JP2020192496A - Water treatment device - Google Patents

Water treatment device Download PDF

Info

Publication number
JP2020192496A
JP2020192496A JP2019099018A JP2019099018A JP2020192496A JP 2020192496 A JP2020192496 A JP 2020192496A JP 2019099018 A JP2019099018 A JP 2019099018A JP 2019099018 A JP2019099018 A JP 2019099018A JP 2020192496 A JP2020192496 A JP 2020192496A
Authority
JP
Japan
Prior art keywords
water
electrode
ground electrode
treated
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019099018A
Other languages
Japanese (ja)
Inventor
雄也 松尾
Yuya Matsuo
雄也 松尾
学 生沼
Manabu Oinuma
学 生沼
佑 神谷
Yu Kamiya
佑 神谷
稲永 康隆
Yasutaka Inanaga
康隆 稲永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019099018A priority Critical patent/JP2020192496A/en
Publication of JP2020192496A publication Critical patent/JP2020192496A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

To provide a water treatment device for highly efficient water treatment by reducing wear of and damage to electrodes.SOLUTION: A water treatment device (100) includes a high-voltage electrode (15) between at least two flat ground electrodes (13) arranged parallel and vertically to each other. The high-voltage electrode (15) has an inclined incised part (17), with each end face of the incised part (17) facing the ground electrodes (13). This suppresses the spark discharge caused by the adherence of a treated water (22) to the high-voltage electrode (15), suppressing wear of or damage to the high-voltage electrode (15) and the grounding electrode (13), thus enabling efficient water treatment.SELECTED DRAWING: Figure 2

Description

本願は、水処理装置に関するものである。 The present application relates to a water treatment apparatus.

工業廃水等には、既存のオゾン処理装置では除去できない難分解性物質が含まれることがある。特に、ダイオキシン類及びジオキサン等の除去が大きな課題となっている。一部では、オゾン(O)と過酸化水素(H)または紫外線とを組み合わせることで、Oよりも活性の高いヒドロキシルラジカル(OHラジカル)を被処理水中で発生させ、難分解性物質の除去を行う方法が実用化されている。しかしながら、装置コスト及び運転コストが高く、あまり普及していないのが実情である。そこで、放電で発生させたOHラジカル等を、被処理水に作用させることで、高効率に難分解性物質を除去する方法が提案されている。 Industrial wastewater and the like may contain persistent substances that cannot be removed by existing ozone treatment equipment. In particular, the removal of dioxins and dioxanes has become a major issue. In some cases, by combining ozone (O 3 ) with hydrogen peroxide (H 2 O 2 ) or ultraviolet rays, hydroxyl radicals (OH radicals), which are more active than O 3 , are generated in the water to be treated and are hardly decomposed. A method for removing radical substances has been put into practical use. However, the equipment cost and the operating cost are high, and the fact is that they are not widely used. Therefore, a method has been proposed in which persistent substances are removed with high efficiency by allowing OH radicals or the like generated by electric discharge to act on the water to be treated.

例えば特許文献1には、処理槽の内部に対向配置された少なくとも2つの接地電極と、接地電極の間に配置された板状の高圧電極と、高圧電極を支持する支持体と、2つの接地電極の間に被処理水を散布する散水部とを備え、接地電極と高圧電極の間に放電を生じさせて放電領域を形成し、被処理水が放電領域を通過するようにした水処理装置が開示されている。 For example, in Patent Document 1, at least two ground electrodes arranged to face each other inside the processing tank, a plate-shaped high-pressure electrode arranged between the ground electrodes, a support for supporting the high-pressure electrode, and two grounds. A water treatment device provided with a sprinkler portion for spraying water to be treated between the electrodes, and a discharge region is formed between the ground electrode and the high-pressure electrode so that the water to be treated passes through the discharge region. Is disclosed.

特許第6400259号公報Japanese Patent No. 6400259

特許文献1のような水処理装置では、高圧電極は板状で水平方向に設けられ、各々の接地電極と対向する2つの端面を有するとともに、各々の端面と接地電極との距離が互いに等しくなるように設けられている。また、散水部は対向配置された少なくとも2つの接地電極の間に被処理水を散布する。このため、散布された被処理水の一部は高圧電極に付着し端面から鉛直下方に流れ落ちる。この時、高圧電極端面の被処理水が流下する箇所において、局所的な強い放電、すなわちスパーク放電が形成される虞があった。スパーク放電が形成されると、放電が局在化し局所的に温度が増加するため、水処理に有用なOおよびH等の生成効率が低下し、水処理効率が低下する虞があった。また、スパーク放電が頻発すると、局所的な温度上昇またはスパッタリングにより、接地電極あるいは高圧電極が消耗、あるいは損傷する虞があった。 In a water treatment device as in Patent Document 1, the high-voltage electrode is plate-shaped and provided in the horizontal direction, has two end faces facing each ground electrode, and the distance between each end face and the ground electrode is equal to each other. It is provided as follows. Further, the watering portion sprays the water to be treated between at least two ground electrodes arranged so as to face each other. Therefore, a part of the sprayed water to be treated adheres to the high-voltage electrode and flows down vertically from the end face. At this time, there is a risk that a strong local discharge, that is, a spark discharge will be formed at the location where the water to be treated flows down on the end face of the high voltage electrode. When a spark discharge is formed, the discharge is localized and the temperature is locally increased, so that the production efficiency of O 3 and H 2 O 2, which are useful for water treatment, is lowered, and the water treatment efficiency may be lowered. there were. In addition, if spark discharge occurs frequently, there is a risk that the ground electrode or high-voltage electrode will be consumed or damaged due to local temperature rise or sputtering.

