JP2020199465A - Hydrogen sulfide gas adsorption structure, and battery pack - Google Patents

Hydrogen sulfide gas adsorption structure, and battery pack Download PDF

Info

Publication number
JP2020199465A
JP2020199465A JP2019108917A JP2019108917A JP2020199465A JP 2020199465 A JP2020199465 A JP 2020199465A JP 2019108917 A JP2019108917 A JP 2019108917A JP 2019108917 A JP2019108917 A JP 2019108917A JP 2020199465 A JP2020199465 A JP 2020199465A
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
gas
sulfide gas
adsorption structure
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019108917A
Other languages
Japanese (ja)
Other versions
JP7272872B2 (en
Inventor
圭司 熊野
Keiji Kuwano
圭司 熊野
苅谷 悟
Satoru Kariya
悟 苅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2019108917A priority Critical patent/JP7272872B2/en
Publication of JP2020199465A publication Critical patent/JP2020199465A/en
Application granted granted Critical
Publication of JP7272872B2 publication Critical patent/JP7272872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

To provide a hydrogen sulfide gas adsorption structure that prevents time-dependent degradation of adsorption ability to hydrogen sulfide gas and is free from limitation of kinds of porous adsorbent, and to provide a battery pack having safety over a long period.SOLUTION: A hydrogen sulfide gas adsorption structure 1 is composed of an adsorbent 5 capable of adsorbing hydrogen sulfide gas and a packing medium 6 that has a gas permeability of polar molecules higher than that of nonpolar molecules and encloses the adsorbent airtightly. A battery pack accommodates the hydrogen sulfide gas adsorption structure together with a battery cell using a sulfide-based solid electrolyte in a battery case.SELECTED DRAWING: Figure 1

Description

本発明は、硫化水素ガス吸着構造体に関する。また、本発明は、この硫化水素ガス吸着構造体を、硫化物系固体電解質を用いた電池セルとともに電池ケースに収容した電池パックに関する。 The present invention relates to a hydrogen sulfide gas adsorption structure. The present invention also relates to a battery pack in which the hydrogen sulfide gas adsorption structure is housed in a battery case together with a battery cell using a sulfide-based solid electrolyte.

近年、環境保護の観点から電動モータで駆動する電気自動車又はハイブリッド車などの開発が盛んに進められている。この電気自動車又はハイブリッド車などには、駆動用電動モータの電源となるための、複数の電池セルが直列又は並列に接続された電池パックが搭載されている。 In recent years, from the viewpoint of environmental protection, the development of electric vehicles or hybrid vehicles driven by electric motors has been actively promoted. The electric vehicle or hybrid vehicle is equipped with a battery pack in which a plurality of battery cells are connected in series or in parallel to serve as a power source for a driving electric motor.

また、この電池セルには、鉛蓄電池やニッケル水素電池などに比べて、高容量かつ高出力が可能なリチウムイオン二次電池が主として用いられている。そして、リチウムイオン二次電池の中でも、可燃性の有機溶媒からなる電解液を用いないことから、安全性の高い全固体型リチウムイオン二次電池が注目を集めている。この全固体型リチウムイオン二次電池では、有機溶媒を用いた電解液の代わりに、例えば硫化物系固体電解質が好適に用いられる。 Further, as this battery cell, a lithium ion secondary battery capable of high capacity and high output as compared with a lead storage battery or a nickel hydrogen battery is mainly used. Among the lithium ion secondary batteries, the all-solid-state lithium ion secondary battery, which has high safety, is attracting attention because it does not use an electrolytic solution composed of a flammable organic solvent. In this all-solid-state lithium ion secondary battery, for example, a sulfide-based solid electrolyte is preferably used instead of the electrolytic solution using an organic solvent.

しかしながら、この硫化物系固体電解質を有する全固体型リチウムイオン二次電池では、電池外から流入した空気が硫化物系固体電解質と接触すると、空気中の水分により硫化水素ガス(HS)が発生することがある。硫化水素ガスは、電極を腐食させるとともに、毒性が高いため人体への影響も懸念される。 However, the all-solid-state lithium ion secondary battery having the sulfide-based solid electrolyte, the air flowing from the outside of the battery is in contact with the sulfide-based solid electrolyte, hydrogen sulfide gas by moisture in the air (H 2 S) is May occur. Hydrogen sulfide gas corrodes the electrodes and is highly toxic, so there is concern about its effects on the human body.

そこで、発生した硫化水素ガスを吸着する必要があり、例えば特許文献1では、全固体型リチウムイオン二次電池とともに多孔質吸着材を容器(電池ケース)に収容するとともに、容器内に、硫化水素の分子より大きい分子、例えば、窒素、アルゴン、二酸化炭素などの気体を充填して加圧している。 Therefore, it is necessary to adsorb the generated hydrogen sulfide gas. For example, in Patent Document 1, a porous adsorbent is housed in a container (battery case) together with an all-solid-state lithium ion secondary battery, and hydrogen sulfide is contained in the container. A molecule larger than the molecule of the above, for example, a gas such as nitrogen, argon or carbon dioxide is filled and pressurized.

特開2013−65451号公報JP 2013-65451

上記特許文献1では、多孔質吸着材に備えられた細孔の大きさの平均が、硫化水素の分子径よりも大きく、容器内に充填された気体の分子径よりも小さいことから、発生した硫化水素ガスを選択的に細孔内に捕獲する吸着機構となっている。しかしながら、多孔質吸着材は、気体が充填された容器内で露出しているとともに、容器内に充填された気体は加圧された状態である。また、多孔質吸着材に備えられた細孔の大きさの平均が、容器内に充填された気体の分子径よりも小さいとはいえ、細孔の孔径にも分布があることから、一部の細孔において、容器内に充填された気体の分子径よりも大きい場合もあるため、多孔質吸着材の細孔が、充填された窒素などの気体により閉塞され、硫化水素ガスの吸着性能が経時的に劣化するおそれがあった。また、多孔質吸着材の種類も、充填される気体の分子径により制限されるという問題があった。 In Patent Document 1, the average size of the pores provided in the porous adsorbent is larger than the molecular diameter of hydrogen sulfide and smaller than the molecular diameter of the gas filled in the container. It is an adsorption mechanism that selectively captures hydrogen sulfide gas into the pores. However, the porous adsorbent is exposed in the container filled with gas, and the gas filled in the container is in a pressurized state. In addition, although the average size of the pores provided in the porous adsorbent is smaller than the molecular diameter of the gas filled in the container, the pore diameters are also distributed. Since the pores of the porous adsorbent may be larger than the molecular diameter of the gas filled in the container, the pores of the porous adsorbent are blocked by the filled gas such as nitrogen, and the adsorption performance of hydrogen sulfide gas is improved. There was a risk of deterioration over time. Further, there is a problem that the type of the porous adsorbent is also limited by the molecular diameter of the gas to be filled.

