JP2020204071A - Electrolytic polishing method and electrolytic polishing liquid - Google Patents

Electrolytic polishing method and electrolytic polishing liquid Download PDF

Info

Publication number
JP2020204071A
JP2020204071A JP2019112006A JP2019112006A JP2020204071A JP 2020204071 A JP2020204071 A JP 2020204071A JP 2019112006 A JP2019112006 A JP 2019112006A JP 2019112006 A JP2019112006 A JP 2019112006A JP 2020204071 A JP2020204071 A JP 2020204071A
Authority
JP
Japan
Prior art keywords
electrolytic
ammonium fluoride
polishing
glycolic acid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019112006A
Other languages
Japanese (ja)
Other versions
JP7313664B2 (en
Inventor
義明 井田
Yoshiaki Ida
義明 井田
啓介 仁井
Keisuke Nii
啓介 仁井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUI MEKKI KOGYO KK
Original Assignee
MARUI MEKKI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUI MEKKI KOGYO KK filed Critical MARUI MEKKI KOGYO KK
Priority to JP2019112006A priority Critical patent/JP7313664B2/en
Publication of JP2020204071A publication Critical patent/JP2020204071A/en
Application granted granted Critical
Publication of JP7313664B2 publication Critical patent/JP7313664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

To provide an electrolytic polishing method and an electrolytic polishing liquid without using any concentrated sulfuric acid or hydrofluoric acid.SOLUTION: A method of electrolytically polishing at least one of niobium, titanium, and tantalum is a method in which an electrolytic treatment is performed in an electrolytic solution including a glycolic acid solution in which a specified quantity of ammonium fluoride is dissolved. The glycolic acid solution is 30-90 mass% of the electrolytic solution, and the ammonium fluoride is 2-10 mass% of the glycolic acid solution in outer percentage. The electrolytic treatment is performed at the temperature of between a room temperature and 50°C, and at the voltage of 25 V or lower. An oxide film is formed on the surface of a metal such as niobium by using the glycolic acid. The oxide film is shaved off by applying an electric current to the ammonium fluoride. An operator can easily handle the glycolic acid and the ammonium fluoride because they are not designated as deleterious substances. In addition, the finish state of polishing in this case is not inferior to that in the case where a concentrated sulfuric acid or a hydrofluoric acid is used.SELECTED DRAWING: Figure 8

Description

本発明は電解研磨方法に関し、特に、ニオブの電解研磨方法に関するものである。 The present invention relates to an electrolytic polishing method, and more particularly to a niobium electrolytic polishing method.

ビッグバン状態を形成する装置としてリニアコライダが建設されようとしている(ILC計画)。リニアコライダには図9に示すように、軸方向に周期的に径が変化するニオブの空洞管100が使用される。この実験で所定の効果を得るための要素の1つとして、このニオブの空洞管100の内面が平滑になっているか否かがある。 A linear collider is about to be constructed as a device to form the Big Bang state (ILC project). As shown in FIG. 9, a niobium hollow tube 100 whose diameter changes periodically in the axial direction is used for the linear collider. One of the factors for obtaining a predetermined effect in this experiment is whether or not the inner surface of the niobium cavity tube 100 is smooth.

ところが、空洞管100は、成形時に過大な圧力や熱を掛けるところから、その内表面の組織は不均一に歪んだ状態となっている。この表面状態をこのままにしておくと、電気的特性、磁気的特性も不均一な状態となり、結果として、電子や陽子に所定の速度を与えることができなくなる。そこで、空洞管の内面を所定の厚さ、研磨する方法が開発されている。 However, since the hollow tube 100 is subjected to excessive pressure or heat during molding, the structure on the inner surface thereof is in a non-uniformly distorted state. If this surface state is left as it is, the electrical and magnetic properties will also be non-uniform, and as a result, it will not be possible to give a predetermined velocity to electrons and protons. Therefore, a method of polishing the inner surface of the hollow tube to a predetermined thickness has been developed.

ニオブに限らず、上記のような空洞管を研磨する方法としては、特許文献1に開示する化学研磨と特許文献2に開示する電解研磨が一般的に使用されているが、いずれの方法であても、電解液として濃硫酸、フッ酸、燐酸、硝酸等強い酸化力を持つ液の一種あるいはその混合液が使用される。 Not limited to niobium, as a method for polishing a hollow tube as described above, chemical polishing disclosed in Patent Document 1 and electrolytic polishing disclosed in Patent Document 2 are generally used, and any of these methods can be used. Also, as the electrolytic solution, a kind of solution having strong oxidizing power such as concentrated sulfuric acid, hydrofluoric acid, phosphoric acid, nitric acid or a mixture thereof is used.

