JP2020189082A - 超音波診断装置、及び超音波診断装置の制御方法 - Google Patents

超音波診断装置、及び超音波診断装置の制御方法 Download PDF

Info

Publication number
JP2020189082A
JP2020189082A JP2020058170A JP2020058170A JP2020189082A JP 2020189082 A JP2020189082 A JP 2020189082A JP 2020058170 A JP2020058170 A JP 2020058170A JP 2020058170 A JP2020058170 A JP 2020058170A JP 2020189082 A JP2020189082 A JP 2020189082A
Authority
JP
Japan
Prior art keywords
transmission
ultrasonic
signal
oscillator
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020058170A
Other languages
English (en)
Other versions
JP7363636B2 (ja
Inventor
谷口 哲哉
Tetsuya Taniguchi
哲哉 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to US16/875,438 priority Critical patent/US20200367862A1/en
Publication of JP2020189082A publication Critical patent/JP2020189082A/ja
Application granted granted Critical
Publication of JP7363636B2 publication Critical patent/JP7363636B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8927Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array using simultaneously or sequentially two or more subarrays or subapertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/895Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum
    • G01S15/8952Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum using discrete, multiple frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8959Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using coded signals for correlation purposes
    • G01S15/8963Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using coded signals for correlation purposes using pulse inversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8995Combining images from different aspect angles, e.g. spatial compounding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • G01S7/5209Details related to the ultrasound signal acquisition, e.g. scan sequences using multibeam transmission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4405Device being mounted on a trolley
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Gynecology & Obstetrics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

【課題】リアルタイム性を損なうことなく、複雑な送信制御を必要とせずに安価な装置においても、超音波照射領域の浅部の周辺領域における異方性高反射部材の視認性の向上を図り、高角度の異方性反射部位の描出性を改善する。【解決手段】送信部103は、送信振動子の列Txとして、第1の部分振動子列Tx1と、方位方向に第1の部分振動子列Tx1を挟む2つの第2の部分振動子列Tx2を、選択し、第2の部分振動子列Tx2から、第1の部分振動子列Tx1よりも高い周波数領域における信号強度が大きい超音波ビームPw2を送信させる部分振動子列に分割した送信を行い、整相加算部は、方位方向における領域が、計算対象領域毎に異なる複数の計算対象領域Bxを設定し、それぞれの計算対象領域内に位置する複数の観測点Pijについて整相加算処理を行う。【選択図】図2

Description

本開示は、超音波診断装置、及び超音波診断装置の制御方法に関し、特に、超音波診断装置における送受信に係るビームフォーミング方法に関する。
超音波診断装置は、超音波パルス反射法により生体内情報を取得し、断層像として表示する医療用画像機器である。超音波診断装置は、超音波プローブ(以後、「プローブ」とする)により被検体内部に超音波を送信し、被検体組織の音響インピーダンスの差異により生じる超音波反射波(エコー)を受信し、この受信から得た電気信号に基づいて、被検体の内部組織の構造を示す超音波断層画像を生成し、モニタ(以後、「表示部」とする)上に表示するものである。超音波診断装置は、X線や放射線等を用いる他モダリティに比べて、被検体への侵襲が少なく、リアルタイムに体内組織の状態を断層画像などで観察できるため、生体の形態診断に広く用いられている。
この超音波診断装置において、リアルタイム性を向上させるためのさまざまな工夫がなされており、例えば、同一開口から同時に2方向に送受信を行う技術の利用が提案されている(特許文献1)。更に別の方法として振動子を複数領域にわけることにより同時に2方向に送信する技術が提案されている(特許文献2)。これらの方法により送受信に要する時間を半減でき、リアルタイム性を向上することが可能となる。
特開2002−336246号公報 特開2010−22654号公報
しかしながら、特許文献1に記載の技術では、ビームAを形成するためのA系パルスとビームBを形成するB系パルスの送出が時間的に重畳しない振動子については問題ないが、これらが時間的に重畳する振動子ではA系パルスとB系パルスとも異なる送信となる共通パルスを送出する必要があり、A系とB系の時間的重なりによってはプローブの送信帯域では送出不能な送信超音波が要求されるため、ビームA、B双方に乱れを生じることがある上、送受信音響線の起始点が同一で、浅部領域ではビームAの合成波面とビームBの合成波面が近接して形成されるため、音響ノイズとして他方のビームに混入し、画質を低下させるという課題があった。
一方、特許文献2に記載の方法では、送受信音響線の起始点は離れており、音響ノイズの影響は互いに受けにくい構成であるが、最大送信開口に用いることが可能な素子数はプローブの総素子数/領域数となり、深部領域へ焦点を形成することが困難となるという問題があり、プローブの総素子数よりもシステムch数が少ない場合には最大送信開口はシステムch数/領域数となって更に深部への焦点形成が困難となるため、システムch数の少ない安価なシステムでは採用することが難しい。加えて単位時間あたりに駆動される振動子数が増加するため、プローブの発熱量が増加し、表面温度安全規制により送信電圧を下げざるを得ないケースが少なからずあり、リアルタイム性は改善しても得られる画像のS/Nが低下していしまうという問題もあった。
リアルタイム性に対する要求の一方で、近年、数々の腱や靭帯のある整形外科領域での超音波診断装置利用が増大し、高角度の穿刺針軸、縦境界、前距腓靭帯等といった浅部やその周辺領域に位置する異方性高反射部材・部位からの反射波の受波が不十分な場合がしばしばあった。そのため、浅部の周辺領域における異方性高反射部材・部位の視認性の改善が求められていた。
本開示は、上記課題に鑑みてなされたものであり、リアルタイム性を損なうことなく、複雑な送信制御を必要とせずに安価な装置においても、送信に起因するプローブの発熱量を大きく増加させずに、超音波照射領域の浅部の周辺領域における異方性高反射部材の視認性の向上を図り、高角度の異方性反射部位の描出性を改善する超音波信診断装置、及びその制御方法を提供することを目的とする。
本開示の一態様に係る超音波診断装置は、複数の振動子が方位方向に列設された超音波プローブを用いて被検体に超音波ビームを送信し、被検体から得られた反射波に基づいて音響線信号を生成する超音波診断装置であって、
超音波ビームの集束点に対応する送信焦点を決定し、前記複数の振動子から送信振動子の列を選択して、前記送信振動子の列から送信焦点に集束する超音波ビームを送信させる送信部と、
前記複数の振動子から選択される複数の受波振動子の列が受波した反射波に基づいて、前記受波振動子各々に対応する複数の受信信号の列を生成する入力部と、
前記被検体の解析対象範囲から一部分が重複する複数の計算対象領域を決定し、前記受波振動子の列から受信開口の振動子列を選択して、複数の計算対象領域について、当該領域中の複数の観測点について、受信開口内に含まれる複数の振動子に対応する複数の受信信号列を整相加算する整相加算部と、
前記整相加算部による整相加算結果を観測点の位置を基準に合成して超音波画像化信号のフレームデータを生成する画像化信号合成部とを備え、
前記送信部は、前記送信振動子の列として、第1の部分振動子列と、方位方向に前記第1の部分振動子列を挟む2つの第2の部分振動子列を、選択し、
前記第2の部分振動子列から、前記第1の部分振動子列よりも高い周波数領域における信号強度が大きい超音波ビームを送信さる部分振動子列に分割した送信を行い、
前記整相加算部は、所定深さより深い範囲において、方位方向における領域が計算対象領域毎に異なる複数の計算対象領域を設定し、それぞれの計算対象領域内に位置する複数の観測点について整相加算処理を行うことを特徴とする。
本開示の一態様に係る超音波信診断装置、及び超音波信診断装置の制御方法によれば、複雑な送信制御を必要としない安価な装置において、超音波照射領域の浅部の周辺領域における異方性高反射部材の視認性の向上し、高角度の異方性反射部位の描出性を従来より改善することができる。
