JP2020204382A - Seismic isolation device - Google Patents

Seismic isolation device Download PDF

Info

Publication number
JP2020204382A
JP2020204382A JP2019113151A JP2019113151A JP2020204382A JP 2020204382 A JP2020204382 A JP 2020204382A JP 2019113151 A JP2019113151 A JP 2019113151A JP 2019113151 A JP2019113151 A JP 2019113151A JP 2020204382 A JP2020204382 A JP 2020204382A
Authority
JP
Japan
Prior art keywords
material layer
hard material
diameter
axial direction
soft material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019113151A
Other languages
Japanese (ja)
Other versions
JP7227859B2 (en
Inventor
隆浩 森
Takahiro Mori
隆浩 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2019113151A priority Critical patent/JP7227859B2/en
Publication of JP2020204382A publication Critical patent/JP2020204382A/en
Application granted granted Critical
Publication of JP7227859B2 publication Critical patent/JP7227859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

To provide a seismic isolation device capable of suppressing turning-up.SOLUTION: A seismic isolation device 1 comprises a lamination structure 3 having hard material layers 4 and soft material layers 5, which are alternately laminated in the vertical direction. The lamination structures 3 has, on the end side of at least one of the upper side and the lower side thereof, a small-diameter hard material layer 4S that is the hard material layer 4, and a large-diameter hard material layer 4L that is the hard material layer 4 adjacent to the small-diameter hard material layer 4S on the outer side in the axial direction and larger in diameter than the small-diameter hard material layer 4S. At least an outer peripheral side portion 5LM in the soft material layer 5 adjacent to the large-diameter hard material layer 4L on the outer side in the axial direction, which is located on the outer peripheral side of the small-diameter hard material layer 4S, has a higher elastic modulus than that of the soft-material layer 5S that is adjacent to the axially-inner side of the small-diameter hard material layer 4S, or those of the soft material layers 5S, 51 that are adjacent to the axially-inner side of the hard material layers 4S, 41 smaller in diameter than the large-diameter hard material layer 4L.SELECTED DRAWING: Figure 1

Description

この発明は、免震装置に関するものである。 The present invention relates to a seismic isolation device.

従来の免震装置として、鉛直方向に交互に積層された硬質材料層及び軟質材料層を有する積層構造体を備え、積層構造体における上側及び/又は下側の端部側において、硬質材料層を、当該硬質材料層に対し軸線方向内側に配置された他の硬質材料層よりも大径としたものがある(例えば、特許文献1)。特許文献1によれば、このような構成により、免震装置の水平方向変形時において、積層構造体におけるフランジプレート近傍部分の応力集中を抑制し、ひいては、座屈のおそれを低減できる、とされている。 As a conventional seismic isolation device, a laminated structure having hard material layers and soft material layers alternately laminated in the vertical direction is provided, and a hard material layer is provided on the upper and / or lower end side of the laminated structure. , There is one having a larger diameter than other hard material layers arranged inside in the axial direction with respect to the hard material layer (for example, Patent Document 1). According to Patent Document 1, it is said that such a configuration can suppress stress concentration in the vicinity of the flange plate in the laminated structure when the seismic isolation device is deformed in the horizontal direction, and thus reduce the risk of buckling. ing.

特開2014−47926号公報JP-A-2014-47926

しかし、上述の免震装置においては、免震装置の水平方向変形時において、積層構造体のうち、上記大径の硬質材料層における外周側部分及びそれより軸線方向外側(フランジプレート側)の部分が、フランジプレートから離れるように軸線方向内側へ反り返ること(以下、「めくれ上がり」ともいう。)のおそれがあった。 However, in the above-mentioned seismic isolation device, when the seismic isolation device is deformed in the horizontal direction, the outer peripheral side portion of the large-diameter hard material layer and the portion outside the axial direction (flange plate side) of the laminated structure. However, there was a risk of warping inward in the axial direction so as to separate from the flange plate (hereinafter, also referred to as “turning up”).

この発明は、めくれ上がりを抑制できる免震装置を、提供することを、目的とするものである。 An object of the present invention is to provide a seismic isolation device capable of suppressing turning up.

本発明の免震装置は、鉛直方向に交互に積層された硬質材料層及び軟質材料層を有する、積層構造体を備えた、免震装置であって、
前記積層構造体は、その上側及び下側のうち少なくともいずれか一方の端部側において、前記硬質材料層である小径硬質材料層、及び、当該小径硬質材料層に対し軸線方向外側に隣り合うとともに前記小径硬質材料層よりも大径の前記硬質材料層である大径硬質材料層を、有しており、
前記大径硬質材料層の軸線方向外側に隣接する前記軟質材料層における、少なくとも、前記小径硬質材料層よりも外周側に位置する外周側部分は、前記小径硬質材料層の軸線方向内側に隣接する前記軟質材料層、又は、前記大径硬質材料層よりも小径の前記硬質材料層の軸線方向内側に隣接する前記軟質材料層よりも、弾性率が高いことを特徴とする。
本発明の免震装置によれば、めくれ上がりを抑制できる。
The seismic isolation device of the present invention is a seismic isolation device having a laminated structure having hard material layers and soft material layers alternately laminated in the vertical direction.
The laminated structure is adjacent to the small-diameter hard material layer, which is the hard material layer, and the small-diameter hard material layer on the outer side in the axial direction on at least one end side of the upper side and the lower side thereof. It has a large-diameter hard material layer, which is the hard material layer having a larger diameter than the small-diameter hard material layer.
In the soft material layer adjacent to the outer side of the large-diameter hard material layer in the axial direction, at least the outer peripheral side portion located on the outer peripheral side of the small-diameter hard material layer is adjacent to the inner side in the axial direction of the small-diameter hard material layer. It is characterized by having a higher elastic modulus than the soft material layer or the soft material layer adjacent to the inside in the axial direction of the hard material layer having a diameter smaller than that of the large-diameter hard material layer.
According to the seismic isolation device of the present invention, turning up can be suppressed.

本発明の免震装置において、前記大径硬質材料層の軸線方向外側に隣接する前記軟質材料層は、前記小径硬質材料層の軸線方向内側に隣接する前記軟質材料層、又は、前記大径硬質材料層よりも小径の前記硬質材料層の軸線方向内側に隣接する前記軟質材料層よりも、弾性率が高いことが好ましい。
これにより、めくれ上がりをさらに抑制できる。
In the seismic isolation device of the present invention, the soft material layer adjacent to the axially outer side of the large-diameter hard material layer is the soft material layer adjacent to the axially inner side of the small-diameter hard material layer, or the large-diameter hard material layer. It is preferable that the elastic modulus is higher than that of the soft material layer adjacent to the inside of the hard material layer having a diameter smaller than that of the material layer in the axial direction.
As a result, the turning up can be further suppressed.

本発明の免震装置において、前記大径硬質材料層よりも軸線方向外側に配置された前記軟質材料層における、少なくとも、前記小径硬質材料層よりも外周側に位置する外周側部分は、前記小径硬質材料層の軸線方向内側に隣接する前記軟質材料層、又は、前記大径硬質材料層よりも小径の前記硬質材料層の軸線方向内側に隣接する前記軟質材料層よりも、弾性率が高いことが好ましい。
これにより、めくれ上がりをさらに抑制できる。
In the seismic isolation device of the present invention, at least the outer peripheral side portion of the soft material layer arranged on the outer side in the axial direction from the large diameter hard material layer, which is located on the outer peripheral side of the small diameter hard material layer, has the small diameter. The elastic modulus is higher than that of the soft material layer adjacent to the inside of the hard material layer in the axial direction or the soft material layer adjacent to the inside of the hard material layer having a diameter smaller than that of the large-diameter hard material layer. Is preferable.
As a result, the turning up can be further suppressed.

本発明の免震装置において、前記積層構造体は、その上側及び下側のうち少なくともいずれか一方の端部側において、前記小径硬質材料層及び前記大径硬質材料層からなる対を複数有しており、
前記複数の対が含む複数の前記大径硬質材料層のうち、少なくとも、当該大径硬質材料層における、当該大径硬質材料層と対をなす前記小径硬質材料層よりも外周側に位置する段差部分の径方向長さが最大である、前記大径硬質材料層の、軸線方向外側に隣接する前記軟質材料層における、前記外周側部分は、前記対をなす前記小径硬質材料層、又は、当該大径硬質材料層よりも小径の前記硬質材料層の軸線方向内側に隣接する前記軟質材料層よりも、弾性率が高いことが好ましい。
これにより、めくれ上がりをさらに抑制できる。
In the seismic isolation device of the present invention, the laminated structure has a plurality of pairs composed of the small diameter hard material layer and the large diameter hard material layer on the end side of at least one of the upper side and the lower side thereof. And
Of the plurality of large-diameter hard material layers included in the plurality of pairs, at least a step in the large-diameter hard material layer located on the outer peripheral side of the small-diameter hard material layer paired with the large-diameter hard material layer. The outer peripheral side portion of the soft material layer of the large-diameter hard material layer having the maximum radial length of the portion adjacent to the outer side in the axial direction is the pair of the small-diameter hard material layers or the said. It is preferable that the elastic coefficient is higher than that of the soft material layer adjacent to the inside of the hard material layer having a smaller diameter than the large diameter hard material layer in the axial direction.
As a result, the turning up can be further suppressed.

本発明の免震装置において、前記積層構造体は、その上側及び下側のうち少なくともいずれか一方の端部側において、前記小径硬質材料層及び前記大径硬質材料層からなる対を複数有しており、
前記複数の対のうち少なくとも2つの対のそれぞれの前記大径硬質材料層の、軸線方向外側に隣接する前記軟質材料層における、前記外周側部分は、当該大径硬質材料層と対をなす前記小径硬質材料層の軸線方向内側に隣接する前記軟質材料層よりも、弾性率が高いことが好ましい。
これにより、めくれ上がりをさらに抑制できる。
In the seismic isolation device of the present invention, the laminated structure has a plurality of pairs composed of the small diameter hard material layer and the large diameter hard material layer on the end side of at least one of the upper side and the lower side thereof. And
The outer peripheral side portion of the soft material layer adjacent to the outer side in the axial direction of each of the large-diameter hard material layers of at least two of the plurality of pairs is paired with the large-diameter hard material layer. It is preferable that the elastic modulus is higher than that of the soft material layer adjacent to the inside of the small-diameter hard material layer in the axial direction.
As a result, the turning up can be further suppressed.

本発明の免震装置において、前記少なくとも2つの対が含む複数の前記大径硬質材料層のそれぞれの軸線方向外側に隣接する前記軟質材料層における、前記外周側部分の複数は、当該大径硬質材料層における、当該大径硬質材料層と対をなす前記小径硬質材料層よりも外周側に位置する段差部分の径方向長さが大きいものほど、弾性率が高いことが好ましい。
これにより、めくれ上がりをさらに抑制できる。
In the seismic isolation device of the present invention, a plurality of the outer peripheral side portions of the soft material layer adjacent to each axially outer side of the plurality of large diameter hard material layers included in the at least two pairs are the large diameter hard materials. In the material layer, the larger the radial length of the step portion located on the outer peripheral side of the small-diameter hard material layer paired with the large-diameter hard material layer, the higher the elastic modulus is preferable.
As a result, the turning up can be further suppressed.

この発明によれば、めくれ上がりを抑制できる免震装置を、提供することができる。 According to the present invention, it is possible to provide a seismic isolation device capable of suppressing turning up.

