from. )

具体的には、以下の構造で示される。

Figure 2021001338
Specifically, it is shown by the following structure.
Figure 2021001338

上記Aは2価の有機基の中でも、特に以下のものが好ましい。

Figure 2021001338
Among the divalent organic groups, A is particularly preferably the following.
Figure 2021001338

これら化合物(C)は、(B)成分と非相溶系のため、添加することで部分的に海島構造を形成する。組成物を硬化時に応力が発生した場合、海島構造中で応力が逃げるために、構造体としては反りが発生しづらくなる。すなわち、封止材として使用した場合、基板の反りを小さく抑えることができるため、ウエハレベルパッケージに好適に用いることができる。 Since these compounds (C) are incompatible with the component (B), they partially form a sea-island structure when added. When stress is generated when the composition is cured, the stress escapes in the sea-island structure, so that the structure is less likely to warp. That is, when it is used as a sealing material, the warp of the substrate can be suppressed to be small, so that it can be suitably used for a wafer level package.

(C)エポキシ化合物の含有量は、(B)成分の配合量に対し、80質量%〜120質量%が好ましい。(C)成分の含有量が上記範囲内であれば、適切な海島構造を形成することができる。 The content of the epoxy compound (C) is preferably 80% by mass to 120% by mass with respect to the blending amount of the component (B). If the content of the component (C) is within the above range, an appropriate sea-island structure can be formed.

[(D)成分]
(D)成分のフェノール性硬化剤は、公知のものを広く使用可能である。硬化剤の構造としては、以下に示すものが例示できるが、これらに限定されない。
[(D) component]
As the phenolic curing agent of the component (D), known ones can be widely used. Examples of the structure of the curing agent include, but are not limited to, those shown below.

Figure 2021001338
Figure 2021001338

(D)成分の含有量は、組成物中のエポキシ基当量に対し、(D)成分中のフェノール性水酸基当量が70mol%〜140mol%となるように配合するのが好ましく、90mol%〜110mol%がより好ましい。前記範囲であれば、硬化反応が良好に進行する。前記範囲であれば、エポキシ基やフェノール性水酸基が過度にあまることがなく、信頼性は悪化しにくくなる。 The content of the component (D) is preferably 90 mol% to 110 mol% so that the phenolic hydroxyl group equivalent in the component (D) is 70 mol% to 140 mol% with respect to the epoxy group equivalent in the composition. Is more preferable. Within the above range, the curing reaction proceeds well. Within the above range, the epoxy group and the phenolic hydroxyl group are not excessively filled, and the reliability is less likely to deteriorate.

[(E)成分]
(E)成分の硬化促進剤は、エポキシ基の開環に用いられるものであれば、広く使用可能である。前記硬化促進剤としては、イミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール等のイミダゾール類、2−(ジメチルアミノメチル)フェノール、トリエチレンジアミン、トリエタノールアミン、1,8−ジアザビシクロ[5.4.0]ウンデセン−7、トリス(ジメチルアミノメチル)フェノール等の第3級アミン類、ジフェニルホスフィン、トリフェニルホスフィン、トリブチルホスフィン等の有機ホスフィン類、オクチル酸スズ等の金属化合物、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート等が挙げられる。
[(E) component]
The curing accelerator of the component (E) can be widely used as long as it is used for ring-opening of an epoxy group. Examples of the curing accelerator include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole and 2-phenyl. Imidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methyl Imidazoles such as imidazole, 1-cyanoethyl-2-phenylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2- (dimethylaminomethyl) phenol, Tertiary amines such as triethylenediamine, triethanolamine, 1,8-diazabicyclo [5.4.0] undecene-7, tris (dimethylaminomethyl) phenol, and organics such as diphenylphosphine, triphenylphosphine, and tributylphosphine. Examples thereof include phosphines, metal compounds such as tin octylate, tetra-substituted phosphonium / tetra-substituted borate such as tetraphenylphosphonium / tetraphenylbolate, and tetraphenylphosphonium / ethyltriphenylborate.

(E)成分の含有量は、(A)成分100質量部に対し、0.05〜20.0質量部が好ましく、0.5〜3.0質量部がより好ましい。前記範囲であれば、硬化反応が過不足なく進行する。0.05質量部以上であれば、反応は未完となりにくくなり、20.0質量部以下であれば、硬化物が脆くなりにくくなる。 The content of the component (E) is preferably 0.05 to 20.0 parts by mass, more preferably 0.5 to 3.0 parts by mass with respect to 100 parts by mass of the component (A). Within the above range, the curing reaction proceeds without excess or deficiency. If it is 0.05 parts by mass or more, the reaction is less likely to be incomplete, and if it is 20.0 parts by mass or less, the cured product is less likely to become brittle.

[(F)成分]
本発明の樹脂組成物は、ウエハ保護性を与え、更に、耐熱性、耐湿性、強度等を向上させ、硬化物の信頼性を上げるために、(F)成分として無機充填剤を含んでもよい。無機充填剤としては、例えば、タルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩、酸化チタン、アルミナ、溶融シリカ(溶融球状シリカ、溶融破砕シリカ)、結晶シリカ粉末等の酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム等の硫酸塩又は亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素等の窒化物等が挙げられる。これらの無機充填剤は、1種単独でも、2種以上を組み合わせて用いてもよい。これらの中でも、溶融シリカ、結晶シリカ等のシリカ粉末が好ましい。前記シリカ粉末としては、例えば、ヒュームドシリカ、沈降性シリカ等の補強性シリカ;石英等の結晶性シリカが挙げられる。具体的には、日本アエロジル(株)製のAerosil(登録商標)R972、R974、R976;(株)アドマテックス製のSE−2050、SC−2050、SE−1050、SO−E1、SO−C1、SO−E2、SO−C2、SO−E3、SO−C3、SO−E5、SO−C5;信越化学工業(株)製のMusil 120A、Musil 130A等が挙げられる。
[(F) component]
The resin composition of the present invention may contain an inorganic filler as the component (F) in order to provide wafer protection, further improve heat resistance, moisture resistance, strength, etc., and increase the reliability of the cured product. .. Examples of the inorganic filler include silicates such as talc, fired clay, unburned clay, mica, and glass, oxides such as titanium oxide, alumina, molten silica (molten spherical silica, fused crushed silica), and crystalline silica powder. , Carbonates such as calcium carbonate, magnesium carbonate, hydrotalcite, hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, sulfates such as barium sulfate, calcium sulfate, calcium sulfite, or sulfates, borate Examples thereof include borates such as zinc, barium metaborate, aluminum borate, calcium borate and sodium borate, and nitrides such as aluminum nitride, boron nitride and silicon nitride. These inorganic fillers may be used alone or in combination of two or more. Among these, silica powder such as fused silica and crystalline silica is preferable. Examples of the silica powder include reinforcing silica such as fumed silica and precipitated silica; and crystalline silica such as quartz. Specifically, Aerosil® R972, R974, R976 manufactured by Aerosil Japan Co., Ltd .; SE-2050, SC-2050, SE-1050, SO-E1, SO-C1 manufactured by Admatex Co., Ltd., SO-E2, SO-C2, SO-E3, SO-C3, SO-E5, SO-C5; Musil 120A, Musil 130A, etc. manufactured by Shin-Etsu Chemical Co., Ltd. can be mentioned.

無機充填剤の平均粒径は、特に限定されないが、0.01〜20μmが好ましく、0.01〜10μmがより好ましい。無機充填剤の平均粒子径が0.01μm以上であれば、無機充填剤が凝集しにくくなり、強度が高くなるため好ましい。また、20μm以下であれば、チップ間への樹脂の流動性が高くなり、充填性が良好になるため好ましい。なお、平均粒径は、レーザー光回折法による粒度分布測定装置によって求めることができ、質量平均値D50(すなわち、累積質量が50%となるときの粒子径又はメジアン径)として測定することができる。 The average particle size of the inorganic filler is not particularly limited, but is preferably 0.01 to 20 μm, more preferably 0.01 to 10 μm. When the average particle size of the inorganic filler is 0.01 μm or more, the inorganic filler is less likely to aggregate and the strength is increased, which is preferable. Further, when it is 20 μm or less, the fluidity of the resin between the chips becomes high and the filling property becomes good, which is preferable. The average particle size can be determined by a particle size distribution measuring device by a laser light diffractometry, and can be measured as a mass average value D 50 (that is, a particle size or a median diameter when the cumulative mass is 50%). it can.