本発明はこのような状況に鑑みてなされたものであり、硫化水素ガスに対する吸着性能の経時的な劣化を防ぐとともに、多孔質吸着材の種類の制限がない硫化水素ガス吸着構造体を提供することを目的とする。また、本発明は、長期にわたり安全性を確保した電池パックを提供することを目的とする。 The present invention has been made in view of such a situation, and provides a hydrogen sulfide gas adsorption structure in which the adsorption performance for hydrogen sulfide gas is prevented from deteriorating with time and the type of porous adsorbent is not limited. The purpose is. Another object of the present invention is to provide a battery pack that ensures safety for a long period of time.

本発明の目的は、硫化水素ガス吸着構造体に係る下記(1)により達成される。
(1) 硫化水素ガスを吸着可能な吸着材が、非極性分子のガス透過率よりも極性分子のガス透過率が大きい包装材で気密に包囲されてなる、硫化水素ガス吸着構造体。
An object of the present invention is achieved by the following (1) relating to a hydrogen sulfide gas adsorption structure.
(1) A hydrogen sulfide gas adsorbent structure in which an adsorbent capable of adsorbing hydrogen sulfide gas is airtightly surrounded by a packaging material having a gas permeability of polar molecules higher than that of nonpolar molecules.

また、硫化水素ガス吸着構造体に係る本発明の好ましい実施形態は、下記(2)〜(5)のいずれかであることを特徴とする。
(2) 前記包装材は、JIS K 6275−1(2009)又はJIS K 7126−1(2006)に準拠して測定されるガス透過率が、窒素ガス及び酸素ガスに対してともに100cc/cm/mm/秒/cmHg×1010以下であり、かつ、水蒸気に対して10000cc/cm/mm/秒/cmHg×1010以上である、上記(1)に記載の硫化水素ガス吸着構造体。
(3) 前記包装材は、塩酸ゴム、ポリアミド、ポリアセタール、酢酸セルロース、ポリブタジエン−アクリロニトリル、ポリスチレン、ポリウレタン、クロロスルフォン化ポリエチレン及びクロロプレンゴムから選択される少なくとも一種から構成される、上記(1)又は(2)に記載の硫化水素ガス吸着構造体。
(4) 前記包装材の内部は、真空状態又は減圧状態である、上記(1)〜(3)のいずれか1つに記載の硫化水素ガス吸着構造体。
(5) 前記吸着材は、活性炭、ゼオライト、金属ケイ酸塩、シリカゲル、並びに、亜鉛、鉄、ニッケル、スズ、銅及び銀から選択される少なくとも一種の金属、該金属の酸化物及び該金属の水酸化物からなる群から選択される少なくとも一種である、上記(1)〜(4)のいずれか1つに記載の硫化水素ガス吸着構造体。
Further, a preferred embodiment of the present invention relating to the hydrogen sulfide gas adsorption structure is one of the following (2) to (5).
(2) The packaging material has a gas permeability measured in accordance with JIS K 6275-1 (2009) or JIS K 7126-1 (2006) at 100 cc / cm 2 for both nitrogen gas and oxygen gas. / mm / sec / cmHg × is 10 10 or less, and is 10000cc / cm 2 / mm / sec / cmHg × 10 10 or more with respect to water vapor, hydrogen sulfide gas adsorption structure according to (1).
(3) The packaging material is composed of at least one selected from rubber hydrochloride, polyamide, polyacetal, cellulose acetate, polybutadiene-acrylonitrile, polystyrene, polyurethane, chlorosulphonized polyethylene and chloroprene rubber. The hydrogen sulfide gas adsorption structure according to 2).
(4) The hydrogen sulfide gas adsorption structure according to any one of (1) to (3) above, wherein the inside of the packaging material is in a vacuum state or a reduced pressure state.
(5) The adsorbent includes activated carbon, zeolite, metal silicate, silica gel, and at least one metal selected from zinc, iron, nickel, tin, copper and silver, oxides of the metal and the metal. The hydrogen sulfide gas adsorption structure according to any one of (1) to (4) above, which is at least one selected from the group consisting of hydroxides.

また、本発明の目的は、電池パックに係る下記(6)により達成される。
(6) 上記(1)〜(5)のいずれか1つに記載の硫化水素ガス吸着構造体を、硫化物系固体電解質を用いた電池セルとともに電池ケースに収容した、電池パック。
Further, the object of the present invention is achieved by the following (6) relating to the battery pack.
(6) A battery pack in which the hydrogen sulfide gas adsorption structure according to any one of (1) to (5) above is housed in a battery case together with a battery cell using a sulfide-based solid electrolyte.

本発明に係る硫化水素ガス吸着構造体によれば、硫化水素ガスに対する吸着性能の経時的な劣化を防ぎ、硫化水素ガスが発生した際に十分な吸着性能を発揮することができる。また、硫化水素ガスを吸着可能な吸着材であれば、多孔質吸着材の種類の制限もない。 According to the hydrogen sulfide gas adsorption structure according to the present invention, it is possible to prevent the adsorption performance for hydrogen sulfide gas from deteriorating with time, and to exhibit sufficient adsorption performance when hydrogen sulfide gas is generated. Further, there is no limitation on the type of the porous adsorbent as long as it is an adsorbent capable of adsorbing hydrogen sulfide gas.