本発明の第1実施形態に係る免震装置の軸線方向断面図である。It is sectional drawing in the axial direction of the seismic isolation device which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る免震装置の軸線方向断面図である。It is sectional drawing in the axial direction of the seismic isolation device which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る免震装置の軸線方向断面図である。It is sectional drawing in the axial direction of the seismic isolation device which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る免震装置の軸線方向断面図である。It is sectional drawing in the axial direction of the seismic isolation device which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る免震装置の軸線方向断面図である。It is sectional drawing in the axial direction of the seismic isolation device which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る免震装置の一部を示す、軸線方向断面図である。It is an axial sectional view which shows a part of the seismic isolation device which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係る免震装置の一部を示す、軸線方向断面図である。It is an axial sectional view which shows a part of the seismic isolation device which concerns on 7th Embodiment of this invention. 本発明の第8実施形態に係る免震装置の一部を示す、軸線方向断面図である。It is an axial sectional view which shows a part of the seismic isolation device which concerns on 8th Embodiment of this invention.

本発明の免震装置は、地震の揺れが構造物(例えば、ビル、マンション、戸建て住宅、倉庫等の建物、並びに、橋梁等)に伝わるのを抑制するために、構造物の上部構造と下部構造との間に配置されると、好適なものである。
以下に、図面を参照しつつ、この発明に係る免震装置の実施形態を例示説明する。各図において共通する構成要素には同一の符号を付している。
The seismic isolation device of the present invention has an upper structure and a lower part of a structure in order to suppress the shaking of an earthquake from being transmitted to a structure (for example, a building such as a building, a condominium, a detached house, a warehouse, and a bridge). It is suitable when placed between the structure.
Hereinafter, embodiments of the seismic isolation device according to the present invention will be illustrated and described with reference to the drawings. The components common to each figure are designated by the same reference numerals.

図1は、本発明の第1実施形態に係る免震装置1を説明するための図面である。図1は、本実施形態に係る免震装置1の、軸線方向断面図である。 FIG. 1 is a drawing for explaining the seismic isolation device 1 according to the first embodiment of the present invention. FIG. 1 is an axial sectional view of the seismic isolation device 1 according to the present embodiment.

図1に示すように、本実施形態の免震装置1は、上下一対のフランジプレート21、22(以下、それぞれ「上側フランジプレート21」、「下側フランジプレート22」ともいう。)と、積層構造体3と、を備えている。 As shown in FIG. 1, the seismic isolation device 1 of the present embodiment is laminated with a pair of upper and lower flange plates 21 and 22 (hereinafter, also referred to as "upper flange plate 21" and "lower flange plate 22", respectively). It includes a structure 3.

本明細書において、免震装置1の「中心軸線O」(以下、単に「中心軸線O」ともいう。)は、積層構造体3の中心軸線である。免震装置1の中心軸線Oは、鉛直方向に延在するように指向される。本明細書において、免震装置1の「軸線方向」とは、免震装置1の中心軸線Oに平行な方向である。免震装置1の「軸線方向内側」とは、積層構造体3の軸線方向中心に近い側を指しており、免震装置1の「軸線方向外側」とは、積層構造体3の軸線方向中心から遠い側(フランジプレート21、22に近い側)を指している。また、免震装置1の「軸直方向」とは、免震装置1の軸線方向に垂直な方向である。また、免震装置1の「内周側」、「外周側」、「径方向」、「周方向」とは、免震装置1の中心軸線Oを中心としたときの「内周側」、「外周側」、「径方向」、「周方向」をそれぞれ指す。また、「上」、「下」とは、鉛直方向における「上」、「下」をそれぞれ指す。 In the present specification, the “central axis O” of the seismic isolation device 1 (hereinafter, also simply referred to as “central axis O”) is the central axis of the laminated structure 3. The central axis O of the seismic isolation device 1 is oriented so as to extend in the vertical direction. In the present specification, the "axis direction" of the seismic isolation device 1 is a direction parallel to the central axis O of the seismic isolation device 1. The "inside in the axial direction" of the seismic isolation device 1 refers to the side near the center in the axial direction of the laminated structure 3, and the "outside in the axial direction" of the seismic isolation device 1 refers to the center in the axial direction of the laminated structure 3. It points to the side far from (the side closer to the flange plates 21 and 22). Further, the "vertical direction" of the seismic isolation device 1 is a direction perpendicular to the axial direction of the seismic isolation device 1. Further, the "inner peripheral side", "outer peripheral side", "diameter direction", and "circumferential direction" of the seismic isolation device 1 refer to the "inner peripheral side" when the central axis O of the seismic isolation device 1 is centered. Refers to "outer circumference side", "diameter direction", and "circumferential direction", respectively. Further, "upper" and "lower" refer to "upper" and "lower" in the vertical direction, respectively.

上側フランジプレート21は、上側フランジプレート21の上に構造物(例えば、ビル、マンション、戸建て住宅、倉庫等の建物、並びに、橋梁等)の上部構造(建物本体等)が載せられた状態で、当該上部構造に連結されるように、構成されている。下側フランジプレート22は、上側フランジプレート21よりも下側に配置され、構造物の下部構造(基礎等)に連結されるように構成されている。上側フランジプレート21及び下側フランジプレート22は、金属から構成されると好適であり、鋼から構成されるとより好適である。本実施形態において、上側フランジプレート21及び下側フランジプレート22は、軸直方向断面において、円形の外縁形状を有している(図示せず)。しかし、上側フランジプレート21及び下側フランジプレート22は、軸直方向断面において、多角形状(四角形等)等、任意の外縁形状を有していてよい。 The upper flange plate 21 has an upper structure (building body, etc.) of a structure (for example, a building, a condominium, a detached house, a warehouse, etc., and a bridge, etc.) mounted on the upper flange plate 21. It is configured to be connected to the superstructure. The lower flange plate 22 is arranged below the upper flange plate 21 and is configured to be connected to a lower structure (foundation or the like) of the structure. The upper flange plate 21 and the lower flange plate 22 are preferably made of metal, and more preferably made of steel. In the present embodiment, the upper flange plate 21 and the lower flange plate 22 have a circular outer edge shape in the axial cross section (not shown). However, the upper flange plate 21 and the lower flange plate 22 may have an arbitrary outer edge shape such as a polygonal shape (quadrangle or the like) in the cross section in the axial direction.

積層構造体3は、上側フランジプレート21及び下側フランジプレート22どうしの間に配置されている。積層構造体3は、複数の硬質材料層4と、複数の軟質材料層5と、被覆層6と、を有している。硬質材料層4と軟質材料層5とは、鉛直方向に交互に積層されている。各硬質材料層4と各軟質材料層5とは、同軸上に配置されており、すなわち、各硬質材料層4と各軟質材料層5とのそれぞれの中心軸線は、免震装置1の中心軸線O上に位置している。積層構造体3の上下両端には、軟質材料層5が配置されている。積層構造体3の上下両端に配置された一対の軟質材料層5は、上側フランジプレート21及び下側フランジプレート22にそれぞれ固定されている。 The laminated structure 3 is arranged between the upper flange plate 21 and the lower flange plate 22. The laminated structure 3 has a plurality of hard material layers 4, a plurality of soft material layers 5, and a coating layer 6. The hard material layer 4 and the soft material layer 5 are alternately laminated in the vertical direction. The hard material layer 4 and the soft material layer 5 are arranged coaxially, that is, the central axis of each hard material layer 4 and each soft material layer 5 is the central axis of the seismic isolation device 1. It is located on O. Soft material layers 5 are arranged at both upper and lower ends of the laminated structure 3. The pair of soft material layers 5 arranged at the upper and lower ends of the laminated structure 3 are fixed to the upper flange plate 21 and the lower flange plate 22, respectively.

硬質材料層4は、硬質材料から構成されている。硬質材料層4を構成する硬質材料としては、金属が好適であり、鋼がより好適である。図1の例のように、硬質材料層4どうしの軸線方向の間隔は、均一(一定)であると、好適である。また、図1の例のように、各硬質材料層4の厚さは、互いに同じであると、好適である。
軟質材料層5は、硬質材料層4よりも剛性の低い、軟質材料から構成されている。軟質材料層5を構成する軟質材料としては、弾性体が好適であり、ゴムがより好適である。軟質材料層5を構成するゴムとしては、天然ゴム又は合成ゴム(高減衰ゴム等)が好適である。図1の例のように、各軟質材料層5の厚さは、互いに同じであると、好適である。
The hard material layer 4 is made of a hard material. As the hard material constituting the hard material layer 4, metal is preferable, and steel is more preferable. As in the example of FIG. 1, it is preferable that the distance between the hard material layers 4 in the axial direction is uniform (constant). Further, as in the example of FIG. 1, it is preferable that the thicknesses of the hard material layers 4 are the same as each other.
The soft material layer 5 is made of a soft material having a lower rigidity than the hard material layer 4. As the soft material constituting the soft material layer 5, an elastic body is preferable, and rubber is more preferable. As the rubber constituting the soft material layer 5, natural rubber or synthetic rubber (high damping rubber or the like) is suitable. As in the example of FIG. 1, it is preferable that the thicknesses of the soft material layers 5 are the same as each other.

被覆層6は、硬質材料層4及び軟質材料層5の外周側の表面を覆っている。被覆層6を構成する材料は、弾性体が好適であり、ゴムがより好適である。被覆層6を構成する材料は、軟質材料層5を構成する軟質材料と同じでもよいし、軟質材料層5を構成する軟質材料とは異なっていてもよい。
被覆層6は、軟質材料層5と一体に構成されている。
本実施形態において、被覆層6は、硬質材料層4及び軟質材料層5の外周側の表面の全体を覆っていており、ひいては、積層構造体3の外周側の表面の全体を構成している。ただし、被覆層6は、硬質材料層4及び軟質材料層5の外周側の表面の一部のみを覆っていてもよく、ひいては、積層構造体3の外周側の表面の一部のみを構成していてもよい。例えば、被覆層6は、硬質材料層4及び軟質材料層5の外周側の表面のうち、大径硬質材料層4Lの段差部分4LMの軸線方向内側の面のみを覆っていてもよい。あるいは、被覆層6は、硬質材料層4及び軟質材料層5の外周側の表面のうち、硬質材料層4及び軟質材料層5の外周面のみを覆っていてもよい。また、被覆層6は、設けられていなくてもよく、その場合、積層構造体3の外周側の表面は、硬質材料層4及び軟質材料層5の外周側の表面のみから構成される。
なお、本明細書では、隣り合う硬質材料層4が軸線方向に重複する径方向範囲で、径方向に延在する軟質の材料層を「軟質材料層5」と称し、これより外周側の、硬質材料層4以外の材料層を「被覆層6」と称している。
The coating layer 6 covers the outer peripheral surfaces of the hard material layer 4 and the soft material layer 5. As the material constituting the coating layer 6, an elastic body is preferable, and rubber is more preferable. The material constituting the coating layer 6 may be the same as the soft material constituting the soft material layer 5, or may be different from the soft material constituting the soft material layer 5.
The coating layer 6 is integrally formed with the soft material layer 5.
In the present embodiment, the coating layer 6 covers the entire outer peripheral surface of the hard material layer 4 and the soft material layer 5, and thus constitutes the entire outer peripheral surface of the laminated structure 3. .. However, the coating layer 6 may cover only a part of the outer peripheral side surface of the hard material layer 4 and the soft material layer 5, and thus constitutes only a part of the outer peripheral side surface of the laminated structure 3. You may be. For example, the coating layer 6 may cover only the axially inner surface of the stepped portion 4LM of the large-diameter hard material layer 4L among the outer peripheral surfaces of the hard material layer 4 and the soft material layer 5. Alternatively, the coating layer 6 may cover only the outer peripheral surfaces of the hard material layer 4 and the soft material layer 5 among the outer peripheral surfaces of the hard material layer 4 and the soft material layer 5. Further, the coating layer 6 may not be provided, and in that case, the outer peripheral surface of the laminated structure 3 is composed of only the outer peripheral surface of the hard material layer 4 and the soft material layer 5.
In the present specification, the soft material layer extending in the radial direction in the radial range in which the adjacent hard material layers 4 overlap in the axial direction is referred to as "soft material layer 5", and the outer peripheral side of the soft material layer 4 is referred to as "soft material layer 5". Material layers other than the hard material layer 4 are referred to as "coating layer 6".