実施の形態1に係る超音波診断装置100を含む超音波診断システム1000の外観図である。 超音波診断装置100の構成を示す機能ブロック図である。 超音波診断装置100の送信部103の構成を示す機能ブロック図である。 (a)(b)は、送信部103において生成される駆動パルス信号の一例sp、(c)は、別方式による駆動パルス信号の一例scの態様を示す模式図である。 送信部103による送信に係る超音波ビームの伝播経路を示す模式図である。 送信部103の送信に係る送信に係る超音波ビームにおいて、送信焦点の深さと送信振動子の駆動信号内容との関係を示す図の一例である。 (a)(b)(c)は、送信部103における送信に係る超音波ビームの周波数分布を示す模式図である。 超音波診断装置100の受信部104の構成を示す機能ブロック図である。 (a)(b)(c)は、整相加算部1043における観測点Pijについての音響線信号生成動作を説明するための模式図である。 (a)(b)(c)は、送信ステアリング角度θTが付された場合における、整相加算部1043における観測点Pijについての音響線信号生成動作を説明するための模式図である。 超音波画像化信号生成部105において生成される超音波画像における表示深度と総合画質との関係を示す図である。 合成部106における超音波画像フレームデータの生成動作の一例を説明するための模式図である。 超音波診断装置100における処理の概要を示すフローチャートである。 図13における送受信ビームフォーミング処理(ステップS20)の詳細を示すフローチャートである。 図13における送受信ビームフォーミング処理(ステップS20)の詳細を示すフローチャートである。 超音波診断装置の送信部103における送信に係る超音波ビームの伝播経路の副走査に伴う変化を示す模式図である。 超音波診断装置における処理を示すフローチャートである。 (a)(b)(c)は、変形例1に係る超音波診断装置の送信部103における送信に係る超音波ビームの伝播経路を示す模式図である。 (a)(b)(c)(d)は、変形例1に係る超音波診断装置の合成部106における超音波画像フレームデータの生成動作を説明するための模式図である。 変形例1に係る超音波診断装置における処理を示すフローチャートである。 (a)(b)(c)は、実施の形態2に係る超音波診断装置の整相加算部1043における観測点Pijについての音響線信号生成動作を説明するための模式図である。 (a)(b)(c)は、実施の形態2に係る超音波診断装置において、送信ステアリング角度がθTである場合における、整相加算部1043における観測点Pijについての音響線信号生成動作を説明するための模式図である。 変形例2に係る超音波診断装置の送信部103による送信に係る超音波ビームの伝播経路を示す模式図である。 変形例3に係る超音波診断装置の送信部103による送信に係る超音波ビームの伝播経路を示す模式図である。 変形例3に係る超音波診断装置の送信部103の送信に係る送信に係る超音波ビームにおいて、送信焦点の深さと送信振動子の駆動信号内容との関係を示す図の一例である。 (a)(b)(c)(d)は、変形例3に係る超音波診断装置において、送信部103における送信に係る超音波ビームの周波数分布を示す模式図である。 変形例3に係る超音波診断装置において、送信部103により列Tx3から送信される超音波ビームUsO3の減衰を説明するための模式図である。 (a)(b)は、本開示に係る超音波診断装置において、送信焦点の深さが所定値未満であるときに実施可能な態様である、送信部103による送信に係る超音波ビームの伝播経路を示す模式図である。 変形例4に係る超音波診断装置において、送信部103による送信に係る超音波ビームの伝播経路を示す模式図である。 変形例5に係る超音波診断装置において、送信部103による送信に係る超音波ビームの伝播経路を示す模式図である。
≪実施の形態1≫
<超音波診断システム1000の構成>
以下、実施の形態1に係る超音波診断装置100について、図面を参照しながら説明する。
図1は、実施の形態1に係る超音波診断装置100を含む超音波診断システム1000の外観図である。図2は、超音波診断装置100の構成を示す機能ブロック図である。図1に示すように、超音波診断システム1000は、被検体に向けて超音波を送信しその反射波の受信する先端表面に列設された複数の振動子101aを有するプローブ101、プローブ101に超音波の送受信を行わせプローブ101からの出力信号に基づき超音波画像を生成する超音波診断装置100、超音波画像を画面上に表示する表示部108、操作者からの操作入力を受け付ける操作入力部110を有する。プローブ101は、ケーブル102により超音波診断装置100に接続可能に構成されている。なお、プローブ101は超音波診断装置100に含まれる態様としてもよく、表示部108は、超音波診断装置100に含まれない態様としてもよい。
<超音波診断装置100の構成概要>
超音波診断装置100は、プローブ101の複数ある振動子101aのうち、送信又は受信の際に用いる振動子を各々に選択し、選択された振動子に対する入出力を確保するマルチプレクサ(不図示)を介して、超音波の送信を行うためにプローブ101の各振動子101aに対する高電圧印加のタイミングを制御する送信部103と、プローブ101で受波した超音波の反射波に基づき、複数の振動子101aで得られた電気信号を増幅し、A/D変換し、受信ビームフォーミングして音響線信号(DASデータ:Delay and Sum Data)を生成する受信部104を有する。また、受信部104からの出力信号である音響線信号から高調波成分を抽出する高調波成分抽出部105aを有し、音響線信号及びその高調波成分に対して包絡線検波、対数圧縮などの処理を実施して輝度変換し、その輝度信号を直交座標系に座標変換を施すことで超音波画像(Bモード画像)を生成する超音波画像化信号生成部105を備える。また、画像メモリー部106aを有し超音波画像のサブフレームデータ等を合成して超音波画像化信号を合成する画像化信号合成部106を備える。さらに、超音波画像のフレームデータを表示部108に出力するDSC107、表示部108、各構成要素を制御する制御部109を備える。また、受信部104が出力する音響線信号及び超音波画像化信号生成部105が出力する超音波画像を保存するデータ格納部(不図示)を有していてもよい。
このうち、送信部103、受信部104、超音波画像化信号生成部105、画像化信号合成部106は、超音波信号処理装置150を構成する。
超音波診断装置100を構成する各要素、例えば、送信部103、受信部104、超音波画像化信号生成部105、画像化信号合成部106、DSC107、制御部109は、それぞれ、例えば、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)などのハードウェア回路により実現される。あるいは、CPU(Central Processing Unit)やGPGPU(General-Purpose computing on Graphics Processing Unit)やプロセッサなどのプログラマブルデバイスとソフトウェアにより実現される構成であってもよい。これらの構成要素は一個の回路部品とすることができるし、複数の回路部品の集合体にすることもできる。また、複数の構成要素を組合せて一個の回路部品とすることができるし、複数の回路部品の集合体にすることもできる。
画像メモリー部106a、データ格納部は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、ハードディスク、MO、DVD、DVD−RAM、半導体メモリ等を用いることができる。また、画像メモリー部106a、データ格納部は、超音波診断装置100に外部から接続された記憶装置であってもよい。
なお、本実施の形態1に係る超音波診断装置100は、図2で示した構成に限定されない。例えば、何れかの要素が不要な構成もあるし、プローブ101に送信部103や受信部104、またその一部などが内蔵される構成であってもよい。
実施の形態1に係る超音波診断装置100は、超音波信号処理装置150を構成する送信部103、受信部104、超音波画像化信号生成部105、画像化信号合成部106に特徴を有する。そのため、本明細書では、主に、超音波信号処理装置150の各要素について、その構成及び機能を説明し、それ以外の構成については、公知の超音波診断装置に使われるものと同じ構成を適用可能であり、公知の超音波診断装置に本実施の形態1に係る超音波信号処理装置150を置き換えて使用することが可能である。
次に、超音波診断装置100に外部から接続されるプローブ101、超音波診断装置100における超音波信号処理装置150以外の構成について、その概要を説明する。
プローブ101は、例えば一次元方向(以下、「方位方向」とする)に配列された複数の振動子101aを有する。プローブ101は、後述の送信部103から供給されたパルス状の電気駆動信号(以下、「駆動パルス信号」とする)をパルス状の超音波に変換する。プローブ101は、プローブ101の振動子側外表面を被検体の皮膚表面に当接させた状態で、複数の振動子から発せられる複数の超音波からなる超音波ビームを測定対象に向けて送信する。そして、プローブ101は、被検体からの複数の超音波反射波(以下、「反射波」とする)を受信し、複数の振動子によりこれら反射超音波をそれぞれ電気信号に変換して受信部104に供給する。本実施の形態1では、例えば、長尺状に192個の振動子101aを備えたプローブ101を用いている。なお、振動子101aは、二次元アレイ状に配列されたものであってもよい。
操作入力部110は、例えば、診断開始を指示するコマンドや被検体の個人情報等のデータの入力などを行うための検査者からの超音波診断装置100に対する各種設定・操作等の各種操作入力を受け付け、制御部109に出力する。操作入力部110は、例えば、表示部108と一体に構成されたタッチパネルであってもよい。この場合、表示部108に表示された操作キーに対してタッチ操作やドラッグ操作を行うことで超音波診断装置100の各種設定・操作を行うことができ、超音波診断装置100がこのタッチパネルにより操作可能に構成される。また、操作入力部110は、例えば、各種操作用のキーを有するキーボードや、各種操作用のボタン、レバー等を有する操作パネルであってもよい。また、表示部108に表示されるカーソルを動かすためのトラックボール、マウスまたはフラットパッド等であってもよい。または、これらを複数用いてもよく、これらを複数組合せた構成のものであってもよい。
表示部108は、いわゆる画像表示用の表示装置であって、DSC107からの画像出力を画面に表示する。表示部108には、液晶ディスプレイ、CRT、有機ELディスプレイ等を用いることができる。
<超音波信号処理装置150の構成>
以下、超音波信号処理装置150を構成する送信部103、受信部104、超音波画像化信号生成部105、画像化信号合成部106の構成について説明する。
(送信部103)
送信部103は、ケーブル102を介してプローブ101と接続され、プローブ101から超音波の送信を行うために、プローブ101に存する複数の振動子101aの全てもしくは一部に当たる送信振動子の列に含まれる複数の振動子各々に対する高電圧印加のタイミングを制御する回路である。送信部103は、プローブ101に存する複数の振動子101aから複数の送信振動子の列を選択して駆動信号を供給し、送信振動子の列から送信焦点に集束する超音波ビームを送信させる。このとき、送信部103は、駆動信号として、例えば3つの周波数の基本波f1、f2、f3の成分を含む駆動パルス信号を生成し、複数の送信振動子の列に対し異なる周波数分布を持つ駆動パルス信号を印加可能な構成となっている。なお、本明細書では、送信後に反射波の受信が行われる超音波ビームの送信単位を「送信イベント」と称呼する。
超音波診断装置100では、送信部103は、複数の振動子101aから複数の送信振動子の列Txq(q=1〜qmax、qは自然数)を選択して、それぞれの送信振動子の列Txqから送信焦点FPに集束する超音波ビームを送信させる構成を採る。