一方、本願出願人は上記のような複数の膨らみのある空洞管の内面を研磨するための電極を特許5807938(USP9689068)を開発している。当該電極を使用して電解研磨をする場合においても電解液として、上記濃硫酸等を使用することに変わりはない。 On the other hand, the applicant of the present application has developed patent 5807938 (USP9689068) for an electrode for polishing the inner surface of a plurality of bulging hollow tubes as described above. Even when electrolytic polishing is performed using the electrode, the above-mentioned concentrated sulfuric acid or the like is still used as the electrolytic solution.

特開昭61‐23799号公報Japanese Unexamined Patent Publication No. 61-23799 特開平11‐350200号公報Japanese Unexamined Patent Publication No. 11-350200 特許5807938号公報Japanese Patent No. 5807938

上記のうち、濃硫酸+フッ酸が一般的な電解研磨液であるが、いずれも非常に酸化力が強く、劇物に指定されており、誤って皮膚に触れたり、蒸気を吸ったりすると健康障害を生じることになる。従って、これら薬品の取り扱いは極めて慎重を要することになる。 Of the above, concentrated sulfuric acid + hydrofluoric acid is a general electrolytic polishing solution, but all of them have extremely strong oxidizing power and are designated as deleterious substances, and they are healthy if they accidentally touch the skin or inhale vapors. It will cause obstacles. Therefore, the handling of these chemicals requires extremely careful handling.

本発明は、上記従来の事情に鑑みて提案されたものであって、取り扱いが容易な物質を用いた電解液とその電解液を用いた電解方法を提供することを目的とする。 The present invention has been proposed in view of the above-mentioned conventional circumstances, and an object of the present invention is to provide an electrolytic solution using a substance that is easy to handle and an electrolytic method using the electrolytic solution.

ニオブ、チタン、タンタルの少なくとも一種の電解研磨をするについて、グリコール酸溶液にフッ化アンモニウムを所定量溶解させた電解液中で電解処理をする。前記電解液のグリコール酸溶液は、30〜90質量%であり、前記フッ化アンモニウムがグリコール酸溶液に対して外掛けで2〜10質量%である。また、当該電解処理は室温から50℃、25V以下で実行される。 For at least one kind of electrolytic polishing of niobium, titanium, and tantalum, electrolytic treatment is performed in an electrolytic solution in which a predetermined amount of ammonium fluoride is dissolved in a glycolic acid solution. The glycolic acid solution of the electrolytic solution is 30 to 90% by mass, and the ammonium fluoride is 2 to 10% by mass externally with respect to the glycolic acid solution. Further, the electrolytic treatment is carried out at room temperature to 50 ° C. and 25 V or less.

上記グリコール酸でニオブ等の金属の表面は酸化膜が形成される。この酸化膜をフッ化アンモニウムに電流を流すことによって削り取ることになる。グリコール酸およびフッ化アンモニウムは、劇物指定はされておらず、作業者の取り扱いは容易となる。加えて、研磨の仕上がり状態は濃硫酸とフッ酸を使用した場合と遜色はない。 An oxide film is formed on the surface of a metal such as niobium with the above glycolic acid. This oxide film is scraped off by passing an electric current through ammonium fluoride. Glycolic acid and ammonium fluoride are not designated as deleterious substances and are easy for workers to handle. In addition, the finished state of polishing is not inferior to that of using concentrated sulfuric acid and hydrofluoric acid.

フッ化アンモニウム量と電流との関係を示すグラフ。The graph which shows the relationship between the amount of ammonium fluoride and the electric current. フッ化アンモニウム量と電解研磨量との関係を示すグラフ。The graph which shows the relationship between the amount of ammonium fluoride and the amount of electropolishing. 電解研磨量と温度(50℃付近)の関係を示すグラフ。The graph which shows the relationship between the amount of electrolytic polishing and temperature (around 50 degreeC). 電解研磨量と温度(室温)の関係を示すグラフ。The graph which shows the relationship between the amount of electrolytic polishing and temperature (room temperature). 電解研磨量と温度(5℃付近)の関係を示すグラフ。The graph which shows the relationship between the amount of electrolytic polishing and temperature (around 5 degreeC). 電解研磨レートと温度との関係を示すグラフ。The graph which shows the relationship between the electrolytic polishing rate and the temperature. 電解研磨の状態を示す操作顕微鏡写真。An operating micrograph showing the state of electrolytic polishing. グリコース酸の濃度を上げたときの研磨レート温度との関係を示すグラフ。The graph which shows the relationship with the polishing rate temperature when the concentration of glycosic acid is increased. 研磨対象の空洞管。Cavity tube to be polished.