本実施形態において、硬質材料層4、軟質材料層5、及び被覆層6は、それぞれ、軸直方向断面において、円形の外縁形状を有している。しかし、硬質材料層4、軟質材料層5、及び被覆層6は、それぞれ、軸直方向断面において、多角形状(四角形等)等の任意の非円形状の外縁形状を有していてもよい。
なお、本明細書において、積層構造体3、硬質材料層4、軟質材料層5、及び被覆層6のそれぞれの「外径」とは、これらが軸直方向断面において非円形の外縁形状を有している場合、軸直方向断面におけるこれらの外接円の直径を指す。
In the present embodiment, the hard material layer 4, the soft material layer 5, and the coating layer 6 each have a circular outer edge shape in the axial cross section. However, the hard material layer 4, the soft material layer 5, and the coating layer 6 may each have an arbitrary non-circular outer edge shape such as a polygonal shape (quadrangle or the like) in the axial cross section.
In the present specification, the "outer diameter" of each of the laminated structure 3, the hard material layer 4, the soft material layer 5, and the coating layer 6 has a non-circular outer edge shape in the axial cross section. If so, it refers to the diameter of these circumscribed circles in the axial cross section.

図1に示すように、本実施形態において、積層構造体3は、その上側及び下側のうち少なくともいずれか一方(図1の例では、両方)の端部側において、硬質材料層4である小径硬質材料層4Sと、当該小径硬質材料層4Sに対し軸線方向外側に隣り合うとともに小径硬質材料層4Sよりも大径の(すなわち、外径が大きい)硬質材料層4である大径硬質材料層4Lと、を有している。図1の例では、積層構造体3は、その上側及び下側の両方の端部側において、それぞれ、互いに隣り合う1つの小径硬質材料層4Sと1つの大径硬質材料層4Lとからなる対4Pを、1つずつ有している。
なお、1つの対4Pは、互いに隣り合う1つの小径硬質材料層4Sと1つの大径硬質材料層4Lとからなるものとし、当該小径硬質材料層4S及び当該大径硬質材料層4L以外の各硬質材料層4は、当該対4Pを構成しない(すなわち、当該1つの対4Pに着目したとき、当該小径硬質材料層4S及び当該大径硬質材料層4L以外の各硬質材料層4は、たとえ、当該小径硬質材料層4Sや当該大径硬質材料層4Lと同径であっても、小径硬質材料層4Sや大径硬質材料層4Lとは称しない)ものとする。
本実施形態において、小径硬質材料層4Sは、積層構造体3の軸線方向中心よりも軸線方向外側に位置している。小径硬質材料層4Sよりも軸線方向内側に位置する硬質材料層41は、それぞれ、小径硬質材料層4Sと同径(すなわち、外径が同じ)である。また、本実施形態において、積層構造体3は、大径硬質材料層4Lの軸線方向外側に位置する2つの硬質材料層42を有している。硬質材料層42は、大径硬質材料層4Lと同径(すなわち、外径が同じ)である。ただし、大径硬質材料層4Lを、積層構造体3を構成する複数の硬質材料層4のうち、最も軸線方向外側に位置するものとしてもよい。
本明細書では、大径硬質材料層4Lのうち、小径硬質材料層4Sよりも外周側に位置する部分4LMを、「段差部分(4LM)」と称する。
As shown in FIG. 1, in the present embodiment, the laminated structure 3 is a hard material layer 4 on the end side of at least one of the upper side and the lower side (both in the example of FIG. 1). A large-diameter hard material layer 4S that is adjacent to the small-diameter hard material layer 4S on the outer side in the axial direction and has a larger diameter (that is, a larger outer diameter) than the small-diameter hard material layer 4S. It has a layer 4L and. In the example of FIG. 1, the laminated structure 3 has a pair consisting of one small-diameter hard material layer 4S and one large-diameter hard material layer 4L adjacent to each other on both the upper and lower end sides thereof. It has 4Ps one by one.
One pair of 4P is composed of one small-diameter hard material layer 4S and one large-diameter hard material layer 4L adjacent to each other, and each other than the small-diameter hard material layer 4S and the large-diameter hard material layer 4L. The hard material layer 4 does not constitute the pair 4P (that is, when focusing on the one pair 4P, each hard material layer 4 other than the small diameter hard material layer 4S and the large diameter hard material layer 4L is, for example, Even if it has the same diameter as the small diameter hard material layer 4S or the large diameter hard material layer 4L, it is not referred to as the small diameter hard material layer 4S or the large diameter hard material layer 4L).
In the present embodiment, the small-diameter hard material layer 4S is located outside the axial direction of the center of the laminated structure 3 in the axial direction. The hard material layer 41 located inside the small diameter hard material layer 4S in the axial direction has the same diameter (that is, the same outer diameter) as the small diameter hard material layer 4S, respectively. Further, in the present embodiment, the laminated structure 3 has two hard material layers 42 located outside in the axial direction of the large-diameter hard material layer 4L. The hard material layer 42 has the same diameter (that is, the same outer diameter) as the large diameter hard material layer 4L. However, the large-diameter hard material layer 4L may be located on the outermost side in the axial direction among the plurality of hard material layers 4 constituting the laminated structure 3.
In the present specification, of the large-diameter hard material layer 4L, the portion 4LM located on the outer peripheral side of the small-diameter hard material layer 4S is referred to as a “step portion (4LM)”.

本実施形態において、小径硬質材料層4Sの軸線方向内側に隣接する軟質材料層5Sは、積層構造体3の軸線方向中心よりも軸線方向外側に位置している。軟質材料層5Sよりも軸線方向内側に位置する軟質材料層51は、それぞれ、軟質材料層5Sと同径である。また、本実施形態において、大径硬質材料層4Lの軸線方向外側に隣接する軟質材料層5Lは、積層構造体3の軸線方向外側端よりも軸線方向内側に位置している。軟質材料層5Lよりも軸線方向外側に位置する軟質材料層52は、それぞれ、軟質材料層5Lと同径である。ただし、対4Pを、積層構造体3の最も軸線方向外側に配置して、軟質材料層5Lを、積層構造体3を構成する複数の軟質材料層5のうち、最も軸線方向外側に位置するものとしてもよい。
本明細書では、対をなす小径硬質材料層4S及び大径硬質材料層4Lのうち、大径硬質材料層4Lの軸線方向外側に隣接する上記軟質材料層5Lにおける、小径硬質材料層4Sよりも外周側に位置する外周側部分を、「外周側部分(5LM)」と称する。
In the present embodiment, the soft material layer 5S adjacent to the inside of the small-diameter hard material layer 4S in the axial direction is located outside the axial direction of the center of the laminated structure 3 in the axial direction. The soft material layer 51 located inside the soft material layer 5S in the axial direction has the same diameter as the soft material layer 5S, respectively. Further, in the present embodiment, the soft material layer 5L adjacent to the outer side in the axial direction of the large-diameter hard material layer 4L is located inside the outer end in the axial direction of the laminated structure 3. The soft material layer 52 located outside the soft material layer 5L in the axial direction has the same diameter as the soft material layer 5L, respectively. However, the pair 4P is arranged on the outermost side of the laminated structure 3 in the axial direction, and the soft material layer 5L is located on the outermost side of the plurality of soft material layers 5 constituting the laminated structure 3. May be.
In the present specification, of the paired small-diameter hard material layer 4S and large-diameter hard material layer 4L, the soft material layer 5L adjacent to the outer side of the large-diameter hard material layer 4L in the axial direction is larger than the small-diameter hard material layer 4S. The outer peripheral side portion located on the outer peripheral side is referred to as an "outer peripheral side portion (5LM)".

本実施形態において、軟質材料層5Lにおける、外周側部分5LMは、小径硬質材料層4Sの軸線方向内側に隣接する軟質材料層5S、又は、大径硬質材料層4Lよりも小径の硬質材料層(本例では、小径硬質材料層4S及び硬質材料層41)の軸線方向内側に隣接する、軟質材料層(本例では、軟質材料層5S及び軟質材料層51)よりも、弾性率が高い。ここで、「大径硬質材料層4Lよりも小径の硬質材料層」とは、大径硬質材料層4Lよりも小径の全ての硬質材料層を指し、従って、小径硬質材料層4Sを含む。より具体的に、図1の例では、大径硬質材料層4Lの軸線方向外側に隣接する軟質材料層5Lの外周側部分5LMは、軟質材料層5S、又は、軟質材料層5S及び軟質材料層51(本例では、全て軟質材料層5Sよりも軸線方向内側に位置している)よりも、弾性率が高い。
なお、外周側部分5LMは、軟質材料層5Sのみよりも、弾性率が高いものとしてもよい。ただし、上述の図1の例に示すように、外周側部分5LMは、大径硬質材料層4Lよりも小径の全ての硬質材料層の軸線方向内側に隣接する軟質材料層5S、51よりも、弾性率が高いことが好ましい。また、より好適には、外周側部分5LMは、上記の軟質材料層5S及び51に加えて、大径硬質材料層4L及び小径硬質材料層4Sの間に配置された軟質材料層5Mよりも弾性率が高い。なお、外周側部分5LMのうち、少なくとも一部が、小径硬質材料層4Sの軸線方向内側に隣接する軟質材料層5S、又は、大径硬質材料層4Lよりも小径の硬質材料層(本例では、小径硬質材料層4S及び硬質材料層41)の軸線方向内側に隣接する、軟質材料層(本例では、軟質材料層5S及び軟質材料層51)よりも、弾性率が高ければよい。
In the present embodiment, the outer peripheral side portion 5LM of the soft material layer 5L is the soft material layer 5S adjacent to the inner side of the small diameter hard material layer 4S in the axial direction, or a hard material layer having a diameter smaller than that of the large diameter hard material layer 4L. In this example, the elasticity is higher than that of the soft material layer (in this example, the soft material layer 5S and the soft material layer 51) adjacent to the inside of the small diameter hard material layer 4S and the hard material layer 41) in the axial direction. Here, the "hard material layer having a diameter smaller than that of the large diameter hard material layer 4L" refers to all the hard material layers having a diameter smaller than that of the large diameter hard material layer 4L, and therefore includes the small diameter hard material layer 4S. More specifically, in the example of FIG. 1, the outer peripheral side portion 5LM of the soft material layer 5L adjacent to the outside in the axial direction of the large-diameter hard material layer 4L is the soft material layer 5S, or the soft material layer 5S and the soft material layer. It has a higher elastic modulus than 51 (in this example, all are located inside the soft material layer 5S in the axial direction).
The outer peripheral side portion 5LM may have a higher elastic modulus than the soft material layer 5S alone. However, as shown in the example of FIG. 1 described above, the outer peripheral side portion 5LM is more than the soft material layers 5S and 51 adjacent to the inner side in the axial direction of all the hard material layers having a diameter smaller than that of the large diameter hard material layer 4L. High elastic modulus is preferable. More preferably, the outer peripheral side portion 5LM is more elastic than the soft material layer 5M arranged between the large-diameter hard material layer 4L and the small-diameter hard material layer 4S in addition to the above-mentioned soft material layers 5S and 51. The rate is high. It should be noted that at least a part of the outer peripheral side portion 5LM is a soft material layer 5S adjacent to the inside of the small diameter hard material layer 4S in the axial direction, or a hard material layer having a diameter smaller than that of the large diameter hard material layer 4L (in this example). , The elastic modulus may be higher than that of the soft material layer (in this example, the soft material layer 5S and the soft material layer 51) adjacent to the inside in the axial direction of the small-diameter hard material layer 4S and the hard material layer 41).