図3は、送信部103の構成を示す機能ブロック図である。図3に示すように、クロック発生回路1031、駆動パルス信号発生回路1032、持続時間及び電圧レベル設定部1033、遅延回路1034、遅延プロファイル生成部1035を備える。図4(a)(b)は、送信部103において生成される駆動パルス信号の一例sp及びパルスインバージョンにおける位相反転送信の態様を示す模式図である。図4(c)は別方式によって生成された駆動パルス信号の一例scの態様を示す図である。駆動パルス信号scのように無段階に電圧レベルが変化する駆動パルス信号は、リニアアンプを用いて任意形状の駆動パルス信号を生成する方式等によって得てもよいし、駆動パルス信号spに帯域制限処理を行うなどして平滑化し、駆動パルス信号scとして出力する方法をとってもよい。このように、駆動パルス信号は矩形状の信号を用いる方式でも、駆動パルス信号scの様に無段階に変化する駆動パルス信号を用いる方法のいずれもその必要性に応じて選択できる。
[クロック発生回路1031]
クロック発生回路1031は、駆動パルス信号spの出力タイミング制御や各電圧レベルの持続時間制御の最小時間単位となるクロック信号を発生させる回路である。
[駆動パルス信号発生回路1032、持続時間及び電圧レベル設定部1033]
駆動パルス信号発生回路1032は、持続時間及び電圧レベル設定部1033からの出力に基づき、送信振動子の列Txに含まれる各振動子に超音波ビームを送信させるための駆動パルス信号spを生成して出力する回路である。
駆動パルス信号spの発生において、駆動パルス信号発生回路1032は、例えば、図4(a)に示すように、5値(+HV/+MV/0(GND)/−MV/−HV)、又は3値(+HV/0(GND)/−HV)の電圧を切り替えて出力することにより、矩形波による駆動パルス信号spを発生させる。なお、駆動パルス信号の振幅の絶対値、正負の電圧の同一性、電圧の段階数は上記に限定されない。
また、超音波診断装置100では、THIにおける高調波成分の抽出を行うために、例えば、パルスインバージョン法を用いることができる。その場合、駆動パルス信号発生回路1032では、パルスインバージョン法を実施する場合には、位相が反転した連続する一対の駆動パルス信号sp1、sp2を発生する。その結果、図4(b)に示すように、駆動パルス信号発生回路1032が発生する1回目の駆動パルス信号sp1と2回目の駆動パルス信号sp2とは位相が反転した構成となる。
このとき、必要に応じて1回目の駆動パルス信号sp1と2回目の駆動パルス信号sp2を位相反転させた対称形とせずに一部を非対称として線形信号成分を意図的に残し、利用する構成としてもよい。
更に、高調波の抽出法は位相反転を利用した方法に限定されず、例えば既知の振幅変調法を利用した方法で構成してもよい。
加えて、複数の送信イベントの受信結果を演算して必要とする受信信号成分を抽出する方法としては、送信イベント数は2回に限定されず、3回以上の送信イベントを行う構成としてもよい。例えば、駆動パルス信号の位相を120°ずつずらした3回の送信イベントの受信結果を合成して3次高調波成分を抽出する構成等も選択できる。
[遅延プロファイル生成部1035]
遅延プロファイル生成部1035は、制御部109からの送信制御信号のうち、送信振動子の列Txと送信焦点FPの位置を示す情報に基づき、超音波ビームの送信タイミングを決める遅延時間tpk(kは、1から送信振動子の列に含まれる振動子の数Mまでの自然数)を振動子毎に設定して遅延回路1034に出力する回路である。これにより、遅延時間分だけ振動子毎に超音波ビームの送信を遅延させて超音波ビームの電子フォーカシングを行う。
[遅延回路1034]
遅延回路1034は、送信パルスの送信タイミングについて、遅延プロファイルに基づき振動子毎に遅延時間を設定し、設定された遅延時間だけ駆動信号の送信を遅延させて送信に係る超音波ビームの集束を行う回路である。具体的には、遅延回路1034は、駆動パルス信号発生回路1032からの駆動パルス信号spと遅延プロファイル生成部1035からの遅延時間tpkとに基づき、プローブ101に存する複数の振動子101a中、送信振動子の列Txに含まれる各振動子に超音波ビームを送信させるための駆動信号pwを供給する送信処理を行う。駆動信号pwにおいては、正面方向に送信する場合、送信振動子の列Txに対し、振動子列の中心に位置する振動子に対して大きな遅延時間tpkが適用される。これにより、図5に示すように、波送信振動子の列Txから送信焦点FPに対応する被検体中の特定部位に超音波ビームが集束する超音波ビームが送信される。
[送信される超音波ビームの態様]
図5は、本開示にかかる部分振動子列に分割した送信を行った場合の送信部103による送信に係る超音波ビームの伝播経路の一例を示す模式図である。超音波送信に寄与するアレイ状に配列された振動子101aの列を送信振動子の列Txとして図示している。図5に示すように、本明細書では振動子101aの列方向(方位方向)をX方向、方位方向に垂直な被検体の深さ方向をY方向とする。
送信部103において、複数の振動子101aから選択される送信振動子の列Txに対して、送信振動子の列Txの中心に位置する振動子ほど送信タイミングを遅らせるように各振動子の送信タイミングを制御することにより、送信振動子の列Tx内の振動子列から送信された超音波送信波は、理想的には、被検体のある深度において、波面がある一点で送信フォーカス点FP(Focal point)が合う状態となる。送信フォーカス点FPの深さFD(Focal depth)は、上記した遅延プロファイルに基づき任意に設定することができる。送信フォーカス点FPで合焦した波面は、再び拡散し、送信振動子の列Txを底とし送信フォーカス点FPを節とする交差する2つの直線で区切られた砂時計型の空間内を超音波送信波が伝播する。この砂時計型の領域(斜線ハッチングで示した領域)を超音波照射領域Axと称呼する。
なお、本明細書において、送信波による超音波ビームが「集束」するとは、超音波ビームが絞られフォーカスビームであること、すなわち、超音波ビームに照射される面積が送信後に減少し特定の深さにおいて最小値を採ることを指し、超音波ビームが1点にフォーカスされる場合に限られない。この場合、「送信焦点FP」とは、超音波ビームが集束する深さにおける超音波ビーム中心をさす。
また、本明細書において、「部分振動子列に分割した送信」とは、送信開口となる振動子列を複数の部分振動子列に分割し、周波数成分、送信駆動の電圧ステート遷移タイミング等が異なる送信内容を送出することを指し、送信振幅のみを変更したいわゆる送信アポダイゼーション送信は含まないものとする。
次に、超音波診断装置100における送信振動子の列Txを複数の振動子の列に分割して駆動する方法について説明する。
図6は、送信部103の送信に係る送信に係る超音波ビームにおいて、送信焦点FPの深さFDと送信振動子の駆動信号内容との関係を示す図の一例である。図6において、行方向は振動子101aの識別番号であり、「1」は送信振動子の列Txの中央側から1番目の振動子を表し、「32」は32番目の振動子を表す。列方向は、送信焦点FPの深さ方向の位置に対応する識別番号であり、「1」が関心領域を深さ方向に8分割したときの最も浅部の送信焦点を表し「8」が最も深部の送信焦点を表す。図中の「A、B、C」の位置は、複数の送信振動子の列Txq(q=1〜qmax)に含まれる振動子の区分を表し、駆動信号pwq(q=1〜qmax)が独立して供給される。また、「A、B、C」は、振動子に印加される駆動信号pwの区分を表す。
図6は送信開口の片側のみが記載されており、記載されていない片側は開口中心に対して線対称の配置となっている。すなわち、深さ「1」では送信開口を中心として4つずつの振動子、計8振動子に駆動パルス信号「A」が供給されて送信が行われ、深さ「8」では送信開口を中心として8振動子に駆動パルス信号「A」が、開口両端の6振動子、計12振動子に駆動パルス信号「C」が、中心と両端の間に位置する44振動子に駆動パルス信号「B」が供給されて合計64振動子で送信が行われることを示している。図6の例では振動子数は全て偶数となるが、送信振動子を奇数として区分配置してもよい。
すなわち、超音波診断装置100では、図6に示すように、送信焦点FPの深さが「4」以上であるとき、送信部103は、複数の振動子101aから複数の送信振動子の列Txq(q=1〜qmax:qは自然数、qmaxは3以上)を選択する、そして、それぞれの送信振動子の列Txqに対し、「A、B、C」に対応する駆動信号pwq(q=1〜qmax)を個別に供給して、それぞれの送信振動子の列Txqから送信焦点FPに集束する超音波ビームを送信させる部分振動子列に分割した送信の構成を採る。
そのため、本実施の形態1では、送信部103は、図5に示すように、送信焦点FPの深さが「4」以上において、送信焦点FPと方位方向の位置が重なる第3の送信振動子の列Tx3(以後、「列Tx3」と記す場合がある)と、方位方向に列Txを挟む2つに分割された部分から構成される第1の送信振動子の列Tx1(以後、「列Tx1」と記す場合がある)と、方位方向に2つの列Tx1を挟む2つの第2の送信振動子の列Tx2(以後、「列Tx2」と記す場合がある)を選択し、列Tx2及び列Tx3に対し列Tx1と異なる周波数分布を持つ駆動信号を生成して供給する。ここで、送信振動子の列txに含まれる振動子101aの個数に対する列Tx3の振動子の個数は、1/16以上1/2以下としてもよい。同様に、送信振動子の列txに含まれる振動子101aの個数に対する列Tx2の振動子の個数は、1/16以上1/2以下としてもよい。
ここで、送信振動子の列Txqを構成する振動子の選択は、制御部109の指示に基づき駆動パルス信号発生回路1032により行われる。また、各送信振動子の列Txqに対する駆動パルス信号spの割り当て、及び、送信振動子の列Txq毎に割り当てられた駆動パルス信号spに対する同一電圧レベルの各区間の持続時間及びその電圧レベルの設定は、制御部109の指示に基づき持続時間及び電圧レベル設定部1033で行われ、送信振動子の列Txq毎の駆動パルス信号spに対する適用は駆動パルス信号発生回路1032により行われる。また、送信振動子の列Txq毎の駆動パルス信号spに対し、持続時間及び電圧レベル設定部1033で設定される各区間の持続時間及び電圧レベルは、例えば、操作入力部110への操作入力により選択できる構成としてもよい。
図7(a)(b)(c)は、送信部103における送信に係る超音波ビームの周波数分布の一例を示す模式図であり、列Tx3、列Tx1、列Tx2から送信される超音波ビームを、それぞれUsIn、UsO1、UsO2とするとき、(a)はUsIn及びUsO2の周波数分布構成、(b)はUsO1の周波数分布、(c)は、UsIn、UsO1、UsO2の周波数分布を重ね合わせたときの周波数分布を示す。図7(a)(b)(c)において、横軸が周波数であり、縦軸が駆動信号pwが与えられることにより振動子から送出される送信超音波パルス信号の信号強度であり、破線がプローブ101の送信周波数帯域を示す。
図5及び図7(a)(b)に示すように、送信部103は、列Tx1、列Tx2、列Tx3に異なる駆動信号pw1、pw2、pw3をそれぞれ供給して、送信焦点FPと方位方向の位置が重なる列Tx3から超音波ビームUsInを、方位方向に列Txを挟む2つの列Tx1から超音波ビームUsO1を、方位方向に2つの列Tx1を挟む2つの列Tx2から超音波ビームUsO2を、それぞれ送信させる態様を採る。図7で示した態様ではpw2=pw3、すなわち図6の駆動パルス信号区分において「A」=「C」となっており、このとき、UsIn、UsO1、UsO2は同一の送信焦点FPに集束するように電子フォーカシングされる。