<基本>
本発明は、30質量%〜90質量%のグリコール酸にフッ化アンモニウムを外掛けで、2質量%〜10質量%添加した電解液を、金属(ニオブ、チタン、タンタル)の電解研磨に使用する。
<Basic>
In the present invention, an electrolytic solution obtained by adding ammonium fluoride to 30% by mass to 90% by mass of glycolic acid and adding 2% by mass to 10% by mass is used for electrolytic polishing of a metal (niobium, titanium, tantalum). ..

上記の電解液で、まずグリコール酸が、金属表面を酸化して酸化膜を形成する。その酸化膜をフッ化アンモニウムで電解研磨することになる。 In the above electrolytic solution, glycolic acid first oxidizes the metal surface to form an oxide film. The oxide film will be electropolished with ammonium fluoride.

グリコール酸の濃度は30質量%〜90質量%である。30質量%より濃度が低いと、十分な酸化膜が得られない。酸化膜の厚みは90質量%以上では濃度依存性はなく、それ以上に高い濃度にする必要はない。 The concentration of glycolic acid is 30% by mass to 90% by mass. If the concentration is lower than 30% by mass, a sufficient oxide film cannot be obtained. When the thickness of the oxide film is 90% by mass or more, there is no concentration dependence, and it is not necessary to make the concentration higher than that.

電解研磨時の電圧を同じにしても、フッ化アンモニウムの濃度と浴温度に応じて電流が異なるところから、フッ化アンモニウムの濃度と浴温度は研磨レートを決定する要因となる。フッ化アンモニウムが外掛けで2質量%以下では、研磨レートが小さくなり、光沢性に劣ることになる。特に低温(室温以下)下ではその傾向が顕著に現れることになる。逆にフッ化アンモニウムが外掛けで10質量%以上では、研磨レートが大きくなり、面荒れの原因になる。特に浴温度が50℃以上ではこの傾向が大きくなる。 Even if the voltage during electrolytic polishing is the same, the concentration of ammonium fluoride and the bath temperature are factors that determine the polishing rate because the current differs depending on the concentration of ammonium fluoride and the bath temperature. If ammonium fluoride is externally applied and is 2% by mass or less, the polishing rate becomes small and the glossiness becomes inferior. Especially at low temperature (room temperature or less), this tendency becomes remarkable. On the contrary, when ammonium fluoride is externally applied and is 10% by mass or more, the polishing rate becomes high and causes surface roughness. Especially when the bath temperature is 50 ° C. or higher, this tendency becomes large.

電圧の研磨レートに及ぼす影響は浴温度より小さいが、研磨状態に影響する。高い電圧(例えば25V)では小さい凹凸が緩和され、表面がスムーズになる傾向がある。 The effect of voltage on the polishing rate is smaller than the bath temperature, but it affects the polishing condition. At high voltages (eg 25V), small irregularities tend to be alleviated and the surface tends to be smooth.

以上のことから、本発明の電解研磨は、グリコール酸濃度は30〜90質量%、フッ化アンモニウムがグリコール酸溶液に対して外掛けで2〜10質量%、浴温度は室温から50℃以下、電圧は25V以下で実行される。 From the above, in the electrolytic polishing of the present invention, the glycolic acid concentration is 30 to 90% by mass, ammonium fluoride is 2 to 10% by mass with respect to the glycolic acid solution, and the bath temperature is from room temperature to 50 ° C. or less. The voltage is run below 25V.