なお、弾性率を高くする手段については、特に限定されないが、例えば、弾性率の異なるゴムを用いてもよい。 The means for increasing the elastic modulus is not particularly limited, but for example, rubbers having different elastic moduli may be used.

以下、本実施形態の免震装置1の作用効果について説明する。
まず、本実施形態の免震装置1は、上述のとおり、積層構造体3が、その上側及び下側のうち少なくともいずれか一方(図1の例では、両方)の端部側において、硬質材料層4である小径硬質材料層4Sと、当該小径硬質材料層4Sに対し軸線方向外側に隣り合うとともに小径硬質材料層4Sよりも大径の硬質材料層4である大径硬質材料層4Lと、を有している。これにより、仮に、積層構造体3の全ての硬質材料層4が小径硬質材料層4Sと同径である場合に比べて、免震装置1の水平変形時において、硬質材料層4どうしが軸線方向に重複する領域を増大でき、ひいては、積層構造体3がよりしっかりと軸線方向に支えられるので、免震装置1が座屈しにくくなる(言い換えれば、免震装置1の耐座屈性能を向上できる)。また、仮に、積層構造体3の全ての硬質材料層4が大径硬質材料層4Lと同径である場合に比べて、免震装置1の免震性能を向上できる。
Hereinafter, the operation and effect of the seismic isolation device 1 of the present embodiment will be described.
First, in the seismic isolation device 1 of the present embodiment, as described above, the laminated structure 3 is made of a hard material on the end side of at least one of the upper side and the lower side (both in the example of FIG. 1). The small-diameter hard material layer 4S, which is the layer 4, and the large-diameter hard material layer 4L, which is a hard material layer 4 adjacent to the small-diameter hard material layer 4S on the outer side in the axial direction and having a larger diameter than the small-diameter hard material layer 4S, have. As a result, compared to the case where all the hard material layers 4 of the laminated structure 3 have the same diameter as the small diameter hard material layer 4S, the hard material layers 4 are in the axial direction when the seismic isolation device 1 is horizontally deformed. Since the overlapping area can be increased and the laminated structure 3 is supported more firmly in the axial direction, the seismic isolation device 1 is less likely to buckle (in other words, the buckling resistance performance of the seismic isolation device 1 can be improved. ). Further, the seismic isolation performance of the seismic isolation device 1 can be improved as compared with the case where all the hard material layers 4 of the laminated structure 3 have the same diameter as the large diameter hard material layer 4L.

さらに、本実施形態では、軟質材料層5Lにおける、外周側部分5LMは、小径硬質材料層4Sの軸線方向内側に隣接する軟質材料層5S、又は、大径硬質材料層4Lよりも小径の硬質材料層(本例では、小径硬質材料層4S及び硬質材料層41)の軸線方向内側に隣接する軟質材料層(本例では、軟質材料層5S及び軟質材料層51)よりも、弾性率が高い。これによって、免震装置1の水平方向変形時に、積層構造体3のうち、大径硬質材料層4Lの段差部分4LM、及び、それより軸線方向外側の部分に作用する、軸線方向内側へ向かう反発力に抗することができ、大径硬質材料層4Lの段差部分4LM、及び、それより軸線方向外側の部分の、軸線方向内側へのめくれ上がりを抑制することができる。よって、段差部分4LM、及び、それより軸線方向外側の部分において、軟質材料層5が疲労したり損傷したりするおそれを低減でき、ひいては、免震装置1の耐久性を向上できる。 Further, in the present embodiment, the outer peripheral side portion 5LM of the soft material layer 5L is a soft material layer 5S adjacent to the inside in the axial direction of the small diameter hard material layer 4S, or a hard material having a diameter smaller than that of the large diameter hard material layer 4L. The elasticity is higher than that of the soft material layer (in this example, the soft material layer 5S and the soft material layer 51) adjacent to the inner side in the axial direction of the layers (small diameter hard material layer 4S and hard material layer 41 in this example). As a result, when the seismic isolation device 1 is deformed in the horizontal direction, the repulsion toward the inward in the axial direction acts on the stepped portion 4LM of the large-diameter hard material layer 4L and the portion on the outer side in the axial direction of the laminated structure 3. It can withstand the force and can suppress the turning up of the stepped portion 4LM of the large-diameter hard material layer 4L and the portion outside the step portion in the axial direction inward in the axial direction. Therefore, it is possible to reduce the possibility that the soft material layer 5 is fatigued or damaged in the step portion 4LM and the portion outside the step portion 4LM in the axial direction, and by extension, the durability of the seismic isolation device 1 can be improved.

なお、本明細書における「弾性率」とは、JIS K6254における静的せん断弾性率を指し、JIS K6254に規定される静的せん断弾性率の測定方法に準じて測定した。測定には、短冊状1号形の試験片を用い、引張試験における引張速度は、1mm/min、引張歪みは100%とした。 The "elastic modulus" in the present specification refers to the static shear elastic modulus in JIS K6254, and was measured according to the method for measuring the static shear elastic modulus defined in JIS K6254. A strip-shaped No. 1 test piece was used for the measurement, and the tensile speed in the tensile test was 1 mm / min and the tensile strain was 100%.

本実施形態において、軟質材料層5Lにおける、外周側部分5LMの弾性率を弾性率G1とし、小径硬質材料層4Sの軸線方向内側に隣接する軟質材料層5Sの弾性率を弾性率G2とし、硬質材料層41の軸線方向内側に隣接する軟質材料層51の弾性率を弾性率G3とするとき、弾性率G1/G2は、200〜500%であることが好ましく、弾性率G1/G3は、200〜500%であることが好ましい。
なお、弾性率G2及びG3は同じでも異なっていてもよいが、製造性の観点から、本例のように同じであることが好ましい。
In the present embodiment, the elastic modulus of the outer peripheral side portion 5LM of the soft material layer 5L is defined as the elastic modulus G1, and the elastic modulus of the soft material layer 5S adjacent to the inner side of the small-diameter hard material layer 4S in the axial direction is defined as the elastic modulus G2. When the elastic modulus of the soft material layer 51 adjacent to the inside of the material layer 41 in the axial direction is the elastic modulus G3, the elastic modulus G1 / G2 is preferably 200 to 500%, and the elastic modulus G1 / G3 is 200. It is preferably ~ 500%.
The elastic moduli G2 and G3 may be the same or different, but from the viewpoint of manufacturability, they are preferably the same as in this example.

また、めくり上がり防止の効果の向上の観点から、軟質材料層5Lにおける、外周側部分5LMの弾性率G1は、0.6MPa以上であることが好ましく、1.0MPa以上であることがさらに好ましい。また、免震性能の向上の観点から、外周側部分5LMの弾性率G1は、2.0MPa以下であることが好ましい。 Further, from the viewpoint of improving the effect of preventing turning up, the elastic modulus G1 of the outer peripheral side portion 5LM in the soft material layer 5L is preferably 0.6 MPa or more, and more preferably 1.0 MPa or more. Further, from the viewpoint of improving the seismic isolation performance, the elastic modulus G1 of the outer peripheral side portion 5LM is preferably 2.0 MPa or less.

本実施形態では、上述のとおり、外周側部分5LMの外周側の表面を被覆層6が覆っている。被覆層6の弾性率は特に限定されないが、軸直方向における軟質材料層の一体性を高めるため、外周側部分5LMと同じ弾性率とすることがさらに好ましい。 In the present embodiment, as described above, the coating layer 6 covers the outer peripheral surface of the outer peripheral side portion 5LM. The elastic modulus of the coating layer 6 is not particularly limited, but it is more preferable to have the same elastic modulus as the outer peripheral side portion 5LM in order to enhance the integrity of the soft material layer in the axial direction.

なお、本明細書で説明する各実施形態においては、図1に示す例のように、積層構造体3の上側及び下側の両方の端部側において、小径硬質材料層4S及び大径硬質材料層4Lからなる対4Pが設けられていると、好適である。この場合、仮に積層構造体3の上側及び下側のうちいずれか一方の端部側のみにおいて、対4Pが設けられている場合に比べて、免震装置1の耐座屈性能を向上できる。 In each embodiment described in the present specification, as shown in the example shown in FIG. 1, the small-diameter hard material layer 4S and the large-diameter hard material are formed on both the upper and lower end sides of the laminated structure 3. It is preferable that the pair 4P composed of the layer 4L is provided. In this case, the buckling resistance performance of the seismic isolation device 1 can be improved as compared with the case where the pair 4P is provided only on the end side of either the upper side or the lower side of the laminated structure 3.

ただし、図2に示す第2実施形態のように、積層構造体3の下側の端部側のみにおいて、小径硬質材料層4S及び大径硬質材料層4Lからなる対4Pが設けられていてもよいし、あるいは、図3に示す第3実施形態のように、積層構造体3の上側の端部側のみにおいて、小径硬質材料層4S及び大径硬質材料層4Lからなる対4Pが設けられていてもよい。これらの場合、仮に積層構造体3の上側及び下側の両方の端部側において対4Pが設けられている場合(図1)に比べて、免震装置1の製造時において、積層構造体3を構成する各硬質材料層4及び各軟質材料層5の積層作業等がしやすくなるので、免震装置1の製造性を向上できる。なお、これらの場合、積層構造体3の上側及び下側のうち、対4Pが設けられていない方の端部側においては、段差部分4LMが存在せず、各硬質材料層4が同径であることから、水平方向変形時においてめくれ上がりのおそれが無い。よって、積層構造体3の上側及び下側のうち、対4Pが設けられている方の端部側のみにおいて、軟質材料層5Lにおける、外周側部分5LMを、小径硬質材料層4Sの軸線方向内側に隣接する軟質材料層5S、又は、大径硬質材料層4Lよりも小径の硬質材料層(本例では、小径硬質材料層4S及び硬質材料層41)の軸線方向内側に隣接する、軟質材料層(本例では、軟質材料層5S及び軟質材料層51)よりも、弾性率が高いものとすれば、めくり上がり抑制の観点において、十分である。また、第2実施形態及び第3実施形態の例において、外周側部分5LMは、軟質材料層5S及び51に加えて、大径硬質材料層4L及び小径硬質材料層4Sの間に配置された軟質材料層5Mよりも、弾性率が高いことがより好ましい。 However, as in the second embodiment shown in FIG. 2, even if the pair 4P composed of the small-diameter hard material layer 4S and the large-diameter hard material layer 4L is provided only on the lower end side of the laminated structure 3. Alternatively, or as in the third embodiment shown in FIG. 3, a pair 4P composed of a small diameter hard material layer 4S and a large diameter hard material layer 4L is provided only on the upper end side of the laminated structure 3. You may. In these cases, compared to the case where the pair 4P is provided on both the upper and lower end sides of the laminated structure 3 (FIG. 1), the laminated structure 3 is manufactured at the time of manufacturing the seismic isolation device 1. Since the laminating work of each of the hard material layer 4 and each of the soft material layers 5 constituting the above is facilitated, the manufacturability of the seismic isolation device 1 can be improved. In these cases, of the upper side and the lower side of the laminated structure 3, the step portion 4LM does not exist on the end side on the side where the pair 4P is not provided, and the hard material layers 4 have the same diameter. Therefore, there is no risk of turning up when deformed in the horizontal direction. Therefore, of the upper side and the lower side of the laminated structure 3, only the end side on which the pair 4P is provided, the outer peripheral side portion 5LM of the soft material layer 5L is formed inside the small diameter hard material layer 4S in the axial direction. A soft material layer 5S adjacent to the soft material layer or a hard material layer having a diameter smaller than that of the large diameter hard material layer 4L (in this example, the small diameter hard material layer 4S and the hard material layer 41) adjacent to the inside in the axial direction. (In this example, if the elastic coefficient is higher than that of the soft material layer 5S and the soft material layer 51), it is sufficient from the viewpoint of suppressing the turning up. Further, in the examples of the second embodiment and the third embodiment, the outer peripheral side portion 5LM is a soft material arranged between the large-diameter hard material layer 4L and the small-diameter hard material layer 4S in addition to the soft material layers 5S and 51. It is more preferable that the elastic modulus is higher than that of the material layer 5M.