また、本発明に係る電池パックによれば、このような硫化水素ガス吸着構造体とともに、硫化物系固体電解質を用いた電池セルを電池ケースに収容しているため、長期にわたり硫化水素ガスの吸着性能を維持でき、安全性が高まる。 Further, according to the battery pack according to the present invention, since the battery cell using the sulfide-based solid electrolyte is housed in the battery case together with such a hydrogen sulfide gas adsorption structure, hydrogen sulfide gas adsorption for a long period of time. Performance can be maintained and safety is improved.

図1は、本発明に係る硫化水素ガス吸着構造体の実施形態、及びその使用形態を模式的に示す図である。FIG. 1 is a diagram schematically showing an embodiment of a hydrogen sulfide gas adsorption structure according to the present invention and a mode of use thereof. 図2は、本発明に係る電池パックの実施形態を模式的に示す図である。FIG. 2 is a diagram schematically showing an embodiment of a battery pack according to the present invention.

<1.硫化水素ガス吸着構造体>
図1は、本発明に係る硫化水素ガス吸着構造体の構成、及びその使用形態を模式的に示す図である。硫化水素ガス吸着構造体1は、硫化水素ガスの発生源10とともに、容器20に収容される。
<1. Hydrogen sulfide gas adsorption structure>
FIG. 1 is a diagram schematically showing a configuration of a hydrogen sulfide gas adsorption structure according to the present invention and a mode of use thereof. The hydrogen sulfide gas adsorption structure 1 is housed in the container 20 together with the hydrogen sulfide gas generation source 10.

硫化水素ガスの発生源10としては、例えば硫化物系固体電解質を有する全固体型リチウムイオン二次電池セルを挙げることができる。この全固体型リチウムイオン二次電池セルは、正極と負極とで硫化物系固体電解質を挟み、セル全体を例えばシール部材11で気密に包囲したものであり、電池ケース等の容器20に収容されて自動車などの使用機器に装着される。そして、外的要因などにより、容器20、更には全固体型リチウムイオン二次電池セルなどの硫化水素ガスの発生源10が損傷し、それに伴ってシール部材11が破断して空気中などに含まれる水分が硫化物系固体電解質と接触すると、硫化水素ガスが発生する場合がある。 Examples of the hydrogen sulfide gas generation source 10 include an all-solid-state lithium ion secondary battery cell having a sulfide-based solid electrolyte. In this all-solid-state lithium-ion secondary battery cell, a sulfide-based solid electrolyte is sandwiched between a positive electrode and a negative electrode, and the entire cell is airtightly surrounded by, for example, a sealing member 11, and is housed in a container 20 such as a battery case. It is installed in equipment used such as automobiles. Then, due to an external factor or the like, the container 20 and the hydrogen sulfide gas generation source 10 such as the all-solid-state lithium ion secondary battery cell are damaged, and the seal member 11 is broken and contained in the air or the like. Hydrogen sulfide gas may be generated when the water is in contact with the sulfide-based solid electrolyte.

そこで、発生した硫化水素ガスを吸着するために、容器20に硫化水素ガス吸着構造体1を同梱する。硫化水素ガス吸着構造体1は、硫化水素ガスを吸着する吸着材5を、後述するような特定の材料物性を有する包装材6で気密に包囲したものである。 Therefore, in order to adsorb the generated hydrogen sulfide gas, the hydrogen sulfide gas adsorption structure 1 is included in the container 20. The hydrogen sulfide gas adsorption structure 1 is an adsorbent 5 that adsorbs hydrogen sulfide gas, which is airtightly surrounded by a packaging material 6 having specific material properties as described later.

(1−1.吸着材)
吸着材5は、硫化水素ガスを吸着できる材料であれば制限はなく、活性炭、ゼオライト、金属ケイ酸塩、シリカゲル、並びに、亜鉛、鉄、ニッケル、スズ、銅及び銀等の金属、これら金属の酸化物、これら金属の水酸化物等を挙げることができる、また、これらを単独で使用してもよく、あるいは混合して使用してもよい。
(1-1. Adsorbent)
The adsorbent 5 is not limited as long as it is a material capable of adsorbing hydrogen sulfide gas, and includes activated carbon, zeolite, metal silicate, silica gel, metals such as zinc, iron, nickel, tin, copper and silver, and these metals. Oxides, hydroxides of these metals and the like can be mentioned, and these may be used alone or in combination.

活性炭としては、特に種類が限定されるものではなく、例えば、ヤシガラ、石炭、木炭等を主原料としたものが挙げられる。 The type of activated carbon is not particularly limited, and examples thereof include those using coconut husk, coal, charcoal, and the like as main raw materials.

金属ケイ酸塩としては、例えば、特許第6164900号公報に記載の、銅、亜鉛、マンガン、コバルト、ニッケルから選ばれる少なくとも1種の金属を含む金属ケイ酸塩であることが好ましい。 The metal silicate is, for example, a metal silicate containing at least one metal selected from copper, zinc, manganese, cobalt, and nickel described in Japanese Patent No. 6164900.

ゼオライトとしては、特に種類に限定されるものではなく、例えば、β型ゼオライト、Y型ゼオライト、フェリエライト、ZSM−5型ゼオライト、モルデナイト、フォージサイト、ゼオライトA及びゼオライトL等が挙げられる。 The type of zeolite is not particularly limited, and examples thereof include β-type zeolite, Y-type zeolite, ferrierite, ZSM-5 type zeolite, mordenite, forgesite, zeolite A, and zeolite L.

なお、吸着速度向上の観点からは、吸着材5として、活性炭、ゼオライト、シリカゲルのいずれかを用いることが好ましい。また、吸着力向上の観点からは、吸着材5として、金属ケイ酸塩、又は、亜鉛、鉄、ニッケル、スズ、銅及び銀から選択される少なくとも一種の金属、該金属の酸化物及び該金属の水酸化物からなる群から選択される少なくとも一種のいずれかを用いることが好ましい。 From the viewpoint of improving the adsorption rate, it is preferable to use any of activated carbon, zeolite, and silica gel as the adsorbent 5. From the viewpoint of improving the adsorptive power, the adsorbent 5 is a metal silicate, or at least one metal selected from zinc, iron, nickel, tin, copper and silver, an oxide of the metal and the metal. It is preferable to use at least one selected from the group consisting of hydroxides of.