本願は、上記事情に鑑み、接地電極及び高圧電極の消耗あるいは損傷を抑制し、水処理効率の高い水処理装置を得ることを目的とする。 In view of the above circumstances, an object of the present application is to obtain a water treatment apparatus having high water treatment efficiency by suppressing wear or damage of the ground electrode and the high pressure electrode.

本願に開示される水処理装置は、
処理槽の内部に互いに対向配置された第一接地電極と第二接地電極、
第一接地電極と第二接地電極との間に配置され、第一接地電極に対向する第一端面と第二接地電極に対向する第二端面とを有する高圧電極、
第一接地電極と第二接地電極との間に被処理水を散布する散水部、
を備え、
高圧電極は平板状部材であり、第一端面と第二端面は、平板状部材を、傾斜をつけて切り曲げた切り曲げ部の端面であることを特徴とする。
The water treatment device disclosed in the present application is
The first ground electrode and the second ground electrode, which are arranged opposite to each other inside the treatment tank,
A high-voltage electrode arranged between the first ground electrode and the second ground electrode and having a first end surface facing the first ground electrode and a second end surface facing the second ground electrode.
A sprinkler that sprays water to be treated between the first ground electrode and the second ground electrode,
With
The high-voltage electrode is a flat plate-shaped member, and the first end surface and the second end surface are end faces of a cut and bent portion obtained by cutting and bending the flat plate-shaped member with an inclination.

高圧電極に形成された、傾斜がつけられた切り曲げ部を被処理水が流れることにより、スパーク放電の形成が抑制され、接地電極および高圧電極の消耗あるいは損傷が抑制される。 The water to be treated flows through the inclined cut and bent portion formed on the high-voltage electrode, so that the formation of spark discharge is suppressed, and the consumption or damage of the ground electrode and the high-voltage electrode is suppressed.

実施の形態1による水処理装置の全体構成を示す概略図である。It is the schematic which shows the whole structure of the water treatment apparatus by Embodiment 1. FIG. 実施の形態1による水処理装置の高圧電極ユニットの斜視図である。It is a perspective view of the high pressure electrode unit of the water treatment apparatus according to Embodiment 1. FIG. 実施の形態1による水処理装置の高圧電極の斜視図である。It is a perspective view of the high pressure electrode of the water treatment apparatus according to Embodiment 1. FIG. 実施の形態1及び比較例による水処理装置の高圧電極を示す図である。It is a figure which shows the high pressure electrode of the water treatment apparatus by Embodiment 1 and the comparative example.

以下に、本願の実施の形態を図面に基づいて説明する。なお、各図を通じて同一または相当する機能を有する要素には同一符号を付して説明する。 Hereinafter, embodiments of the present application will be described with reference to the drawings. In addition, the elements having the same or corresponding functions will be described with the same reference numerals throughout the drawings.

実施の形態1.
以下に本願の実施の形態1による水処理装置及び水処理方法について、図面に基づいて説明する。図1は、実施の形態1による水処理装置の全体構成を示す概略図、図2は、実施の形態1による水処理装置の電極部の斜視図、図3は実施の形態1による水処理装置の高圧電極ユニットの斜視図、図4は実施の形態1(図4A)及び比較例(図4B)による水処理装置の電極部を示す図である。
Embodiment 1.
The water treatment apparatus and the water treatment method according to the first embodiment of the present application will be described below with reference to the drawings. FIG. 1 is a schematic view showing the overall configuration of the water treatment apparatus according to the first embodiment, FIG. 2 is a perspective view of an electrode portion of the water treatment apparatus according to the first embodiment, and FIG. 3 is a water treatment apparatus according to the first embodiment. FIG. 4 is a perspective view of the high-pressure electrode unit of the above, showing the electrode portion of the water treatment apparatus according to the first embodiment (FIG. 4A) and the comparative example (FIG. 4B).

水処理装置100は、処理前水槽2に溜め置かれた処理前水4を処理槽1へ配送する処理前水配送手段として、給水ポンプ6及び給水配管8を備えている。給水配管8の一端は処理前水槽2の底部近傍に接続され、給水配管8の他端は処理槽1の内部の上方に配置された散水部である散水管10に接続されている。散水管10は、筒状配管の側面に複数の細孔が形成されたものであり、少なくとも第一接地電極13aと第二接地電極13bの間に水滴状の被処理水22を散布する。また、水処理装置100は、処理槽1の底部に溜まった被処理水22を排出する排出手段として、排水ポンプ7及び排水配管9を備えている。排水配管9の一端は処理槽1の底部近傍に接続され、排水配管9の他端は処理後水槽3に接続されている。 The water treatment device 100 includes a water supply pump 6 and a water supply pipe 8 as pretreatment water delivery means for delivering the pretreatment water 4 stored in the pretreatment water tank 2 to the treatment tank 1. One end of the water supply pipe 8 is connected to the vicinity of the bottom of the pre-treatment water tank 2, and the other end of the water supply pipe 8 is connected to the sprinkler pipe 10 which is a water sprinkling portion arranged above the inside of the treatment tank 1. The sprinkler pipe 10 has a plurality of pores formed on the side surface of the tubular pipe, and water droplet-shaped water 22 to be treated is sprayed between at least the first ground electrode 13a and the second ground electrode 13b. Further, the water treatment device 100 includes a drainage pump 7 and a drainage pipe 9 as discharge means for discharging the water to be treated 22 accumulated at the bottom of the treatment tank 1. One end of the drainage pipe 9 is connected to the vicinity of the bottom of the treatment tank 1, and the other end of the drainage pipe 9 is connected to the treated water tank 3.

