JP2020204060A - Magnetostrictive material - Google Patents

Magnetostrictive material Download PDF

Info

Publication number
JP2020204060A
JP2020204060A JP2019111284A JP2019111284A JP2020204060A JP 2020204060 A JP2020204060 A JP 2020204060A JP 2019111284 A JP2019111284 A JP 2019111284A JP 2019111284 A JP2019111284 A JP 2019111284A JP 2020204060 A JP2020204060 A JP 2020204060A
Authority
JP
Japan
Prior art keywords
magnetostrictive
amount
magnetostriction
ppm
magnetostrictive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019111284A
Other languages
Japanese (ja)
Inventor
太一 中村
Taichi Nakamura
太一 中村
将矢 城谷
Masaya Shirotani
将矢 城谷
一樹 酒井
Kazuki Sakai
一樹 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019111284A priority Critical patent/JP2020204060A/en
Publication of JP2020204060A publication Critical patent/JP2020204060A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a magnetostrictive material having a large amount of magnetostriction and having excellent mechanical strength.SOLUTION: A magnetostrictive material comprises an FeGaCe alloy represented by Fe(100-x-y)GaxCey (where x and y denote Ga content and Ce content in atom% (at%)), satisfying y≥0.45x-1.75, y≥-0.98x+19.7, and y≤-0.027x+0.633.SELECTED DRAWING: Figure 1

Description

本発明は、磁歪式振動発電デバイス等に使用するFeGa合金系磁歪材料、詳しくは単結晶FeGaCe合金系磁歪材料に関する。 The present invention relates to a FeGa alloy-based magnetostrictive material used for a magnetostrictive vibration power generation device or the like, and more particularly to a single crystal FeGaCe alloy-based magnetostrictive material.

近年、自律的に通信する機能を持ったモノ同士が情報交換を行い、自動的に制御を行う世界、モノのインターネットIoT(Internet of Things)世界の到来への期待が高まっている。IoTが社会に浸透すると、通信機能を持ったIoTデバイスが大量に出回ることになる。センサーのようなIoTデバイスを動作させるためには電源が必要である。しかし、デバイスの数が膨大になると配線やメンテナンスの時間・コストの面で電源確保が困難となる。そのため、IoT世界の実現にはIoTデバイスに適した電力供給技術が求められる。 In recent years, expectations are rising for the arrival of the Internet of Things (IoT) world, a world in which things that have the function of autonomous communication exchange information and automatically control each other. When IoT permeates society, a large number of IoT devices with communication functions will be on the market. A power source is required to operate an IoT device such as a sensor. However, when the number of devices becomes enormous, it becomes difficult to secure a power source in terms of wiring and maintenance time and cost. Therefore, in order to realize the IoT world, a power supply technology suitable for IoT devices is required.

こうした背景から、近年、我々の身の回りのどこにでもある微小エネルギーを電力に変換して活用する技術「エネルギーハーベスティング」に対する注目が高まっている。エネルギー源のひとつである振動は、自動車、鉄道、機械、人等の移動体が動く度に必ず発生するため、発生箇所が多くあり、気象、天候に左右されないエネルギー源である。そのため、これら移動体の動きと連動したアプリケーションの電源供給を振動発電で賄うシステムの構築が、IoT世界の実現の糸口になると考えられる。 Against this background, in recent years, attention has been focused on "energy harvesting," a technology that converts minute energy that is everywhere around us into electric power and utilizes it. Vibration, which is one of the energy sources, is generated every time a moving body such as an automobile, a railroad, a machine, or a person moves. Therefore, there are many places where vibration is generated, and it is an energy source that is not affected by weather or weather. Therefore, it is considered that the construction of a system that uses vibration power generation to supply power to applications linked to the movement of these mobile objects will be a clue to the realization of the IoT world.

振動発電の方式は、磁歪式、圧電式、静電誘導式、電磁誘導式の4種に分類される。磁歪式は、応力を加えることで金属内部の磁場の変化に伴って外部へ漏れた磁束を、巻き付けたコイルを通じて電気に変換する方式である。他の方式よりも内部抵抗が小さいため発電量が大きい。また、金属合金を使用するため耐久性に優れているという特徴を有する。そのため、磁歪式は振動発電デバイスの課題のひとつである耐久性の向上が可能な方式として期待されている。 The vibration power generation method is classified into four types: magnetostrictive type, piezoelectric type, electrostatic induction type, and electromagnetic induction type. The magnetostrictive type is a method in which the magnetic flux leaked to the outside due to a change in the magnetic field inside the metal by applying stress is converted into electricity through a wound coil. Since the internal resistance is smaller than other methods, the amount of power generation is large. In addition, since it uses a metal alloy, it has a feature of being excellent in durability. Therefore, the magnetostrictive type is expected as a method capable of improving durability, which is one of the problems of the vibration power generation device.