図7(a)に示すように、列Tx2及び列Tx3に供給させる駆動信号pw2、pw3の周波数分布は、基本波f1、f2、f3の周波数成分を含む。そして、駆動信号pw2、pw3の送信超音波パルス信号の周波数分布が、振動子100aの−20dB送信周波数帯域に含まれる周波数帯域であって、−20dB送信周波数帯域の中心周波数よりも低周波側と、中心周波数よりも高周波側とのそれぞれに強度ピークを有し、かつ複数の強度ピークの間の周波数領域における強度は、強度ピークの強度の最大値を基準として−20dB以上である構成を採ることが好ましい。ピーク間を−20dB以上とすることで複数の周波数強度ピークを有している場合でも送信超音波パルスの時間波形ピークが分割しない送信を行うことができる。また、ここで、超音波ビームの集束幅は周波数の逆数に比例するため、例えば、基本波f3は基本波f1に対して3倍の周波数を有するとしたとき、基本波f3成分は集束によるビーム幅が1/3となる。すなわち基本波f1と比較して3倍の密度で集束するため、基本波f3の成分を含む照射領域では音響レンズ等による短軸の超音波ビーム集束でも容易に音圧が上昇し、電子フォーカス焦点よりも浅い深度領域で高調波を生成する非線形領域に達する。これにより浅い深度領域からS/Nの良好な高調波信号を得ることが可能となる。
これに対し、低周波である基本波f1は、送信超音波が浅部で減衰が少なく深部到達性が高いために送信焦点を中心とした深部において高い音圧領域を生成することができ、深部でS/Nの良好な高調波信号を得ることに寄与する。
こうした送信超音波の周波数構成により、pw2およびpw3の送信領域では浅部から深部にわたってS/Nの良好な高調波信号を得ることができる。これにより、列Tx3にのみ駆動信号pw3の供給を行った場合には、浅部に存在することが多い穿刺針等の鏡面反射部材や腱等の異方性反射部位からの反射波を送信方向に対して正対する位置関係の近傍でのみ良好な信号として得られなかったが、送信方向に対してより角度がついた場合でも効果的に受波できるようになり、穿刺針等の鏡面反射部材の視認性を向上することができる。
また、図7(b)に示すように、列Tx1に供給させる駆動信号pw1の周波数分布は、低周波単周波の基本波f4の周波数成分を含む。そして、駆動信号pw1の送信パルス信号の周波数分布が、超音波探触子の−20dB送信周波数帯域に含まれる周波数帯域であって、−20dB送信周波数帯域の中心周波数よりも低周波側に最大強度ピークを有する構成を採る。これより、基本波f4は、送信超音波が浅部で減衰が少なく深部到達性が高いために深部における方位分解能が高く、深部でのスペックル粒状性を高める効果がある。また、基本波f4の駆動信号pwは、高周波成分を含まないので、プローブ101の表面温度の低下に寄与するうえ、浅部で音圧上昇せずに不要な高調波を生成しないため、浅部観察領域の低エコー部描出能向上に寄与する。
超音波診断装置100では、送信される超音波ビームUsO2、O3と比べて高い周波数領域の信号強度が小さい超音波ビームUsO1を列Tx1から送信させることができ、超音波照射領域Ax内の非受信領域における高調波生成を減少させて音響ノイズを抑制しつつ、減衰が少ない低い周波数領域の信号強度を含む超音波ビームUsO1を列Tx1から送信することにより深達度を向上することができ、印加エネルギーを効率的に活用できる。
以上のとおり、UsIn、UsO1、UsO2の周波数分布を重ね合わせた周波数分布では、また、図7(c)に示すように、駆動信号pw2、pw3の−20dB周波数帯域が、駆動信号pw1の−20dB周波数帯域よりも広い構成となる。また、列Tx2及び列Tx3からTx1と比べて高い周波数領域の信号強度が大きい超音波ビームを送信させる構成を採ることができる。
また、pw1とpw3の周波数領域信号特性の関係は、プローブの−20dB送信周波数帯域内において、図7(c)に示したようにpw3がpw1を概ね包含していることが好ましい。これにより、pw1の低周波信号強度がpw3よりも強度が高い場合、焦点以遠等の深部領域で開口中心のUsIn領域よりもUsO1領域の方が信号強度が強くなり、超音波ビームの断面プロファイルが中央が低い2ピークにスプリットしてしまうことを抑止することができる。ここで言う概ね包含とは、プローブの−20dB送信周波数帯域内において、pw3に対してpw1の各周波数成分強度が6dBを超えて上回らないことを言う。
図7(c)ではpw2、pw3は周波数領域に複数の信号強度ピークを有する好ましい例を示したが、複数の信号強度ピークを有することは必須要件ではなく、pw1の周波数よりも高い周波数領域の信号を含んでいればよい。たとえば、広帯域の単一信号強度ピークからなる駆動信号であってもよく、その信号強度ピーク周波数も限定されない。ただし、その場合でもpw1の周波数領域信号特性はpw3に包含されていることが好ましい。
(受信部104)
受信部104は、プローブ101で受信した超音波の反射波に基づき、複数の振動子101aで得られた電気信号から音響線信号を生成する。なお、「音響線信号」とは、整相加算処理がされたあとのある観測点に対する受信信号である。整相加算処理については後述する。図8は、受信部104の構成を示す機能ブロック図である。図8に示すように、受信部104は、入力部1041、受波信号保持部1042、整相加算部1043を備える。
以下、受信部104を構成する各部の構成について説明する。
[入力部1041]
入力部1041は、ケーブル102を介してプローブ101と接続され、送信イベントに同期してプローブ101において超音波反射波を受信して得た電気信号を増幅した後、AD変換した受信信号(RF信号)を生成する回路である。送信イベントの順に時系列に受信信号を生成し受波信号保持部1042に出力し、受波信号保持部1042は受信信号を保持する。
ここで、受信信号(RF信号)とは、各振動子にて受信された反射超音波から変換された電気信号をA/D変換したデジタル信号であり、各振動子にて受信された超音波の送信方向(被検体の深さ方向)に連なった信号の列を形成している。
また、パルスインバージョン法を実施する場合には、入力部1041は、同一走査線上に時間間隔をおいて送信された極性反転した一対の駆動パルス信号sp1、sp2もしくはsc1、sc2からの反射波に基づく位相が反転した一対のrf信号rf1、rf2を受信する。
入力部1041は、送信イベントに同期してプローブ101に存する複数Nの振動子101aの一部又は全部にあたる列状に並んだ受波振動子Rwの各々が得た反射超音波に基づいて、各受波振動子Rwに対する受信信号の列を生成する。受波振動子Rwは、制御部109の指示に基づき選択される。本実施の形態1では、受波振動子Rwはプローブ101に存する振動子101aの全数Nとしている。また、受波振動子Rwが構成する受信振動子Rwの列Rwxの列中心は、送信振動子の列(送信振動子の列Tx)の列中心と合致するよう選択され、受波振動子Rwの数は送信振動子の数と同一か、又は、送信振動子の数よりも多い構成としてもよい。
[受波信号保持部1042]
受波信号保持部1042は、コンピュータ読み取り可能な記録媒体であり、例えば、半導体メモリ等を用いることができる。受波信号保持部1042は、送信イベントに同期して送信部103から、各受波振動子に対する受信信号の列を入力し、1枚の超音波画像が生成されるまでの間これを保持してもよい。また、受波信号保持部1042は、例えば、ハードディスク、MO、DVD、DVD−RAM等を用いることができる。超音波診断装置100に外部から接続された記憶装置であってもよい。また、データ格納部の一部であってもよい。
[整相加算部1043]
整相加算部1043は、送信イベントに同期して被検体内の計算対象領域Bx内に存する複数の観測点について、観測点から各受信振動子が受信した受信信号列を整相加算して、音響線信号を生成する回路である。ここで、「計算対象領域Bx」とは、整相加算処理により音響線信号のサブフレームデータを生成する単位領域である。
整相加算部1043は、計算対象領域Bxの占める位置が計算対象領域毎に異なる複数の計算対象領域BxI0(I0=1〜Imax:I0は自然数、Imaxは2以上)を設定し、それぞれの計算対象領域BxI0内に位置しサブフレーム毎に異なる位置の複数の観測点Pijについて整相加算処理を行い音響線信号のサブフレームデータdsI0を複数生成する構成を採る。
図8に示すように、整相加算部1043は、受信開口設定部10431、遅延時間算出部10432、遅延処理部10433、加算部10434、及び合成部10435を備える。以下、各部の構成について説明する。
i)受信開口設定部10431
受信開口設定部10431は、被検体中の解析対象範囲に対応する計算対象領域Bxを設定し、音響線信号を算出対象となる計算対象領域Bx中の観測点Pijに対して、観測点Pijの位置に基づき受信開口Rxを設定する回路である。ここで、受信開口Rxとは、受信信号を受波した受波振動子の列から選択される振動子の列であって、観測点からの反射波に基づく受信信号列を整相加算するときに、計算の対象となる受信信号を受波した振動子の列である。また、本明細書では、観測点Pを、X方向及びY方向の座標に対応するインデックスi、jを付して表記する場合には、Pijと表記する場合がある。整相加算処理では、観測点Pijから受信開口Rx内の受波振動子各々への反射波到達の遅延時間を各々算出し、観測点Pijに対して算出した遅延時間に基づき音響線信号が算出される。
図9(a)(b)(c)は、整相加算部1043における観測点Pijについての音響線信号生成動作を説明するための模式図である。
図9(a)(b)(c)に示すように、超音波診断装置100では、受信開口設定部10431は、計算対象領域Bxの占める方位方向の位置が計算対象領域毎に異なる複数の計算対象領域BxL(Bx1)、BxC(Bx2)、BxR(Bx3)を設定し、それぞれの計算対象領域BxI0(I0=1〜3)内に位置する複数の観測点PijL、PijC、PijRについて整相加算処理を行い音響線信号のサブフレームデータdsI0を複数生成する。
ここで、計算対象領域Bxと受信開口Rxは、以下のように設定される。
計算対象領域RxCは、観測点Pijが列Tx1の両端と送信焦点FPとを通る2つの直線間の領域に位置するように設定される。具体的には、計算対象領域BxCは、図9(b)に示すように、列Tx1の略中心から起始し、送信焦点FPを通過する直線が通る領域内(図5の超音波ビームUsInに相当する領域)に設定される。
計算対象領域BxL、BxRは、観測点Pijが列Tx3の両端と送信焦点FPとを通る2つの直線間の領域であって、送信焦点FPより深度が浅い範囲に位置するように設定される。具体的には、計算対象領域BxLは、図9(a)に示すように、図中右側に位置する列Tx3の略中心から起始し、送信焦点FPを通過する直線が通る領域内(図5右側の超音波ビームUsO2に相当する領域)に設定される。同様に、計算対象領域BxRは、図9(c)に示すように、図中左側に位置する列Tx3の略中心から起始し、送信焦点FPを通過する直線が通る領域内(図5左側の超音波ビームUsO2に相当する領域)に設定される。
また、受信開口RxCの振動子列は、計算対象領域RxCに位置する観測点Pijの整相加算処理に対して設定される。具体的には、受信開口RxCは、図9(b)に示すように、列中心が列Tx1内に位置するように設定される。
受信開口RxL、RxRの振動子列は、それぞれ計算対象領域RxL、RxRに位置する観測点Pijの整相加算処理に対して設定される。具体的には、受信開口RxLは、図9(a)に示すように、列中心が図中右側の列Tx3内に位置するように設定される。受信開口RxRは、図9(c)に示すように、列中心が図中左側の列Tx3内に位置するように設定される。