また、吸着材5は、粉末状でもよく、そのまま袋状の包装材6に収容してもよい。また、吸着材5の粉末を適当なバインダーで結着してシート状に加工してもよく、あるいは、適当な支持体の片面又は両面に吸着材5の粉末を層状に一体化してもよく、これらシートや支持体と一体化したものを包装材6で気密に包囲する形態であってもよい。 Further, the adsorbent 5 may be in the form of powder, or may be housed in the bag-shaped packaging material 6 as it is. Further, the powder of the adsorbent 5 may be bound with an appropriate binder and processed into a sheet, or the powder of the adsorbent 5 may be integrated into a layer on one side or both sides of an appropriate support. A form integrated with these sheets and supports may be airtightly surrounded by a packaging material 6.

なお、吸着材5が粉末状である場合の粉末の平均粒子径は、微小なほど単位質量当たりの表面積が大きくなることから好ましく、具体的には、0.5〜100μmであることが好ましく、0.5〜10μmであることがより好ましい。 When the adsorbent 5 is in the form of powder, the average particle size of the powder is preferably as small as possible because the surface area per unit mass is larger, and specifically, it is preferably 0.5 to 100 μm. It is more preferably 0.5 to 10 μm.

バインダーとしては、スチレンブタジエンゴム(SBR)、シリコーン樹脂、アクリル樹脂、ポリスチレン、ポリブタジエン等を用いることができる。中でも、硫化水素ガスの透過性が特に高いことから、スチレンブタジエンゴム(SBR)を用いることがより好ましい。バインダーの使用量としては、吸着材5とバインダーとの合計量に対して0.5〜5質量%が好ましい。 As the binder, styrene-butadiene rubber (SBR), silicone resin, acrylic resin, polystyrene, polybutadiene and the like can be used. Above all, it is more preferable to use styrene-butadiene rubber (SBR) because the permeability of hydrogen sulfide gas is particularly high. The amount of the binder used is preferably 0.5 to 5% by mass with respect to the total amount of the adsorbent 5 and the binder.

支持体としては、吸着材5の粉末を支持できるものであれば、特に限定されるものではなく、樹脂などの有機系材料、金属やガラスなどの無機系材料を含めて様々なものを用いることができる。ただし、吸着材5と支持体との界面にも硫化水素ガスが到達しやすいように、後述する包装材6と同じ材料を用いることが好ましい。 The support is not particularly limited as long as it can support the powder of the adsorbent 5, and various materials including organic materials such as resin and inorganic materials such as metal and glass may be used. Can be done. However, it is preferable to use the same material as the packaging material 6 described later so that the hydrogen sulfide gas can easily reach the interface between the adsorbent 5 and the support.

(1−2.包装材)
包装材6は、非極性分子のガス透過率よりも極性分子のガス透過率が大きい材料からなるシートやフィルム等である。ここで、大気中に多く存在する窒素ガスや酸素ガスは、比較的分子径が大きいとともに、いわゆる非極性分子であり、その一方で、硫化水素ガスの発生源10から発生し得る硫化水素ガスや、大気中などに存在する水蒸気は、窒素ガスや酸素ガスに比べ比較的分子径が小さいとともに、いわゆる極性分子である。よって、本実施形態に係る包装材6は、比較的に分子径の小さい硫化水素ガスや水蒸気を透過しやすく、比較的分子径の大きい窒素ガスや酸素ガスを透過し難い材料からなるといえる。具体的に、包装材6は、ガス透過率が、窒素ガス及び酸素ガスに対してともに100cc/cm/mm/秒/cmHg×1010以下であり、かつ、水蒸気に対して10000cc/cm/mm/秒/cmHg×1010以上であることが好ましい。
(1-2. Packaging material)
The packaging material 6 is a sheet, film, or the like made of a material having a gas permeability of polar molecules higher than that of non-polar molecules. Here, nitrogen gas and oxygen gas, which are abundant in the atmosphere, have a relatively large molecular diameter and are so-called non-polar molecules. On the other hand, hydrogen sulfide gas that can be generated from the source 10 of hydrogen sulfide gas and the like. , Water vapor existing in the atmosphere has a relatively small molecular diameter as compared with nitrogen gas and oxygen gas, and is a so-called polar molecule. Therefore, it can be said that the packaging material 6 according to the present embodiment is made of a material that easily permeates hydrogen sulfide gas and water vapor having a relatively small molecular diameter and hardly permeates nitrogen gas and oxygen gas having a relatively large molecular diameter. Specifically, the packaging material 6 has a gas permeability of 100 cc / cm 2 / mm / sec / cmHg × 10 10 or less for both nitrogen gas and oxygen gas, and 10000 cc / cm 2 for water vapor. / Mm/sec/cmHg × 10 10 or more is preferable.

なお、包装材6における窒素ガスや酸素ガスの透過を効果的に抑制するためには、ガス透過率が、窒素ガス及び酸素ガスに対してともに50cc/cm/mm/秒/cmHg×1010以下であることがより好ましく、10cc/cm/mm/秒/cmHg×1010以下であることが更に好ましい。また、包装材6における水蒸気の透過を効果的に発揮させるためには(後述するように、本来の目的は硫化水素ガスを効果的に透過させること)、ガス透過率が、水蒸気に対してともに12000cc/cm/mm/秒/cmHg×1010以上であることがより好ましく、15000cc/cm/mm/秒/cmHg×1010以上であることが更に好ましい。 In order to effectively suppress the permeation of nitrogen gas and oxygen gas in the packaging material 6, the gas permeation rate is 50 cc / cm 2 / mm / sec / cmHg × 10 10 for both nitrogen gas and oxygen gas. It is more preferably 10 cc / cm 2 / mm / sec / cmHg × 10 10 or less. Further, in order to effectively permeate the water vapor in the packaging material 6 (as will be described later, the original purpose is to effectively permeate hydrogen sulfide gas), both the gas permeability and the water vapor have a gas permeability. It is more preferably 12000 cc / cm 2 / mm / sec / cmHg × 10 10 or more, and further preferably 15000 cc / cm 2 / mm / sec / cmHg × 10 10 or more.

ここで、本発明に係る包装材6の材料物性を、非極性分子のガス透過率が低く、かつ、極性分子のガス透過率が高いものとする理由を以下に説明する。 Here, the reason why the material physical properties of the packaging material 6 according to the present invention are such that the gas permeability of non-polar molecules is low and the gas permeability of polar molecules is high will be described below.