(F)成分の含有量は、樹脂組成物の固形分中、20〜96質量%が好ましく、50〜96質量%がより好ましく、75〜94質量%が特に好ましい。無機充填剤の含有量が96質量%以下であれば、加工性が良好となり強度が向上するため好ましい。また、20質量%以上であれば、十分に効果を奏する。なお、固形分とは、有機溶剤以外の成分のことをいう。 The content of the component (F) is preferably 20 to 96% by mass, more preferably 50 to 96% by mass, and particularly preferably 75 to 94% by mass in the solid content of the resin composition. When the content of the inorganic filler is 96% by mass or less, the workability is good and the strength is improved, which is preferable. Further, if it is 20% by mass or more, the effect is sufficiently obtained. The solid content refers to a component other than the organic solvent.

[(G)有機溶剤]
本発明の樹脂組成物は、(G)成分として有機溶剤を含んでもよい。有機溶剤としては、例えば、N,N−ジメチルアセトアミド、メチルエチルケトン、N,N−ジメチルホルムアミド、シクロヘキサノン、シクロペンタノン、N−メチル−2−ピロリドン、メタノール、エタノール、イソプロパノール、アセトン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、トルエン、キシレン等が挙げられ、特にメチルエチルケトン、シクロペンタノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートが好ましいが、これらに限定されない。これらの有機溶剤は、1種単独でも、2種以上を混合して用いてもよい。有機溶剤の使用量は、樹脂組成物中の固形分濃度が60〜90質量%になる量が好ましい。
[(G) Organic solvent]
The resin composition of the present invention may contain an organic solvent as the component (G). Examples of the organic solvent include N, N-dimethylacetamide, methyl ethyl ketone, N, N-dimethylformamide, cyclohexanone, cyclopentanone, N-methyl-2-pyrrolidone, methanol, ethanol, isopropanol, acetone, propylene glycol monomethyl ether, and the like. Examples thereof include propylene glycol monomethyl ether acetate, toluene and xylene, and methyl ethyl ketone, cyclopentanone, propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate are particularly preferable, but the present invention is not limited thereto. These organic solvents may be used alone or in admixture of two or more. The amount of the organic solvent used is preferably such that the solid content concentration in the resin composition is 60 to 90% by mass.

[その他の成分]
本発明の樹脂組成物は、難燃性の向上を目的として、難燃剤を含んでもよい。難燃剤としては、リン系難燃剤が挙げられ、ハロゲン原子を含有せずに難燃性を付与するものであるが、その例としてはホスファゼン化合物、リン酸エステル化合物、リン酸エステルアミド化合物等が挙げられる。ホスファゼン化合物やリン酸エステルアミド化合物は、分子内にリン原子と窒素原子を含有しているため、特に高い難燃性が得られる。難燃剤の含有量は、(A)成分100質量部に対し、5〜30質量部が好ましい。
[Other ingredients]
The resin composition of the present invention may contain a flame retardant for the purpose of improving flame retardancy. Examples of the flame retardant include phosphorus-based flame retardants, which impart flame retardancy without containing a halogen atom, and examples thereof include phosphazene compounds, phosphoric acid ester compounds, and phosphoric acid ester amide compounds. Can be mentioned. Since the phosphazene compound and the phosphate ester amide compound contain a phosphorus atom and a nitrogen atom in the molecule, particularly high flame retardancy can be obtained. The content of the flame retardant is preferably 5 to 30 parts by mass with respect to 100 parts by mass of the component (A).

本発明の樹脂組成物は、シランカップリング剤を含んでもよい。シランカップリング剤を含むことにより、樹脂組成物の被接着体への密着性を更に高めることができる。シランカップリング剤としては、エポキシシランカップリング剤、芳香族含有アミノシランカップリング剤等が挙げられる。これらは、1種単独でも、2種以上を組み合わせて用いてもよい。シランカップリング剤の含有量は、特に限定されないが、本発明の樹脂組成物の中、0.01〜5質量%が好ましい。 The resin composition of the present invention may contain a silane coupling agent. By including the silane coupling agent, the adhesion of the resin composition to the adherend can be further enhanced. Examples of the silane coupling agent include an epoxy silane coupling agent and an aromatic-containing aminosilane coupling agent. These may be used alone or in combination of two or more. The content of the silane coupling agent is not particularly limited, but is preferably 0.01 to 5% by mass in the resin composition of the present invention.

また、本発明の樹脂組成物は、更に、前述したもの以外の成分を含んでもよい。例えば、(A)成分と(B)成分との相溶性を向上させるため、あるいは樹脂組成物の貯蔵安定性又は作業性等の各種特性を向上させるために、各種添加剤を適宜添加してもよい。例えば、脂肪酸エステル、グリセリン酸エステル、ステアリン酸亜鉛、ステアリン酸カルシウム等の内部離型剤、フェノール系、リン系又は硫黄系酸化防止剤等を添加することができる。また、カーボン等の顔料を用いて、組成物を着色することもできる。 Further, the resin composition of the present invention may further contain components other than those described above. For example, various additives may be appropriately added in order to improve the compatibility between the component (A) and the component (B), or to improve various properties such as storage stability or workability of the resin composition. Good. For example, an internal mold release agent such as fatty acid ester, glycerinic acid ester, zinc stearate, calcium stearate, a phenol-based, phosphorus-based or sulfur-based antioxidant can be added. The composition can also be colored with a pigment such as carbon.

その他の成分は、無溶剤で本発明の樹脂組成物に添加してもよいが、有機溶剤に溶解又は分散し、溶液又は分散液として調製してから添加してもよい。 Other components may be added to the resin composition of the present invention without a solvent, or may be added after being dissolved or dispersed in an organic solvent and prepared as a solution or a dispersion.

また、上記樹脂組成物の硬化後における引張強度が6.0MPa以上であることが好ましく、特に8.0〜20.0MPaの範囲が好ましい。引張強度が6.0MPa以上であれば、基板やチップの熱による膨張収縮、半導体パッケージ搭載時の力等により、クラックが入ることを防ぐことができ、即ち、良好な耐クラック性を示す。 Further, the tensile strength of the resin composition after curing is preferably 6.0 MPa or more, particularly preferably in the range of 8.0 to 20.0 MPa. When the tensile strength is 6.0 MPa or more, it is possible to prevent cracking due to expansion and contraction due to heat of the substrate or chip, force when mounting the semiconductor package, and the like, that is, good crack resistance is exhibited.

上記本発明の組成物であれば、ウエハを一括してモールド(ウエハモールド)することができ、特に、大口径、薄膜ウエハに対して良好なモールド性を有し、同時に、高強度であって、基板との剥離がおきづらい高接着性・低反り性を有し、モールド工程を良好に行うことができ、ウエハレベルパッケージに好適に用いることができる。 With the above-mentioned composition of the present invention, wafers can be collectively molded (wafer molded), and in particular, it has good moldability for large diameter and thin film wafers, and at the same time, it has high strength. , It has high adhesiveness and low warpage that is hard to peel off from the substrate, can perform the molding process well, and can be suitably used for wafer level packaging.