<実験1>
本発明は、グリコール酸にフッ化アンモニウムを添加した電解液を、金属(ニオブ、チタン、タンタル)の電解研磨に使用する。ここでフッ化アンモニウムの量の影響を調べる目的で、70質量%のグリコール酸(300ml)に、粉末のフッ化アンモニウムの量を10g、15g、20gと変えて添加したサンプル液を用意した。グリコール酸100mlは123.2gであるので、粉末のフッ化アンモニウムの量10g、15g、20gは、それぞれ、外掛けで2.7質量%、4.0質量%、5.4質量%となる
更に、フッ化アンモニウム添加量10g、15g、20gについて各2種[(1)(2)] [(3)(4)] [(5)(6)]のサンプルを用意し、ニオブについて、電極間距離6cmで電解研磨をした。尚、陽極は当然研磨対象となるニオブ、陰極もこの場合にオブを使用したが、白金等電解液で表面状態が変わらない物質であれば、特にこだわらない。
<Experiment 1>
In the present invention, an electrolytic solution obtained by adding ammonium fluoride to glycolic acid is used for electrolytic polishing of metals (niobium, titanium, tantalum). Here, for the purpose of investigating the effect of the amount of ammonium fluoride, a sample solution was prepared by adding powdered ammonium fluoride to 70% by mass of glycolic acid (300 ml) with different amounts of 10 g, 15 g, and 20 g. Since 100 ml of glycolic acid is 123.2 g, the amounts of ammonium fluoride in the powder, 10 g, 15 g, and 20 g, are 2.7% by mass, 4.0% by mass, and 5.4% by mass, respectively. , Prepare 2 types of samples [(1) (2)] [(3) (4)] [(5) (6)] for each of 10g, 15g, and 20g of ammonium fluoride added, and for niobium, between the electrodes. Electropolishing was performed at a distance of 6 cm. Of course, niobium was used as the anode and obium was used as the cathode in this case, but it is not particularly particular as long as it is a substance whose surface condition does not change with an electrolytic solution such as platinum.

各サンプル(1)〜(6)について電流・電圧特性を調べると、図1に示すように、電流はフッ化アンモニウムの量が増えると大きくなるが、いずれのサンプルも電圧が8V以上でほぼフラットになる。すなわち、電流のフッ化アンモニウムの量への依存性は大きいが、電圧依存性は8V以上ではほとんど無い。尚、図1において、フッ化アンモニウム濃度が同じ(例えば、サンプル(3)と(4))であてもVI特性が若干異なるのは、浴温度が異なるためと考えられる(浴温度とVI特性との関係は後述する)。 Examining the current-voltage characteristics of each sample (1) to (6), as shown in Fig. 1, the current increases as the amount of ammonium fluoride increases, but all samples are almost flat when the voltage is 8 V or higher. become. That is, the current has a large dependence on the amount of ammonium fluoride, but the voltage dependence is almost nonexistent above 8V. In FIG. 1, even if the ammonium fluoride concentration is the same (for example, samples (3) and (4)), the VI characteristics are slightly different because the bath temperature is different (bath temperature and VI characteristics). The relationship will be described later).

上記の確認を踏まえて、10V以上の電圧で、各サンプルについて、研磨量のフッ化アンモニウムの濃度への依存性と浴温度への依存性を調べた結果を表1に示す。当該表1から得られた研磨量から算出される研磨レート(μm/min)をグラフで表すと、図2の
ごとくになる。
Based on the above confirmation, Table 1 shows the results of examining the dependence of the polishing amount on the concentration of ammonium fluoride and the dependence on the bath temperature for each sample at a voltage of 10 V or higher. The polishing rate (μm / min) calculated from the polishing amount obtained from Table 1 is shown graphically as shown in FIG.

Figure 2020204071
Figure 2020204071

サンプル(1)(2)の対、(3)(4)の対、(5)(6)の対でフッ化アンモニウムの量が増えていることを考慮すると、研磨レートはフッ化アンモニウムの量に依存する。例えば温度が近似したサンプル(1)、(4)、(5)、あるいは、サンプル(2)、(3)、(6)を比較すると、研磨レートのフッ化アンモニウムの量への依存は顕著に示されている。また、上記各対を構成するサンプル(サンプル (3)と(4)、(5)と(6))はそれぞれ浴温度が異なるので、研磨レートは浴温度にも依存することが理解できる。尚、サンプル(1)とサンプル(2)の研磨レートは同じになっているが、サンプル(1)、サンプル(2)はフッ化アンモニウムの量が2.7質量%と低いことと、サンプル (1)と(2)では温度差が他の2組と比べて少ないことで、研磨レートが同じになっているものと考えられる。 Considering that the amount of ammonium fluoride is increased in the pair of samples (1) (2), the pair of (3) (4), and the pair of (5) (6), the polishing rate is the amount of ammonium fluoride. Depends on. For example, when comparing samples (1), (4), (5) with similar temperatures, or samples (2), (3), (6), the dependence of the polishing rate on the amount of ammonium fluoride is remarkable. It is shown. Further, since the bath temperatures of the samples (samples (3) and (4), (5) and (6)) constituting each of the above pairs are different, it can be understood that the polishing rate also depends on the bath temperature. Although the polishing rates of sample (1) and sample (2) are the same, the amount of ammonium fluoride in sample (1) and sample (2) is as low as 2.7% by mass, and sample (1). In (2), the temperature difference is smaller than that of the other two sets, so it is considered that the polishing rates are the same.