しかしながら、現状の磁歪式振動発電デバイスでは発電密度(体積当たりの発電量)が小さく、小型化を実現できておらず実用化に至っていない。実用化には、発電密度と比例関係にある磁歪材料の磁歪量を向上させることによって、デバイスの発電密度を向上させて小型化を実現することが必須となっている。例えば、タイヤ空気圧監視システム、工場内センサーネットワーク等に磁歪式振動発電デバイスを適用する場合、約0.3mW/cmの消費電力密度が求められ、磁歪量としては400ppm以上が必要となる。 However, the current magnetostrictive vibration power generation device has a small power generation density (power generation amount per volume), and has not been miniaturized and has not been put into practical use. For practical use, it is essential to improve the power generation density of the device and realize miniaturization by improving the amount of magnetostriction of the magnetostrictive material, which is proportional to the power generation density. For example, when a magnetostrictive vibration power generation device is applied to a tire pressure monitoring system, a sensor network in a factory, or the like, a power consumption density of about 0.3 mW / cm 3 is required, and a magnetostrictive amount of 400 ppm or more is required.

従来の磁歪式振動発電デバイスに使用される磁歪材料としては、例えば下記の特許文献1に記載されている、Bを1at%〜2at%、Alを4at%〜7at%およびGaを12at%〜14at%含み、残部がFeである合金がある。この合金は、機械的強度を向上させるため、一般的に広く知られているFeGa合金(ガルフェノール)にAlおよびBを添加した磁歪材料であり、薄膜状、薄帯状、バルク状態等でも使用することができ、センサー、アクチュエーター等に用いる材料としても期待されている。 Examples of the magnetostrictive material used in the conventional magnetostrictive vibration power generation device include 1 at% to 2 at% for B, 4 at% to 7 at% for Al, and 12 at% to 14 at for Ga, which are described in Patent Document 1 below. There is an alloy containing% and the balance being Fe. This alloy is a magnetostrictive material obtained by adding Al and B to a generally widely known FeGa alloy (galphenol) in order to improve mechanical strength, and is also used in a thin film shape, a thin band shape, a bulk state, and the like. It can be used as a material for sensors, actuators, etc.

特開2008−69434号公報Japanese Unexamined Patent Publication No. 2008-69434

特許文献1には磁歪材料が開示されている。この磁歪材料は、機械的強度に優れるものの、磁歪量は約50ppmと小さく、振動発電デバイスとして小型化を実現できない。そこで、本発明は、より大きい磁歪量、例えば少なくとも約400ppmの磁歪量を有し、かつ、機械的強度に優れた磁歪材料を提供することを課題とする。 Patent Document 1 discloses a magnetostrictive material. Although this magnetostrictive material has excellent mechanical strength, the amount of magnetostriction is as small as about 50 ppm, and miniaturization cannot be realized as a vibration power generation device. Therefore, it is an object of the present invention to provide a magnetostrictive material having a larger magnetostrictive amount, for example, a magnetostrictive amount of at least about 400 ppm, and having excellent mechanical strength.

上記課題を達成するために、本発明は、次式(1)
Fe(100−x−y)GaCe・・・(1)
(式中、xおよびyは、それぞれ対応する元素のat%(原子パーセント)で表した含有率であり、y≦0.45x−1.75、y≦−0.98x+19.7、およびy≧−0.027x+0.633を満たす)
で表されるFeGaCe合金から成ることを特徴とする磁歪材料
を提供する。
In order to achieve the above object, the present invention has the following equation (1).
Fe (100-x-y) Ga x Ce y ··· (1)
(In the formula, x and y are the contents expressed in at% (atomic percent) of the corresponding elements, respectively, y ≦ 0.45x-1.75, y ≦ −0.98x + 19.7, and y ≧. -0.027x + 0.633 is satisfied)
Provided is a magnetostrictive material characterized by being composed of a FeGaCe alloy represented by.

本明細書において「含有率」とは、磁歪材料全体の原子数に対する各元素の原子数の割合であり、at%(原子パーセント)の単位を用いて表される。 In the present specification, the "content rate" is the ratio of the number of atoms of each element to the number of atoms of the entire magnetic strain material, and is expressed using the unit of at% (atomic percentage).

本明細書において「磁歪材料」とは、その組成が列挙した元素で実質的に構成されている限り、不可避的に混入する微量の他の元素を含んでいてもよい。Fe、GaおよびCeの合計を基準として、例えば酸素を0.005at%未満を含んでいてもよい。 As used herein, the term "magnetostrictive material" may include trace amounts of other elements that are inevitably mixed in, as long as its composition is substantially composed of the listed elements. Based on the total of Fe, Ga and Ce, for example, oxygen may be contained in an amount of less than 0.005 at%.

本発明は、本発明の磁歪材料を用いて形成された磁歪部材を提供する。磁歪部材は、その用途に応じていずれの適当か形状を有してもよい。更に、本発明は、そのような磁歪部材を含んで構成された電気デバイス、特にIoTデバイス、例えば振動発電デバイス、磁歪式センサー、アクチュエーター等を更に提供する。 The present invention provides a magnetostrictive member formed using the magnetostrictive material of the present invention. The magnetostrictive member may have any suitable shape depending on its application. Further, the present invention further provides an electric device configured including such a magnetostrictive member, particularly an IoT device such as a vibration power generation device, a magnetostrictive sensor, an actuator and the like.

本発明の磁歪材料においては、FeおよびGaよりも原子半径の大きいCeの添加により誘起される局所的なひずみ、ならびにCeの持つ4f電子の四重極モーメントに起因する結晶磁気異方性により高磁歪量化を実現することができる。 In the magnetostrictive material of the present invention, it is high due to the local strain induced by the addition of Ce having an atomic radius larger than that of Fe and Ga, and the magnetocrystalline anisotropy caused by the quadrupole moment of 4f electrons possessed by Ce. Magnetostriction can be achieved.