また、例えば、列Tx1もしくは列Tx3の略中心を受信開口Rxの中心として固定して音響線信号を生成する構成としてもよい。
なお、本開示における受信開口Rの中心とは、受信振動子列の物理的な中心・中央を意味するものではなく、受信音響線の起始点、すなわち受信遅延計算における基準点を指す。
このとき、方位方向と垂直な方向を深さ方向とし、計算対象領域BxL、BxC、BxRの方位方向の中心を通る直線を走査線CLL、CLC、CLRとしたとき、図9(a)(b)(c)に示すように、走査線CLL、CLC、CLRの深さ方向に対する角度θを受信ステアリング角度θRL、θRC、θRRとする。
本実施の形態では、受信ステアリング角度θRが大きい計算対象領域Bxは、当該角度が大きい計算対象領域Bxよりも深さ方向に短い構成としてもよい。
具体的には、図9(a)(b)(c)に示すように、計算対象領域Bxの方位方向の中心を通る直線を領域中心線CLL、CLC、CLRにおいて、領域中心線CLL、CLRの深さ方向Yに対する受信ステアリング角度θRL、θRRが、領域中心線CLCの深さ方向Yに対する受信ステアリング角度θRCよりも大きい。そのため、計算対象領域BxL、BxRは、計算対象領域BxCよりも深さ方向に短い構成を採ることができる。図9(a)(b)(c)に示す例では、送信ステアリング角度は0°であるので、複数の計算対象領域BxL、BxC、BxRのうち送信ステアリング角度の指す方向と領域中心線CLL、CLRとのなす角度が大きい計算対象領域を、当該角度が小さい計算対象領域よりも深さ方向に短く設定することができる。
例えば、高角度の穿刺針軸、縦境界、前距腓靭帯等といった異方性高反射部材は浅部やその周辺領域に位置する傾向がある。そのため、これらの異方性高反射部材からの反射波を受波するためには、浅部における受信ステアリング角度θRを拡大することが有効である。
しかしながら、受信ステアリング角度θRの大きい計算対象領域Bxを深部まで拡大しても、深部においては、計算対象領域BxL、BxC、BxR間の重なり幅が小さいか、又は重ならない。そのため、空間コンパウンドとして画像重畳することにより画像描出性を高めるという機能を果たさない。
さらに、計算対象領域Bxを深部まで拡大しても、送受信に係る伝播経路が長く減衰が大きいうえ、振動子の送受信感度も角度が増すにしたがって低下するために、生成された画像において十分な空間分解能及びS/N比が得ることが難しいということが考えられる。
これに対し、複数の計算対象領域BxL、BxC、BxRのうち領域中心線の深さ方向に対する角度が大きい計算対象領域xL、BxRを、当該角度が小さい計算対象領域BxCよりも深さ方向に短く設定することにより、上記のデメリットがなく、演算のためのリソースを効率的に利用して視野角を効果的に拡大し、浅部における異方性高反射部材からの反射波を効率的に受波してその視認性を拡大できる。
なお、音響線信号のサブフレームデータが生成される計算対象領域Bxは、本実施の形態1では、上述のとおり、送信開口列Tx2もしくは列Tx3の略中心から起始し、送信焦点FPを通過する直線が通る領域内(図5の超音波ビームUsIn、UsO2に相当する領域)に設定される。すなわち、図5の送信例によれば、計算対象領域BxCは受信ステアリング角度が0°の受信となり、計算対象領域BxLと計算対象領域BxRは列Tx2の略中心位置から送信焦点FPへ向かう方向とY方向とのなす角度が受信ステアリング角度となり、サブフレームの受信ステアリング角度θRL、θRRは自ずと決定される。しかしながら、計算対象領域Bxはこれに限定されるものではなく、図5の超音波ビームUsIn、UsO2に相当する領域に含まれる任意の領域に設定してもよい。
図10(a)(b)(c)は、それぞれ、送信ステアリング角度θTが付された場合における、整相加算部1043における観測点PijL、PijC、PijRについての音響線信号生成動作を説明するための模式図である。後述の送信ステアリング角度をつけて送信を行う変形例1、図18(a)(c)における計算対象領域Bxの態様である。この場合にも、図9(a)(c)と同様に、計算対象領域BxはUsIn、UsO2の領域内に設定される。
このとき、送信副走査を常法のとおり送信開口中心が振動子端部に達したところで終了すると、BxL、BxR計算対象領域が振動子端部まで到達せず、プローブ端部に画像欠けを生じるため、図16に示した通り、BxL、BxR領域がプローブ端部に達するまで、仮想的にプローブ振動子数を拡大した送信副走査を行うことが好ましい。
また、受信開口設定部10431における、BxL、BxC、BxRの観測点PijL、PijC、PijRに対する受信開口Rxの設定の一態様は、Tx1もしくはTx3区分の略中心を受信開口Rxの中心として固定して音響線信号を生成する方法である。送信波面の進行に伴い、開口中心は移動せず、観測点Pijを順次、送信焦点方向に移動、すなわちUsIn、UsO2領域内の送信波面進行に応じて受信焦点位置を移動して音響線信号の生成を行う。結果、送信波面の進行方向と受信方向は略同一となり、BxL、BxRによりBxCだけでは効率よく受信することが難しい広視野角から反射波を受波することができる。そのため、例えば、高角度の穿刺針軸、異組織縦境界、前距腓靭帯等といった浅部やその周辺領域に位置する鏡面反射部材や異方性部位の視認性を向上できる。
なお、図10(a)(b)(c)に示す例においても、複数の計算対象領域BxL、BxC、BxRのうち送信ステアリング角度θTの指す方向と領域中心線CLL、CLRとのなす角度が大きい計算対象領域は、当該角度が小さい計算対象領域よりも深さ方向に短く設定することができる。
ii)遅延時間算出部10432
遅延時間算出部10432は、被検体中の解析対象範囲に対応する計算対象領域Bx中の複数の観測点Pijに対して、観測点Pijから受信開口Rx内の受波振動子各々への反射波到達の遅延時間を算出する回路である。
送信振動子の列Txから放射された送信波は、観測点Pに到達し、観測点Pijで音響インピーダンスの変化に応じて反射波を生成し、その反射波がプローブ101における受信開口Rx内の受波振動子Rwに戻る。任意の観測点Pijまでの経路の長さ、及び観測点Pから各受波振動子Rwまでの経路の長さは幾何学的に算出することができる。
具体的には、観測点Pijに対する遅延時間の算出は以下のように行われる。
遅延時間算出部10432は、受信開口Rx内の受波振動子Rwに対する受信信号の列から、計算対象領域Bx内の複数の観測点Pijについて、各観測点Pijと受波振動子Rw各々との間の距離の差を音速値Csで除した受波振動子Rw各々への反射超音波の到達時間差(遅延量)を算出する。具体的には、図9(a)(b)(c)に示すように、遅延時間算出部10432は、送信イベントに同期して、受波振動子Rwの位置を示す情報と観測点Pijの位置を示す情報とに基づき、観測点Pijから各受波振動子Rwk(k=1〜kmax)までの経路の長さを幾何学的に算出する。そして、観測点Pijから各受波振動子Rwkまでの経路長の差Δdkを音速値Csで除して、任意の観測点Pijから各受波振動子Rwに到達する反射波到達の遅延時間Δtkを各受波振動子Rwkについて算出する。
iii)遅延処理部10433
遅延処理部10433は、観測点観測点観測点Pijに対して、受波振動子Rw各々に対する基準遅延時間を用いて音響線信号dsを生成する回路である。
先ず、観測点観測点Pijに対する受信信号値の特定は以下のように行われる。
遅延処理部10433は、遅延時間算出部10432において算出された到達時間差(遅延量)に基づき各観測点観測点Pijから受波振動子Rw各々への反射波の到達時間を算出し、遅延処理部10433は反射波の到達時間に基づき各受波振動子Rwに対応する受信信号として同定する。具体的には、遅延処理部10433は、観測点Pijと観測点Pijに最も近接する受波振動子Rwとの間の超音波往復時間を算出し、遅延時間算出部10432において算出された到達時間差(遅延量)を加算して、受波振動子Rw各々への反射波の到達時間を算出する。そして、遅延処理部10433は、受波信号保持部1042から受信信号の列RFkを読込み、受波振動子Rw各々への反射波の到達時間に対応する対応する受信信号値を特定する。これより、各受波振動子Rwkに対する受信信号値が特定される。遅延処理部10433は、この処理を計算対象領域Bxに含まれる複数の観測点Pijの全てについて行い、各受波振動子Rwkに対する遅延量Δtkを算出し受信信号の特定を行う。
iv)加算部10434
加算部10434は、遅延処理部10433から出力される各受波振動子Rwkに対応して同定された受信信号を入力として、それらを加算して、観測点Pに対する整相加算された音響線信号を生成する回路である。あるいは、さらに、各受波振動子Rwに対応して同定された受信信号に、各受波振動子Rwに対する重み数列(受信アポダイゼーション)を乗じて加算して、観測点Pに対する音響線信号を生成する構成としてもよい。この場合、重み数列は、受信開口Rxの列方向の中心に位置する振動子に対する重みが最大となるよう送信フォーカス点Fを中心として対称な分布をなすことが好ましい。重み数列の分布の形状は、ハミング窓、ハニング窓、矩形窓などを用いることができ、分布の形状は特に限定されない。
遅延処理部10433において受信開口Rx内に位置する各受波振動子Rwが検出した受信信号の遅延時間を補償して加算部10434にて加算処理をすることにより、観測点Pからの反射波に基づいて各受波振動子Rwで受信した受信信号を重ね合わせて信号S/N比を増加し、観測点Pからの受信信号を抽出することができる。
遅延処理部10433は、計算対象領域Bx内の全ての観測点Pについて音響線信号を生成する。計算対象となる観測点Pijの位置を、例えば、走査線及び方位方向に漸次移動させながら超音波送信を繰り返して計算対象領域Bxのすべての観測点Pijについて音響線信号が生成され合成部10435に漸次出力される。
v)合成部10435
合成部10435は、計算対象領域Bxの音響線信号から音響線信号のサブフレームデータを生成する回路である。合成部10435は、計算対象領域Bx内の複数の観測点Pijについて生成された音響線信号を加算部10434から漸次入力し、音響線信号が取得された観測点Pの位置を指標として各観測点に対する音響線信号を重ねて音響線信号のサブフレームデータを生成する。
上述のとおり、受信開口設定部10431は、複数の計算対象領域BxI0を設定する。これに対し、遅延時間算出部10432、遅延処理部10433、加算部10434、及び合成部10435では、複数の計算対象領域BxI0について、順次、それぞれの計算対象領域BxI0内に位置する複数の観測点Pijについて整相加算処理を行うことにより、複数の計算対象領域BxI0に対応した音響線信号のサブフレームデータを合成部10435において生成し、合成されたフレーム音響線信号は、超音波画像化信号生成部105に順次、出力される。
(超音波画像化信号生成部105)
超音波画像化信号生成部105は、複数の計算対象領域BxI0に対応したそれぞれの音響線信号のサブフレームデータ等を、その強度に対応した輝度信号へと変換し、その輝度信号を直交座標系に座標変換を施すことで超音波画像化信号のサブフレームデータ等を生成する。超音波画像化信号生成部105はこの処理を複数の計算対象領域BxI0毎に逐次行い、例えば生成した超音波画像化信号のサブフレームデータを画像化信号合成部106に順次、出力する。具体的には、超音波画像化信号生成部105は、整相加算部1043から取得した音響線信号に対してパルスバージョン法を用いて高調波成分を抽出して広帯域の音響線信号を生成したのち、これに包絡線検波、対数圧縮などの処理を実施して輝度変換し、その輝度信号を直交座標系に座標変換を施すことで超音波画像化信号のサブフレームデータ等を生成する。すなわち、超音波画像化信号は、超音波受信信号の強さを輝度によって表したBモード画像であってもよい。