更に、本発明の樹脂組成物を用いると、従来の樹脂組成物が通常、硬化後10.0〜20.0MPaであった応力を、7.0〜15.0MPaとすることができる。フィラーを88重量%加えた際の硬化物では、従来の樹脂組成物が通常5.0〜13.0MPaであった応力が、3.0〜9.0MPa程度まで低下する場合がある。応力が下がることでパッケージが反りづらくなる一方、引張強度や伸び率はほぼ変化しないため、パッケージ材料に好適に用いることができる。 Further, by using the resin composition of the present invention, the stress of the conventional resin composition, which was usually 10.0 to 20.0 MPa after curing, can be changed to 7.0 to 15.0 MPa. In the cured product when 88% by weight of the filler is added, the stress which was usually 5.0 to 13.0 MPa in the conventional resin composition may be reduced to about 3.0 to 9.0 MPa. As the stress decreases, the package becomes less likely to warp, while the tensile strength and elongation do not change, so that the package can be suitably used as a package material.

[樹脂フィルム]
本発明の樹脂フィルムは、上記本発明の樹脂組成物がフィルム化されたものである。すなわち、本発明の樹脂フィルムは、前記樹脂組成物を用いて、フィルム状に加工して得られるものである。フィルム状に形成されることで、大口径、薄膜ウエハに対して良好なモールド性能を有するものとなり、ウエハを一括してモールドする際に、樹脂を流し込む必要がないため、ウエハ表面への充填不良等の問題を生じさせることがない。また、前記樹脂組成物を用いて形成された樹脂フィルムであれば、強度や接着力が高いため、各種エラーの起きづらいウエハモールド材となる。
[Resin film]
The resin film of the present invention is a film of the above-mentioned resin composition of the present invention. That is, the resin film of the present invention is obtained by processing it into a film using the resin composition. By being formed in the form of a film, it has good molding performance for large-diameter, thin-film wafers, and it is not necessary to pour resin when molding wafers in a batch, resulting in poor filling on the wafer surface. It does not cause problems such as. Further, a resin film formed by using the resin composition has high strength and adhesive strength, so that the wafer molding material is less likely to cause various errors.

本発明の樹脂フィルムの硬化後における引張強度は、好ましくは6.0MPa以上、より好ましくは8.0〜20.0MPaである。引張強度が6.0MPa以上であれば、基板やチップの熱による膨張収縮、半導体パッケージ搭載時の力等により、クラックが入ることを防止することができ、即ち、良好な耐クラック性を示す。 The tensile strength of the resin film of the present invention after curing is preferably 6.0 MPa or more, more preferably 8.0 to 20.0 MPa. When the tensile strength is 6.0 MPa or more, it is possible to prevent cracking due to expansion and contraction due to heat of the substrate or chip, force when mounting the semiconductor package, and the like, that is, it exhibits good crack resistance.

本発明の樹脂フィルムは、硬化後弾性率がフィラー無しのフィルムでは150〜1,500MPa、フィラーを入れたフィルムでは1,000〜20,000MPa程度になることが望ましい。弾性率が高くなることで、パッケージが変形しづらくなり、保護性能が上がる場合がある。 It is desirable that the resin film of the present invention has an elastic modulus after curing of about 150 to 1,500 MPa for a film without a filler and about 1,000 to 20,000 MPa for a film with a filler. The high elastic modulus makes it difficult for the package to be deformed, which may improve the protection performance.

本発明の樹脂フィルムは、前記樹脂組成物から得られる樹脂フィルムに保護フィルムが積層されたものであってもよい。この場合の本発明の樹脂フィルムの製造方法の一例について説明する。 The resin film of the present invention may be a resin film obtained from the resin composition in which a protective film is laminated. An example of the method for producing the resin film of the present invention in this case will be described.

前記(A)〜(E)成分、並びに必要に応じて(F)(G)成分、及びその他の成分を混合して樹脂組成物溶液を作製し、該樹脂組成物溶液をリバースロールコータ、コンマコータ等を用いて、所望の厚さになるように保護フィルムに塗布する。前記樹脂組成物溶液が塗布された保護フィルムをインラインドライヤに通し、80〜160℃で2〜20分間かけて有機溶剤を除去することにより乾燥させ、次いでロールラミネーターを用いて別の保護フィルムと圧着し、積層することにより、樹脂フィルムが形成された積層体フィルムを得ることができる。この積層体フィルムをウエハモールド材として用いた場合、良好なモールド性を与える。 The components (A) to (E), and if necessary, the components (F) and (G), and other components are mixed to prepare a resin composition solution, and the resin composition solution is used as a reverse roll coater or a comma coater. And so on, it is applied to the protective film to a desired thickness. The protective film coated with the resin composition solution is passed through an in-line dryer, dried by removing the organic solvent at 80 to 160 ° C. for 2 to 20 minutes, and then pressure-bonded to another protective film using a roll laminator. Then, by laminating, a laminated film on which a resin film is formed can be obtained. When this laminated film is used as a wafer mold material, it gives good moldability.

本発明の樹脂組成物をフィルム状に形成する場合、厚みに制限はないが、好ましくは2mm以下、より好ましくは50μm以上1,200μm以下、更に好ましくは80〜850μmである。このような厚みであれば、半導体封止材として、保護性に優れるため好ましい。 When the resin composition of the present invention is formed into a film, the thickness is not limited, but is preferably 2 mm or less, more preferably 50 μm or more and 1,200 μm or less, and further preferably 80 to 850 μm. Such a thickness is preferable as a semiconductor encapsulant because it has excellent protection.

前記保護フィルムは、本発明の樹脂組成物からなる樹脂フィルムの形態を損なうことなく剥離できるものであれば特に限定されないが、ウエハ用の保護フィルム及び剥離フィルムとして機能するものであり、通常、ポリエチレン(PE)フィルム、ポリプロピレン(PP)フィルム、ポリメチルペンテン(TPX)フィルム、離型処理を施したポリエステルフィルム等のプラスチックフィルム等が挙げられる。また、剥離力は、50〜300mN/minが好ましい。保護フィルムの厚さは、25〜150μmが好ましく、38〜125μmがより好ましい。 The protective film is not particularly limited as long as it can be peeled off without impairing the form of the resin film made of the resin composition of the present invention, but it functions as a protective film and a release film for wafers, and is usually polyethylene. Examples thereof include (PE) film, polypropylene (PP) film, polymethylpentene (TPX) film, and plastic film such as a release-treated polyester film. The peeling force is preferably 50 to 300 mN / min. The thickness of the protective film is preferably 25 to 150 μm, more preferably 38 to 125 μm.

[半導体積層体及びその製造方法]
本発明の半導体積層体は、半導体ウエハ上に上記本発明の樹脂フィルムの硬化物を有するものである。本発明の半導体積層体の製造方法は、前記樹脂フィルムを半導体ウエハに貼り付け、該半導体ウエハをモールドする工程と、前記樹脂フィルムを加熱硬化する工程を有する方法である。
[Semiconductor laminate and its manufacturing method]
The semiconductor laminate of the present invention has a cured product of the resin film of the present invention on a semiconductor wafer. The method for producing a semiconductor laminate of the present invention is a method including a step of attaching the resin film to a semiconductor wafer and molding the semiconductor wafer, and a step of heating and curing the resin film.

前記半導体ウエハとしては、表面に半導体素子(チップ)が積載されたウエハであっても、表面に半導体素子が作製された半導体ウエハであってもよい。本発明の樹脂フィルムは、モールド前にはこのようなウエハ表面に対する充填性が良好であり、また、モールド後には高強度・高接着性を有し、このようなウエハの保護性に優れる。また、本発明の樹脂フィルムは、直径8インチ以上、例えば、直径8インチ(200mm)、12インチ(300mm)又はそれ以上といった大口径のウエハや薄膜ウエハをモールドするのに好適に用いることができる。前記薄型ウエハとしては、厚さ5〜400μmに薄型加工されたウエハが好ましい。 The semiconductor wafer may be a wafer on which a semiconductor element (chip) is loaded on the surface or a semiconductor wafer on which the semiconductor element is manufactured on the surface. The resin film of the present invention has good filling property on the wafer surface before molding, and has high strength and high adhesiveness after molding, and is excellent in protection of such a wafer. Further, the resin film of the present invention can be suitably used for molding a wafer having a diameter of 8 inches or more, for example, a wafer having a diameter of 8 inches (200 mm), 12 inches (300 mm) or more, or a thin film wafer. .. As the thin wafer, a wafer thinly processed to a thickness of 5 to 400 μm is preferable.