本発明の磁歪材料は、5000(Oe)の磁場において少なくとも400ppmの磁歪量を有し、かつ、機械的強度に優れている。 The magnetostrictive material of the present invention has a magnetostrictive amount of at least 400 ppm in a magnetic field of 5000 (Oe) and is excellent in mechanical strength.

本発明の実施例(磁歪量400ppm以上)および比較例(磁歪量400ppm未満)における磁歪材料のGa含有率およびCe含有率の関係を示す。The relationship between the Ga content and the Ce content of the magnetostrictive material in the examples (magnetostrictive amount of 400 ppm or more) and the comparative example (magnetostrictive amount of less than 400 ppm) of the present invention is shown. 本発明の実施例(磁歪量600ppm以上700ppm未満)における磁歪材料のGa含有率およびCe含有率の関係を示す。The relationship between the Ga content and the Ce content of the magnetostrictive material in the examples of the present invention (magnetostrictive amount of 600 ppm or more and less than 700 ppm) is shown. 図3は、実施例1および比較例1の磁歪材料についての組成および測定結果を示す表1である。FIG. 3 is Table 1 showing the composition and measurement results of the magnetostrictive materials of Example 1 and Comparative Example 1. 図4は、実施例2および比較例2の磁歪材料についての組成および測定結果を示す表2である。FIG. 4 is Table 2 showing the composition and measurement results of the magnetostrictive materials of Example 2 and Comparative Example 2. 図5は、実施例3の磁歪材料についての組成および測定結果を示す表3である。FIG. 5 is Table 3 showing the composition and measurement results of the magnetostrictive material of Example 3.

以下、本発明の実施の形態である磁歪材料について、添付図面を参照しながら、詳細に説明するが、本発明はそのような実施形態に限定されるものではない。 Hereinafter, the magnetostrictive material according to the embodiment of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited to such an embodiment.

<磁歪材料>
本発明の磁歪材料は、次式(1)
Fe(100−x−y)GaCe・・・(1)
(式中、xおよびyは、それぞれ対応する元素の含有率(単位:at%(原子パーセント))であり、次の3つの不等式:
y≦0.45x−1.75
y≦−0.98x+19.7、および
y≧−0.027x+0.633
を満たすFe−Ga−Ce合金から成る。
<Morcostrictive material>
The magnetostrictive material of the present invention has the following equation (1).
Fe (100-x-y) Ga x Ce y ··· (1)
(In the formula, x and y are the content rates of the corresponding elements (unit: at% (atomic percentage)), and the following three inequalities:
y ≦ 0.45x-1.75
y ≤ -0.98x + 19.7, and y ≥ -0.027x + 0.633
It is composed of an Fe-Ga-Ce alloy that satisfies the above conditions.

磁歪材料において、上記3つの不等式を満たす場合、FeおよびGaよりも原子半径の大きいCeが存在することによって誘起される局所的なひずみ、ならびにCeが持つ4f電子の四重極モーメントに起因する結晶磁気異方性により、特許文献1に記載されたFeGaAl系合金と比較した場合、機械的強度を維持しながらも、磁歪量の向上を実現することができる。 When the above three inequality is satisfied in the magnetostrictive material, the crystal is caused by the local strain induced by the presence of Ce having an atomic radius larger than Fe and Ga, and the quadrupole moment of 4f electrons possessed by Ce. Due to the magnetic anisotropy, when compared with the FeGaAl-based alloy described in Patent Document 1, it is possible to realize an improvement in the amount of magnetostriction while maintaining the mechanical strength.

好ましい実施形態では、本発明の磁歪材料は、少なくとも600ppmの磁歪量を有し、Ga含有率(x)およびCe含有率(y)は、次の3つの不等式を満たす:
y≦0.224x−1.74、
y≦−0.533x+10.23、および
y≧−0.034+0.841。
In a preferred embodiment, the magnetostrictive material of the present invention has a magnetostrictive amount of at least 600 ppm, and the Ga content (x) and Ce content (y) satisfy the following three inequalities:
y ≦ 0.224x-1.74,
y ≦ −0.533x + 10.23, and y ≧ −0.034 + 0.841.

より好ましい実施形態では、本発明の磁歪材料は、少なくとも650ppmの磁歪量を有し、Ga含有率(x)およびCe含有率(y)は、次の3つの不等式を満たす:
0.4≦y≦0.6
y≦−x+18、および
y≧−x+16。
In a more preferred embodiment, the magnetostrictive material of the present invention has a magnetostrictive amount of at least 650 ppm, and the Ga content (x) and Ce content (y) satisfy the following three inequalities:
0.4 ≤ y ≤ 0.6
y ≦ −x + 18, and y ≧ −x + 16.

尚、本発明の磁歪材料の組成は、それを製造する際に混合する各元素の質量に基づいて算出できる。別の方法として、製造した磁歪材料を用いて電子線マイクロアナライザー(EPMA)で分析することによっても算出できる。 The composition of the magnetostrictive material of the present invention can be calculated based on the mass of each element mixed in producing the magnetostrictive material. Alternatively, it can be calculated by analyzing the manufactured magnetostrictive material with an electron probe microanalyzer (EPMA).