<実験2>
次いで、グリコール酸とフッ化アンモニウムの濃度を一定(グリコール酸(300ml)、フッ化アンモニウム(15g))にし、温度を変えることによって、研磨レートの温度依存性を調べる実験をし、同時に同じ温度で電圧を変えることも行った。従って、サンプル(1) 室温、15V、サンプル(2) 室温25V、サンプル(3) 50℃近辺15V、サンプル(4) 50℃近辺25V、サンプル(5) 5℃近辺15V、サンプル(6)5℃近辺25Vの6種の実験をおこなった。
<Experiment 2>
Next, an experiment was conducted to investigate the temperature dependence of the polishing rate by keeping the concentrations of glycolic acid and ammonium fluoride constant (glycolic acid (300 ml), ammonium fluoride (15 g)) and changing the temperature, and at the same time at the same temperature. I also changed the voltage. Therefore, sample (1) room temperature, 15V, sample (2) room temperature 25V, sample (3) around 50 15V, sample (4) around 50 25V, sample (5) around 5 15V, sample (6) 5 ℃ Six kinds of experiments of 25V in the vicinity were carried out.

実験の時間的推移において、電流、温度の変化は図3(50℃近辺)、図4(20℃近辺)、図5(5℃近辺)に示す通りである。いずれの温度においても電圧が15V(上段)より25V(下段)のほうが電流は大きくなっているが、15Vより25Vのほうが5℃程度高い温度での実験であることを考慮する必要がある(特に50℃と20℃)。 Changes in current and temperature in the temporal transition of the experiment are as shown in FIGS. 3 (around 50 ° C.), FIG. 4 (around 20 ° C.), and FIG. 5 (around 5 ° C.). At any temperature, the current is larger at 25V (lower) than at 15V (upper), but it is necessary to consider that 25V is an experiment at a temperature about 5 ° C higher than 15V (especially). 50 ° C and 20 ° C).

上記6種のサンプルについての実験の結果を表2に示し、当該表2の結果得られた研磨量に基づいて算出した研磨レートを図6に示す。 The results of experiments on the above six types of samples are shown in Table 2, and the polishing rate calculated based on the polishing amount obtained as a result of Table 2 is shown in FIG.

Figure 2020204071
Figure 2020204071

図6において、室温(サンプル(1)(2))、50℃近辺(サンプル(3)、(4))、5℃近辺(サンプル(5)、(6))と、浴温度が高い方が研磨レートは高くなる。同じ温度の対(例えばサンプル(3)と(4))で電圧が異なる場合も、研磨レートに差が出ているものの、電圧の依存性は温度依存性程大きくはないと考えられる。例えば、サンプル(4)(25V)はサンプル(3)(15V)よりも研磨量は多くなっているが、温度が数度高い状態での実験であることを考慮すると、研磨量の電圧依存性は、温度依存性より小さいものと考えられる。 In FIG. 6, room temperature (samples (1) and (2)), around 50 ° C (samples (3), (4)), around 5 ° C (samples (5), (6)), the higher the bath temperature, the better. The polishing rate is high. Even when the voltage is different between the same temperature pair (for example, samples (3) and (4)), it is considered that the voltage dependence is not as large as the temperature dependence, although the polishing rate is different. For example, samples (4) (25V) have a larger amount of polishing than samples (3) (15V), but considering that the experiment was conducted at a temperature several degrees higher, the voltage dependence of the amount of polishing Is considered to be less than temperature dependent.