本発明の樹脂フィルムを用いたウエハのモールド方法については、特に限定されないが、例えば、樹脂フィルム上に貼られた一方の保護層を剥がし、(株)タカトリ製の真空ラミネーター(製品名:TEAM−300)を用いて、真空チャンバー内を真空度50〜1,000Pa、好ましくは50〜500Pa、例えば100Paに設定し、80〜200℃、好ましくは80〜130℃、例えば100℃で他方の保護層が貼られた樹脂フィルムを前記ウエハに一括して密着させ、常圧に戻した後、前記ウエハを室温まで冷却して前記真空ラミネーターから取り出し、他方の保護層を剥離することで行うことができる。 The method for molding the wafer using the resin film of the present invention is not particularly limited, but for example, one of the protective layers attached on the resin film is peeled off, and a vacuum laminator manufactured by Takatori Co., Ltd. (product name: TEAM-) is used. Using 300), the inside of the vacuum chamber is set to a degree of vacuum of 50 to 1,000 Pa, preferably 50 to 500 Pa, for example 100 Pa, and the other protective layer is set at 80 to 200 ° C, preferably 80 to 130 ° C, for example 100 ° C. The resin film to which is affixed is brought into close contact with the wafer in a lump, returned to normal pressure, cooled to room temperature, taken out from the vacuum laminator, and the other protective layer is peeled off. ..

また、半導体チップが積層されたウエハに対しては、コンプレッションモールド装置や真空ダイヤフラムラミネーターと平坦化のための金属板プレスを備えた装置等を好適に使用することができる。例えば、コンプレッションモールド装置としては、アピックヤマダ(株)製の装置(製品名:MZ−824−01)を使用することができ、半導体チップが積層された300mmシリコンウエハをモールドする際は、100〜180℃、成型圧力100〜300kN、クランプタイム30〜90秒、成型時間5〜20分で成型が可能である。 Further, for a wafer on which semiconductor chips are laminated, an apparatus provided with a compression molding apparatus, a vacuum diaphragm laminator, and a metal plate press for flattening can be preferably used. For example, as the compression molding apparatus, an apparatus manufactured by Apic Yamada Corporation (product name: MZ-824-01) can be used, and when molding a 300 mm silicon wafer on which semiconductor chips are laminated, 100 to 180 Molding is possible at ° C., a molding pressure of 100 to 300 kN, a clamping time of 30 to 90 seconds, and a molding time of 5 to 20 minutes.

また、真空ダイヤフラムラミネーターと平坦化のための金属板プレスを備えた装置としては、ニチゴー・モートン(株)製の装置(製品名:CVP−300)を使用することができ、ラミネーション温度100〜180℃、真空度50〜500Pa、圧力0.1〜0.9MPa、ラミネーション時間30〜300秒でラミネートした後、上下熱板温度100〜180℃、圧力0.1〜3.0MPa、加圧時間30〜300秒で樹脂成型面を平坦化することが可能である。 Further, as an apparatus equipped with a vacuum diaphragm laminator and a metal plate press for flattening, an apparatus manufactured by Nichigo Morton Co., Ltd. (product name: CVP-300) can be used, and the lamination temperature is 100 to 180. After laminating at ° C., vacuum degree 50 to 500 Pa, pressure 0.1 to 0.9 MPa, lamination time 30 to 300 seconds, upper and lower heating plate temperature 100 to 180 ° C., pressure 0.1 to 3.0 MPa, pressurization time 30 It is possible to flatten the resin molded surface in ~ 300 seconds.

モールド後、120〜220℃、15〜360分間の条件で樹脂フィルムを加熱することにより、樹脂フィルムを硬化することができる。これにより、半導体積層体が得られる。 After molding, the resin film can be cured by heating the resin film at 120 to 220 ° C. for 15 to 360 minutes. As a result, a semiconductor laminate can be obtained.

[半導体装置及びその製造方法]
本発明の半導体装置は、上記本発明の半導体積層体が個片化されたものである。本発明の半導体装置の製造方法は、上記本発明の半導体積層体の製造方法によって製造した半導体積層体を個片化する工程を有する方法である。このように、樹脂フィルムでモールドされた半導体ウエハを個片化することで、加熱硬化皮膜を有する半導体装置が得られる。モールドされたウエハは、ダイシングテープ等の半導体加工用保護テープにモールド樹脂面あるいはウエハ面が接するように貼られ、ダイサーの吸着テーブル上に設置され、このモールドされたウエハは、ダイシングブレードを備えるダイシングソー(例えば、(株)DISCO製DFD6361)を使用して切断される。ダイシング時のスピンドル回転数及び切断速度は、適宜選択すればよいが、通常、スピンドル回転数25,000〜45,000rpm、切断速度10〜50mm/secである。また、個片化されるサイズは半導体パッケージの設計によるが、概ね2mm×2mm〜30mm×30mm程度である。
[Semiconductor device and its manufacturing method]
The semiconductor device of the present invention is an individualized semiconductor laminate of the present invention. The method for manufacturing a semiconductor device of the present invention is a method including a step of individualizing the semiconductor laminate manufactured by the above-mentioned method for manufacturing a semiconductor laminate of the present invention. By individualizing the semiconductor wafer molded with the resin film in this way, a semiconductor device having a heat-curing film can be obtained. The molded wafer is attached to a protective tape for semiconductor processing such as dicing tape so that the molded resin surface or the wafer surface is in contact with each other, and is installed on a suction table of a dicing saw. The molded wafer is a dicing equipped with a dicing blade. It is cut using a saw (for example, DFD6361 manufactured by DISCO Co., Ltd.). The spindle rotation speed and cutting speed at the time of dicing may be appropriately selected, but are usually spindle rotation speeds of 25,000 to 45,000 rpm and cutting speeds of 10 to 50 mm / sec. The size of the individual pieces depends on the design of the semiconductor package, but is approximately 2 mm × 2 mm to 30 mm × 30 mm.

このように、前記樹脂フィルムでモールドされた半導体ウエハは、樹脂フィルムの強度と接着力が高いため、半導体ウエハが十分に保護されたものとなるので、これを個片化することで歩留まりよく高品質な半導体装置を製造することができる。 In this way, the semiconductor wafer molded with the resin film has high strength and adhesive strength of the resin film, so that the semiconductor wafer is sufficiently protected. Therefore, by separating the semiconductor wafer into individual pieces, the yield is high. It is possible to manufacture high quality semiconductor devices.

以下、合成例、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Synthesis Examples, Examples and Comparative Examples, but the present invention is not limited to the following Examples.

使用した化合物S−1〜S−8は、以下のとおりである。

Figure 2021001338
Figure 2021001338
Figure 2021001338
Figure 2021001338
Figure 2021001338
Figure 2021001338
Figure 2021001338
Figure 2021001338
The compounds S-1 to S-8 used are as follows.
Figure 2021001338
Figure 2021001338
Figure 2021001338
Figure 2021001338
Figure 2021001338
Figure 2021001338
Figure 2021001338
Figure 2021001338

[エポキシ化合物(1)合成例]
撹拌機、温度計、窒素置換装置及び還流冷却器を具備した5Lフラスコ内に、化合物S−1 617g(2.0モル)、メタノール256g(8.0モル)、エピクロロヒドリン 852g(8.0モル)を加え、水酸化ナトリウム768g(19.2モル)を2時間かけて添加し、その後、60℃まで温度を上げて3時間反応させた。反応後、トルエン500mL加え、水層が中性になるまで純水で洗浄した後、有機層中の溶媒を減圧下で除去し、エポキシ化合物(1) 757g(1.8モル)を得た。