また、図1〜図3に示す第1〜第3実施形態では、軟質材料層5Lにおける、外周側部分5LMの弾性率を、軟質材料層5S及び軟質材料層51よりも高いものとしているが、軟質材料層5Lにおける、少なくとも外周側部分5LMを含む部分、即ち、外周側部分5LM及び外周側部分5LMよりも内周側の部分の少なくとも一部を、軟質材料層5S、又は、軟質材料層5S及び軟質材料層51、好適には加えて軟質材料層5Mより高い弾性率としてもよい。 Further, in the first to third embodiments shown in FIGS. 1 to 3, the elastic modulus of the outer peripheral side portion 5LM in the soft material layer 5L is higher than that of the soft material layer 5S and the soft material layer 51. At least a part of the soft material layer 5L including at least the outer peripheral side portion 5LM, that is, at least a part of the outer peripheral side portion 5LM and the portion on the inner peripheral side of the outer peripheral side portion 5LM is the soft material layer 5S or the soft material layer 5S. And the soft material layer 51, preferably in addition, the elastic modulus may be higher than that of the soft material layer 5M.

図4に示す積層構造体3においては(第4実施形態)、大径硬質材料層4Lの軸線方向外側に隣接する軟質材料層5Lは、小径硬質材料層4Sの軸線方向内側に隣接する軟質材料層5S、又は、大径硬質材料層4Lよりも小径の硬質材料層(本例では、小径硬質材料層4S及び硬質材料層41)の軸線方向内側に隣接する軟質材料層(本例では、軟質材料層5S及び軟質材料層51)よりも、弾性率が高いことが好ましい。即ち、外周側部分5LMを含む軟質材料層5Lの全体が、軟質材料層5S、又は、軟質材料層5S及び軟質材料層51よりも、弾性率が高いことが好ましい。これにより、軟質材料層5Lの全体が、軟質材料層5S及び軟質材料層51よりも高い弾性率となり、めくり上がりをさらに抑制することができる。なお、軟質材料層5Lは、軟質材料層5S及び51に加えて、大径硬質材料層4L及び小径硬質材料層4Sの間に配置された軟質材料層5Mよりも、弾性率が高いことがより好ましい。 In the laminated structure 3 shown in FIG. 4 (fourth embodiment), the soft material layer 5L adjacent to the outside of the large-diameter hard material layer 4L in the axial direction is a soft material adjacent to the inside of the small-diameter hard material layer 4S in the axial direction. A soft material layer (soft in this example) adjacent to the inner side in the axial direction of the hard material layer (small diameter hard material layer 4S and hard material layer 41 in this example) having a diameter smaller than that of the layer 5S or the large diameter hard material layer 4L. It is preferable that the elastic coefficient is higher than that of the material layer 5S and the soft material layer 51). That is, it is preferable that the entire soft material layer 5L including the outer peripheral side portion 5LM has a higher elastic modulus than the soft material layer 5S or the soft material layer 5S and the soft material layer 51. As a result, the entire soft material layer 5L has a higher elastic modulus than that of the soft material layer 5S and the soft material layer 51, and the turning up can be further suppressed. The elastic modulus of the soft material layer 5L is higher than that of the soft material layer 5M arranged between the large-diameter hard material layer 4L and the small-diameter hard material layer 4S in addition to the soft material layers 5S and 51. preferable.

図5に示す積層構造体3においては(第5実施形態)、大径硬質材料層4Lよりも軸線方向外側に配置された軟質材料層(本例では、軟質材料層5L及び軟質材料層52)における、少なくとも、小径硬質材料層4Sよりも外周側に位置する外周側部分(本例では、外周側部分5LM及び52M)は、小径硬質材料層4Sの軸線方向内側に隣接する軟質材料層5S、又は、大径硬質材料層4Lよりも小径の硬質材料層(本例では、小径硬質材料層4S及び硬質材料層41)の軸線方向内側に隣接する軟質材料層(本例では、軟質材料層5S及び軟質材料層51)よりも、弾性率が高いことが好ましい。これによって、免震装置1の水平方向変形時に、大径硬質材料層4Lの段差部分4LM、及び、それより軸線方向外側の部分の、軸線方向内側へのめくれ上がりを、さらに抑制することができる。なお、外周側部分5LM及び52Mは、軟質材料層5S及び51に加えて、大径硬質材料層4L及び小径硬質材料層4Sの間に配置された軟質材料層5Mよりも、弾性率が高いことがより好ましい。 In the laminated structure 3 shown in FIG. 5 (fifth embodiment), the soft material layer arranged outside the large-diameter hard material layer 4L in the axial direction (in this example, the soft material layer 5L and the soft material layer 52). In, at least, the outer peripheral side portions (in this example, the outer peripheral side portions 5LM and 52M) located on the outer peripheral side of the small diameter hard material layer 4S are the soft material layers 5S adjacent to the inner side in the axial direction of the small diameter hard material layer 4S. Alternatively, the soft material layer (in this example, the soft material layer 5S) adjacent to the inner side in the axial direction of the hard material layer having a diameter smaller than that of the large diameter hard material layer 4L (in this example, the small diameter hard material layer 4S and the hard material layer 41). And it is preferable that the elastic coefficient is higher than that of the soft material layer 51). As a result, when the seismic isolation device 1 is deformed in the horizontal direction, the stepped portion 4LM of the large-diameter hard material layer 4L and the portion outside the seismic isolation device 1 in the axial direction can be further suppressed from being turned up inward in the axial direction. .. The outer peripheral side portions 5LM and 52M have a higher elastic modulus than the soft material layer 5M arranged between the large-diameter hard material layer 4L and the small-diameter hard material layer 4S in addition to the soft material layers 5S and 51. Is more preferable.

なお、本実施形態において、外周側部分5LM及び52Mの外周側の表面を覆っている被覆層6、並びに硬質材料層42の外周側の表面を覆っている被覆層6の弾性率は特に限定されないが、軸直方向における軟質材料層の一体性を高めるため、外周側部分5LM及び52Mと同じ弾性率とすることがさらに好ましい。 In the present embodiment, the elastic modulus of the coating layer 6 covering the outer peripheral surfaces of the outer peripheral side portions 5LM and 52M and the elastic modulus of the coating layer 6 covering the outer peripheral side surface of the hard material layer 42 is not particularly limited. However, in order to enhance the integrity of the soft material layer in the axial direction, it is more preferable that the elastic modulus is the same as that of the outer peripheral side portions 5LM and 52M.

また、本実施形態において、軟質材料層5Lにおける外周側部分5LM、及び軟質材料層52における外周側部分52Mの弾性率を、軟質材料層5S及び51よりも高いものとしているが、軟質材料層5Lにおける、少なくとも外周側部分5LMを含む部分、即ち、外周側部分5LM及び外周側部分5LMよりも内周側の部分の少なくとも一部を、軟質材料層5S、又は、軟質材料層5S及び軟質材料層51より高い弾性率としてもよく、加えて、軟質材料層5Mより高い弾性率としてもよい。さらに、軟質材料層52における、少なくとも外周側部分52Mを含む部分、即ち、外周側部分52M及び外周側部分52Mよりも内周側の部分の少なくとも一部を、軟質材料層5S、又は、軟質材料層5S及び軟質材料層51より高い弾性率としてもよく、加えて、軟質材料層5Mよりも高い弾性率とすることもできる。
さらに、大径硬質材料層4Lよりも軸線方向外側の軟質材料層の全部を、軟質材料層5S、又は、軟質材料層5S及び軟質材料層51より高い弾性率としてもよく、加えて、軟質材料層5Mよりも高い弾性率としてもよい。
Further, in the present embodiment, the elastic modulus of the outer peripheral side portion 5LM of the soft material layer 5L and the outer peripheral side portion 52M of the soft material layer 52 is higher than that of the soft material layers 5S and 51, but the soft material layer 5L The soft material layer 5S, or the soft material layer 5S and the soft material layer, at least a part of the portion including the outer peripheral side portion 5LM, that is, the outer peripheral side portion 5LM and the inner peripheral side portion from the outer peripheral side portion 5LM. The elastic modulus may be higher than 51, and in addition, the elastic modulus may be higher than that of the soft material layer 5M. Further, in the soft material layer 52, at least a part including at least the outer peripheral side portion 52M, that is, at least a part of the outer peripheral side portion 52M and the portion on the inner peripheral side of the outer peripheral side portion 52M is the soft material layer 5S or the soft material. The elastic modulus may be higher than that of the layer 5S and the soft material layer 51, and in addition, the elastic modulus may be higher than that of the soft material layer 5M.
Further, the entire soft material layer outside the large-diameter hard material layer 4L in the axial direction may have a higher elastic modulus than the soft material layer 5S or the soft material layer 5S and the soft material layer 51. In addition, the soft material The elastic modulus may be higher than that of the layer 5M.

また、図4及び図5に示す第4実施形態及び第5実施形態において、積層構造体3の上側及び下側の両方の端部側において、小径硬質材料層4S及び大径硬質材料層4Lからなる対4Pが設けられているが、積層構造体3の下側の端部側のみ及び上側の端部側のみにおいて、小径硬質材料層4S及び大径硬質材料層4Lからなる対4Pが設けられていてもよい。 Further, in the fourth and fifth embodiments shown in FIGS. 4 and 5, the small-diameter hard material layer 4S and the large-diameter hard material layer 4L are formed on both the upper and lower end sides of the laminated structure 3. However, only on the lower end side and the upper end side of the laminated structure 3, a pair 4P composed of a small diameter hard material layer 4S and a large diameter hard material layer 4L is provided. You may be.

本明細書の各実施形態において、図6、図7及び図8に示す実施形態6、7及び8における積層構造体3のように、その上側及び下側のうち少なくともいずれか一方(図6〜図8に示す例では、少なくとも下側)の端部側において、小径硬質材料層4S及び大径硬質材料層4Lからなる対4Pを、複数(図6〜図8に示す例では、3つ)有していてもよい。 In each embodiment of the present specification, at least one of the upper side and the lower side thereof (FIGS. 6 to 6), as in the laminated structure 3 in the sixth, seventh and eighth embodiments shown in FIGS. 6, 7 and 8. In the example shown in FIG. 8, a plurality of pairs 4P composed of the small diameter hard material layer 4S and the large diameter hard material layer 4L are formed on the end side (at least on the lower side) (three in the examples shown in FIGS. 6 to 8). You may have.