また、本明細書において、「超音波画像化信号」とは、音響線信号に基づき生成される像として表示される各段階の信号を指し、画像化される最終段階である輝度情報のみならず、その前段階の包絡線検波後受信信号やこれに帯域通過フィルタ処理等を行った信号処理後受信信号等も含まれる構成としてもよい。
また、超音波画像化信号生成部105は、高調波成分抽出部105aを備え、高調波成分抽出部105aによりパルスバージョン法を用いて抽出された高調波成分から超音波画像化信号を生成する。
このとき、高調波成分抽出部105aは、例えば、特開2015−112261号公報に記載されるように、受信部104から出力された音響線信号に対しパルスインバージョン法を実施して高調波成分を抽出する。そして、高調波成分のうち、偶数次高調波成分は、上述した同一走査線上に時間間隔をおいて送信された極性反転した一対の駆動パルス信号sp1、sp2からそれぞれ発生した2つの送信超音波にそれぞれ対応する反射波に基づく位相が反転した一対のrf信号rf1、rf2に基づく音響線信号を加算することにより、受信信号に含まれる基本波成分を除去して抽出できる。奇数次高調波成分は、一対のrf信号rf1、rf2に基づく音響線信号を減算して偶数次高調波成分を除去した上で必要に応じてフィルター処理を行うことにより抽出できる。抽出された偶数次高調波成分と奇数次高調波成分は、オールパスフィルター等により位相調整処理を行った後に加算することにより広帯域の音響線信号を得ることができる。
図11は、本開示に、好ましい態様である特開2014−168555号公報あるいは特開2016−214622号公報記載の送信方法を図7(c)pw3(UsIn)、pw2(UsO2)の送信超音波として適用した際の、超音波画像化信号生成部105において生成される超音波画像における表示深度と総合画質との関係を示す図である。図11において、一点鎖線が、基本波f3成分により生成される高調波成分を示し、破線が、基本波f1、f2成分により生成される高調波成分を示す。両者をまとめた総合画質の周波数特性を実線で示し、従来の総合画質を二点鎖線で示す。これに対し、図7(c)pw1(UsO1)では送波されている音波の周波数が低い成分のみのため、浅部の音響レンズによる集束のみでは充分に音圧が上昇せずに高調波信号の生成が僅かとなる。これにより図5におけるFPより浅部の領域では、UsIn、UsO2の領域内には音響レンズによる集束でS/Nが良好な高調波が生成し、UsO1の領域内の高調波生成は僅かとなる。このように高調波の生成領域を一様でなく空間制御した上で、UsIn、UsO2領域内に観測点Pijを設定することで、高S/Nの高調波信号を受信できるとともに、観測点が設定されていないUsO1領域からの散乱・反射音響ノイズの混入を防ぐことができ、高S/N信号による良好な反射体描出と、音響ノイズ混入抑制による優れた無〜低エコー部描出を両立した画像を得ることが可能となる。UsO1領域内に送波されたpw1は浅部領域では高調波生成に寄与しないが、電子フォーカスによる集束によりFP近傍領域の音圧上昇に寄与する。超音波診断装置100では、高調波高生成領域であるUsIn、UsO2内に観測点Pijを設定することで、一度の送信で高S/Nで音響ノイズ混入の少ない受信信号からなる超音波画像を3方向から得ることが出来るようになる。これらを後述の画像化信号合成部で合成したのち表示することで、フレームレートを低下させることなく、画像描写性や穿刺針等の鏡面反射部材や腱等の異方性反射対象の視認性が改善された超音波画像が得られる。
(画像化信号合成部106)
画像化信号合成部106は、超音波画像化信号生成部105から出力される複数の計算対象領域BxI0に対応した超音波画像化信号のサブフレームデータ等を観測点の位置を基準に合成して超音波画像のフレームデータ等を生成する回路である。ここで、「フレーム」とは、1枚の超音波画像を構築する上で必要な1つのまとまった信号を形成する単位をさす。1フレーム分の合成された音響線信号を「音響線信号のフレームデータ」とする。
画像化信号合成部106は、DRAM、集積回路に含まれるSRAMなどの半導体メモリーによって構成された画像メモリー部106aを備え、超音波画像化信号生成部105から出力された複数の計算対象領域Bxに対応する超音波画像化信号のサブフレームデータ等が記憶される。
図12は、画像化信号合成部106における超音波画像フレームデータの生成動作の一例を説明するための模式図である。図12に示すように、方位方向の位置が異なり、深さ方向の範囲が異なる複数の計算対象領域BxL、BxC、BxRを設定し、それぞれの計算対象領域BxI0内に位置する複数の観測点Pijについて整相加算処理を行い音響線信号のサブフレームデータdsI0を生成し、超音波画像化信号生成部105はそれぞれの計算対象領域BxI0に対応する超音波画像化信号のサブフレームデータを生成している。
画像化信号合成部106は、計算対象領域Bxに対応する超音波画像化信号のサブフレームデータを画像メモリー部106aに記憶する際、観測点Pijについて算出された音響線信号は、観測点Pijの位置に対応する画像メモリー部106aのアドレスに記憶することにより超音波画像のフレームデータを生成する。このとき、複数の計算対象領域BxI0に対応した整相加算処理から算出された、同一位置の観測点Pijに対する複数の音響線信号がある場合には、例えば、信号強度が最大である音響線信号が画像メモリー部106aの対応するアドレスに残される構成としてもよい。係る構成により、複数の計算対象領域BxI0に対応する超音波画像化信号のサブフレームデータ中、最も輝度が高い信号を用いて超音波画像のフレームデータを構成することができる。ただし、THIにおいては、高調波抽出処理を行った後の信号において、最も輝度が高い信号を用いることが好ましい。
あるいは、同一位置の観測点Pijに対する複数の音響線信号を平均化した信号が対応するアドレスに記憶される構成としてもよい。係る構成により、複数の超音波画像化信号のサブフレームデータ中、最も輝度が高い信号を画像に反映させるとともに、ノイズを抑制した超音波画像のフレームデータを生成することができる。これも同様に、THIの場合は、高調波抽出処理を行った後の信号を用いて平均化処理を行うことが好ましい。
合成された超音波画像のフレームデータはDSC107に出力される。
<動作について>
以上の構成からなる超音波診断装置100の超音波信号処理動作について説明する。
(超音波診断装置100における処理の概要)
図13は、超音波診断装置100における超音波信号処理の概要を示すフローチャートである。
先ず、超音波検査開始後、操作入力部110は、検査者からの超音波診断装置100に対する各種設定・操作等の各種操作入力を受け付け制御部109に出力する(ステップS10)。
次に、送信部103は、プローブ101に存する複数の振動子101aから選択した送信振動子の列Tx内の振動子に対し駆動信号pwを供給して(送信ビームフォーミング処理)各振動子に超音波ビームを送信させ、受信部104は、プローブ101で受信した超音波の反射波に基づき、複数の振動子101aで得られた電気信号から音響線信号を生成(受信ビームフォーミング処理)して、超音波画像化信号生成部105に出力する(ステップS20)。このとき、受信部104は、複数の計算対象領域BxI0を設定に対し、複数の計算対象領域BxI0に対応した音響線信号のサブフレームデータを生成し、超音波画像化信号生成部105に順次、出力する。
次に、超音波画像化信号生成部105は、受信部104から出力される複数の計算対象領域BxI0に対応したそれぞれの音響線信号のサブフレームデータから高調波成分を抽出して生成した広帯域の音響線信号包絡線検波、対数圧縮などの処理を実施して輝度変換し、その輝度信号を直交座標系に座標変換を施すことで超音波画像化信号のサブフレームデータを生成する。さらに、画像化信号合成部106は、複数の計算対象領域BxI0に対応した超音波画像化信号のサブフレームデータを観測点の位置を基準に合成して超音波画像のフレームデータを生成して、DSC107に出力する(ステップS30)。
最後に、DSC107は超音波画像のフレームデータに基づき超音波画像を含む表示画像を作成して表示部108に出力し、表示部108は表示画面に表示しては超音波信号処理動作を終了する(ステップS40)。
(送受信に係るビームフォーミング処理)
以下、ステップS20における処理動作の詳細について説明する。
図14、15は、図13における送受信ビームフォーミング処理(ステップS20)の詳細を示すフローチャートである。
本例では、送信振動子の列Txと受信開口Rxの列中心はBxCは一致する構成となるが、BxL、BxRはTxの列中心とは別位置の列中心、もしくは列中心が観測点Pijの移動に伴って移動する構成を採る。被検体の解析対象範囲に対応する計算対象領域Bxにおいて、その内部に設定される1以上の送信焦点FPを通る走査線の方位方向の識別番号をis、深さ方向座標Yに対応するインデックスをjとし、走査線(is)上に位置する観測点P(is,j)を設定して音響線信号を算出する。
先ず、送信部103は制御部109からの送信制御信号を取得し送信条件を設定する(ステップS201)。送信制御信号には、送信振動子の列Tx、送信焦点FPの位置、複数の送信振動子の列、駆動条件を示す情報等が含まれる。
次に、ステップS202において、送信部103は、プローブ101に存する複数の振動子101a中送信振動子の列Txに含まれる各振動子に超音波ビームを送信させるための駆動信号を供給する送信処理(送信イベント)を行う。具体的には、送信部103は、列Tx1、列Tx2、列Tx3に異なる駆動信号pw1、pw2、pw3をそれぞれ供給して、送信焦点FPと方位方向の位置が重なる列Tx3から超音波ビームUsInを、方位方向に列Tx3を挟む2つの列Tx1から超音波ビームUsO1を、方位方向に2つの列Tx1を挟む2つの列Tx2から超音波ビームUsO2を、それぞれ送信させる。
次に、ステップS203において、入力部1041は、プローブ101での超音波反射波の受信から得た電気信号に基づき受信信号(RF信号)を生成し受波信号保持部1042に出力し、受波信号保持部1042に受信信号を保持する。
次に、ステップS204において、整相加算部1043における受信開口設定部10431は、受信ステアリング角度θR(I0)、計算対象領域Bx(I0)(I0=1〜Imax:I0は自然数、Imaxは2以上)の配列をそれぞれ設定し、受信ステアリング角度θR(I0)、計算対象領域Bx(I0)をそれぞれ初期値1に設定する(ステップS204)。そして、計算対象領域Bx(I0)内に設定される1以上の送信焦点FPを通る走査線の方位方向の識別番号isを初期値に設定し(ステップS205)、最初に計算対象とする観測点P(is,j)に対し、観測点P(is,j)の深さ方向座標Yを表すインデックスjを初期値に設定し(ステップS206)、走査線又は計算対象領域Bx(I0)の領域中心線CL、あるいは、実施の形態2で後述するように観測点P(is,j)の位置に基づき受信開口Rxを構成する振動子の列を設定する(ステップS207)。受信開口Rxは、例えば、観測点P(is,j)を通る走査線を基準に対称に設定してもよい。