Figure 2021001338
[Epoxy compound (1) Synthesis example]
Compound S-1 617 g (2.0 mol), methanol 256 g (8.0 mol), epichlorohydrin 852 g (8.) in a 5 L flask equipped with a stirrer, a thermometer, a nitrogen substitution device and a reflux condenser. 0 mol) was added, and 768 g (19.2 mol) of sodium hydroxide was added over 2 hours, after which the temperature was raised to 60 ° C. and the reaction was carried out for 3 hours. After the reaction, 500 mL of toluene was added, and the mixture was washed with pure water until the aqueous layer became neutral, and then the solvent in the organic layer was removed under reduced pressure to obtain 757 g (1.8 mol) of epoxy compound (1).
Figure 2021001338

[エポキシ化合物(2)合成例]
撹拌機、温度計、窒素置換装置及び還流冷却器を具備した5Lフラスコ内に、化合物S−1 617g(2.0モル)、メタノール256g(8.0モル)、塩化アリル724g(8.0モル)を加え、水酸化ナトリウム768g(19.2モル)を粒状のまま2時間かけて添加し、添加終了後、60℃まで加温し3時間熟成した。その後、反応溶液中にトルエン500mLを加え、水層が中性になるまで純水で洗浄作業を行った後、有機層中の有機溶媒を減圧下で除去し、粗生成物740gを得た。これを再度、撹拌機、温度計、窒素置換装置及び還流冷却器を具備した5Lフラスコに移し、180℃で4時間撹拌することでクライゼン転移を起こした。その後、系中を45℃まで温度を下げ、再度メタノ−ル245g(7.6モル)、エピクロロヒドリン810g(7.6モル)を加え、水酸化ナトリウム365g(9.1モル)を1時間かけて添加し、その後、60℃まで温度を上げて3時間反応させた。反応後、トルエン500mLを加え、水層が中性になるまで純水で洗浄した後、有機層中の有機溶媒を減圧下で留去し、エポキシ化合物(2) 851g(1.7モル)を得た。

Figure 2021001338
[Epoxy compound (2) Synthesis example]
Compound S-1 617 g (2.0 mol), methanol 256 g (8.0 mol), allyl chloride 724 g (8.0 mol) in a 5 L flask equipped with a stirrer, a thermometer, a nitrogen substitution device and a reflux condenser. ) Was added, and 768 g (19.2 mol) of sodium hydroxide was added in the form of granules over 2 hours, and after the addition was completed, the mixture was heated to 60 ° C. and aged for 3 hours. Then, 500 mL of toluene was added to the reaction solution, and the washing operation was carried out with pure water until the aqueous layer became neutral, and then the organic solvent in the organic layer was removed under reduced pressure to obtain 740 g of a crude product. This was again transferred to a 5 L flask equipped with a stirrer, a thermometer, a nitrogen substitution device and a reflux condenser, and stirred at 180 ° C. for 4 hours to cause a Kreisen transition. Then, the temperature of the system was lowered to 45 ° C., 245 g (7.6 mol) of methanol and 810 g (7.6 mol) of epichlorohydrin were added again, and 365 g (9.1 mol) of sodium hydroxide was added. It was added over time, then the temperature was raised to 60 ° C. and the reaction was carried out for 3 hours. After the reaction, 500 mL of toluene was added, washed with pure water until the aqueous layer became neutral, and then the organic solvent in the organic layer was distilled off under reduced pressure to add 851 g (1.7 mol) of epoxy compound (2). Obtained.
Figure 2021001338

[1]樹脂の合成
合成例において、重量平均分子量(Mw)は、GPCカラム TSKgel Super HZM−H(東ソー(株)製)を用い、流量0.6mL/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定した値である。
[1] Synthesis of Resin In the synthesis example, the weight average molecular weight (Mw) was GPC column TSKgel Super HZM-H (manufactured by Toso Co., Ltd.), flow rate 0.6 mL / min, elution solvent tetrahydrofuran, column temperature 40 ° C. It is a value measured by gel permeation chromatography (GPC) using monodisperse polystyrene as a standard under the analysis conditions of.

[樹脂合成例1]
撹拌機、温度計、窒素置換装置及び還流冷却器を具備した3Lフラスコ内に、化合物S−2 195.9g(0.333モル)を加えた後、トルエン1,400gを加え、70℃に加温した。その後、塩化白金酸トルエン溶液(白金濃度0.5質量%)1.0gを投入し、化合物S−3 414.9g(0.267モル)、及び化合物S−4 13.0g(0.067モル)を各々1時間かけて滴下した(ヒドロシリル基の合計モル数/アルケニル基の合計モル数=0.5/0.5=1/1)。滴下終了後、100℃まで加温し、6時間熟成した後、反応溶液からトルエンを減圧留去し、下記式で表される樹脂1 570gを得た。樹脂1のMwは、37,400であった。なお、樹脂1中に含まれるシロキサン量は、67質量%であった。

Figure 2021001338
[Resin Synthesis Example 1]
In a 3 L flask equipped with a stirrer, a thermometer, a nitrogen substitution device and a reflux condenser, 195.9 g (0.333 mol) of compound S-2 was added, then 1,400 g of toluene was added, and the temperature was adjusted to 70 ° C. It was warm. Then, 1.0 g of a toluene chloroplatinate solution (platinum concentration 0.5% by mass) was added, and 414.9 g (0.267 mol) of compound S-3 and 13.0 g (0.067 mol) of compound S-4 were added. ) Was added dropwise over 1 hour (total number of moles of hydrosilyl groups / total number of moles of alkenyl groups = 0.5 / 0.5 = 1/1). After completion of the dropping, the mixture was heated to 100 ° C. and aged for 6 hours, and then toluene was distilled off from the reaction solution under reduced pressure to obtain 570 g of a resin represented by the following formula. The Mw of the resin 1 was 37,400. The amount of siloxane contained in the resin 1 was 67% by mass.
Figure 2021001338

[樹脂合成例2]
撹拌機、温度計、窒素置換装置及び還流冷却器を具備した3Lフラスコ内に、化合物S−2 133.5g(0.227モル)を加えた後、トルエン1,500gを加え、70℃に加温した。その後、塩化白金酸トルエン溶液(白金濃度0.5質量%)1.0gを投入し、化合物S−5 525.6g(0.182モル)、及び化合物S−4 8.8g(0.045モル)を各々1時間かけて滴下した(ヒドロシリル基の合計モル数/アルケニル基の合計モル数=0.500/0.500=1)。滴下終了後、100℃まで加温し、6時間熟成した後、反応溶液からトルエンを減圧留去し、下記式で表される樹脂2 605gを得た。樹脂2のMwは、51,100であった。なお、樹脂2中に含まれるシロキサン量は、79質量%であった。

Figure 2021001338
[Resin synthesis example 2]
In a 3 L flask equipped with a stirrer, a thermometer, a nitrogen substitution device and a reflux condenser, 133.5 g (0.227 mol) of compound S-2 was added, then 1,500 g of toluene was added, and the temperature was adjusted to 70 ° C. It was warm. Then, 1.0 g of a toluene chloride solution (platinum concentration 0.5% by mass) was added, and 525.6 g (0.182 mol) of Compound S-5 and 8.8 g (0.045 mol) of Compound S-4 were added. ) Was added dropwise over 1 hour (total number of moles of hydrosilyl groups / total number of moles of alkenyl groups = 0.500 / 0.500 = 1). After completion of the dropping, the mixture was heated to 100 ° C. and aged for 6 hours, and then toluene was distilled off from the reaction solution under reduced pressure to obtain 605 g of a resin represented by the following formula. The Mw of the resin 2 was 51,100. The amount of siloxane contained in the resin 2 was 79% by mass.
Figure 2021001338