また、水処理装置100は、処理槽1の内部を酸素含有雰囲気とするためのガス供給手段を備えている。具体的には、処理槽1の上部に、ガス供給口11とガス排出口12が備えられ、ガス供給口11にはガス供給源23が接続されている。処理槽1の内部に供給されるガスは酸素ガスに限定されるものではなく、酸素ガスを含んでいればよい。例えば空気、あるいは酸素に対して窒素または希ガスを任意の割合で混合させたガスを用いることができる。特に、アルゴン、ヘリウム等の希ガスを用いることにより、比較的低い電圧においても放電を安定的に形成することが可能である。また、空気を用いた場合、ガスコストを大幅に削減できる。 Further, the water treatment device 100 includes a gas supply means for creating an oxygen-containing atmosphere inside the treatment tank 1. Specifically, a gas supply port 11 and a gas discharge port 12 are provided on the upper part of the treatment tank 1, and a gas supply source 23 is connected to the gas supply port 11. The gas supplied to the inside of the treatment tank 1 is not limited to oxygen gas, and may contain oxygen gas. For example, air or a gas obtained by mixing nitrogen or a rare gas with oxygen at an arbitrary ratio can be used. In particular, by using a rare gas such as argon or helium, it is possible to stably form a discharge even at a relatively low voltage. Moreover, when air is used, the gas cost can be significantly reduced.

高電圧パルス電源19の高電圧出力端子は、絶縁部材21を介して高圧電極ユニット18に接続されている。高電圧パルス電源19のグランド側端子と処理槽1は、いずれも電気的に接地されている。処理槽1の内部には、接地フレーム14が水平に配置されている。高圧電極ユニット18は絶縁支持体20を介して接地フレーム14に接続され、接地フレーム14は処理槽1に接続されている The high voltage output terminal of the high voltage pulse power supply 19 is connected to the high voltage electrode unit 18 via the insulating member 21. Both the ground side terminal of the high voltage pulse power supply 19 and the processing tank 1 are electrically grounded. A grounding frame 14 is horizontally arranged inside the processing tank 1. The high-voltage electrode unit 18 is connected to the grounding frame 14 via the insulating support 20, and the grounding frame 14 is connected to the processing tank 1.

処理槽1の内部に配置された電極部は、図2に示すように、互いに平行且つ鉛直に配置された2枚の平板状の接地電極13(第一接地電極13aと第二接地電極13b)と、第一接地電極13aと第二接地電極13bの中間の位置に配置された高圧電極ユニット18を有している。第一接地電極13aと第二接地電極13bはそれぞれ接地フレーム14に接続されている。 As shown in FIG. 2, the electrode portions arranged inside the treatment tank 1 are two flat plate-shaped ground electrodes 13 (first ground electrode 13a and second ground electrode 13b) arranged parallel and vertically to each other. And a high-pressure electrode unit 18 arranged at a position intermediate between the first ground electrode 13a and the second ground electrode 13b. The first ground electrode 13a and the second ground electrode 13b are each connected to the ground frame 14.

高圧電極ユニット18は、図2および図3に示すように、鉛直方向に延びる平板状の高圧電極15から、切り曲げ部17が左右かつ交互に切り曲げられ、切り曲げ部17は被処理水22が落ちてくる方向に対して斜めとなるように加工している。
また、図1からわかるように、同方向に配置された切り曲げ部17の水平部端面17a、17bと第一接地電極13aまたは第二接地電極13bとの距離は左右ともに同じ距離とする。
As shown in FIGS. 2 and 3, in the high-voltage electrode unit 18, the cutting and bending portions 17 are bent left and right and alternately from the flat plate-shaped high-voltage electrodes 15 extending in the vertical direction, and the cutting and bending portions 17 are the water to be treated 22. It is processed so that it is diagonal to the direction in which it falls.
Further, as can be seen from FIG. 1, the distance between the horizontal end faces 17a and 17b of the cutting and bending portions 17 arranged in the same direction and the first ground electrode 13a or the second ground electrode 13b is the same on both the left and right sides.

図1において、水処理装置100は、切り曲げ部17の水平部端面と接地電極13との間に放電16を生じさせる。散水管10から散布された被処理水22は、放電16を通過することにより処理される。本実施の形態1では、散水管10は処理槽1の内部の上方に設けられ、下方に向けて被処理水22を散布するため、被処理水22は放電16を横切る様に落下する。 In FIG. 1, the water treatment device 100 generates an electric discharge 16 between the horizontal portion end surface of the cutting and bending portion 17 and the ground electrode 13. The water to be treated 22 sprayed from the sprinkler pipe 10 is treated by passing through the discharge 16. In the first embodiment, the water sprinkler pipe 10 is provided above the inside of the treatment tank 1 and the water to be treated 22 is sprayed downward, so that the water to be treated 22 falls across the discharge 16.