<磁歪材料の製造方法>
本発明の磁歪材料は、それを構成する元素から構成される合金を製造できる既知のいずれの適当な方法を用いて製造してもよい。例えば、チョクラルスキー法(CZ法)、ブリッジマン法、急冷凝固法等を用いることができる。特に、CZ法は大型の結晶を化学組成、結晶方位を精度良く製造することができる。
<Manufacturing method of magnetostrictive material>
The magnetostrictive material of the present invention may be produced using any known suitable method capable of producing an alloy composed of the elements constituting the magnetostrictive material. For example, the Czochralski method (CZ method), the Bridgman method, the quenching solidification method and the like can be used. In particular, the CZ method can produce a large crystal with high accuracy in chemical composition and crystal orientation.

(実施例1および比較例1)
Ce添加の有効性を確認するため、比較例としてのFeGa合金にCeを添加したFeGaCe合金試料を実施例として作製し、機械的強度および磁歪量の測定を行う。図3の表1に示すようにGa含有率およびCe含有率を種々変え、残部をFeとし、複数種の合金試料を準備する。
(Example 1 and Comparative Example 1)
In order to confirm the effectiveness of the addition of Ce, a FeGaCe alloy sample in which Ce is added to the FeGa alloy as a comparative example is prepared as an example, and the mechanical strength and the amount of magnetostriction are measured. As shown in Table 1 of FIG. 3, the Ga content and the Ce content are variously changed, the balance is Fe, and a plurality of types of alloy samples are prepared.

合金試料を作製するため、鉄(純度99.999%)、ガリウム(純度99.999%)、セリウム(純度99.9%)を電子天秤にてそれぞれ秤量する。合金試料は高周波誘導加熱型CZ炉を用いて育成する。内径φ50mmのグラファイトルツボの内側に外径φ45mmの緻密質アルミナ製ルツボを配置し、秤量した所定の組成の原料400gを投入する。原料を投入したルツボを育成炉に投入し、炉内を真空にした後にアルゴンガスを導入する。その後、炉内が大気圧となった時点で、装置の加熱を開始し、融液に達するまで、12時間かけて加熱する。 In order to prepare an alloy sample, iron (purity 99.999%), gallium (purity 99.999%), and cerium (purity 99.9%) are weighed with an electronic balance. The alloy sample is grown using a high frequency induction heating type CZ furnace. A dense alumina crucible having an outer diameter of φ45 mm is placed inside a graphite crucible having an inner diameter of φ50 mm, and 400 g of a weighed raw material having a predetermined composition is charged. The crucible containing the raw materials is put into a growing furnace, the inside of the furnace is evacuated, and then argon gas is introduced. Then, when the inside of the furnace reaches atmospheric pressure, heating of the apparatus is started, and heating is performed over 12 hours until the melt is reached.

<100>方位に切り出したFeGa単結晶を種結晶として用い、種結晶を融液近くまで下降させる。この種結晶を5rpmで回転させながら徐々に降下させ、種結晶の先端を融液に接触させる。温度を徐々に降下させながら、引上速度1.0mm/hrの速度で種結晶を上昇させて結晶成長を行う。その結果、直径10mm、直胴部の長さ80mmの単結晶合金が得られる。得られる単結晶合金からワイヤー放電加工により各測定用の試料形状に切り出す。 A FeGa single crystal cut out in the <100> orientation is used as a seed crystal, and the seed crystal is lowered to near the melt. The seed crystal is gradually lowered while rotating at 5 rpm, and the tip of the seed crystal is brought into contact with the melt. While gradually lowering the temperature, the seed crystal is raised at a pulling speed of 1.0 mm / hr to carry out crystal growth. As a result, a single crystal alloy having a diameter of 10 mm and a straight body portion length of 80 mm can be obtained. The obtained single crystal alloy is cut out into a sample shape for each measurement by wire electric discharge machining.

<機械的強度(引張強度(MPa)および伸び(%))の測定>
機械的強度の測定(引張試験)は、引張試験機を用いて室温環境(25℃)で行う。合金試料の試験片をダンベル形状とし、固定部を直径6mm×長さ20mm、くびれ部を直径3mm×長さ20mmとする。試験機のつかみ具間の距離を20mmに設定し、試験片を固定後、破断するまで軸方向に荷重を加える。伸び(%)は、試験前のつかみ具間の距離20mmに対する、破断時のつかみ具間の距離の増加分の割合とする。例えば試験片破断時のつかみ具間距離が40mmの場合、伸びは(40−20)/20×100=100(%)となる。
<Measurement of mechanical strength (tensile strength (MPa) and elongation (%))>
The measurement of mechanical strength (tensile test) is performed in a room temperature environment (25 ° C.) using a tensile tester. The test piece of the alloy sample has a dumbbell shape, the fixed portion has a diameter of 6 mm × a length of 20 mm, and the constricted portion has a diameter of 3 mm × a length of 20 mm. The distance between the grips of the testing machine is set to 20 mm, and after fixing the test piece, an axial load is applied until it breaks. The elongation (%) is the ratio of the increase in the distance between the grips at the time of breakage to the distance 20 mm between the grips before the test. For example, when the distance between the gripping tools when the test piece is broken is 40 mm, the elongation is (40-20) / 20 × 100 = 100 (%).