上述の通り、特許文献1では、多孔質吸着材に備えられた細孔の大きさの平均が、硫化水素の分子径よりも大きく、容器内に充填された気体の分子径よりも小さいことから、発生した硫化水素ガスを選択的に細孔内に捕獲する吸着機構となっているものの、一部の細孔においては、容器内に充填された気体の分子径よりも大きい場合もあるため、多孔質吸着材の細孔が、充填された窒素などの気体により閉塞され、硫化水素ガスの吸着性能が経時的に劣化するおそれがあった。また、多孔質吸着材の種類も、充填される気体の分子径により制限されるという問題があった。 As described above, in Patent Document 1, the average size of the pores provided in the porous adsorbent is larger than the molecular diameter of hydrogen sulfide and smaller than the molecular diameter of the gas filled in the container. Although it has an adsorption mechanism that selectively captures the generated hydrogen sulfide gas into the pores, some of the pores may be larger than the molecular diameter of the gas filled in the container. The pores of the porous adsorbent may be clogged by the filled gas such as nitrogen, and the adsorption performance of the hydrogen sulfide gas may deteriorate over time. Further, there is a problem that the type of the porous adsorbent is also limited by the molecular diameter of the gas to be filled.

そこで、本発明者らは、吸着材5を気密に包囲する包装材6として、硫化水素ガスを比較的に容易に透過させつつ、吸着材5の細孔を閉塞し得るものとして空気中に多く存在する窒素ガスや酸素ガスを遮断する材料物性を有するものを採用すれば、硫化水素ガスが発生していないときにおいて、窒素ガスや酸素ガスが包装材6を透過して吸着材5の細孔を閉塞することを抑制できること、また、硫化水素ガスの発生源10から硫化水素ガスが発生した際には、包装材6が選択的に硫化水素ガスを透過させることで、吸着材5の細孔を閉塞することなく、効果的に硫化水素ガスを吸着できるのではないかと考えた。 Therefore, the present inventors consider that the packaging material 6 that airtightly surrounds the adsorbent 5 can block the pores of the adsorbent 5 while allowing the hydrogen sulfide gas to permeate relatively easily in the air. If a material having material properties that block existing nitrogen gas and oxygen gas is adopted, the nitrogen gas and oxygen gas permeate through the packaging material 6 and the pores of the adsorbent 5 when hydrogen sulfide gas is not generated. Also, when hydrogen sulfide gas is generated from the hydrogen sulfide gas generation source 10, the packaging material 6 selectively permeates the hydrogen sulfide gas, so that the pores of the adsorbent 5 are permeated. I thought that hydrogen sulfide gas could be effectively adsorbed without blocking the gas.

そして、硫化水素ガスを比較的に容易に透過させつつ、窒素ガスや酸素ガスを遮断可能な材料物性を規定する方法として、硫化水素ガスは極性分子であり、窒素ガスや酸素ガスは非極性分子であることに着目し、包装材6として非極性分子のガス透過率よりも極性分子のガス透過率が大きいものを採用することで本発明の課題を解決できることを見出した。 Hydrogen sulfide gas is a polar molecule, and nitrogen gas and oxygen gas are non-polar molecules as a method for defining material properties that can block nitrogen gas and oxygen gas while allowing hydrogen sulfide gas to permeate relatively easily. It has been found that the problem of the present invention can be solved by adopting a packaging material 6 having a gas permeability of polar molecules larger than that of nonpolar molecules.

なお、水蒸気(水分子)は、硫化水素ガスと分子径が近い極性分子であり、一般的なガス透過率の文献値においては、水蒸気のガス透過率により記載されていることが多いことから、本発明においては水蒸気に対するガス透過率で代替することにより規定する。また、ガスの透過率は、ゴムフィルムについてはJIS K 6275−1(2009)、プラスチックフィルムについてはJIS K 7126−1(2006)に規定されているため、本発明においては、これらJISに基づくガス透過率を採用する。 It should be noted that water vapor (water molecule) is a polar molecule having a molecular diameter close to that of hydrogen sulfide gas, and is often described by the gas permeability of water vapor in the literature values of general gas permeability. In the present invention, it is defined by substituting the gas permeability with respect to water vapor. Further, the transmittance of the gas is specified in JIS K 6275-1 (2009) for the rubber film and JIS K 7126-1 (2006) for the plastic film. Therefore, in the present invention, the gas based on these JIS is specified. Adopt transmittance.

このようなガス透過率を満足し得る材料として、例えば、塩酸ゴム、ポリアミド、ポリアセタール、酢酸セルロース、ポリブタジエン−アクリロニトリル、ポリスチレン、ポリウレタン、クロロスルフォン化ポリエチレン及びクロロプレンゴムを挙げることができる。なお、材料の種類によっては、ガス透過率の数値範囲に幅があり、一例として、ポリアミドのガス透過率は、窒素ガスに対しては0.1〜0.2cc/cm/mm/秒/cmHg×1010、酸素ガスに対しては0.38cc/cm/mm/秒/cmHg×1010、水蒸気に対しては700〜17000cc/cm/mm/秒/cmHg×1010である(株式会社潤工社のホームページ;http://junkosha.co.jp/technical/tec8.html、「2−3 チューブ材料のガス透過性」を参照)。この場合、例えばポリマーの重合度、結晶化度の調整や、あるいは変性などの公知の手段により、上記の好ましいガス透過率を満足するように適宜調整することができる。 Examples of materials that can satisfy such gas permeability include rubber hydrochloride, polyamide, polyacetal, cellulose acetate, polybutadiene-acrylonitrile, polystyrene, polyurethane, chlorosulfonized polyethylene, and chloroprene rubber. Depending on the type of material, there is a range of numerical values for gas permeability. As an example, the gas permeability of polyamide is 0.1 to 0.2 cc / cm 2 / mm / sec / sec for nitrogen gas. cmHg × 10 10, a 700~17000cc / cm 2 / mm / sec / cmHg × 10 10 for 0.38cc / cm 2 / mm / sec / cmHg × 10 10, the steam to oxygen gas ( Homepage of Junkosha Inc.; http://junkosha.co.jp/technical/tec8.html, see "2-3 Gas permeability of tube material"). In this case, for example, the degree of polymerization and crystallinity of the polymer can be adjusted, or known means such as modification can be appropriately adjusted so as to satisfy the above-mentioned preferable gas permeability.