[樹脂合成例3]
撹拌機、温度計、窒素置換装置及び還流冷却器を具備した3Lフラスコ内に、化合物S−2 104.9g(0.179モル)、及び化合物S−6 61.5g(0.143モル)、及び化合物S−7 6.6g(0.036モル)を加えた後、トルエン1,600gを加え、70℃に加温した。その後、塩化白金酸トルエン溶液(白金濃度0.5質量%)1.0gを投入し、化合物S−5 516.3g(0.179モル)、及び化合物S−4 34.7g(0.179モル)を各々1時間かけて滴下した(ヒドロシリル基の合計モル数/アルケニル基の合計モル数=0.500/0.500=1.00)。滴下終了後、100℃まで加温し6時間熟成した後、反応溶液からトルエンを減圧留去し、樹脂3 680gを得た。樹脂3のMwは、46,800であった。なお、樹脂3中に含まれるシロキサン量は、72質量%であった。

Figure 2021001338
[Resin synthesis example 3]
In a 3 L flask equipped with a stirrer, thermometer, nitrogen substitution device and reflux condenser, 104.9 g (0.179 mol) of Compound S-2 and 61.5 g (0.143 mol) of Compound S-6, And compound S-7 (6.6 g (0.036 mol)) was added, and then 1,600 g of toluene was added and heated to 70 ° C. Then, 1.0 g of a toluene chloride solution (platinum concentration 0.5% by mass) was added, and 516.3 g (0.179 mol) of compound S-5 and 34.7 g (0.179 mol) of compound S-4 were added. ) Was added dropwise over 1 hour (total number of moles of hydrosilyl groups / total number of moles of alkenyl groups = 0.500 / 0.500 = 1.00). After completion of the dropping, the mixture was heated to 100 ° C. and aged for 6 hours, and then toluene was distilled off from the reaction solution under reduced pressure to obtain 680 g of a resin. The Mw of the resin 3 was 46,800. The amount of siloxane contained in the resin 3 was 72% by mass.
Figure 2021001338

[樹脂合成例4]
撹拌機、温度計、窒素置換装置及び還流冷却器を具備した3Lフラスコ内に、化合物S−8 140.2g(0.333モル)を加えた後、トルエン1,500gを加え、70℃に加温した。その後、塩化白金酸トルエン溶液(白金濃度0.5質量%)1.0gを投入し、S−3 518.7g(0.333モル)を1時間かけて滴下した(ヒドロシリル基の合計モル数/アルケニル基の合計モル数=0.500/0.500=1.00)。滴下終了後、100℃まで加温し6時間熟成した後、反応溶液からトルエンを減圧留去し、樹脂4 610gを得た。樹脂4のMwは、49,500であった。なお、樹脂4中に含まれるシロキサン量は、79質量%であった。

Figure 2021001338
[Resin Synthesis Example 4]
After adding 140.2 g (0.333 mol) of compound S-8 in a 3 L flask equipped with a stirrer, a thermometer, a nitrogen substitution device and a reflux condenser, 1,500 g of toluene was added and the temperature was adjusted to 70 ° C. It was warm. Then, 1.0 g of a toluene chloride solution (platinum concentration 0.5% by mass) was added, and 518.7 g (0.333 mol) of S-3 was added dropwise over 1 hour (total number of moles of hydrosilyl groups /). Total number of moles of alkenyl groups = 0.500 / 0.500 = 1.00). After completion of the dropping, the mixture was heated to 100 ° C. and aged for 6 hours, and then toluene was distilled off from the reaction solution under reduced pressure to obtain 610 g of a resin. The Mw of the resin 4 was 49,500. The amount of siloxane contained in the resin 4 was 79% by mass.
Figure 2021001338

[樹脂合成例5]
撹拌機、温度計、窒素置換装置及び還流冷却器を具備した3Lフラスコ内に、化合物S−8 420.5g(1.000モル)を加えた後、トルエン1,400gを加え、70℃に加温した。その後、塩化白金酸トルエン溶液(白金濃度0.5質量%)1.0gを投入し、S−4 194.4g(1.000モル)を各々1時間かけて滴下した(ヒドロシリル基の合計モル数/アルケニル基の合計モル数=1.000/1.000=1.00)。滴下終了後、100℃まで加温し6時間熟成した後、反応溶液からトルエンを減圧留去し、樹脂5 570gを得た。樹脂5のMwは、53,200であった。なお、樹脂5中にシロキサンは含まれない。

Figure 2021001338
[Resin Synthesis Example 5]
To a 3L flask equipped with a stirrer, a thermometer, a nitrogen substitution device and a reflux condenser, 420.5 g (1.000 mol) of compound S-8 was added, then 1,400 g of toluene was added, and the temperature was adjusted to 70 ° C. It was warm. Then, 1.0 g of a toluene chloride solution (platinum concentration 0.5% by mass) was added, and 194.4 g (1.000 mol) of S-4 was added dropwise over 1 hour (total number of moles of hydrosilyl groups). / Total number of moles of alkenyl groups = 1.000 / 1.000 = 1.00). After completion of the dropping, the mixture was heated to 100 ° C. and aged for 6 hours, and then toluene was distilled off from the reaction solution under reduced pressure to obtain 570 g of a resin. The Mw of the resin 5 was 53,200. The resin 5 does not contain siloxane.
Figure 2021001338

[2]樹脂フィルムの作製
[実施例1〜20及び比較例1〜16]
下記表1〜4に記載した組成で、(A)合成例5で合成したエポキシ樹脂(樹脂5)、又は合成例1〜4で合成したシリコーン変性エポキシ樹脂(樹脂1〜4)、(B)エポキシ化合物(1)〜(2)、(C)エポキシ化合物(3)、(D)フェノール性硬化剤、(E)硬化促進剤、及び(F)無機充填剤を配合した。更に、固形成分濃度が65質量%となる量のシクロペンタノンを添加し、スターラー、又は、ホモミキサーを使用して撹拌し、混合及び分散して、樹脂組成物の分散液を調製した。(A)成分中に含まれるエポキシ基と(B)(C)成分中に含まれるエポキシ基の当量に対して、フェノール当量が同じになるように(D)フェノール性硬化剤を加えた。
[2] Preparation of resin film [Examples 1 to 20 and Comparative Examples 1 to 16]
(A) Epoxy resin (resin 5) synthesized in Synthesis Example 5 or silicone-modified epoxy resin (resin 1-4) synthesized in Synthesis Examples 1 to 4 with the compositions shown in Tables 1 to 4 below, (B). Epoxy compounds (1) to (2), (C) epoxy compounds (3), (D) phenolic curing agent, (E) curing accelerator, and (F) inorganic filler were blended. Further, an amount of cyclopentanone having a solid component concentration of 65% by mass was added, and the mixture was stirred using a stirrer or a homomixer, mixed and dispersed to prepare a dispersion liquid of the resin composition. The (D) phenolic curing agent was added so that the phenol equivalent was the same as the equivalent of the epoxy group contained in the component (A) and the epoxy group contained in the components (B) and (C).

フィルムコーターとしてダイコーターを用い、保護フィルムとしてE7304(商品名、東洋紡(株)製ポリエステル、厚さ75μm、剥離力200mN/50mm)を用いて、各樹脂組成物を保護フィルム上に塗布した。次いで、100℃に設定されたオーブンに30分間入れることで溶剤を完全に蒸発させ、膜厚100μmの樹脂フィルムを前記保護フィルム上に形成した。 Each resin composition was applied onto the protective film using a die coater as the film coater and E7304 (trade name, polyester manufactured by Toyobo Co., Ltd., thickness 75 μm, peeling force 200 mN / 50 mm) as the protective film. Then, the solvent was completely evaporated by putting it in an oven set at 100 ° C. for 30 minutes to form a resin film having a film thickness of 100 μm on the protective film.

上記以外に樹脂組成物の調製に用いた各成分を下記に示す。 In addition to the above, each component used for preparing the resin composition is shown below.