<磁歪量(ppm)の測定>
磁歪量測定は、一般的に用いられている歪ゲージ法により室温環境25℃で行う。磁場発生装置には振動材料型磁力計を用い、磁場の強さは5000Oeとする。試験片の形状はワイヤー放電加工によって直径10mm×厚み1mmとし、厚み方向は、磁化容易軸である<100>方位との角度ずれ0°とする。歪ゲージは、試料の上面に合金試料の<100>方位と平行に貼り付け、磁場印加時の試料の歪量をデータロガーで記録する。磁歪量λは"λ"="λ//"−"λ⊥"(λ//は印加磁場方向と平行な方向に沿って測定した歪量、λ⊥は印加磁場方向と垂直な方向に沿って測定した歪量を指す)として評価する。即ち、磁歪量(ppm)は、歪みゲージのゲージ軸に対して平行に磁場を印加した際の試料の歪みから、歪みゲージのゲージ軸に対して垂直に磁場を印加した際に測定される歪みを差し引いた値で表される。ここで示す磁歪量は5000Oeにおける磁歪量のことである。
<Measurement of magnetostriction (ppm)>
The magnetostrictive amount is measured at a room temperature environment of 25 ° C. by a commonly used strain gauge method. A vibration material type magnetometer is used as the magnetic field generator, and the strength of the magnetic field is 5000 Oe. The shape of the test piece is 10 mm in diameter and 1 mm in thickness by wire electric discharge machining, and the thickness direction is 0 ° with an angle deviation from the <100> orientation, which is an easy magnetization axis. The strain gauge is attached to the upper surface of the sample in parallel with the <100> orientation of the alloy sample, and the strain amount of the sample when a magnetic field is applied is recorded by a data logger. The magnetostrictive amount λ is "λ" = "λ //" − "λ⊥" (λ // is the amount of strain measured along the direction parallel to the applied magnetic field direction, and λ⊥ is along the direction perpendicular to the applied magnetic field direction. Refers to the amount of strain measured in the above). That is, the magnetostrictive amount (ppm) is the strain measured when a magnetic field is applied perpendicular to the gauge axis of the strain gauge from the strain of the sample when a magnetic field is applied parallel to the gauge axis of the strain gauge. It is represented by the value obtained by subtracting. The amount of magnetostriction shown here is the amount of magnetostriction at 5000 Oe.

引張試験および磁歪量の測定の結果を図3に示す表1に併せて示す。 The results of the tensile test and the measurement of the amount of magnetostriction are also shown in Table 1 shown in FIG.

FeGa合金にCeを添加した実施例1−1〜3は、Ceを添加していない比較例1−1〜3と同等の機械的特性(引張強度350MPa、伸び1%)を維持しつつ、磁歪量が大きく改善していることが分かる。これは、FeやGaよりも原子半径の大きいCe添加により誘起される局所的なひずみ、およびCeのもつ4f電子の四重極モーメントに起因する結晶磁気異方性によって、磁歪量が大きくなっていると考えられる。従って、機械的特性を維持しつつ磁歪量を向上させるためには、Ce添加が有効であることが分かる。 Examples 1-1 to 3 in which Ce was added to the FeGa alloy maintained magnetostriction while maintaining the same mechanical properties (tensile strength 350 MPa, elongation 1%) as in Comparative Examples 1-1 to 3 to which Ce was not added. It can be seen that the amount has improved significantly. This is because the amount of magnetostriction increases due to the local strain induced by the addition of Ce, which has an atomic radius larger than that of Fe and Ga, and the magnetocrystalline anisotropy caused by the quadrupole moment of 4f electrons of Ce. It is thought that there is. Therefore, it can be seen that the addition of Ce is effective in improving the amount of magnetostriction while maintaining the mechanical properties.

(実施例2および比較例2)
Ce添加が有効となるCe含有率の範囲を明確にするため、図4の表2に示す実施例2−1〜15および比較例2−1〜8に示す組成の合金試料を、上述の実施例1と同様に作製し、引張試験および磁歪量の測定を行う。
(Example 2 and Comparative Example 2)
In order to clarify the range of the Ce content in which the addition of Ce is effective, the alloy samples having the compositions shown in Examples 2-1 to 15 and Comparative Examples 2-1 to 8 shown in Table 2 of FIG. It is prepared in the same manner as in Example 1, and a tensile test and a magnetostrictive amount are measured.

図4の表2に測定結果も示す。尚、磁歪材料を振動発電デバイスに使用する場合、磁歪量が400ppm未満であると発電密度が0.3mW/cm相当未満となるため400ppm以上600ppm未満を△、400ppm未満を×として判定する。 The measurement results are also shown in Table 2 of FIG. When the magnetostrictive material is used for a vibration power generation device, if the amount of magnetostriction is less than 400 ppm, the power generation density is less than 0.3 mW / cm 3, so 400 ppm or more and less than 600 ppm is judged as Δ, and less than 400 ppm is judged as ×.