図7(写真)は、上記各サンプルでの実験の研磨の結果の操作顕微鏡による表面写真(倍率2000)である。上記したように電圧の相違は、温度の相違より研磨レートに与える影響は小さいが、表面状態には若干現れている。すなわち、同じ温度でも電圧の高い方が、凹凸の細かさは緩和されている。また、凹凸の細かさは温度が高いほうでも緩和されている。 FIG. 7 (photograph) is a surface photograph (magnification 2000) of the results of the experimental polishing of each of the above samples by an operating microscope. As described above, the difference in voltage has a smaller effect on the polishing rate than the difference in temperature, but it appears slightly in the surface condition. That is, even at the same temperature, the higher the voltage, the less fine the unevenness. In addition, the fineness of unevenness is alleviated even at higher temperatures.

<実験3>
グリコール酸の70重量%の溶液(300ml)に対して、更に粉末グリコール酸を10g添加し濃度を高め、フッ化アンモニウム(15g)を更に添加したサンプル液を用意する。この溶液に対してサンプル(1)、室温、15V、1時間、サンプル(2)、室温、25V、1時間、サンプル(3)、50℃、25V、20分で電解研磨をした。それぞれ実験2のサンプル(1)、サンプル(2)、サンプル(4)に相当する。
<Experiment 3>
To a 70% by weight solution (300 ml) of glycolic acid, 10 g of powdered glycolic acid is further added to increase the concentration, and a sample solution to which ammonium fluoride (15 g) is further added is prepared. This solution was electropolished at sample (1), room temperature, 15 V, 1 hour, sample (2), room temperature, 25 V, 1 hour, sample (3), 50 ° C., 25 V, 20 minutes. They correspond to the sample (1), sample (2), and sample (4) of Experiment 2, respectively.

研磨量は表3に示す通りであり、研磨レートは図8に示すように、上記実験2のサンプル(1)、サンプル(2)、サンプル(4)の結果とほぼ同等であり、グリコール酸の濃度の差による研磨レートの顕著な相違は見られなかった。尚、サンプル(1)とサンプル(2)の研磨レートの相違は、電圧の相違もあるが、どちらかというと温度の差によるものと考えられる。 The amount of polishing is as shown in Table 3, and as shown in FIG. 8, the polishing rate is almost the same as the results of the samples (1), (2) and (4) of Experiment 2 above, and the amount of glycolic acid is almost the same. No significant difference in polishing rate due to the difference in concentration was observed. The difference in polishing rate between sample (1) and sample (2) is considered to be due to the difference in temperature, although there is also a difference in voltage.

Figure 2020204071
Figure 2020204071

尚、上記図2、図6、図8において、比較基準として濃硫酸+フッ酸による研磨レートを示している。電圧は10V、室温濃硫酸とフッ酸の比率は9:1程度である。 In addition, in FIG. 2, FIG. 6, and FIG. 8 above, the polishing rate with concentrated sulfuric acid + hydrofluoric acid is shown as a comparison standard. The voltage is 10 V, and the ratio of room temperature concentrated sulfuric acid to hydrofluoric acid is about 9: 1.

以上説明したように、表面の光沢性は多少劣るものの、従来の濃硫酸とフッ酸を用いたニオブの電解研磨に代えて、有機酸であるグリコール酸を用いることができ、しかも従来の従来と同等のパーフォーマンスを得ることができ、より安全に作業を進めることができる。 As described above, although the surface glossiness is slightly inferior, glycolic acid, which is an organic acid, can be used instead of the conventional electrolytic polishing of niobium using concentrated sulfuric acid and hydrofluoric acid. Equivalent performance can be obtained, and work can proceed more safely.

100・・空洞管 100 ... Cavity tube

Claims (5)

グリコール酸溶液にフッ化アンモニウムを所定量溶解させた電解液中で、ニオブ、チタン、タンタルの少なくとも1種を電解研磨することを特徴とする電解研磨方法。 An electrolytic polishing method characterized by electrolytically polishing at least one of niobium, titanium, and tantalum in an electrolytic solution in which a predetermined amount of ammonium fluoride is dissolved in a glycolic acid solution. 前記電解液のグリコール酸溶液が、30〜90質量%であり、前記フッ化アンモニウムがグリコール酸溶液に対して外掛けで2〜10質量%の請求項1に記載の電解研磨方法。 The electrolytic polishing method according to claim 1, wherein the glycolic acid solution of the electrolytic solution is 30 to 90% by mass, and the ammonium fluoride is externally applied to the glycolic acid solution in an amount of 2 to 10% by mass. 室温から50℃、25V以下で実行される請求項1または2に記載の電解研磨方法。 The electropolishing method according to claim 1 or 2, which is carried out at room temperature to 50 ° C. and 25 V or less. グリコール酸溶液にフッ化アンモニウムを所定量溶解させた電解研磨液。 An electrolytic polishing solution in which a predetermined amount of ammonium fluoride is dissolved in a glycolic acid solution. 前記電解液のグリコール酸溶液が、30〜90質量%であり、前記フッ化アンモニウムがグリコール酸溶液に対して外掛けで2〜10質量%の請求項1に記載の電解研磨液。 The electrolytic polishing solution according to claim 1, wherein the glycolic acid solution of the electrolytic solution is 30 to 90% by mass, and the ammonium fluoride is 2 to 10% by mass with respect to the glycolic acid solution.
JP2019112006A 2019-06-17 2019-06-17 Electropolishing method Active JP7313664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019112006A JP7313664B2 (en) 2019-06-17 2019-06-17 Electropolishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019112006A JP7313664B2 (en) 2019-06-17 2019-06-17 Electropolishing method