次に、上記のように構成された水処理装置100の特徴について、比較例を挙げて説明する。図4Aは本実施の形態1による水処理装置100の電極部を示す断面図、図4Bは比較例(例えば特許文献1)による水処理装置の電極部を示す断面図である。 Next, the features of the water treatment apparatus 100 configured as described above will be described with reference to comparative examples. FIG. 4A is a cross-sectional view showing an electrode portion of the water treatment device 100 according to the first embodiment, and FIG. 4B is a cross-sectional view showing an electrode portion of the water treatment device according to a comparative example (for example, Patent Document 1).

散水管10から散水された被処理水22の一部は、高圧電極15及び切り曲げ部17の上面に付着するが、切り曲げ部17の傾斜にそって流れ、水滴27として鉛直下方に落下する。このため、被処理水22の落下に関わらず、切り曲げ部17の水平部端面17a、17bと接地電極13の間には放電16が安定的に形成される。 A part of the water to be treated 22 sprinkled from the water sprinkler pipe 10 adheres to the upper surface of the high-pressure electrode 15 and the cutting and bending portion 17, but flows along the inclination of the cutting and bending portion 17 and falls vertically downward as water droplets 27. .. Therefore, regardless of the drop of the water to be treated 22, the discharge 16 is stably formed between the horizontal end faces 17a and 17b of the cutting and bending portion 17 and the ground electrode 13.

これに対し、図4Bに示す比較例による高圧電極150の切り曲げ部170は、傾斜を有さない水平に配置された平板状である。高圧電極150は、接地電極13の中間に配置されている。散水管10から散水された被処理水22の一部は、高圧電極150の切り曲げ部170の上面に付着するが、切り曲げ部170は水平に配置されている為、被処理水22は水平部端面170b1からランダムに水滴27として落下する。このため、被処理水22が落下する箇所において、局所的に高圧電極150の切り曲げ部170の水平部端面170b1と接地電極13の距離が短くなり、電界が強まり、スパーク放電が形成される。 On the other hand, the cut and bent portion 170 of the high-voltage electrode 150 according to the comparative example shown in FIG. 4B has a flat plate shape arranged horizontally without any inclination. The high voltage electrode 150 is arranged in the middle of the ground electrode 13. A part of the water to be treated 22 sprinkled from the sprinkler pipe 10 adheres to the upper surface of the cut and bent portion 170 of the high pressure electrode 150, but since the cut and bend portion 170 is arranged horizontally, the water to be treated 22 is horizontal. Water droplets 27 are randomly dropped from the end face 170b1. Therefore, at the place where the water to be treated 22 falls, the distance between the horizontal end surface 170b1 of the bending portion 170 of the high pressure electrode 150 and the ground electrode 13 is locally shortened, the electric field is strengthened, and a spark discharge is formed.

また、図4Aに示すように、切り曲げ部17の最上部17cに付着した被処理水22は切り曲げ部17に沿って流れ落ちる。これにより、放電16の形成に伴う発熱を、被処理水22によって冷却する効果が得られる。これに対し、図4Bに示す比較例では、最上部に位置する切り曲げ部170の水平部端面170b1から落下した被処理水22の多くは、その下方に位置する、例えば、水平部端面170b2を有する切り曲げ部170に付着することなく落下する。このため、鉛直方向最上部に位置する切り曲げ部以外の切り曲げ部に対する被処理水22による冷却効果は限定的となる。 Further, as shown in FIG. 4A, the water to be treated 22 adhering to the uppermost portion 17c of the cutting / bending portion 17 flows down along the cutting / bending portion 17. As a result, the effect of cooling the heat generated by the formation of the discharge 16 by the water to be treated 22 can be obtained. On the other hand, in the comparative example shown in FIG. 4B, most of the water to be treated 22 that has fallen from the horizontal portion end surface 170b1 of the cutting and bending portion 170 located at the uppermost portion is located below the horizontal portion end surface 170b2, for example. It falls without adhering to the cut and bent portion 170. Therefore, the cooling effect of the water to be treated 22 on the cutting and bending portion other than the cutting and bending portion located at the uppermost part in the vertical direction is limited.

次に、水処理装置100を用いた水処理方法の手順について、図1を用いて説明する。準備ステップとして、処理槽1の内部には、放電16を形成するための電極部が用意されている。電極部は、鉛直に対向配置された第一接地電極13aと第二接地電極13bと、その間に配置され、高圧電極15から切り曲げることにより、水平方向に伸張して設けられた切り曲げ部17とを備え、切り曲げ部17と高圧電極15からなる高圧電極ユニット18は、第一接地電極13aと第二接地電極13bに対向する水平部端面17a、17bを有している。 Next, the procedure of the water treatment method using the water treatment apparatus 100 will be described with reference to FIG. As a preparatory step, an electrode portion for forming the discharge 16 is prepared inside the processing tank 1. The electrode portion is arranged between the first ground electrode 13a and the second ground electrode 13b which are vertically opposed to each other, and the cut and bent portion 17 which is extended in the horizontal direction by being cut and bent from the high pressure electrode 15. The high-pressure electrode unit 18 including the cutting and bending portion 17 and the high-pressure electrode 15 has horizontal portion end faces 17a and 17b facing the first ground electrode 13a and the second ground electrode 13b.