なお、上記ガス透過率を満足し得る材料のうち、窒素ガス及び酸素ガスに対するガス透過率が相対的により低い、塩酸ゴム、ポリアミド、ポリアセタールのいずれかを採用することが好ましい。 Among the materials that can satisfy the gas permeability, it is preferable to use any of rubber hydrochloride, polyamide, and polyacetal, which have relatively lower gas permeability to nitrogen gas and oxygen gas.

包装材6の厚さは特に制限されるものではなく、一般的な紙やシート、フィルムと同程度で構わず、例えば0.05mm〜0.25mmが適当である。ただし、窒素ガスや酸素ガスの透過を効果的に抑制するための観点より、包装材6の厚さは0.08mm以上であることが好ましく、0.10mm以上であることがより好ましい。また、水蒸気ガスや硫化水素ガスの透過を効果的に発揮させるための観点より、包装材6の厚さは0.20mm以下であることが好ましく、0.15mm以下であることがより好ましい。 The thickness of the packaging material 6 is not particularly limited, and may be the same as that of general paper, sheet, or film, and for example, 0.05 mm to 0.25 mm is suitable. However, from the viewpoint of effectively suppressing the permeation of nitrogen gas and oxygen gas, the thickness of the packaging material 6 is preferably 0.08 mm or more, and more preferably 0.10 mm or more. Further, from the viewpoint of effectively exerting the permeation of water vapor gas and hydrogen sulfide gas, the thickness of the packaging material 6 is preferably 0.20 mm or less, and more preferably 0.15 mm or less.

また、包装材6は、吸着材5を収容した状態で、その端部(四隅)をホットシールするなどして密封、すなわち気密に密封している。なお、密封の際、包装材6の内部に窒素ガスや酸素ガスが入り込まないよう、例えば、包装材6の内部を真空又は真空に近い状態にした状態(すなわち、真空状態又は減圧状態)で吸着材5を収容することが好ましい。このようにすることで、包装材6内に存在しうる窒素ガスや酸素ガスなどの気体を極力減らすことができ、包装材6内の気体が、吸着材5の細孔を閉塞してしまうことを抑制できるため、吸着材5がより高い硫化水素ガスの吸着効果を得ることができる。なお、「真空状態」とは気圧がゼロの状態を示し、「減圧状態」とは大気圧に比べて気圧が低い状態を示す。 Further, the packaging material 6 is hermetically sealed, that is, airtightly sealed by hot-sealing its ends (four corners) in a state where the adsorbent 5 is housed. At the time of sealing, for example, the inside of the packaging material 6 is adsorbed in a vacuum or a state close to vacuum (that is, a vacuum state or a reduced pressure state) so that nitrogen gas or oxygen gas does not enter the inside of the packaging material 6. It is preferable to house the material 5. By doing so, the gas such as nitrogen gas and oxygen gas that may exist in the packaging material 6 can be reduced as much as possible, and the gas in the packaging material 6 blocks the pores of the adsorbent 5. Therefore, the adsorbent 5 can obtain a higher adsorption effect of hydrogen sulfide gas. The "vacuum state" indicates a state in which the pressure is zero, and the "decompression state" indicates a state in which the pressure is lower than the atmospheric pressure.

上記のようにして構成された、本発明に係る硫化水素ガス吸着構造体1は、硫化水素ガスの発生源10から硫化水素ガスが発生していない状態では、包装材6の内部に窒素ガスや酸素ガスが入り込めず、例え吸着材5の細孔が窒素ガスや酸素ガスの分子径よりも大きい場合であっても、吸着材5の細孔が閉塞されることがないため、硫化水素ガスの吸着性能が経時的に劣化せず、硫化水素ガス吸着構造体1の製造時に近い状態で維持されている。 The hydrogen sulfide gas adsorption structure 1 according to the present invention configured as described above has nitrogen gas or nitrogen gas inside the packaging material 6 in a state where hydrogen sulfide gas is not generated from the hydrogen sulfide gas generation source 10. Hydrogen sulfide gas because the pores of the adsorbent 5 are not blocked even when the pores of the adsorbent 5 are larger than the molecular diameter of the nitrogen gas or oxygen gas because oxygen gas cannot enter. The adsorption performance of the hydrogen sulfide gas adsorption structure 1 does not deteriorate with time, and is maintained in a state close to that at the time of manufacturing the hydrogen sulfide gas adsorption structure 1.

その一方で、硫化水素ガスの発生源10から硫化水素ガスが発生した際には、包装材6が選択的に硫化水素ガスを透過させるため、吸着材5により効果的に硫化水素ガスを吸着できる。 On the other hand, when hydrogen sulfide gas is generated from the hydrogen sulfide gas generation source 10, the packaging material 6 selectively permeates the hydrogen sulfide gas, so that the adsorbent 5 can effectively adsorb the hydrogen sulfide gas. ..