次に、遅延時間算出部10432は、基準到達時間t(j)の算出する(ステップS220)。基準到達時間t(j)とは、観測点P(is,j)と受信開口Rxの列中心に位置する受波振動子Rwとの間を超音波が往復するために要する時間である。
次に、受信開口Rx内の受波振動子Rwを識別するインデックスkを初期値に設定する(ステップS221)。本例では、一例として、初期値として、受信開口Rxに含まれる受波振動子Rw(kmin〜kmax)の最小値kminに設定する。
次に、遅延時間算出部10431は、受波振動子Rwkについて、観測点P(is,j)からの反射波が到達する際の遅延時間Δtkを算出する(ステップS222)。具体的には、遅延時間算出部10431は、受波振動子Rwkの位置を示す情報と観測点P(is,j)の位置を示す情報とに基づき、観測点P(is,j)から受波振動子Rwkまでの経路の長さを幾何学的に算出する。そして、観測点P(is,j)から受波振動子Rwkまでの経路長の差Δdkを音速値Csで除して、観測点P(is,j)から各受波振動子Rwkに反射波が到達するときの遅延時間Δtkを算出する。
次に、遅延処理部10433は、遅延時間適用回数Sを初期値(0)に設定し(ステップS223)、受波信号保持部1042から受信信号の列RF(k)を読込み(ステップS224)、受信信号の列RF(k)中の、受信信号値RF(k,t(j)+Δtk)を特定し、受信信号値RF(k,t(j)+Δtk)と加算レジスタに記憶されている音響線信号ds(is,j)との和を算出して(ステップS225)、新たな音響線信号ds(is,j)を加算レジスタに保存する(ステップS226)。初回のイタレーションではds(is,j)=0であり、加算レジスタにはRF(k,t(j)+Δtk)が設定される。
そして、受波振動子Rwを識別するインデックスkが最大値kmaxであるか否かを判定し(ステップS227)、最大値kmaxでない場合には、kをインクリメントして(ステップS228)、ステップS222に戻り、kが受信開口Rx中の受波振動子Rwの最大値kmaxである場合には、観測点P(is,j)に対する音響線信号dS(is,j)の算出が完了しており、jが最大値jmaxであるか否かを判定する(ステップS229)。jが最大値jmaxでない場合には、jをインクリメントして(ステップS230)、ステップS220に戻り、jが最大値jmaxである場合には、走査線(is)上に位置するすべての観測点P(is,j)に対する音響線信号dS(is,j)の算出が完了しており、isが最大値ismaxであるか否かを判定する(ステップS231)。そして、isが最大値ismaxでない場合には、isをインクリメントして(ステップS232)、ステップS206に戻り、isが最大値jmaxである場合には、計算対象領域Bx内に存在するすべての走査線(is)について線上に存在する観測点P(is,j)に対する音響線信号dS(is,j)の算出が完了しており、受信ステアリング角度θR、計算対象領域Bx(I0)のインデックスI0が最大値I0maxであるか否かを判定する(ステップS233)。そして、I0が最大値I0maxでない場合には、I0をインクリメントして(ステップS234)、ステップS205に戻り、I0が最大値I0maxである場合には、すべての計算対象領域Bx内について内部に存在する観測点P(is,j)に対する音響線信号dS(is,j)の算出が完了しており、処理を終了する。
<超音波診断装置100に係る超音波画像化信号の生成>
次に、実施の形態1に係る超音波診断装置100において、超音波診断装置100において、送信振動子の列Txを方位方向に1つの振動子ずつ漸次移動させて、プローブ101aに存在する複数の振動子101aの個数に相当するM回の送受信を行う場合の構成及び動作について説明する。
超音波診断装置における、音響線の移動、すなわち走査線の副走査は、送信開口中心が振動子列の一方の端部位置から開始し、超音波送信(送信イベント)ごとに、送信振動子の列Txを方位方向に1つの振動子ずつ漸次移動させて、送信開口中心が反対の端部位置に至るまでのプローブ101aに存在する複数の振動子101aの個数に相当するM回の送信イベントを行う構成が一般的である。
実施の形態1に係る超音波診断装置100では、送信振動子の列Txを方位方向に1つの振動子ずつ漸次移動させて、送信開口中心が一方の端部から他方の端部位置に至るまでのプローブ101aに存在する複数の振動子101aの個数に相当するM回の送信イベントを行う構成を採る。このとき、超音波診断装置100では、送信部103は、超音波送信(送信イベント)ごとに送信振動子の列Txを列方向に漸次移動させながら超音波送信を複数回、繰り返す構成を採る点では通常の超音波診断装置と同一だが、フレームを形成するための送信イベント数と送信イベントの開始・終了位置が相違する。
図16は、実施の形態1係る超音波診断装置100の送信部103における送信に係る超音波ビームの伝播経路を示す模式図である。図16に示す例は、送信振動子の列Txとして選択される振動子の個数Mをプローブ101aに存在する複数の振動子101aの個数Nと同数にした場合である。超音波診断装置100では、図16に示すように、送信部103は、複数の振動子101aから送信振動子の列Txを方位方向に漸次移動させて複数回選択し、当該選択に対応して送信焦点FPを方位方向に複数設定することにより、送信振動子の列Txからそれぞれの送信焦点FPに集束する超音波ビームを順次送信させる構成を採る。このとき、超音波送信(送信イベント)ごとに、送信振動子の列Txを方位方向に1つの振動子ずつ漸次移動させて、プローブ101aに存在する複数の振動子101aの個数Mと送信開口振動子数Nを合算したM+Nに相当する回数の送信イベントを行う構成としてもよい。この場合には、1回目の送信イベントでは、プローブ101aに存在する複数の振動子101a中、1番目(図16において方位方区の左端)の振動子だけが駆動され、M+N回目の送信イベントでは、M番目の振動子(図16において方位方区の右端)だけが駆動される構成となる。そして、複数の送信イベントにおいて、1回目の送信イベントでは、プローブ101aに存在する複数の振動子101a中の一端側に位置する振動子からプローブ101aの一端の外方に位置する送信焦点FPに向けて超音波ビームが照射され、最後の送信イベントでは他端側に位置する振動子からプローブ101aの他端の外方に位置する送信焦点FPに向けて超音波ビームが照射される。
係る構成により、図12の様にBxLおよびBxR領域はBxC領域同様に振動子の両端まで得ることが出来るようになり、重畳領域が方位方向に拡大する。上記の副走査方法は常に行う必要はなく、重畳領域の拡大よりも時間分解能が優先されるケースには通常の副走査方法をとるよう、操作者が選択して切り替えるようにしてもよいし、送信焦点の深度や表示深度の変更と連動して上記の副操作方法と通常の副走査方法を自動的に切り替えるようにしてもよい。
そして、受信部104は、各回の超音波送信に基づき得られた受波信号に基づいて、受信ステアリング角度θRが異なる複数の計算対象領域BxI0内について音響線信号のサブフレームデータdsI0を複数生成する。さらに、画像化信号合成部106は、複数の送信振動子の列Tx及び送信焦点FPに対応して複数音響線信号のサブフレームデータdsI0に基づく超音波画像化信号のフレームデータを合成して、各回の超音波送信に基づく超音波画像化信号のフレームデータを生成するとともに、さらに、生成された超音波画像化信号のフレームデータを観測点の位置を基準に合成してすべての超音波送信に基づく超音波画像化信号の統合フレームデータを生成する構成を採る。
以上の構成からなる実施の形態1に係る超音波診断装置100の超音波信号処理動作について説明する。
図17は、超音波診断装置100において、送信振動子の列Txを方位方向に1つの振動子ずつ漸次移動させて、プローブ101aに存在する複数の振動子101aの個数に相当するM回の送受信を行う場合の処理を示すフローチャートである。図13と処理が異なるステップには異なる番号を付し、その他のステップは説明を省略する。
先ず、ステップS10における各種操作入力の制御部109への出力は超音波診断装置100と同じである。
次に、送信部103は、送信振動子の列Txの方位方向の位置I1を初期値に設定する(ステップS12B)。このとき、送信焦点FPの方位方向の位置も、送信振動子の列Txの方位方向の位置I1に対応して設定される。
次に、図14及び15に示すフローチャートに基づき、送受信ビームフォーミング処理を行う(ステップS20)。すなわち、送信部103は、送信振動子の列Tx及び送信焦点FPの方位方向の位置I1を初期値に設定した状態で、送信振動子の列Tx内の振動子に超音波ビームを送信させ、受信部104は、得られた反射波に基づき、複数の計算対象領域BxI0に対応した音響線信号のサブフレームデータを生成し、超音波画像化信号生成部105に順次、出力する。
次に、送信振動子の列Txの方位方向の位置I1が最大値I0maxであるか否かを判定する(ステップS24B)。そして、I1が最大値I0maxでない場合には、I1をインクリメントして(ステップS25B)、ステップS20に戻り、I1が最大値I1maxである場合には、すべての送信振動子の列Txの方位方向の位置I1について音響線信号の算出が完了しており、ステップS30Bに進む。
次に、ステップS30Bでは、超音波画像化信号生成部105は、受信部104から出力される、送信振動子の列Txの方位方向の位置I1を異ならせた複数の送信イベントから取得した、複数の計算対象領域BxI0に対応したそれぞれの音響線信号のサブフレームデータから、超音波画像化信号のサブフレームデータを生成する。さらに、画像化信号合成部106は、それぞれの送信振動子の列Txの方位方向の位置I1に関して、複数の計算対象領域BxI0に対応した超音波画像化信号のサブフレームデータを合成して超音波画像のフレームデータを生成する。さらに、画像化信号合成部106は、それぞれの送信振動子の列Txの方位方向の位置I1に対応した超音波画像化信号のフレームデータを合成して超音波画像の統合フレームデータを生成して、DSC107に出力する。
最後に、ステップS40では、DSC107は超音波画像の統合フレームデータに基づき超音波画像を含む表示画像を作成して表示部108に表示させる。
係る構成により、超音波診断装置100では、送信イベントごとに、送信振動子の列Txを方位方向に漸次移動させて複数回の送信イベントとそれ伴う音響線信号の生成を行い、各送信イベントから得られた超音波画像化信号のフレームデータ音響線信号を合成して超音波画像化信号の統合フレームデータを生成する。そのため、同一の観測点について、送信振動子の列Txの位置の異ならせた複数の受信信号に基づき超音波画像化信号を生成することができ、空間分解能及びS/N比を向上することができる。さらに、上述のとおり、複数の送信イベントにおける1回目の送信イベントでは、プローブ101aに存在する複数の振動子101a中の一端側に位置する振動子からプローブ101aの一端の外方に位置する送信焦点FPに向けて超音波ビームが照射され、最後の送信イベントでは他端側に位置する振動子からプローブ101aの他端の外方に位置する送信焦点FPに向けて超音波ビームが照射される構成となる。そのため、異方性反射部材が、プローブ101aに存在する複数の振動子101aの両端よりもさらに外方の浅部に位置する場合において、当該異方性反射部材からの反射波を効果的に受波して、穿刺針等の鏡面反射部材の視認性を向上することができる。
<小 括>