次にガス供給口11から酸素ガスを供給し、処理槽1の内部を高酸素濃度雰囲気とする。なお、処理槽1内のガスは、ガス排出口12から排出される。続いて高電圧パルス電源19を動作して高圧電極ユニット18にパルス状の高電圧を印加し、高圧電極15の水平部端面17aと第一接地電極13aとの間、または水平部端面17bと第二接地電極13bとの間に放電16を生じる。 Next, oxygen gas is supplied from the gas supply port 11 to create a high oxygen concentration atmosphere inside the treatment tank 1. The gas in the processing tank 1 is discharged from the gas discharge port 12. Subsequently, the high voltage pulse power supply 19 is operated to apply a pulsed high voltage to the high voltage electrode unit 18, and the high voltage electrode 15 is located between the horizontal end surface 17a and the first ground electrode 13a, or the horizontal end surface 17b and the first. (Ii) A discharge 16 is generated between the ground electrode 13b and the ground electrode 13b.

次に、処理前水槽2に溜め置かれた処理前水4を給水ポンプ6によって汲み上げ、給水配管8を介して処理槽1に配送し、被処理水22として散水管10から散布する。被処理水22の多くは第一接地電極13a及び第二接地電極13bと、高圧電極15の間をシャワー状に落下し、一部は第一接地電極13a及び第二接地電極13bに付着して水膜状に落下し、また一部は高圧電極15の切り曲げ部17の傾斜を通って落下する。被処理水22が放電16を通過する際に被処理水22中の有機化合物が酸化分解される。処理槽1の底部に溜まった被処理水22は、排水ポンプ7によって処理後水槽3に配送され、処理後水5として貯留される。 Next, the pre-treatment water 4 stored in the pre-treatment water tank 2 is pumped up by the water supply pump 6, delivered to the treatment tank 1 via the water supply pipe 8, and sprayed from the sprinkler pipe 10 as the water to be treated 22. Most of the water to be treated 22 falls in a shower shape between the first ground electrode 13a and the second ground electrode 13b and the high pressure electrode 15, and a part of the water 22 adheres to the first ground electrode 13a and the second ground electrode 13b. It falls like a water film, and a part of it falls through the inclination of the cut and bent portion 17 of the high-pressure electrode 15. When the water to be treated 22 passes through the discharge 16, the organic compounds in the water to be treated 22 are oxidatively decomposed. The water to be treated 22 collected at the bottom of the treatment tank 1 is delivered to the water tank 3 after treatment by the drainage pump 7, and is stored as the water 5 after treatment.

水処理装置100の処理槽1において、被処理水22中の有機化合物が酸化分解される原理について説明する。なお、ここでは有機化合物の分解を例にとって説明するが、放電で生じるオゾン(O)及びOHラジカルが除菌、脱色、及び脱臭に有効であることは周知である。放電16により、処理槽1内の酸素分子(O)と被処理水22が蒸発することで生じた水分子(HO)は、高エネルギーの電子と衝突し、下の式(1)及び式(2)の解離反応が生じる。なお、式(1)及び式(2)において、eは電子、Oは原子状酸素、Hは原子状水素、OHはOHラジカルである。 The principle that the organic compound in the water to be treated 22 is oxidatively decomposed in the treatment tank 1 of the water treatment apparatus 100 will be described. Here, although described as an example the decomposition of organic compounds, resulting in the discharge of ozone (O 3) and OH radicals sterilization, decolorization, and it is well known that effective deodorization. Oxygen molecules (O 2 ) in the treatment tank 1 and water molecules (H 2 O) generated by evaporation of the water to be treated 22 due to the discharge 16 collide with high-energy electrons, and the following equation (1) And the dissociation reaction of formula (2) occurs. In the formulas (1) and (2), e is an electron, O is atomic oxygen, H is atomic hydrogen, and OH is OH radical.

e+O→2O (1)
e+HO→H+OH (2)
式(1)で発生した原子状酸素の多くは、式(3)の反応によりオゾン(O)となる。なお、式(3)において、Mは反応の第三体であり、気中のあらゆる分子及び原子を表す。
O+O+M→O (3)
また、式(2)で生じたOHラジカルの一部は、式(4)の反応により、過酸化水素(H)となる。
OH+OH→H (4)
これらの式(1)から式(4)の反応で生成された酸化性粒子(O、OH、O、H)は、式(5)により、処理槽1内を落下する被処理水22中の有機化合物を二酸化炭素(CO)と水に酸化分解する。なお、式(5)において、Rは分解対象となる有機化合物である。
e + O 2 → 2O (1)
e + H 2 O → H + OH (2)
Many of atomic oxygen generated by the formula (1), and ozone (O 3) by the reaction of formula (3). In formula (3), M is the third body of the reaction and represents all molecules and atoms in the air.
O + O 2 + M → O 3 (3)
Further, a part of the OH radicals generated by the formula ( 2 ) becomes hydrogen peroxide (H 2 O 2 ) by the reaction of the formula (4).
OH + OH → H 2 O 2 (4)
Oxidizing particles (O, OH, O 3 , H 2 O 2 ) generated by the reactions of these formulas (1) to (4) fall into the treatment tank 1 according to the formula (5). The organic compound in water 22 is oxidatively decomposed into carbon dioxide (CO 2 ) and water. In the formula (5), R is an organic compound to be decomposed.