また、本発明の磁歪材料をトルクセンサーに使用する場合、磁歪量600ppm以上であれば1.25V/Nm相当以上の出力感度を得られ、電動アシスト自転車などに使用することができるため、特に、磁歪量600ppm以上650ppm未満を□と判定する。
更に、磁歪材料を振動発電デバイスに使用する場合、磁歪量が650ppm以上であると発電密度が0.5mW/cm相当以上となり、用途拡張になるため650ppm以上700ppm未満を〇として判定する。
Further, when the magnetostrictive material of the present invention is used for a torque sensor, an output sensitivity equivalent to 1.25 V / Nm or more can be obtained if the magnetostrictive amount is 600 ppm or more, and it can be used for an electrically assisted bicycle or the like. A magnetostrictive amount of 600 ppm or more and less than 650 ppm is judged as □.
Further, when a magnetostrictive material is used for a vibration power generation device, if the amount of magnetostriction is 650 ppm or more, the power generation density is equivalent to 0.5 mW / cm 3 or more, and since the application is expanded, 650 ppm or more and less than 700 ppm is judged as 〇.

実施例2の磁歪量は、いずれも400ppm以上となり、判定は全て△、□、〇のいずれかとなる。これは、FeやGaよりも原子半径の大きいCe添加により誘起される局所的なひずみ、および、Ceのもつ4f電子の四重極モーメントに起因する結晶磁気異方性により、磁歪量を向上させることができるためだと考えられる。 The amount of magnetostriction in Example 2 is 400 ppm or more, and all the judgments are Δ, □, or 〇. This improves the amount of magnetostriction due to the local strain induced by the addition of Ce, which has an atomic radius larger than that of Fe and Ga, and the magnetocrystalline anisotropy caused by the quadrupole moment of 4f electrons of Ce. It is thought that this is because it can be done.

比較例2−1、2−3および2−4では、磁歪量が400ppm未満となり判定は×となる。これは、Ce含有量が少なく、十分な磁歪量向上効果を発現できないためだと考えられる。 In Comparative Examples 2-1, 2-3 and 2-4, the amount of magnetostriction is less than 400 ppm and the determination is x. It is considered that this is because the Ce content is low and the effect of improving the amount of magnetostriction cannot be sufficiently exhibited.

比較例2−2、2−5、2−7および2−8では、磁歪量が400ppm未満となり判定は×となる。これは、GaとCeの合計含有率が20.5at%以上となり、不規則bcc相から規則相(D03、L12)へと結晶構造が変化することで磁歪量が低下すると考えられる。 In Comparative Examples 2-2, 2-5, 2-7 and 2-8, the amount of magnetostriction is less than 400 ppm and the judgment is x. It is considered that the total content of Ga and Ce is 20.5 at% or more, and the amount of magnetostriction is reduced by changing the crystal structure from the irregular bcc phase to the ordered phase (D03, L12).

比較例2−6では、磁歪量が400ppm未満となり判定は×となる。これは、固溶限界を超えてCeを添加しているため、第2相が出現することで磁歪量が低下すると考えられる。 In Comparative Example 2-6, the amount of magnetostriction is less than 400 ppm, and the determination is x. This is because Ce is added beyond the solid solution limit, and it is considered that the amount of magnetostriction decreases due to the appearance of the second phase.

例えば、実施例2−1および2−3と比較例2−4とを比較すると、Ce含有率が同じでも、Ga含有率が低いと磁歪量は400ppm未満となる。これは、FeGa合金(Ga含有率20at%以下)において、Ga含有率が低下するにつれて磁歪量が低下することに起因していると考えられる。 For example, comparing Examples 2-1 and 2-3 with Comparative Example 2-4, even if the Ce content is the same, the magnetostriction amount is less than 400 ppm when the Ga content is low. It is considered that this is because the amount of magnetostriction decreases as the Ga content decreases in the FeGa alloy (Ga content of 20 at% or less).

これらの実施例および比較例の結果を、Ga含有率およびCe含有率と磁歪量の関係として図1に示す。縦軸はCe含有率、横軸はGa含有率であり、●は実施例2−1〜15の磁歪量を示し、〇は比較例2−1〜8の磁歪量を表している。図1に示すように、磁歪量が400ppm以上となる境界が存在し、その境界の近似線は、図示するように、それぞれy=0.45x−1.75、y=−0.98x+19.7、y=−0.027x+0.633である。即ち、図1のグラフ中の三角形で示す、前記近似線で囲まれた線上を含む領域内部であれば、磁歪量が400ppm以上となる。 The results of these Examples and Comparative Examples are shown in FIG. 1 as the relationship between the Ga content and Ce content and the amount of magnetostriction. The vertical axis represents the Ce content, the horizontal axis represents the Ga content, ● indicates the amount of magnetostriction of Examples 2-1 to 15, and ◯ indicates the amount of magnetostriction of Comparative Examples 2-1 to 8. As shown in FIG. 1, there is a boundary where the amount of magnetostriction is 400 ppm or more, and the approximate lines of the boundary are y = 0.45x-1.75 and y = −0.98x + 19.7, respectively, as shown in the figure. , Y = −0.027x + 0.633. That is, the amount of magnetostriction is 400 ppm or more within the region including the line surrounded by the approximate line shown by the triangle in the graph of FIG.

更に、図1中の磁歪量が400ppm以上であった黒丸部(●)のうち、特に、磁歪量が600ppm以上650ppm未満である箇所を□で、磁歪量が650ppm以上700ppm未満である箇所を〇で表したものを図2に示す。また、図1中で示した磁歪量が400ppm以上となる領域を示す三角形を破線で示す。 Further, among the black circles (●) in FIG. 1 in which the amount of magnetostriction was 400 ppm or more, the part where the amount of magnetostriction is 600 ppm or more and less than 650 ppm is □, and the part where the amount of magnetostriction is 650 ppm or more and less than 700 ppm is 〇. The one represented by is shown in FIG. Further, the triangle showing the region where the amount of magnetostriction shown in FIG. 1 is 400 ppm or more is shown by a broken line.