実施形態6における積層構造体3は、図6に示すように、各対4Pの段差部分4LM1、4LM2及び4LM3の径方向長さL1、L2及びL3が、互いに異なる。より具体的には、各対4Pの段差部分4LM1、4LM2及び4LM3の径方向長さL1、L2及びL3は、軸線方向外側に位置するものほど、径方向長さが長い(即ち、長さL1<L2<L3)。
ここで、仮に軟質材料層5がそれぞれ同じ弾性率を有する場合、段差部分4LMの径方向長さが長いほど、免震装置1の水平方向変形時において、積層構造体3のうち、当該段差部分4LM、及び、それより軸線方向外側の部分は、軸線方向内側への反り返り(めくれ上がり)が生じやすくなる。このような観点から、積層構造体3が、その上側及び下側のうち少なくとも一方の端部側において、小径硬質材料層4S及び大径硬質材料層4Lからなる対4Pを複数有している場合、図6に示すように、少なくとも、径方向長さL3が最大である段差部分4LMを有する大径硬質材料層4L(本例では、径方向長さが長さL3である段差部分4LM3を有する大径硬質材料層4L3)の軸線方向外側に隣接する軟質材料層5L(本例では、軟質材料層5L3)における、少なくとも、大径硬質材料層4Lと対をなす小径硬質材料層4S(本例では、小径硬質材料層4S3)よりも外周側に位置する外周側部分5LM(本例では、外周側部分5LM3)の弾性率を、対をなす小径硬質材料層4S(本例では小径硬質材料層4S3)の軸線方向内側に隣接する軟質材料層5S(本例では、軟質材料層5S3)、又は、当該大径硬質材料層4Lよりも小径の硬質材料層4の軸線方向内側に隣接する軟質材料層5(本例では、軟質材料層5S3、5S2、5S1及び51)よりも、弾性率が高いものとすることが好ましい。即ち、外周側部分5LM3の弾性率を、軟質材料層5S3、又は、軟質材料層5S3、5S2、5S1及び51よりも、弾性率が高いものとすることが好ましい。これにより、めくれ上がりをさらに抑制できる。
なお、外周側部分5LM3は、軟質材料層5S3、又は、軟質材料層5S3、5S2、5S1及び51に加えて、軟質材料層5M3、5M2及び5M1よりも弾性率が高いことがより好ましい。
In the laminated structure 3 of the sixth embodiment, as shown in FIG. 6, the radial lengths L1, L2, and L3 of the stepped portions 4LM1, 4LM2, and 4LM3 of each pair of 4P are different from each other. More specifically, the radial lengths L1, L2 and L3 of the stepped portions 4LM1, 4LM2 and 4LM3 of each pair of 4P are longer in the radial direction (that is, the length L1) as they are located outside in the axial direction. <L2 <L3).
Here, if the soft material layers 5 each have the same elastic modulus, the longer the radial length of the step portion 4LM, the more the step portion of the laminated structure 3 when the seismic isolation device 1 is deformed in the horizontal direction. 4LM and the portion outside the axial direction are likely to be warped (turned up) inward in the axial direction. From this point of view, when the laminated structure 3 has a plurality of pairs 4P composed of a small diameter hard material layer 4S and a large diameter hard material layer 4L on at least one end side of the upper side and the lower side thereof. As shown in FIG. 6, at least a large-diameter hard material layer 4L having a stepped portion 4LM having a maximum radial length L3 (in this example, having a stepped portion 4LM3 having a radial length L3). In the soft material layer 5L (in this example, the soft material layer 5L3) adjacent to the outer side in the axial direction of the large diameter hard material layer 4L3), at least the small diameter hard material layer 4S (this example) paired with the large diameter hard material layer 4L. Then, the elastic coefficient of the outer peripheral side portion 5LM (in this example, the outer peripheral side portion 5LM3) located on the outer peripheral side of the small diameter hard material layer 4S3) is set to the paired small diameter hard material layer 4S (small diameter hard material layer in this example). The soft material layer 5S (in this example, the soft material layer 5S3) adjacent to the inner side in the axial direction of 4S3), or the soft material adjacent to the inner side in the axial direction of the hard material layer 4 having a diameter smaller than that of the large diameter hard material layer 4L. It is preferable that the elastic coefficient is higher than that of the layer 5 (in this example, the soft material layers 5S3, 5S2, 5S1 and 51). That is, it is preferable that the elastic modulus of the outer peripheral side portion 5LM3 is higher than that of the soft material layer 5S3 or the soft material layer 5S3, 5S2, 5S1 and 51. As a result, the turning up can be further suppressed.
It is more preferable that the outer peripheral side portion 5LM3 has a higher elastic modulus than the soft material layers 5M3, 5M2 and 5M1 in addition to the soft material layers 5S3 or the soft material layers 5S3, 5S2, 5S1 and 51.

実施形態7における積層構造体3は、図7に示すように、各対4Pの段差部分4LM1、4LM2及び4LM3の径方向長さL1、L2及びL3が、互いに同じである。
本実施形態において、積層構造体3は、その上側及び下側のうち少なくともいずれか一方の端部側において、小径硬質材料層4S及び大径硬質材料層4Lからなる対を複数有している場合、図7に示すように、複数の対4Pのうち少なくとも2つの対(より好適には全て)のそれぞれの大径硬質材料層4Lの、軸線方向外側に隣接する軟質材料層5Lにおける、外周側部分5LMは、当該大径硬質材料層4Lと対をなす小径硬質材料層4Sの軸線方向内側に隣接する軟質材料層5Sよりも、弾性率が高いことが好ましい。より好ましくは、外周側部分5LMは、当該大径硬質材料層4Lと対をなす小径硬質材料層4Sの軸方向内側に隣接する軟質材料層5Sに加えて、対をなす大径硬質材料層4Lと小径硬質材料層との間に配置された軟質材料層5Mよりも、弾性率が高い。図7において、より具体的には、外周側部分5LM3は、軟質材料層5S3(図示例では、軟質材料層5S3は、軟質材料層5L2でもあり、そのうちの、外周側部分5LM2以外の部分)よりも、弾性率が高いことが好ましい。さらに、外周側部分5LM2は、軟質材料層5S2よりも、弾性率が高いことが好ましい。
これにより、めくれ上がりをさらに抑制できる。
なお、本例において、軟質材料層5LM2及び5LM3の弾性率は同じだが、弾性率が異なっていてもよい。
As shown in FIG. 7, the laminated structure 3 in the seventh embodiment has the same radial lengths L1, L2, and L3 of the stepped portions 4LM1, 4LM2, and 4LM3 of each pair of 4P.
In the present embodiment, the laminated structure 3 has a plurality of pairs composed of a small-diameter hard material layer 4S and a large-diameter hard material layer 4L on the end side of at least one of the upper side and the lower side thereof. , As shown in FIG. 7, the outer peripheral side of each large-diameter hard material layer 4L of at least two pairs (more preferably all) of the plurality of pairs 4P in the soft material layer 5L adjacent to the outer side in the axial direction. It is preferable that the portion 5LM has a higher elastic coefficient than the soft material layer 5S adjacent to the inside in the axial direction of the small diameter hard material layer 4S paired with the large diameter hard material layer 4L. More preferably, the outer peripheral side portion 5LM is a pair of large-diameter hard material layers 4L in addition to the soft material layer 5S adjacent to the axially inner side of the small-diameter hard material layer 4S paired with the large-diameter hard material layer 4L. The elastic modulus is higher than that of the soft material layer 5M arranged between the small diameter hard material layer and the small diameter hard material layer. In FIG. 7, more specifically, the outer peripheral side portion 5LM3 is from the soft material layer 5S3 (in the illustrated example, the soft material layer 5S3 is also the soft material layer 5L2, and the portion other than the outer peripheral side portion 5LM2). However, it is preferable that the elastic modulus is high. Further, the outer peripheral side portion 5LM2 preferably has a higher elastic modulus than the soft material layer 5S2.
As a result, the turning up can be further suppressed.
In this example, the elastic moduli of the soft material layers 5LM2 and 5LM3 are the same, but the elastic moduli may be different.

実施形態8における積層構造体3は、図8に示すように、各対4Pの段差部分4LM1、4LM2及び4LM3の径方向長さL1、L2及びL3が、互いに異なる。より具体的には、図6に示す積層構造体3と同様に、各対4Pの段差部分4LM1、4LM2及び4LM3の径方向長さL1、L2及びL3は、軸線方向外側に位置するものほど、径方向長さが長い(即ち、長さL1<L2<L3)。
免震装置1において、大径硬質材料層4Lが、小径硬質材料層4Sよりも外周側に位置する段差部分4LMを有していると、段差部分4LMに軸線方向内側へ反り返る力が作用しやすく、さらに、上述のとおり、仮に軟質材料層5がそれぞれ同様の弾性率を有する場合、段差部分4LMの径方向長さが長いほど、免震装置1の水平方向変形時において、積層構造体3のうち、当該段差部分4LM、及び、それより軸線方向外側の部分は、軸線方向内側への反り返り(めくれ上がり)が生じやすくなる。このような観点から、本実施形態において、積層構造体3が、その上側及び下側のうち少なくとも一方の端部側において、小径硬質材料層4S及び大径硬質材料層4Lからなる対4Pを複数有している場合、少なくとも2つの対(本例では、対4P1、対4P2、対4P3の3つ)が含む複数の大径硬質材料層(本例では、大径硬質材料層4L1、4L2、4L3)のそれぞれの軸線方向外側に隣接する軟質材料層(本例では、軟質材料層5L1、5L2、5L3)における、外周側部分の複数(本例では、外周側部分5LM1、5LM2、5LM3)は、当該大径硬質材料層における、当該大径硬質材料層と対をなす小径硬質材料層(本例では、小径硬質材料層4S1、4S2、4S3)よりも外周側に位置する段差部分(本例では、段差部分4LM1、4LM2、4LM3)の径方向長さが大きいものほど、弾性率が高いことが好ましい。より具体的には、図8に示す例では、対4P1、4P2及び4P3において、段差部分4LM1、4LM2及び4LM3の径方向長さは、径方向長さL1、L2及びL3の順に大きくなり、外周側部分5LMの弾性率は、外周側部分5LM1、5LM2、5LM3の順に高くなっていることが好ましい。これにより、めくれ上がりをさらに抑制できる。
なお、図8の例では、複数の対4Pのうち、外周側部分5LM1、5LM2、5LM3の弾性率がそれぞれ異なっているが、外周側部分5LM1、5LM2、5LM3の弾性率の大小関係は、任意でよい。例えば、図8の例のように、各対4Pの段差部分4LM1、4LM2及び4LM3の径方向長さL1、L2及びL3が、軸線方向外側に位置するものほど、径方向長さが長い(即ち、長さL1<L2<L3)場合において、外周側部分5LM1、5LM2、5LM3の弾性率は、互いに同じであってもよい。あるいは、外周側部分5LM1及び5LM2の弾性率が互いに同じであってもよく、又は、外周側部分5LM2及び5LM3の弾性率が互いに同じであってもよい。
In the laminated structure 3 of the eighth embodiment, as shown in FIG. 8, the radial lengths L1, L2, and L3 of the stepped portions 4LM1, 4LM2, and 4LM3 of each pair of 4P are different from each other. More specifically, similarly to the laminated structure 3 shown in FIG. 6, the radial lengths L1, L2 and L3 of the stepped portions 4LM1, 4LM2 and 4LM3 of each pair of 4P are located outside in the axial direction. The radial length is long (that is, the length L1 <L2 <L3).
In the seismic isolation device 1, if the large-diameter hard material layer 4L has a step portion 4LM located on the outer peripheral side of the small-diameter hard material layer 4S, a force that warps inward in the axial direction is likely to act on the step portion 4LM. Further, as described above, if the soft material layers 5 have the same elastic modulus, the longer the radial length of the step portion 4LM is, the more the laminated structure 3 is deformed in the horizontal direction. Of these, the step portion 4LM and the portion outside the step portion in the axial direction are likely to be warped (turned up) inward in the axial direction. From this point of view, in the present embodiment, the laminated structure 3 has a plurality of pairs 4P composed of a small diameter hard material layer 4S and a large diameter hard material layer 4L on at least one end side of the upper side and the lower side thereof. When having, a plurality of large-diameter hard material layers (in this example, large-diameter hard material layers 4L1, 4L2, 3) including at least two pairs (in this example, three pairs of 4P1, pair 4P2, and pair 4P3). A plurality of outer peripheral side portions (in this example, outer peripheral side portions 5LM1, 5LM2, 5LM3) in the soft material layers (soft material layers 5L1, 5L2, 5L3 in this example) adjacent to each axially outer side of 4L3) , In the large-diameter hard material layer, a step portion located on the outer peripheral side of the small-diameter hard material layer (in this example, the small-diameter hard material layers 4S1, 4S2, 4S3) paired with the large-diameter hard material layer (this example). Then, it is preferable that the larger the radial length of the stepped portion 4LM1, 4LM2, 4LM3) is, the higher the elastic coefficient is. More specifically, in the example shown in FIG. 8, in pairs 4P1, 4P2 and 4P3, the radial lengths of the stepped portions 4LM1, 4LM2 and 4LM3 increase in the order of the radial lengths L1, L2 and L3, and the outer circumference. It is preferable that the elastic modulus of the side portion 5LM increases in the order of the outer peripheral side portions 5LM1, 5LM2, and 5LM3. As a result, the turning up can be further suppressed.
In the example of FIG. 8, the elastic moduli of the outer peripheral side portions 5LM1, 5LM2, and 5LM3 are different from each other among the plurality of pairs 4P, but the magnitude relationship of the elastic moduli of the outer peripheral side portions 5LM1, 5LM2, and 5LM3 is arbitrary. It's fine. For example, as in the example of FIG. 8, the radial lengths L1, L2, and L3 of the stepped portions 4LM1, 4LM2, and 4LM3 of each pair of 4P are located outside in the axial direction, the longer the radial length is (that is, that is). In the case of length L1 <L2 <L3), the elastic moduli of the outer peripheral side portions 5LM1, 5LM2, and 5LM3 may be the same as each other. Alternatively, the elastic moduli of the outer peripheral side portions 5LM1 and 5LM2 may be the same as each other, or the elastic moduli of the outer peripheral side portions 5LM2 and 5LM3 may be the same as each other.