R+(O、OH、O、H)→CO+HO (5)
また、式(5)で有機化合物と反応しなかった原子状酸素とOHラジカルは、式(3)及び式(4)により比較的長寿命のオゾンと過酸化水素となり、その一部は、式(6)及び式(7)により被処理水22に溶解する。なお、式(6)及び式(7)において、(liq.)は液相を意味する。
R + (O, OH, O 3 , H 2 O 2 ) → CO 2 + H 2 O (5)
In addition, the atomic oxygen and OH radicals that did not react with the organic compound in the formula (5) became ozone and hydrogen peroxide having a relatively long life according to the formulas (3) and (4), and a part of them became the formula. It dissolves in the water to be treated 22 according to (6) and the formula (7). In the formulas (6) and (7), (liq.) Means a liquid phase.

→O(liq.) (6)
O2→H(liq.) (7)
さらに、O(liq.)とH(liq.)は、水中での反応により、式(8)のようにOHラジカルを生成する。
O 3 → O 3 (liq.) (6)
H 2 O 2 → H 2 O 2 (liq.) (7)
Furthermore, O 3 (liq.) And H 2 O 2 (liq.) Generate OH radicals as shown in the formula (8) by the reaction in water.

(liq.)+H(liq.)→OH(liq.) (8)
上の式(6)から式(8)で生成されたO(liq.)、H(liq.)、OH(liq.)は、下の式(9)により、水中反応で被処理水22中の有機化合物を分解する。
R+(O(liq.)、H(liq.)、OH(liq.))
→CO+HO(9)
以上のように、水処理装置100の処理槽1における被処理水22中の有機化合物の分解は、式(5)による気中に存在する酸化性粒子による有機化合物の分解と、式(9)による水中に存在する酸化性粒子による有機化合物の分解の双方によって進行する。
O 3 (liq.) + H 2 O 2 (liq.) → OH (liq.) (8)
O 3 (liq.), H 2 O 2 (liq.), And OH (liq.) Generated from the above formulas (6) to (8) are subjected to an underwater reaction according to the following formula (9). The organic compound in the treated water 22 is decomposed.
R + (O 3 (liq.), H 2 O 2 (liq.), OH (liq.))
→ CO 2 + H 2 O (9)
As described above, the decomposition of the organic compound in the water to be treated 22 in the treatment tank 1 of the water treatment apparatus 100 is the decomposition of the organic compound by the oxidizing particles existing in the air according to the formula (5) and the decomposition of the organic compound by the formula (9). It proceeds by both decomposition of organic compounds by oxidizing particles present in water.

水処理装置100の電極部を構成する第一接地電極13a、第二接地電極13b、及び高圧電極15には、ステンレス鋼またはチタン等の耐腐食性に優れた金属材料が好適である。ただし、電極材料は、上記以外の金属材料または導電性の炭素材料であってもよい。高圧電極15は金属材料であるため、高圧電極15の一箇所に給電することで、切り曲げ部17を含む高圧電極ユニット18全体に電圧が印加される。 A metal material having excellent corrosion resistance such as stainless steel or titanium is suitable for the first ground electrode 13a, the second ground electrode 13b, and the high pressure electrode 15 that form the electrode portion of the water treatment apparatus 100. However, the electrode material may be a metal material other than the above or a conductive carbon material. Since the high-voltage electrode 15 is made of a metal material, a voltage is applied to the entire high-voltage electrode unit 18 including the cutting / bending portion 17 by supplying power to one location of the high-voltage electrode 15.

また、接地フレーム14はステンレス鋼またはチタン等の導電性材料が好適である。これにより、処理槽1の一箇所を接地することにより全ての接地電極13が接地される
また、電極部は、少なくとも2枚の平板状の接地電極13と、1個の高圧電極ユニット18を有していればよく、接地電極13の数及び間隔、高圧電極ユニット18の数とそれに含まれる高圧電極15の切り曲げ部17の数及び間隔は、被処理水22の流量、被処理水22に含まれる成分または濃度等に応じて適宜変更することが可能である。
Further, the grounding frame 14 is preferably made of a conductive material such as stainless steel or titanium. As a result, all the ground electrodes 13 are grounded by grounding one part of the processing tank 1. Further, the electrode portion has at least two flat plate-shaped ground electrodes 13 and one high-pressure electrode unit 18. The number and spacing of the ground electrodes 13, the number of high-pressure electrode units 18 and the number and spacing of the cut-and-bent portions 17 of the high-pressure electrode 15 included therein are determined by the flow rate of the water to be treated 22 and the water to be treated 22. It can be appropriately changed according to the contained components or concentration.

また、高圧電極15は、切り曲げ部17の水平部端面に電界集中が生じ、放電16を形成できる任意の厚さとすることができる。一般に高圧電極15の厚さは0.02mm〜2mmとすると好適である。厚さが0.02mm以下だと十分な材料強度が得られず、また放電による消耗が生じる恐れがある。厚さが2mm以上だと、水平部端面で十分な電界集中が生じず、放電16の形成のために高い電圧の印加が必要となり、電源のコストが増加するためである。 Further, the high-voltage electrode 15 can have an arbitrary thickness that allows electric field concentration to occur on the end surface of the horizontal portion of the cutting and bending portion 17 to form a discharge 16. Generally, the thickness of the high voltage electrode 15 is preferably 0.02 mm to 2 mm. If the thickness is 0.02 mm or less, sufficient material strength cannot be obtained, and there is a risk of wear due to electric discharge. This is because if the thickness is 2 mm or more, sufficient electric field concentration does not occur at the end face of the horizontal portion, a high voltage must be applied to form the discharge 16, and the cost of the power supply increases.