図2より、磁歪量が600ppm以上650ppm未満となる境界が存在し、境界に沿って近似線を求めると、それぞれy=0.224x−1.74、y=−0.533x+10.23、y=−0.034x+0.841となる。これらの境界線上または境界線で囲まれた領域内では600ppm以上の磁歪量となる。 From FIG. 2, there is a boundary where the amount of magnetostriction is 600 ppm or more and less than 650 ppm, and when an approximate line is obtained along the boundary, y = 0.224x-1.74, y = −0.533x + 10.23, y =, respectively. It becomes −0.034x + 0.841. The amount of magnetostriction is 600 ppm or more on these boundaries or in the region surrounded by the boundaries.

更に、磁歪量が650ppm以上700ppm未満となる境界が存在し、境界に沿って近似線を求めると、それぞれy=0.6、y=−x+18、y=0.4、y=−x+16となる。これらの境界線上または境界線で囲まれた領域内では650ppm以上の磁歪量となる。 Further, there is a boundary in which the amount of magnetostriction is 650 ppm or more and less than 700 ppm, and when an approximate line is obtained along the boundary, y = 0.6, y = -x + 18, y = 0.4, and y = -x + 16, respectively. .. The amount of magnetostriction is 650 ppm or more on the boundary line or in the region surrounded by the boundary line.

(実施例3)
磁歪材料を切り出して部材を作製する際の、部材軸と<100>方位との角度ずれが、磁歪量に及ぼす影響を調べる。20at%のGaおよび0.1at%のCeを含み、残部はFeである合金試料を実施例1と同様の方法で作製する。得られる合金からワイヤー放電加工により、直径10mm×厚み1mmの形状に合金試料の試験片を切り出して磁歪部材を得る。図5の表3に示すように、<100>方位に対する磁歪部材の厚み方向(部材軸に対応)の角度ずれを0°〜12°の範囲で種々変え、その時の磁歪量を測定する。
(Example 3)
The effect of the angular deviation between the member axis and the <100> orientation on the amount of magnetostriction when the magnetostrictive material is cut out to produce a member is investigated. An alloy sample containing 20 at% Ga and 0.1 at% Ce and the balance being Fe is prepared in the same manner as in Example 1. A magnetostrictive member is obtained by cutting out a test piece of an alloy sample into a shape having a diameter of 10 mm and a thickness of 1 mm by wire electric discharge machining from the obtained alloy. As shown in Table 3 of FIG. 5, the angular deviation of the magnetostrictive member in the thickness direction (corresponding to the member axis) with respect to the <100> direction is variously changed in the range of 0 ° to 12 °, and the amount of magnetostriction at that time is measured.

得られる磁歪部材の磁歪量を実施例1と同様に測定し、その結果を図5の表3に示す。ここで示す磁歪量は5000Oeにおける磁歪量であり、400ppm以上を「OK」、400ppm未満については、ほぼ400ppmであるので「OK相当」と判定する。 The amount of magnetostriction of the obtained magnetostrictive member was measured in the same manner as in Example 1, and the results are shown in Table 3 of FIG. The amount of magnetostriction shown here is the amount of magnetostriction at 5000 Oe, and it is determined that 400 ppm or more is “OK” and less than 400 ppm is approximately 400 ppm, so that it is “equivalent to OK”.

角度ずれ10°以下とした実施例3−1〜6においては、磁歪量が400ppm以上と良好な結果が得られる。これは、作製したFeGaCe合金の磁歪部材の軸、即ち、磁化容易軸が<100>方位から大きくずれていないためである。従って、良好な磁歪特性を得るためには、磁歪部材の軸と結晶軸の<100>方位との角度ずれを10°以下に抑えることが有効であることが分かる。しかしながら、実施例3−7および8の結果は、磁歪量が400ppm未満であるが、ほぼ400ppmであり、十分な磁歪量であると言える。従って、本発明の磁歪材料から磁歪部材を作製する場合、磁歪部材の軸と<100>方位との角度ずれは、10°以下であるのが特に好ましく、そのような本発明の磁歪部材は特に向上した磁歪量を有することは明らかである。 In Examples 3-1 to 6 in which the angle deviation is 10 ° or less, a good result is obtained with the magnetostrictive amount of 400 ppm or more. This is because the axis of the magnetostrictive member of the produced FeGaCe alloy, that is, the axis for easy magnetization does not deviate significantly from the <100> direction. Therefore, in order to obtain good magnetostrictive characteristics, it is effective to suppress the angular deviation between the axis of the magnetostrictive member and the <100> orientation of the crystal axis to 10 ° or less. However, the results of Examples 3-7 and 8 show that the amount of magnetostriction is less than 400 ppm, but it is approximately 400 ppm, which can be said to be a sufficient amount of magnetostriction. Therefore, when a magnetostrictive member is produced from the magnetostrictive material of the present invention, the angular deviation between the axis of the magnetostrictive member and the <100> orientation is particularly preferably 10 ° or less, and such a magnetostrictive member of the present invention is particularly preferable. It is clear that it has an improved amount of magnetostriction.