本明細書で説明する各例において、積層構造体3は、図1〜図8の各例のように、その上側及び下側のうち少なくともいずれか一方の端部側において、各硬質材料層4が、それぞれ当該硬質材料層4に対し軸線方向内側に隣り合う他の硬質材料層4の外径以上の外径を有している(すなわち、各硬質材料層4の外径が、軸線方向外側に向かうにつれて徐々に増大している)と、好適である。言い換えれば、積層構造体3は、図1〜図6の各例のように、その上側及び下側のうち少なくともいずれか一方の端部側において、いずれの硬質材料層4も、当該硬質材料層4に対し軸線方向内側に隣り合う他の硬質材料層4の外径未満の外径を有していないと、好適である。これにより、仮に、いずれかの硬質材料層4が、当該硬質材料層4に対し軸線方向内側に隣り合う他の硬質材料層4の外径未満の外径を有している場合に比べて、免震装置1の耐座屈性能を、向上できる。
また、本明細書で説明する各例において、積層構造体3は、その上側及び下側のうち少なくともいずれか一方の端部側において、最も軸線方向外側に位置する複数の硬質材料層4が、それぞれ当該硬質材料層4に対し軸線方向内側に隣り合う他の硬質材料層4の外径よりも大きな外径を有している(すなわち、これら複数の硬質材料層4の外径が、軸線方向外側に向かうにつれて、一部で一定となることなく常に滑らかに増大している)と、好適である。この場合、免震装置1の耐座屈性能及び免震性能を、向上できることに加えて、積層構造体3のめくれ上がりをさらに抑制することができる。
なお、積層構造体3は、図1〜図5の各例のように、積層構造体3における軸線方向中央部分において、複数の硬質材料層4が同径であってもよいし、あるいは、積層構造体3の中央部分において、複数の硬質材料層4が、それぞれ当該硬質材料層4に対し軸線方向内側に隣り合う他の硬質材料層4の外径よりも大きな外径を有し(すなわち、これら複数の硬質材料層4の外径が、軸線方向外側に向かうにつれて、一部で一定となることなく常に滑らかに増大し)ていてもよい。例えば、積層構造体3は、積層構造体3における軸線方向の全体において、複数の硬質材料層4が、それぞれ当該硬質材料層4に対し軸線方向内側に隣り合う他の硬質材料層4の外径よりも大きな外径を有し(すなわち、これら複数の硬質材料層4の外径が、軸線方向外側に向かうにつれて、一部で一定となることなく常に滑らかに増大し)ていてもよい。
なお、これらの場合、各対4Pの小径硬質材料層4Sは、当該対4Pに対し軸線方向内側に隣り合う他の対4Pの大径硬質材料層4Lとなり得る。同様に、各対4Pの大径硬質材料層4Lは、当該対4Pに対し軸線方向外側に隣り合う他の対4Pの小径硬質材料層4Sとなり得る。
In each of the examples described herein, the laminated structure 3 has each hard material layer 4 on the end side of at least one of the upper side and the lower side thereof, as in each example of FIGS. 1 to 8. Each has an outer diameter equal to or larger than the outer diameter of another hard material layer 4 adjacent to the inside of the hard material layer 4 in the axial direction (that is, the outer diameter of each hard material layer 4 is outside in the axial direction). It gradually increases toward the end), which is preferable. In other words, in the laminated structure 3, as in each example of FIGS. 1 to 6, any hard material layer 4 is the hard material layer at least on the end side of at least one of the upper side and the lower side thereof. It is preferable that the outer diameter is less than the outer diameter of the other hard material layer 4 adjacent to the inner side in the axial direction with respect to 4. As a result, as compared with the case where any of the hard material layers 4 has an outer diameter smaller than the outer diameter of the other hard material layers 4 adjacent to the inside in the axial direction with respect to the hard material layer 4. The buckling resistance performance of the seismic isolation device 1 can be improved.
Further, in each example described in the present specification, the laminated structure 3 has a plurality of hard material layers 4 located on the outermost side in the axial direction on at least one end side of the upper side and the lower side thereof. Each of the hard material layers 4 has an outer diameter larger than the outer diameter of the other hard material layers 4 adjacent to each other in the axial direction (that is, the outer diameters of the plurality of hard material layers 4 are in the axial direction). As it goes outward, it always increases smoothly without being constant in some parts), which is preferable. In this case, in addition to being able to improve the buckling resistance and seismic isolation performance of the seismic isolation device 1, it is possible to further suppress the turning up of the laminated structure 3.
In the laminated structure 3, as in each example of FIGS. 1 to 5, a plurality of hard material layers 4 may have the same diameter at the central portion in the axial direction of the laminated structure 3, or the laminated structure 3 may be laminated. In the central portion of the structure 3, each of the plurality of hard material layers 4 has an outer diameter larger than the outer diameter of another hard material layer 4 adjacent to the inside in the axial direction with respect to the hard material layer 4 (that is,). The outer diameters of the plurality of hard material layers 4 may always increase smoothly without being partially constant as they go outward in the axial direction). For example, in the laminated structure 3, a plurality of hard material layers 4 have the outer diameters of other hard material layers 4 adjacent to each other in the axial direction inward with respect to the hard material layer 4 in the entire axial direction of the laminated structure 3. It may have a larger outer diameter (that is, the outer diameters of these plurality of hard material layers 4 always increase smoothly without being partially constant as they go outward in the axial direction).
In these cases, the small-diameter hard material layer 4S of each pair 4P can be another pair 4P large-diameter hard material layer 4L adjacent to the inside of the pair 4P in the axial direction. Similarly, the large-diameter hard material layer 4L of each pair 4P can be another pair 4P small-diameter hard material layer 4S adjacent to the pair 4P on the outer side in the axial direction.

本明細書で説明する各例においては、積層構造体3は、その上側及び下側のうち少なくともいずれか一方の端部側において、小径硬質材料層4S及び大径硬質材料層4Lからなる対4Pを、複数有している場合、図6及び図8の例のように、各対4Pの段差部分4LMは、軸線方向外側に位置するものほど、径方向長さが長いと、好適である。これにより、仮に図7の例のように各対4Pの段差部分4LMの径方向長さLが互いに同じである場合に比べて、積層構造体3のめくれ上がりをさらに抑制することができる。 In each of the examples described herein, the laminated structure 3 is a pair of 4P composed of a small-diameter hard material layer 4S and a large-diameter hard material layer 4L on the end side of at least one of the upper side and the lower side thereof. When a plurality of the steps 4LM are provided, as in the examples of FIGS. 6 and 8, it is preferable that the step portion 4LM of each pair of 4Ps is located on the outer side in the axial direction and has a longer radial length. As a result, it is possible to further suppress the turning up of the laminated structure 3 as compared with the case where the radial lengths L of the stepped portions 4LM of each pair of 4P are the same as in the example of FIG.

また、積層構造体3は、図1〜図5の各例においては、各硬質材料層4と各軟質材料層5とが環状ではなく中実に構成されており、積層構造体3の中心軸線O上に硬質材料層4と軟質材料層5とが位置しているが、これに限られない。例えば、積層構造体3は、各硬質材料層4と各軟質材料層5とが環状に構成されており、各硬質材料層4の中心穴と各軟質材料層5の中心穴とによって、積層構造体3は、その中心軸線O上に、軸線方向に延在する中心穴を有しており、当該中心穴に、柱状体が配置されていてもよい。柱状体は、塑性変形により振動エネルギーを吸収できるように構成されていると好適である。柱状体は、例えば、鉛、錫、錫合金、又は熱可塑性樹脂から構成されることができる。 Further, in the laminated structure 3, in each of the examples of FIGS. 1 to 5, each hard material layer 4 and each soft material layer 5 are not annular but solid, and the central axis O of the laminated structure 3 is formed. The hard material layer 4 and the soft material layer 5 are located above, but the present invention is not limited to this. For example, in the laminated structure 3, each hard material layer 4 and each soft material layer 5 are formed in an annular shape, and the laminated structure is formed by the center hole of each hard material layer 4 and the center hole of each soft material layer 5. The body 3 has a central hole extending in the axial direction on the central axis O, and a columnar body may be arranged in the central hole. It is preferable that the columnar body is configured to be able to absorb vibration energy by plastic deformation. The columnar body can be composed of, for example, lead, tin, a tin alloy, or a thermoplastic resin.