なお、本実施の形態1において、水平または鉛直と表記した部分は、必ずしも完全な水平と鉛直である必要はなく、本願の効果を損なわない範囲で水平または鉛直に対し多少の角度を有していてもよい。また、本実施の形態1において、高圧電極ユニット18は、絶縁支持体20を介して接地フレーム14に起立する配置となっているが、接地フレーム14を接地電極13あるいは高圧電極ユニット18よりも上方に配置し、接地電極13あるいは高圧電極ユニット18の少なくとも一方を吊り下げる構成としてもよい。また、高圧電極15の角部にR(フィレット)加工を施してもよい。これにより、角部における電界集中が抑制され、放電16の局在化を抑制することができる。 In the first embodiment, the portion described as horizontal or vertical does not necessarily have to be completely horizontal and vertical, and has a slight angle with respect to horizontal or vertical as long as the effect of the present application is not impaired. You may. Further, in the first embodiment, the high-voltage electrode unit 18 is arranged to stand upright on the grounding frame 14 via the insulating support 20, but the grounding frame 14 is above the grounding electrode 13 or the high-voltage electrode unit 18. At least one of the ground electrode 13 and the high-voltage electrode unit 18 may be suspended. Further, the corner portion of the high voltage electrode 15 may be subjected to R (fillet) processing. As a result, the electric field concentration at the corners is suppressed, and the localization of the discharge 16 can be suppressed.

また、本実施の形態1では、散水部として散水管10を用いたが、散水部は被処理水22を処理槽1の内部に水滴状に散布することができる機構であればよく、ノズルまたはシャワープレートであってもよい。また、電源は、高電圧パルス電源19に限定されるものではなく、安定して放電が形成できるものであれば、交流電源または直流電源であってもよい。 Further, in the first embodiment, the sprinkler pipe 10 is used as the sprinkler portion, but the sprinkler portion may be a nozzle or a mechanism capable of sprinkling the water to be treated 22 into the treatment tank 1 in the form of water droplets. It may be a shower plate. Further, the power source is not limited to the high voltage pulse power source 19, and may be an AC power source or a DC power source as long as a stable discharge can be formed.

また、高電圧パルス電源19から出力される電圧の極性、電圧波高値、繰り返し周波数、パルス幅等は、電極構造およびガス種等の諸条件に応じて、適宜決定することができる。一般に、電圧波高値は、1kV〜50kVが望ましい。これは、1kV未満では、安定した放電が形成されず、また、50kV超の場合、電源の大型化及び電気絶縁の困難化によりコストが著しく増加するためである。さらに、繰り返し周波数は、10pps(pulse−per−second)以上、100kpps以下とすることが望ましい。これは、10pps未満では、十分な放電電力を投入するために非常に高い電圧が必要となり、逆に、100kppsよりも大きくすると、水処理の効率が低下するためである。また、被処理水22の成分、濃度、あるいは流量等の条件に応じて、電圧、パルス幅、パルス繰り返し周波数を調整するようにしてもよい。 Further, the polarity of the voltage output from the high voltage pulse power supply 19, the voltage peak value, the repetition frequency, the pulse width and the like can be appropriately determined according to various conditions such as the electrode structure and the gas type. Generally, the voltage peak value is preferably 1 kV to 50 kV. This is because if it is less than 1 kV, a stable discharge is not formed, and if it exceeds 50 kV, the cost increases remarkably due to the increase in size of the power source and the difficulty of electrical insulation. Further, the repetition frequency is preferably 10 pps (pulse-per-second) or more and 100 kpps or less. This is because if it is less than 10 pps, a very high voltage is required to input sufficient discharge power, and conversely, if it is larger than 100 kpps, the efficiency of water treatment decreases. Further, the voltage, pulse width, and pulse repetition frequency may be adjusted according to conditions such as the component, concentration, and flow rate of the water to be treated 22.

本実施の形態1における水処理装置100によれば、高圧電極15に付着した被処理水22は切り曲げ部17の傾斜を通って落下する。このため、スパーク放電の形成が抑制され、切り曲げ部17の水平部端面17a、17bと接地電極13との間に安定的な放電16が生じるため、電極の消耗または損傷が抑制される。また、スパーク放電に伴う局所的な温度増加が抑制されるため、水処理に有用なOおよびH等が効率的に生成され、効率的な水処理が可能となる。また、切り曲げ部17の最上部17cに付着した被処理水22が、切り曲げ部17をそれぞれを流下するため、高圧電極15を冷却する効果が得られる。これにより、放電16の形成に伴う高圧電極15の過熱が抑制され、電極の消耗または損傷が抑制される。 According to the water treatment device 100 in the first embodiment, the water to be treated 22 adhering to the high-pressure electrode 15 falls through the inclination of the cutting and bending portion 17. Therefore, the formation of spark discharge is suppressed, and stable discharge 16 is generated between the horizontal end faces 17a and 17b of the cutting and bending portion 17 and the ground electrode 13, so that wear or damage of the electrode is suppressed. Further, since the local temperature increase due to the spark discharge is suppressed, O 3 and H 2 O 2 useful for water treatment are efficiently generated, and efficient water treatment becomes possible. Further, since the water to be treated 22 adhering to the uppermost portion 17c of the cutting / bending portion 17 flows down the cutting / bending portion 17, the effect of cooling the high-voltage electrode 15 can be obtained. As a result, overheating of the high-voltage electrode 15 due to the formation of the discharge 16 is suppressed, and wear or damage of the electrode is suppressed.