本発明の磁歪材料は、磁歪量が大きく、また、機械的強度に優れた材料である。従って、例えば、磁歪式振動発電デバイス、磁歪式センサー、アクチュエーター等のIoTデバイスのような電気デバイスに好適である。 The magnetostrictive material of the present invention has a large amount of magnetostriction and is excellent in mechanical strength. Therefore, for example, it is suitable for electric devices such as magnetostrictive vibration power generation devices, magnetostrictive sensors, actuators and other IoT devices.

Claims (6)

Fe(100−x−y)GaCe
(式中、xおよびyは、原子%(at%)で表すGa含有率およびCe含有率である)
で表されることを特徴とするFeGaCe合金から成る磁歪材料であって、
y≧0.45x−1.75、
y≧−0.98x+19.7、および
y≦−0.027x+0.633
を満足する磁歪材料。
Fe (100-x-y) Ga x Ce y
(In the formula, x and y are Ga content and Ce content expressed in atomic% (at%))
A magnetostrictive material made of a FeGaCe alloy, which is represented by.
y ≧ 0.45x-1.75,
y ≧ −0.98x + 19.7, and y ≦ −0.027x + 0.633
A magnetostrictive material that satisfies.
y≦0.224x−1.74、
y≦−0.533x+10.23、および
y≧−0.034+0.841
を満足することを特徴とする請求項1に記載の磁歪材料。
y ≦ 0.224x-1.74,
y ≦ −0.533x + 10.23, and y ≧ −0.034 + 0.841
The magnetostrictive material according to claim 1, wherein the magnetostrictive material satisfies the above.
0.4≦y≦0.6
y≦−x+18、および
y≧−x+16
を満足することを特徴とする請求項1または2に記載の磁歪材料。
0.4 ≤ y ≤ 0.6
y≤-x + 18, and y≥-x + 16
The magnetostrictive material according to claim 1 or 2, wherein the magnetostrictive material satisfies the above.
請求項1〜3のいずれかに記載の磁歪材料から形成されることを特徴とする磁歪部材。 A magnetostrictive member formed from the magnetostrictive material according to any one of claims 1 to 3. 部材の軸は、磁歪材料の<100>方位との角度ずれが0°〜10°であることを特徴とする請求項4に記載の磁歪部材。 The magnetostrictive member according to claim 4, wherein the axis of the member has an angular deviation of 0 ° to 10 ° from the <100> direction of the magnetostrictive material. 請求項4または5に記載の磁歪部材を含んで成ることを特徴とするIoTデバイス。 An IoT device comprising the magnetostrictive member according to claim 4 or 5.
JP2019111284A 2019-06-14 2019-06-14 Magnetostrictive material Pending JP2020204060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019111284A JP2020204060A (en) 2019-06-14 2019-06-14 Magnetostrictive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019111284A JP2020204060A (en) 2019-06-14 2019-06-14 Magnetostrictive material

Publications (1)

Publication Number Publication Date
JP2020204060A true JP2020204060A (en) 2020-12-24

Family

ID=73836898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019111284A Pending JP2020204060A (en) 2019-06-14 2019-06-14 Magnetostrictive material

Country Status (1)

Country Link
JP (1) JP2020204060A (en)

Similar Documents

Publication Publication Date Title
Clark et al. Magnetostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys
Hernando et al. Metallic glasses and sensing applications
Jiles The development of highly magnetostrictive rare earth-iron alloys
Summers et al. Magnetic and mechanical properties of polycrystalline Galfenol
KR100606515B1 (en) Magnetic core that is suitable for use in a current transformer, method for the production of a magnetic core and current transformer with a magnetic core
JP4895108B2 (en) FeGaAl alloy and magnetostrictive torque sensor
US20210242809A1 (en) Magnetostriction element and magnetostriction-type vibration powered generator using same
JP4931992B2 (en) Measuring apparatus including a magnetoelastic alloy layer and method for forming the alloy layer
US20030010405A1 (en) Magnetostrictive devices and methods using high magnetostriction, high strength fega alloys
JP2020050920A (en) Magnetostriction element and manufacturing method of magnetostriction element
CN102537162B (en) Spring with stiffness coefficient controlled by magnitude field and preparation method thereof
Leary et al. Stress induced anisotropy in CoFeMn soft magnetic nanocomposites
JP6399502B1 (en) Magnetostrictive material and magnetostrictive device using the same
JP2020036455A (en) Magneto-striction type vibration power generation device
JP2020204060A (en) Magnetostrictive material
CN103556005A (en) High temperature FeNiCo magnetostriction alloy as well as preparation method thereof
JP2021158265A (en) Magnetostrictive material, and magnetostriction type device arranged by use thereof
JP2020136594A (en) Magnetostrictor and manufacturing method thereof
JP2021066627A (en) Magnetostrictive material and magnetostrictive element
JPS59100254A (en) High saturation magnetization and low magnetostriction iron-boron solid solution alloy
JP2019186327A (en) Magnetostrictive material and magnetostrictive type device arranged by use thereof
JP2019169672A (en) Magnetostrictive material and magnetostrictive device using the same
Kalaantari et al. Investigating the effects of bulk supercooling and rapid solidification on Co–Ni–Ga ferromagnetic shape memory alloys
JP2019169671A (en) Magnetostrictive material and magnetostrictive device using the same
JPS60204847A (en) Constant electric resistance alloy, production thereof and sensor using said alloy