[エポキシ化合物]
エポキシ化合物(3)

Figure 2021001338
[Epoxy compound]
Epoxy compound (3)
Figure 2021001338

[フェノール性硬化剤]

Figure 2021001338
Figure 2021001338
Figure 2021001338
[Phenolic hardener]
Figure 2021001338
Figure 2021001338
Figure 2021001338

[硬化促進剤]
・キュアゾール2P4MHZ(四国化成工業(株)製、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール)
[Curing accelerator]
-Curesol 2P4MHZ (manufactured by Shikoku Chemicals Corporation, 2-phenyl-4-methyl-5-hydroxymethylimidazole)

[無機充填剤]
・シリカ((株)アドマテックス製、平均粒径5.0μm)
[Inorganic filler]
・ Silica (manufactured by Admatex Co., Ltd., average particle size 5.0 μm)

[3]樹脂フィルムの評価
得られた樹脂フィルムについて、以下の方法で評価を行った。結果を表1〜4に示す。
[3] Evaluation of Resin Film The obtained resin film was evaluated by the following method. The results are shown in Tables 1 to 4.

<引張強度の測定方法>
引張強度測定装置(島津製作所製オートグラフAGS−5kNG)を用いて、作製した硬化済みフィルムの引張り弾性率、強度、及び伸び率を測定した。樹脂フィルムの硬化条件は180℃×4時間とした。
<Measurement method of tensile strength>
The tensile elastic modulus, strength, and elongation of the produced cured film were measured using a tensile strength measuring device (Autograph AGS-5kNG manufactured by Shimadzu Corporation). The curing condition of the resin film was 180 ° C. × 4 hours.

<接着試験方法>
作製したフィルムを20mm角シリコンウエハに貼り付け、その上から2mm角に切ったシリコンチップを押し当てて、それらを加熱硬化(180℃×4時間)し、その後、接着力測定装置(ノードソン・アドバンスト・テクノロジー社製万能型ボンドテスター シリーズ4000(DS−100))を用いて、チップの横からはじいた際の接着力を測定した(ダイシェアテスト)。
<Adhesion test method>
The produced film is attached to a 20 mm square silicon wafer, and silicon chips cut into 2 mm squares are pressed against the silicon chips, which are then heat-cured (180 ° C. x 4 hours), and then an adhesive strength measuring device (Nordson Advanced) is used. -Using a universal bond tester series 4000 (DS-100) manufactured by Technology Co., Ltd., the adhesive strength when the chip was flipped from the side was measured (die share test).

<反り応力測定試験方法>
作製したフィルムをフィルムラミネータ―(TAKATORI TEAM−100)にて、シリコンウエハ上にラミネートし、加熱硬化(180℃×4時間)し、それらを東朋テクノロジー社製薄膜応力測定装置(FLX−2320−S)で反り応力を測定した。
<War stress measurement test method>
The produced film was laminated on a silicon wafer with a film laminator (TAKATORI TEAM-100), heat-cured (180 ° C. x 4 hours), and these were subjected to a thin film stress measuring device (FLX-2320-) manufactured by Toho Technology Co., Ltd. The warpage stress was measured in S).

Figure 2021001338
Figure 2021001338

Figure 2021001338
Figure 2021001338

Figure 2021001338
Figure 2021001338

Figure 2021001338
Figure 2021001338

以上の結果、本発明の樹脂組成物から得られる樹脂フィルムは、(C)成分を含まない組成物から得られた比較例の樹脂フィルムと比べて、強度と接着力に大差がないにもかかわらず、シリカを含まない表1、3同士あるいはシリカを含む表2、4同士で比較すると反り応力は大きく低下した。この特徴から、本発明の樹脂組成物を半導体封止用フィルムに用いた場合、クラックや剥離が起こりづらく、反りも小さいと言える。 As a result of the above, the resin film obtained from the resin composition of the present invention has no significant difference in strength and adhesive strength as compared with the resin film of the comparative example obtained from the composition containing no component (C). However, the warpage stress was significantly reduced when compared between Tables 1 and 3 containing silica or Tables 2 and 4 containing silica. From this feature, when the resin composition of the present invention is used for a semiconductor encapsulating film, it can be said that cracks and peeling are unlikely to occur and warpage is small.

本発明の樹脂組成物は、アリル基を持つ特定構造のエポキシ化合物とアリル基の持たないエポキシ化合物を適切に組み合わせることで、硬化物の強度と接着力、反り応力が大きく改善できる。これにより、例えば、フィルム状モールド用途に本発明の樹脂組成物を使用した場合、チップ搭載ウエハに対して、良好な耐クラック性、低反り性、難剥離性を示すことが可能である。 In the resin composition of the present invention, the strength, adhesive strength, and warpage stress of a cured product can be greatly improved by appropriately combining an epoxy compound having a specific structure having an allyl group and an epoxy compound having no allyl group. Thereby, for example, when the resin composition of the present invention is used for a film-like molding application, it is possible to exhibit good crack resistance, low warpage resistance, and resistance to peeling with respect to the chip-mounted wafer.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

Claims (8)

(A)シリコーン変性エポキシ樹脂、
(B)下記式(1)及び/又は式(2)に記載のエポキシ化合物、
(C)下記式(3)で示されるエポキシ化合物、
(D)フェノール性硬化剤、及び
(E)硬化促進剤
を含むものであって、前記シリコーン変性エポキシ樹脂が、下記式(4)で表され、重量平均分子量が3,000〜500,000であることを特徴とする樹脂組成物。
Figure 2021001338
Figure 2021001338
Figure 2021001338
(式中、Aは、単結合、又は下記式
Figure 2021001338
から選ばれる2価の有機基である。)
Figure 2021001338
[式中、R〜Rは、それぞれ独立に、炭素数1〜20の1価炭化水素基又はアルコキシ基であり、互いに同一でも異なっていてもよい。また、a、b、c、d及びeは、各繰り返し単位の組成比を表し、0<a<1、0≦b<1、0≦c<1、0<d<1、0≦e<1、0.67≦(b+d)/(a+c+e)≦1.67、かつa+b+c+d+e=1を満たす正数である。gは、0〜300の整数である。Xは、下記式(5)で表される2価の有機基である。Yは、下記式(6)で表される2価のシロキサン骨格含有基である。Zは下記式(7)で表される2価の有機基である。]
Figure 2021001338
(式中、Eは、単結合、又は下記式
Figure 2021001338
から選ばれる2価の有機基である。R及びRは、炭素数1〜20の1価炭化水素基又はアルコキシ基であり、互いに同一でも異なっていてもよい。t及びuは、それぞれ独立に、0〜2の整数である。)
Figure 2021001338
(式中、vは、0〜300の整数である。)
Figure 2021001338
(式中、Gは、単結合、又は下記式
Figure 2021001338
から選ばれる2価の有機基である。R及びR10は、炭素数1〜20の1価炭化水素基又はアルコキシ基であり、互いに同一でも異なっていてもよい。w及びxは、それぞれ独立に、0〜2の整数である。)
(A) Silicone modified epoxy resin,
(B) The epoxy compound according to the following formula (1) and / or formula (2).
(C) The epoxy compound represented by the following formula (3),
The silicone-modified epoxy resin containing (D) a phenolic curing agent and (E) a curing accelerator is represented by the following formula (4) and has a weight average molecular weight of 3,000 to 500,000. A resin composition characterized by being present.
Figure 2021001338
Figure 2021001338
Figure 2021001338
(In the formula, A is a single bond or the following formula
Figure 2021001338
It is a divalent organic group selected from. )
Figure 2021001338
[In the formula, R 1 to R 6 are independently monovalent hydrocarbon groups or alkoxy groups having 1 to 20 carbon atoms, and may be the same or different from each other. Further, a, b, c, d and e represent the composition ratio of each repeating unit, and 0 <a <1, 0 ≦ b <1, 0 ≦ c <1, 0 <d <1, 0 ≦ e <. It is a positive number that satisfies 1, 0.67 ≦ (b + d) / (a + c + e) ≦ 1.67 and a + b + c + d + e = 1. g is an integer from 0 to 300. X is a divalent organic group represented by the following formula (5). Y is a divalent siloxane skeleton-containing group represented by the following formula (6). Z is a divalent organic group represented by the following formula (7). ]
Figure 2021001338
(In the formula, E is a single bond or the following formula
Figure 2021001338
It is a divalent organic group selected from. R 7 and R 8 are monovalent hydrocarbon groups or alkoxy groups having 1 to 20 carbon atoms, and may be the same or different from each other. t and u are independently integers of 0 to 2. )
Figure 2021001338
(In the formula, v is an integer from 0 to 300.)
Figure 2021001338
(In the formula, G is a single bond or the following formula
Figure 2021001338
It is a divalent organic group selected from. R 9 and R 10 are monovalent hydrocarbon groups or alkoxy groups having 1 to 20 carbon atoms, and may be the same or different from each other. w and x are each independently an integer of 0 to 2. )
前記樹脂組成物の硬化後における引張強度が6.0MPa以上であることを特徴とする請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the tensile strength of the resin composition after curing is 6.0 MPa or more. 前記(B)成分が、前記(A)成分100質量部に対し、0.5〜100質量部含まれることを特徴とする請求項1又は請求項2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the component (B) is contained in an amount of 0.5 to 100 parts by mass with respect to 100 parts by mass of the component (A). 更に、(F)無機充填剤を含むものであることを特徴とする請求項1から請求項3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, further comprising (F) an inorganic filler. 前記無機充填剤が、シリカであり、前記樹脂組成物中20〜96質量%含まれることを特徴とする請求項4に記載の樹脂組成物。 The resin composition according to claim 4, wherein the inorganic filler is silica and is contained in the resin composition in an amount of 20 to 96% by mass. 前記樹脂組成物がアクリロニトリルブタジエンゴムを含まないことを特徴とする請求項1から請求項5のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, wherein the resin composition does not contain acrylonitrile butadiene rubber. 請求項1から請求項6のいずれか1項に記載の樹脂組成物がフィルム化されたものであることを特徴とする樹脂フィルム。 A resin film characterized in that the resin composition according to any one of claims 1 to 6 is made into a film. 前記樹脂フィルムの硬化後における引張強度が6.0MPa以上であることを特徴とする請求項7に記載の樹脂フィルム。 The resin film according to claim 7, wherein the tensile strength of the resin film after curing is 6.0 MPa or more.
JP2020140546A 2020-08-24 2020-08-24 Resin composition and resin film Active JP7222955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020140546A JP7222955B2 (en) 2020-08-24 2020-08-24 Resin composition and resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020140546A JP7222955B2 (en) 2020-08-24 2020-08-24 Resin composition and resin film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017172287A Division JP6754741B2 (en) 2017-09-07 2017-09-07 Semiconductor laminates, methods for manufacturing semiconductor laminates, and methods for manufacturing semiconductor devices