本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although the present application describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are applications of a particular embodiment. It is not limited to, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.

1:処理槽、2:処理前水槽、3:処理後水槽、4:処理前水、5:処理後水、6:給水ポンプ、7:排水ポンプ、8:給水配管、9:排水配管、10:散水管(散水部)、11:ガス供給口、12:ガス排出口、13:接地電極、13a:第一接地電極、13b:第二接地電極、14:接地フレーム、15:高圧電極、16:放電、17:切り曲げ部、18:高圧電極ユニット、19:高電圧パルス電源、20:絶縁支持体、21:絶縁部材、22:被処理水、23:ガス供給源、27:水滴、100:水処理装置 1: Treatment tank 2: Pre-treatment water tank 3: Post-treatment water tank 4: Pre-treatment water 5: Post-treatment water, 6: Water supply pump, 7: Drainage pump, 8: Water supply pipe, 9: Drainage pipe, 10 : Sprinkler pipe (sprinkler part), 11: Gas supply port, 12: Gas discharge port, 13: Ground electrode, 13a: First ground electrode, 13b: Second ground electrode, 14: Ground frame, 15: High pressure electrode, 16 : Discharge, 17: Cutting and bending part, 18: High voltage electrode unit, 19: High voltage pulse power supply, 20: Insulation support, 21: Insulation member, 22: Water to be treated, 23: Gas supply source, 27: Water droplets, 100 : Water treatment equipment

Claims (3)

処理槽の内部に互いに対向配置された第一接地電極と第二接地電極、
前記第一接地電極と前記第二接地電極との間に配置され、前記第一接地電極に対向する第一端面と前記第二接地電極に対向する第二端面とを有する高圧電極、
前記第一接地電極と前記第二接地電極との間に被処理水を散布する散水部、
を備え、
前記高圧電極は平板状部材であり、前記第一端面と前記第二端面は、前記平板状部材を、傾斜をつけて切り曲げた切り曲げ部の端面であることを特徴とする水処理装置。
The first ground electrode and the second ground electrode, which are arranged opposite to each other inside the treatment tank,
A high-voltage electrode arranged between the first ground electrode and the second ground electrode and having a first end surface facing the first ground electrode and a second end surface facing the second ground electrode.
A sprinkler portion that sprays water to be treated between the first ground electrode and the second ground electrode.
With
The water treatment apparatus is characterized in that the high-voltage electrode is a flat plate-shaped member, and the first end surface and the second end surface are end faces of a cut and bent portion obtained by cutting and bending the flat plate-shaped member with an inclination.
前記切り曲げ部は、一端から他端に前記被処理水が流れる角度の傾斜がつけられていることを特徴とする請求項1に記載の水処理装置。 The water treatment apparatus according to claim 1, wherein the cutting and bending portion is inclined at an angle at which the water to be treated flows from one end to the other end. 前記第一端面と前記第二端面はそれぞれ前記平板状部材の反対側に切り曲げられていることを特徴とする請求項1または2に記載の水処理装置。 The water treatment apparatus according to claim 1 or 2, wherein the first end surface and the second end surface are each cut and bent on opposite sides of the flat plate-shaped member.
JP2019099018A 2019-05-28 2019-05-28 Water treatment device Pending JP2020192496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019099018A JP2020192496A (en) 2019-05-28 2019-05-28 Water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019099018A JP2020192496A (en) 2019-05-28 2019-05-28 Water treatment device

Publications (1)

Publication Number Publication Date
JP2020192496A true JP2020192496A (en) 2020-12-03

Family

ID=73548408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019099018A Pending JP2020192496A (en) 2019-05-28 2019-05-28 Water treatment device

Country Status (1)

Country Link
JP (1) JP2020192496A (en)

Similar Documents

Publication Publication Date Title
US8344627B1 (en) Pulsed dielectric barrier discharge
JP3995654B2 (en) Ozone water generator using underwater discharge in insulator discharge system
WO2011021515A1 (en) Water treatment apparatus
WO2015111240A1 (en) Water treatment apparatus and water treatment method
JP6161839B2 (en) Water treatment apparatus and water treatment method
JP4073240B2 (en) Radical treatment equipment
JP2006187743A (en) Radical treatment apparatus
US9868655B1 (en) Water treatment apparatus and water treatment method
JP6400259B1 (en) Water treatment apparatus and water treatment method
JP2007149590A (en) Radical processor
JP2020192496A (en) Water treatment device
JP6157763B2 (en) Water treatment apparatus and water treatment method
US10167209B2 (en) System and method for disinfection and fouling prevention in the treatment of water
JP4904650B2 (en) Material processing equipment
WO2020240679A1 (en) Water treatment apparatus and water treatment method
WO2019180864A1 (en) Water treatment device and water treatment method
JP6765582B1 (en) Water treatment equipment and water treatment method
WO2019175997A1 (en) Water treatment device
JP6029605B2 (en) Water treatment apparatus and water treatment method
US10723638B2 (en) Liquid treatment device
JP6529705B1 (en) Water treatment system and water treatment method
JP2014188497A (en) Detoxification treatment apparatus and detoxification treatment method
US20220174808A1 (en) System and method for plasma discharge in liquid
KR20210020399A (en) Radical/anion/electrons generating device using separate electrical discharge compartment and electronic appliances for sterilization/deodorization having the same