<2.電池パック>
本発明はまた、上記の硫化水素ガス吸着構造体1を備える電池パックに関する。すなわち、本実施形態に係る電池パック100は、図2に示すように、複数個で構成される、硫化物系固体電解質を用いた電池セル(全固体型リチウムイオン二次電池)101を直列又は並列に接続し(接続の状態は図示を省略)、硫化水素ガス吸着構造体1とともに電池ケース110に収容して構成される。なお、電池セル101は1つのみの場合であってもよい。また、電池ケース110内の硫化水素ガス吸着構造体1の配置には特に制限はなく、電池ケース110と電池セル101との隙間の空間に適宜設ければよい。例えば、図示されるように、電池ケース110の内壁に硫化水素ガス吸着構造体1を貼り付けることができる。図示は省略するが、電池ケース110の床面における電池セル101の設置部分以外の場所に、硫化水素ガス吸着構造体1を置くこともできる。なお、硫化水素は空気よりも重いため、硫化水素ガス吸着構造体1は、電池セル101よりも鉛直方向下側に設置することが好ましい。
<2. Battery pack >
The present invention also relates to a battery pack including the above hydrogen sulfide gas adsorption structure 1. That is, as shown in FIG. 2, the battery pack 100 according to the present embodiment is composed of a plurality of battery cells (all-solid-state lithium ion secondary batteries) 101 using a sulfide-based solid electrolyte in series or. It is connected in parallel (the state of connection is not shown), and is housed in the battery case 110 together with the hydrogen sulfide gas adsorption structure 1. The number of battery cells 101 may be only one. Further, the arrangement of the hydrogen sulfide gas adsorption structure 1 in the battery case 110 is not particularly limited, and may be appropriately provided in the space between the battery case 110 and the battery cell 101. For example, as shown in the figure, the hydrogen sulfide gas adsorption structure 1 can be attached to the inner wall of the battery case 110. Although not shown, the hydrogen sulfide gas adsorption structure 1 may be placed on the floor surface of the battery case 110 at a place other than the installation portion of the battery cell 101. Since hydrogen sulfide is heavier than air, it is preferable to install the hydrogen sulfide gas adsorption structure 1 on the lower side in the vertical direction than the battery cell 101.

また、電池ケース110は外部から空気が浸入しない密封構造であってもよいが、本発明においては、例えば電池セル101の冷却などのために空気が流入する構造であってもよい。電池ケース110に流入した空気中の水分(水蒸気)も、硫化水素ガス吸着構造体1の包装材6を透過して吸着材5に吸着され得るが、吸着された水分は極性分子であり、硫化水素ガスとは親和性が高い。そのため、例えば、“Effects of Temperature and Humidity on the Removal of Hydrogen Sulfide by Active Carbon”;Junji MASUDA et al.、大気環境学会誌,J.Jpn.Soc.Atmos. Environ,33(1),10〜15(1998)に記載されているように、水が存在することにより、硫化水素ガスの吸着が促進される効果が期待されるため、硫化水素ガスとともに水蒸気も包装材6を透過して吸着材5に吸着されることは、硫化水素ガスの吸着作用にとって好ましいことである。したがって、本発明の硫化水素ガス吸着構造体1のように、極性分子のガス透過率が大きい材料物性を有する包装材6を採用することで、硫化水素ガスとともに水蒸気を透過させることは、吸着材5の吸着性能の劣化には影響がほとんど無い。 Further, the battery case 110 may have a sealed structure in which air does not enter from the outside, but in the present invention, the battery case 110 may have a structure in which air flows in, for example, for cooling the battery cell 101. Moisture (water vapor) in the air flowing into the battery case 110 can also permeate through the packaging material 6 of the hydrogen sulfide gas adsorption structure 1 and be adsorbed on the adsorbent 5, but the adsorbed water is a polar molecule and is sulfided. It has a high affinity with hydrogen gas. Therefore, for example, "Effects of Temperature and Humidity on the Removal of Hydrogen Sulfide by Activate Carbon"; Junji Masuda et al. , Journal of the Atmospheric Environment Society, J.M. Jpn. Soc. Atmos. As described in Environ, 33 (1), 10-15 (1998), the presence of water is expected to have the effect of promoting the adsorption of hydrogen sulfide gas, so that water vapor is also contained together with hydrogen sulfide gas. Permeation through the packaging material 6 and adsorbed by the adsorbent 5 is preferable for the adsorption action of hydrogen sulfide gas. Therefore, by adopting a packaging material 6 having material properties having a large gas permeability of polar molecules like the hydrogen sulfide gas adsorption structure 1 of the present invention, it is possible to permeate water vapor together with hydrogen sulfide gas as an adsorbent. There is almost no effect on the deterioration of the adsorption performance of 5.

以上説明したように、硫化水素ガス吸着構造体1においては、吸着材5の吸着性能の経時的な劣化が抑えられているため、硫化水素ガスが発生した場合でも効果的に吸着することができる。また、電池パック100においては、このような硫化水素ガス吸着構造体1とともに、硫化物系固体電解質を用いた電池セル101を電池ケース110に収容しているため、長期にわたり硫化水素ガスの吸着性能を維持でき、安全性が高まる。 As described above, in the hydrogen sulfide gas adsorption structure 1, since the deterioration of the adsorption performance of the adsorbent 5 with time is suppressed, hydrogen sulfide gas can be effectively adsorbed even when it is generated. .. Further, in the battery pack 100, since the battery cell 101 using the sulfide-based solid electrolyte is housed in the battery case 110 together with the hydrogen sulfide gas adsorption structure 1, the hydrogen sulfide gas adsorption performance for a long period of time. Can be maintained and safety is improved.

1 硫化水素ガス吸着構造体
5 吸着材
6 包装材
10 硫化水素ガスの発生源
11 シール部材
20 容器
100 電池パック
101 電池セル
110 電池ケース
1 Hydrogen sulfide gas adsorption structure 5 Adsorbent 6 Packaging material 10 Hydrogen sulfide gas source 11 Sealing member 20 Container 100 Battery pack 101 Battery cell 110 Battery case

Claims (6)