Publications (2)

Publication Number Publication Date
JP2021001338A true JP2021001338A (en) 2021-01-07
JP7222955B2 JP7222955B2 (en) 2023-02-15

Family

ID=73994788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020140546A Active JP7222955B2 (en) 2020-08-24 2020-08-24 Resin composition and resin film

Country Status (1)

Country Link
JP (1) JP7222955B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157907A1 (en) * 2022-02-18 2023-08-24 リンテック株式会社 Film for forming protective coating, composite sheet for forming protective coating, protective coating-equipped semiconductor chip, and semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326941A (en) * 2006-06-07 2007-12-20 Sumitomo Bakelite Co Ltd Liquid resin composition and method for producing semiconductor device
JP2008013710A (en) * 2006-07-07 2008-01-24 Sumitomo Bakelite Co Ltd Resin composition, sealing material, semiconductor device and method for producing the semiconductor device
JP2008088278A (en) * 2006-09-30 2008-04-17 Sumitomo Bakelite Co Ltd Liquid resin composition and semiconductor device using the same
JP2015137327A (en) * 2014-01-23 2015-07-30 信越化学工業株式会社 Resin composition, resin film, and semiconductor device and method for manufacturing the same
JP2016088952A (en) * 2014-10-30 2016-05-23 信越化学工業株式会社 Silicone resin, resin composition, resin film and semiconductor device and manufacturing method therefor
JP2016204553A (en) * 2015-04-24 2016-12-08 信越化学工業株式会社 Resin composition, resin film, semiconductor device and method for manufacturing the same
JP2019048905A (en) * 2017-09-07 2019-03-28 信越化学工業株式会社 Resin composition, resin film, semiconductor laminate, method for producing semiconductor laminate and method for producing semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326941A (en) * 2006-06-07 2007-12-20 Sumitomo Bakelite Co Ltd Liquid resin composition and method for producing semiconductor device
JP2008013710A (en) * 2006-07-07 2008-01-24 Sumitomo Bakelite Co Ltd Resin composition, sealing material, semiconductor device and method for producing the semiconductor device
JP2008088278A (en) * 2006-09-30 2008-04-17 Sumitomo Bakelite Co Ltd Liquid resin composition and semiconductor device using the same
JP2015137327A (en) * 2014-01-23 2015-07-30 信越化学工業株式会社 Resin composition, resin film, and semiconductor device and method for manufacturing the same
JP2016088952A (en) * 2014-10-30 2016-05-23 信越化学工業株式会社 Silicone resin, resin composition, resin film and semiconductor device and manufacturing method therefor
JP2016204553A (en) * 2015-04-24 2016-12-08 信越化学工業株式会社 Resin composition, resin film, semiconductor device and method for manufacturing the same
JP2019048905A (en) * 2017-09-07 2019-03-28 信越化学工業株式会社 Resin composition, resin film, semiconductor laminate, method for producing semiconductor laminate and method for producing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157907A1 (en) * 2022-02-18 2023-08-24 リンテック株式会社 Film for forming protective coating, composite sheet for forming protective coating, protective coating-equipped semiconductor chip, and semiconductor device
WO2023157906A1 (en) * 2022-02-18 2023-08-24 リンテック株式会社 Film for forming protective coating, composite sheet for forming protective coating, protective coating-equipped semiconductor chip, and semiconductor device
WO2023157905A1 (en) * 2022-02-18 2023-08-24 リンテック株式会社 Film for forming protective membrane, composite sheet for forming protective membrane, semiconductor chip and semiconductor device equipped with protective membrane

Also Published As

Publication number Publication date
JP7222955B2 (en) 2023-02-15

Similar Documents

Publication Publication Date Title
JP6754741B2 (en) Semiconductor laminates, methods for manufacturing semiconductor laminates, and methods for manufacturing semiconductor devices
TWI683862B (en) Resin composition, resin film, semiconductor device and manufacturing method thereof
JP6098531B2 (en) Resin composition, resin film, semiconductor device and manufacturing method thereof
JP6265105B2 (en) Silicone resin, resin composition, resin film, semiconductor device and manufacturing method thereof
KR102590184B1 (en) Resin composition, resin film, semiconductor laminate, method for manufacturing semiconductor laminate, and method for manufacturing semiconductor device
JP2013095915A (en) Resin composition, resin film, semiconductor device and method of manufacturing the same
JP6466882B2 (en) Resin composition, resin film, method for producing resin film, method for producing semiconductor device, and semiconductor device
JP7222955B2 (en) Resin composition and resin film
JP6683559B2 (en) Resin composition, resin film, resin film manufacturing method, semiconductor device manufacturing method, and semiconductor device
JP7304399B2 (en) Resin composition, resin film, semiconductor laminate, method for producing semiconductor laminate, and method for producing semiconductor device
JP6828306B2 (en) Resin composition, resin film, manufacturing method of semiconductor device and semiconductor device
JP7071300B2 (en) Resin composition, resin film, semiconductor laminate, method for manufacturing semiconductor laminate, and method for manufacturing semiconductor device
JP7415536B2 (en) Resin composition, resin film, semiconductor laminate, method for manufacturing semiconductor laminate, semiconductor device, and method for manufacturing semiconductor device
TW201734139A (en) Flame-retardant resin composition, flame-retardant resin film, semiconductor device and manufacturing method thereof having a favorable molding performance for a large-caliber film wafer
JP5981384B2 (en) Resin composition, resin film, semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230203

R150 Certificate of patent or registration of utility model

Ref document number: 7222955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150