Publications (2)

Publication Number Publication Date
JP2020204071A true JP2020204071A (en) 2020-12-24
JP7313664B2 JP7313664B2 (en) 2023-07-25

Family

ID=73838283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019112006A Active JP7313664B2 (en) 2019-06-17 2019-06-17 Electropolishing method

Country Status (1)

Country Link
JP (1) JP7313664B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547399A (en) * 1978-09-27 1980-04-03 Matsushita Electric Ind Co Ltd Electropolishing method for sendust material
JP2006526071A (en) * 2003-05-09 2006-11-16 ポリグラト−ホールディング ゲーエムベーハー Electrolyte for electrochemical polishing of metal surfaces
JP2009108405A (en) * 2007-10-10 2009-05-21 Ebara Corp Electrolytic polishing method and apparatus of substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547399A (en) * 1978-09-27 1980-04-03 Matsushita Electric Ind Co Ltd Electropolishing method for sendust material
JP2006526071A (en) * 2003-05-09 2006-11-16 ポリグラト−ホールディング ゲーエムベーハー Electrolyte for electrochemical polishing of metal surfaces
JP2009108405A (en) * 2007-10-10 2009-05-21 Ebara Corp Electrolytic polishing method and apparatus of substrate

Also Published As

Publication number Publication date
JP7313664B2 (en) 2023-07-25

Similar Documents

Publication Publication Date Title
JP4275187B2 (en) Electrolytic capacitor
US3118828A (en) Electrode structure with titanium alloy base
JPH0231489B2 (en)
US20200318251A1 (en) Method for manufacturing titanium or titanium alloy thin oxide film having micro-holes
TW201704543A (en) Electrode for electrolytic processes
Eozénou et al. Aging of the HF-H 2 SO 4 electrolyte used for the electropolishing of niobium superconducting radio frequency cavities: Origins and cure
JP2006270052A (en) Solid electrolytic capacitor and its manufacturing method
JP2020204071A (en) Electrolytic polishing method and electrolytic polishing liquid
JP7069843B2 (en) Manufacturing method of aluminum parts
Lee et al. Development of ultral clean machining technology with electrolytic polishing process
RU2495966C1 (en) Method of grinding parts made from titanium alloys
JP2019151919A (en) Electropolishing solution and electropolishing method
US3259475A (en) Etched metal valve surfaces of tantalum or niobium or titanium
US2775553A (en) Electrolytic etching process for electrolytic capacitors
JP6706012B1 (en) Method for producing oxide thin film of titanium or titanium alloy in which fine holes are sealed
US3378471A (en) Anodized tantalum and niobium and method of forming an oxide coating thereon
US2904479A (en) Electrolytic polishing of zirconium, hafnium and their alloys
JP2019520482A (en) Electrolytic system for synthesizing sodium perchlorate with anode having an outer surface made of boron-doped diamond
Inman et al. Niobium electropolishing in an aqueous, non-viscous hf-free electrolyte: A new polishing mechanism
JP6870389B2 (en) How to remove the oxide film on the surface of metal material
US2997429A (en) Electropolishing of titanium and titanium alloys
CN101290834B (en) Niobium solid electrolytic capacitor and its production method
JP2016037622A (en) Electrolytic polishing method for aluminum member, and aluminum member
WO2023218390A1 (en) Chemical solution suitable for polishing niobium and alloys thereof by plasma electropolishing
JP2008198984A (en) Niobium solid electrolytic capacitor and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230705

R150 Certificate of patent or registration of utility model

Ref document number: 7313664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150