硫化水素ガスを吸着可能な吸着材が、非極性分子のガス透過率よりも極性分子のガス透過率が大きい包装材で気密に包囲されてなる、硫化水素ガス吸着構造体。 A hydrogen sulfide gas adsorption structure in which an adsorbent capable of adsorbing hydrogen sulfide gas is airtightly surrounded by a packaging material having a gas permeability of polar molecules higher than that of nonpolar molecules. 前記包装材は、JIS K 6275−1(2009)又はJIS K 7126−1(2006)に準拠して測定されるガス透過率が、窒素ガス及び酸素ガスに対してともに100cc/cm/mm/秒/cmHg×1010以下であり、かつ、水蒸気に対して10000cc/cm/mm/秒/cmHg×1010以上である、請求項1に記載の硫化水素ガス吸着構造体。 The packaging material has a gas permeability measured in accordance with JIS K 6275-1 (2009) or JIS K 7126-1 (2006) with respect to both nitrogen gas and oxygen gas at 100 cc / cm 2 / mm / mm. The hydrogen sulfide gas adsorption structure according to claim 1, wherein the second / cmHg × 10 10 or less and 10000 cc / cm 2 / mm / sec / cmHg × 10 10 or more with respect to water vapor. 前記包装材は、塩酸ゴム、ポリアミド、ポリアセタール、酢酸セルロース、ポリブタジエン−アクリロニトリル、ポリスチレン、ポリウレタン、クロロスルフォン化ポリエチレン及びクロロプレンゴムから選択される少なくとも一種から構成される、請求項1又は2に記載の硫化水素ガス吸着構造体。 The sulfide according to claim 1 or 2, wherein the packaging material is composed of at least one selected from rubber hydrochloride, polyamide, polyacetal, cellulose acetate, polybutadiene-acrylonitrile, polystyrene, polyurethane, chlorosulphonized polyethylene and chloroprene rubber. Hydrogen gas adsorption structure. 前記包装材の内部は、真空状態又は減圧状態である、請求項1〜3のいずれか1項に記載の硫化水素ガス吸着構造体。 The hydrogen sulfide gas adsorption structure according to any one of claims 1 to 3, wherein the inside of the packaging material is in a vacuum state or a reduced pressure state. 前記吸着材は、活性炭、ゼオライト、金属ケイ酸塩、シリカゲル、並びに、亜鉛、鉄、ニッケル、スズ、銅及び銀から選択される少なくとも一種の金属、該金属の酸化物及び該金属の水酸化物からなる群から選択される少なくとも一種である、請求項1〜4のいずれか1項に記載の硫化水素ガス吸着構造体。 The adsorbent is activated carbon, zeolite, metal silicate, silica gel, and at least one metal selected from zinc, iron, nickel, tin, copper and silver, an oxide of the metal and a hydroxide of the metal. The hydrogen sulfide gas adsorption structure according to any one of claims 1 to 4, which is at least one selected from the group consisting of. 請求項1〜5のいずれか1項に記載の硫化水素ガス吸着構造体を、硫化物系固体電解質を用いた電池セルとともに電池ケースに収容した、電池パック。 A battery pack in which the hydrogen sulfide gas adsorption structure according to any one of claims 1 to 5 is housed in a battery case together with a battery cell using a sulfide-based solid electrolyte.
JP2019108917A 2019-06-11 2019-06-11 Hydrogen sulfide gas adsorption structure and battery pack Active JP7272872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019108917A JP7272872B2 (en) 2019-06-11 2019-06-11 Hydrogen sulfide gas adsorption structure and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019108917A JP7272872B2 (en) 2019-06-11 2019-06-11 Hydrogen sulfide gas adsorption structure and battery pack

Publications (2)

Publication Number Publication Date
JP2020199465A true JP2020199465A (en) 2020-12-17
JP7272872B2 JP7272872B2 (en) 2023-05-12

Family

ID=73742331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019108917A Active JP7272872B2 (en) 2019-06-11 2019-06-11 Hydrogen sulfide gas adsorption structure and battery pack

Country Status (1)

Country Link
JP (1) JP7272872B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761925A (en) * 1993-06-17 1995-03-07 Otsuka Pharmaceut Factory Inc Amino acid transfusion pharmaceutical preparation
JP2009183900A (en) * 2008-02-07 2009-08-20 Sony Corp Gas adsorbent
JP2014049204A (en) * 2012-08-29 2014-03-17 Idemitsu Kosan Co Ltd Secondary battery
JP2014059217A (en) * 2012-09-18 2014-04-03 Toppan Printing Co Ltd Odor adsorbent, odor detection kit, usage thereof
JP2015089644A (en) * 2013-11-06 2015-05-11 共同印刷株式会社 Laminated body for sulfide gas adsorption

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761925A (en) * 1993-06-17 1995-03-07 Otsuka Pharmaceut Factory Inc Amino acid transfusion pharmaceutical preparation
JP2009183900A (en) * 2008-02-07 2009-08-20 Sony Corp Gas adsorbent
JP2014049204A (en) * 2012-08-29 2014-03-17 Idemitsu Kosan Co Ltd Secondary battery
JP2014059217A (en) * 2012-09-18 2014-04-03 Toppan Printing Co Ltd Odor adsorbent, odor detection kit, usage thereof
JP2015089644A (en) * 2013-11-06 2015-05-11 共同印刷株式会社 Laminated body for sulfide gas adsorption

Also Published As

Publication number Publication date
JP7272872B2 (en) 2023-05-12

Similar Documents

Publication Publication Date Title
JP6221854B2 (en) Lithium ion battery and electronic device using the same
KR101476365B1 (en) Rechargeable lithium batteries comprising means for the sorption of harmful substances in the form of a multilayer polymeric sheet
US8685153B2 (en) Adsorbent system for removal of gaseous contaminants
US7501008B2 (en) Hydrogen storage systems and fuel cell systems with hydrogen storage capacity
US9362581B2 (en) Metal-air battery system including CO2 selective absorber and operating method therefor
JP2018073802A (en) Battery and battery system
JP6988165B2 (en) Gas absorbent film
JP4784464B2 (en) Metallized film capacitors
JP7272872B2 (en) Hydrogen sulfide gas adsorption structure and battery pack
JP6318703B2 (en) CO and CO2 adsorbent, power storage device using the same, and method for producing CO and CO2 adsorbent
KR20150135878A (en) Electrochemical Cell with Gas Permeable Membrane
CN110718722B (en) Adsorption component and battery
JP2005149837A (en) Battery structure
JP5948888B2 (en) Electric double layer capacitor
JP2010259967A (en) Device for adsorbing gas
JP7405507B2 (en) Sulfur-based gas adsorption structure and assembled battery
JP7222818B2 (en) battery pack
JP2010259968A (en) Device for adsorbing gas
JP5493706B2 (en) Gas adsorption device and method of using gas adsorption device
JP7222817B2 (en) battery pack
JP2017000906A (en) Gas adsorbent, and vacuum heat insulation material prepared therewith
WO2019146472A1 (en) Vacuum insulation container
CN114335689A (en) Electrochemical device and method for manufacturing electrochemical device
JP2023182287A (en) Carbon dioxide recovery device
CN115732788A (en) H in sulfide-based solid-state batteries 2 S suppression and management

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230427

R150 Certificate of patent or registration of utility model

Ref document number: 7272872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150