本発明の免震装置は、地震の揺れが構造物(例えば、ビル、マンション、戸建て住宅、倉庫等の建物、並びに、橋梁等)に伝わるのを抑制するために、構造物の上部構造と下部構造との間に配置されると、好適なものである。 The seismic isolation device of the present invention has an upper structure and a lower part of a structure in order to suppress the shaking of an earthquake from being transmitted to a structure (for example, a building such as a building, a condominium, a detached house, a warehouse, and a bridge). It is suitable when placed between the structure.

1:免震装置、21:上側フランジプレート(フランジプレート)、 22:下側フランジプレート(フランジプレート)、 3:積層構造体、 4:硬質材料層、 4S、4S1〜4S3:小径硬質材料層(硬質材料層)、 4L、4L1〜4L3:大径硬質材料層(硬質材料層)、 4LM、4LM1〜4LM3:段差部分、 41、42:硬質材料層、 4P、4P1〜4P3:対、 5:軟質材料層、 5S、5S1〜5S3:軟質材料層、 5L、5L1〜5L3:軟質材料層、 51、52:軟質材料層、 5LM、5LM1〜5LM3:外周側部分、 6:被覆層、 O:中心軸線







1: Seismic isolation device, 21: Upper flange plate (flange plate), 22: Lower flange plate (flange plate), 3: Laminated structure, 4: Hard material layer, 4S, 4S1-4S3: Small diameter hard material layer ( Hard material layer), 4L, 4L1-4L3: Large diameter hard material layer (hard material layer), 4LM, 4LM1-4LM3: Stepped part, 41, 42: Hard material layer, 4P, 4P1-4P3: Pair, 5: Soft Material layer, 5S, 5S1-5S3: Soft material layer, 5L, 5L1-5L3: Soft material layer, 51, 52: Soft material layer, 5LM, 5LM1-5LM3: Outer peripheral part, 6: Coating layer, O: Central axis







Claims (6)

鉛直方向に交互に積層された硬質材料層及び軟質材料層を有する、積層構造体を備えた、免震装置であって、
前記積層構造体は、その上側及び下側のうち少なくともいずれか一方の端部側において、前記硬質材料層である小径硬質材料層、及び、当該小径硬質材料層に対し軸線方向外側に隣り合うとともに前記小径硬質材料層よりも大径の前記硬質材料層である大径硬質材料層を、有しており、
前記大径硬質材料層の軸線方向外側に隣接する前記軟質材料層における、少なくとも、前記小径硬質材料層よりも外周側に位置する外周側部分は、前記小径硬質材料層の軸線方向内側に隣接する前記軟質材料層、又は、前記大径硬質材料層よりも小径の前記硬質材料層の軸線方向内側に隣接する前記軟質材料層よりも、弾性率が高いことを特徴とする、免震装置。
A seismic isolation device having a laminated structure having hard material layers and soft material layers alternately laminated in the vertical direction.
The laminated structure is adjacent to the small-diameter hard material layer, which is the hard material layer, and the small-diameter hard material layer on the outer side in the axial direction on at least one end side of the upper side and the lower side thereof. It has a large-diameter hard material layer, which is the hard material layer having a larger diameter than the small-diameter hard material layer.
In the soft material layer adjacent to the outer side of the large-diameter hard material layer in the axial direction, at least the outer peripheral side portion located on the outer peripheral side of the small-diameter hard material layer is adjacent to the inner side in the axial direction of the small-diameter hard material layer. A seismic isolation device having a higher elastic modulus than the soft material layer or the soft material layer adjacent to the inside in the axial direction of the hard material layer having a diameter smaller than that of the large-diameter hard material layer.
前記大径硬質材料層の軸線方向外側に隣接する前記軟質材料層は、前記小径硬質材料層の軸線方向内側に隣接する前記軟質材料層、又は、前記大径硬質材料層よりも小径の前記硬質材料層の軸線方向内側に隣接する前記軟質材料層よりも、弾性率が高い、請求項1に記載の免震装置。 The soft material layer adjacent to the outside of the large-diameter hard material layer in the axial direction is the soft material layer adjacent to the inside of the small-diameter hard material layer in the axial direction, or the hard material having a diameter smaller than that of the large-diameter hard material layer. The seismic isolation device according to claim 1, wherein the elastic modulus is higher than that of the soft material layer adjacent to the inside of the material layer in the axial direction. 前記大径硬質材料層よりも軸線方向外側に配置された前記軟質材料層における、少なくとも、前記小径硬質材料層よりも外周側に位置する外周側部分は、前記小径硬質材料層の軸線方向内側に隣接する前記軟質材料層、又は、前記大径硬質材料層よりも小径の前記硬質材料層の軸線方向内側に隣接する前記軟質材料層よりも、弾性率が高い、請求項1又は2に記載の免震装置。 In the soft material layer arranged outside the large-diameter hard material layer in the axial direction, at least the outer peripheral side portion located on the outer peripheral side of the small-diameter hard material layer is inside the small-diameter hard material layer in the axial direction. The method according to claim 1 or 2, wherein the elastic modulus is higher than that of the adjacent soft material layer or the soft material layer adjacent to the inside in the axial direction of the hard material layer having a diameter smaller than that of the large-diameter hard material layer. Seismic isolation device. 前記積層構造体は、その上側及び下側のうち少なくともいずれか一方の端部側において、前記小径硬質材料層及び前記大径硬質材料層からなる対を複数有しており、
前記複数の対が含む複数の前記大径硬質材料層のうち、少なくとも、当該大径硬質材料層における、当該大径硬質材料層と対をなす前記小径硬質材料層よりも外周側に位置する段差部分の径方向長さが最大である、前記大径硬質材料層の、軸線方向外側に隣接する前記軟質材料層における、前記外周側部分は、前記対をなす前記小径硬質材料層、又は、当該大径硬質材料層よりも小径の前記硬質材料層の軸線方向内側に隣接する前記軟質材料層よりも、弾性率が高い、請求項1〜3のいずれか一項に記載の免震装置。
The laminated structure has a plurality of pairs composed of the small diameter hard material layer and the large diameter hard material layer on the end side of at least one of the upper side and the lower side thereof.
Of the plurality of large-diameter hard material layers included in the plurality of pairs, at least a step in the large-diameter hard material layer located on the outer peripheral side of the small-diameter hard material layer paired with the large-diameter hard material layer. The outer peripheral side portion of the soft material layer of the large-diameter hard material layer having the maximum radial length of the portion adjacent to the outer side in the axial direction is the pair of the small-diameter hard material layers or the said. The seismic isolation device according to any one of claims 1 to 3, which has a higher elastic coefficient than the soft material layer adjacent to the inside in the axial direction of the hard material layer having a diameter smaller than that of the large diameter hard material layer.
前記積層構造体は、その上側及び下側のうち少なくともいずれか一方の端部側において、前記小径硬質材料層及び前記大径硬質材料層からなる対を複数有しており、
前記複数の対のうち少なくとも2つの対のそれぞれの前記大径硬質材料層の、軸線方向外側に隣接する前記軟質材料層における、前記外周側部分は、当該大径硬質材料層と対をなす前記小径硬質材料層の軸線方向内側に隣接する前記軟質材料層よりも、弾性率が高い、請求項1〜4のいずれか一項に記載の免震装置。
The laminated structure has a plurality of pairs composed of the small diameter hard material layer and the large diameter hard material layer on the end side of at least one of the upper side and the lower side thereof.
The outer peripheral side portion of the soft material layer adjacent to the outer side in the axial direction of each of the large-diameter hard material layers of at least two of the plurality of pairs is paired with the large-diameter hard material layer. The seismic isolation device according to any one of claims 1 to 4, which has a higher elastic modulus than the soft material layer adjacent to the inside of the small-diameter hard material layer in the axial direction.
前記少なくとも2つの対が含む複数の前記大径硬質材料層のそれぞれの軸線方向外側に隣接する前記軟質材料層における、前記外周側部分の複数は、当該大径硬質材料層における、当該大径硬質材料層と対をなす前記小径硬質材料層よりも外周側に位置する段差部分の径方向長さが大きいものほど、弾性率が高い、請求項5に記載の免震装置。
A plurality of the outer peripheral side portions of the soft material layer adjacent to each axially outer side of the plurality of large diameter hard material layers included in the at least two pairs are the large diameter hard materials in the large diameter hard material layer. The seismic isolation device according to claim 5, wherein the larger the radial length of the step portion located on the outer peripheral side of the small-diameter hard material layer paired with the material layer, the higher the elastic modulus.
JP2019113151A 2019-06-18 2019-06-18 Seismic isolation device Active JP7227859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019113151A JP7227859B2 (en) 2019-06-18 2019-06-18 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019113151A JP7227859B2 (en) 2019-06-18 2019-06-18 Seismic isolation device

Publications (2)

Publication Number Publication Date
JP2020204382A true JP2020204382A (en) 2020-12-24
JP7227859B2 JP7227859B2 (en) 2023-02-22

Family

ID=73838580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019113151A Active JP7227859B2 (en) 2019-06-18 2019-06-18 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP7227859B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11141181A (en) * 1997-11-13 1999-05-25 Fujita Corp Laminated rubber type vibration isolation device
JPH11141180A (en) * 1997-11-12 1999-05-25 Fujita Corp Laminated rubber type vibration isolation device
JP2000001820A (en) * 1998-06-17 2000-01-07 Yokohama Rubber Co Ltd:The Laminated rubber bearing
JP2004036647A (en) * 2002-06-28 2004-02-05 Bridgestone Corp Base isolation structure
JP2016169770A (en) * 2015-03-11 2016-09-23 株式会社ブリヂストン Seismic isolation structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11141180A (en) * 1997-11-12 1999-05-25 Fujita Corp Laminated rubber type vibration isolation device
JPH11141181A (en) * 1997-11-13 1999-05-25 Fujita Corp Laminated rubber type vibration isolation device
JP2000001820A (en) * 1998-06-17 2000-01-07 Yokohama Rubber Co Ltd:The Laminated rubber bearing
JP2004036647A (en) * 2002-06-28 2004-02-05 Bridgestone Corp Base isolation structure
JP2016169770A (en) * 2015-03-11 2016-09-23 株式会社ブリヂストン Seismic isolation structure

Also Published As

Publication number Publication date
JP7227859B2 (en) 2023-02-22

Similar Documents

Publication Publication Date Title
EP2894365B1 (en) Seismic base isolation device
WO2016042742A1 (en) Vibration damping device for structure
JP2020204382A (en) Seismic isolation device
JP2016223586A (en) Lamination rubber support
JP7227858B2 (en) Seismic isolation device
JP7390208B2 (en) Seismic isolation device
JP7182518B2 (en) Seismic isolation device
JP7421982B2 (en) Seismic isolation device
JP2006207680A (en) Laminated rubber supporter
JP7394682B2 (en) Seismic isolation device
JP5703035B2 (en) Seismic isolation device
JP7404138B2 (en) Seismic isolation device
JP4740016B2 (en) Damping mechanism using inclined oval coil spring
JP2020204384A (en) Seismic isolation device
JP7473380B2 (en) Seismic isolation device
JP2007024287A (en) Laminated support body
TWI782428B (en) Anti-vibration device
JP2002188687A (en) Base-isolation device
JP4971510B2 (en) Seismic isolation device
JP2023181816A (en) Seismic isolator
JP7390234B2 (en) Seismic isolation device
JP6594050B2 (en) Seismic isolation device mounting structure
JP2020190322A (en) Base isolation device
JP5577147B2 (en) Isolation structure
JP2020204380A (en) Base isolation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230210

R150 Certificate of patent or registration of utility model

Ref document number: 7227859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150