以上、説明したように実施の形態1に係る超音波診断装置100は、送信部103と、入力部1041と、整相加算部1043と、画像化信号合成部106とを備え、送信部103は、送信振動子の列として、方位方向に2つに分割された部分振動子列部分からなる第1の部分振動子列Tx1と、方位方向に第1の部分振動子列Tx1を挟む2つの第2の部分振動子列Tx2と、2つに分割された第1の部分振動子列部分Tx1に挟まれた第3の部分振動子列Tx3を、複数の送信振動子の列として選択する。そして、第2の部分振動子列Tx2及び第3の部分振動子列Tx3から、第1の部分振動子列Tx1よりも高い周波数領域における信号強度が大きい超音波ビームを送信させる部分振動子列に分割した送信を行い、整相加算部1043は、方位方向における領域が計算対象領域毎に異なる複数の計算対象領域を設定し、それぞれの計算対象領域内に位置する複数の観測点について整相加算処理を行い音響線信号のサブフレームデータ等を複数生成することを特徴とする。
係る構成により、列Tx2から高い周波数領域の信号強度が大きい超音波ビームUsO2を照射するとともに、観測点Pijからの反射波を、計算対象領域Bxqの受信ステアリング角度θRCに対応した受信開口Rxqにて広視野角から反射波を受波することができる。そのため、例えば、高角度の穿刺針シャフトなどの鏡面反射部材、組織縦境界、前距腓靭帯等といった浅部やその周辺領域に位置する腱等の異方性反射部位からの反射波を、複数の計算対象領域Bxqの何れかの受信開口Rxで受波できる確率を高め、受信開口Rxqの何れかにより最も感度よく受波することができる。
この結果、複雑な送信制御を必要としない安価な装置において、超音波照射領域の浅部の周辺領域における異方性高反射部材の視認性を向上し、高角度の異方性反射部位の描出性を従来より改善することができる。すわなち、従来描出し難く、術者の手技に依存していた異方性部位や穿刺針が、複雑な送信制御を必要とせず、比較的安価な装置により送信回数を増やして動画性能を落とすことなく非熟練者でも明瞭な画像で観察可能となり、診断精度向上やガイド下手技の安全性・作業性が改善することができる。
<変形例1>
実施の形態1に係る超音波診断装置100を説明したが、本開示は、その本質的な特徴的構成要素を除き、以上の実施の形態1に何ら限定を受けるものではない。以下、そのような形態の一例として、超音波診断装置100の変形例を説明する。
実施の形態1に係る超音波診断装置100では、図5に示すように、波送信振動子の列Txから送信焦点FPに対応する被検体中の特定部位に超音波ビームが集束する超音波ビームが送信させ、得られた受波信号に基づいて、受信ステアリング角度θRが異なる複数の計算対象領域BxI0内について音響線信号のサブフレームデータdsI0を複数生成する構成を採る。
これに対し、変形例1に係る超音波診断装置では、方位方向の位置が異なる複数の送信焦点FPを設定して、同一の波送信振動子の列Txから送信焦点FPに対応する被検体中の特定部位に超音波ビームが集束する超音波ビームを送信させる送信イベントを、送信焦点FPを変更して複数回行う。
図18(a)(b)(c)は、変形例1に係る超音波診断装置の送信部103における送信に係る超音波ビームの伝播経路を示す模式図である。図18(a)(b)(c)に示すように、変形例1に係る超音波診断装置では、同一の波送信振動子の列Txから送信焦点FPの方位方向の位置を異ならせることにより、送信に係るステアリング角度をθTL、θTC、θTRに異ならせて超音波ビームを送信させる構成を採る。送信ステアリング角度θTL、θTRは、例えば、それぞれ+/−10°としてもよく、送信ステアリング角度θTCは0°としてもよい。送信に関するその他の構成及び動作については実施の形態1に係る超音波診断装置100と同じである。
係る構成により、送信ステアリング角度θTL、θTC、θTRに対応した送信イベントから得られる超音波照射領域AxL、AxC、AxRのカバーする方向数が増大する。
さらに、変形例1に係る超音波診断装置では、送信ステアリング角度θTを異ならせたそれぞれの送信イベントから得られた受波信号に基づいて、さらに、受信ステアリング角度θRが異なる複数の計算対象領域BxI0内について音響線信号のサブフレームデータdsI0を複数生成する構成を採る。このとき、各送信イベントにおいて、サブフレーム受信で設定される受信ステアリング角度θRは、それぞれの異なる送信ステアリング角度θTに加減されるように設定される。そのため、複数の送信イベント間における受信ステアリング角度θRの変動幅および方向数は、実施の形態1に比べて増加する。
図19(a)(b)(c)(d)は、変形例1に係る超音波診断装置の画像化信号合成部106における超音波画像フレームデータの生成動作を説明するための模式図である。
図19(a)に示すように、画像化信号合成部106は、送信ステアリング角度θTをθTLとした送信イベントから得られた受波信号に基づいて、超音波診断装置100と同様に、複数の計算対象領域BxLL、BxLC、BxLRを設定し、それぞれに対する整相加算処理から得られた複数の音響線信号のサブフレームデータに基づく超音波画像化信号のサブフレームデータを観測点の位置を基準に合成して計算対象領域BxLに対応する超音波画像化信号のフレームデータを生成する。
同様に、図19(b)に示すように、送信ステアリング角度θTを0として得られた受波信号に基づいて、計算対象領域BxCL、BxCC、BxCRを設定し、それぞれの整相加算処理から得られた複数の音響線信号のサブフレームデータに基づく超音波画像化信号のサブフレームデータを合成して計算対象領域BxCに対応する超音波画像化信号のフレームデータを生成する。
さらに、図19(c)に示すように、送信ステアリング角度θTをθTRとして得られた受波信号に基づいて、計算対象領域BxRL、BxRC、BxRRを設定し、それぞれの整相加算処理から得られた複数の音響線信号のサブフレームデータに基づく超音波画像化信号のサブフレームデータを合成して計算対象領域BxRに対応する超音波画像化信号のフレームデータを生成する。
そして、図19(d)に示すように、画像化信号合成部106は、計算対象領域BxR、BxR、BxRに対応する超音波画像化信号のフレームデータを観測点の位置を基準に合成してすべての計算対象領域Bxに対応する超音波画像化信号の統合フレームデータを生成する。
以上の構成からなる変形例1に係る超音波診断装置の超音波信号処理動作について説明する。
図20は、変形例1に係る超音波診断装置における処理を示すフローチャートである。図13と処理が異なるステップには異なる番号を付し、その他のステップは説明を省略する。
先ず、ステップS10における各種操作入力の制御部109への出力は超音波診断装置100と同じである。
次に、送信部103は、送信ステアリング角度θT(I0)を初期値に設定する(ステップS11A)。
次に、図14及び15に示すフローチャートに基づき、送受信ビームフォーミング処理を行う(ステップS20)。すなわち、送信部103は、送信ステアリング角度θT(I0)を初期値に設定した状態で、送信振動子の列Tx内の振動子に超音波ビームを送信させ、受信部104は、得られた反射波に基づき、複数の計算対象領域BxI0に対応した音響線信号のサブフレームデータを生成し、超音波画像化信号生成部105に順次、出力する。
次に、送信ステアリング角度θT(I0)が最大値I0maxであるか否かを判定する(ステップS22A)。そして、I0が最大値I0maxでない場合には、I0をインクリメントして(ステップS23A)、ステップS20に戻り、I0が最大値I0maxである場合には、すべての送信ステアリング角度θTについて音響線信号の算出が完了しており、ステップS30Aに進む。
次に、ステップS30Aでは、超音波画像化信号生成部105は、受信部104から出力される、複数の送信ステアリング角度θT(I0)それぞれのもとで取得した、複数の計算対象領域BxI0に対応したそれぞれの音響線信号のサブフレームデータから、超音波画像化信号のサブフレームデータを生成する。さらに、画像化信号合成部106は、それぞれの送信ステアリング角度θT(I0)に関して、複数の計算対象領域BxI0に対応した超音波画像化信号のサブフレームデータを合成して超音波画像のフレームデータを生成する。さらに、画像化信号合成部106は、それぞれの送信ステアリング角度θT(I0)に対応した超音波画像化信号のフレームデータを合成して超音波画像の統合フレームデータを生成して、DSC107に出力する。
最後に、ステップS40では、DSC107は超音波画像の統合フレームデータに基づき超音波画像を含む表示画像を作成して表示部108に表示させる。
係る構成により、変形例1に係る超音波診断装置では、浅部領域において高調波生成能が高い超音波ビームの照射(UsIn、UsO2)をより一層大きな送信ステアリング角度θTから行うことができ、さらに、送信ステアリング角度θTの増加に伴い、より一層大きな受信ステアリング角度θRを用いた整相加算処理行うことができる。これより、実施の形態1に比べて、整相加算処理における受信の視野角の絶対値を拡大し、浅部やその周辺領域に位置する穿刺針等の鏡面反射部材や腱等の異方性反射部位に対して、これらからの反射波を何れかの受信開口Rxqで捕捉できる確率を高めて視認性を高めることができるとともに、統合フレームデータを構成するサブフレーム数が増加して画像の均質性も高めることができる。
≪実施の形態2≫
実施の形態1に係る超音波診断装置100では、整相加算部1043の受信開口設定部10431は、観測点Pijに対する受信開口Rxは、観測点Pijを通り、Tx2もしくはTx3を受信音響線の起始点とする構成、すなわち、USIn、UsO2内の合成波面伝播角度と受信音響線の角度は同一となるよう設定する構成とした。しかしながら、受信開口Rxの選択方法はこれに限定されるものではなく、異なる態様に設定してもよい。
受信開口Rx設定の別の一態様としては、UsIn、UsO2領域内の送信波面進行に応じて受信焦点位置を移動して音響線信号の生成を行うことは前述の態様と同一であるが、受信開口Rxの中心をTx2もしくはTx3区分の略中心として固定する設定ではなく、UsIn、UsO2領域内に設定される観測点Pijに対し、全て同一方向で受信する方法である。すなわち、ステアリング角度0°の送信であればUsIn、UsO2内に設定される観測点Pijに対して全てステアリング角度0°方向で受信を行い、ステアリング角度x°の角度を有する送信であれば、受信の方向も全てx°で行う。つまり、UsInの受信開口Rxの中心は移動しないが、UsO2内に設定される観測点Pijに対する受信開口Rxの中心は送信波面進行に従ってアジマス方向に移動することとなる。UsInに対する送信と受信の方向は同一となるが、UsO2内に対しては送信の方向と受信の方向は同一ではなくなる。前述の態様と比較して、異方性高反射部材・部位に対する対応角度は半減するが、受信における伝搬経路が短く減衰の影響が少ない受信信号が得られることや、グレーティングローブによるアーチファクトが出にくい等の利点もあるため、プローブ特性や重視する目的に応じて適宜選択されることが好ましい。
実施の形態2に係る超音波診断装置は、受信開口設定部10431における、受信開口Rxの選択方法において実施の形態に係る超音波診断装置100と相違する。その他の構成については図2、3、8に示した超音波診断装置100と同じ構成を採るので説明を省略する。
図21(a)(b)(c)は、実施の形態2に係る超音波診断装置の整相加算部1043における観測点Pijについての音響線信号生成動作を説明するための模式図である。図22(a)(b)(c)は、実施の形態2に係る超音波診断装置において、送信ステアリング角度θTが付された場合における、整相加算部1043における観測点Pijについての音響線信号生成動作を説明するための模式図である。なお、図21(a)(b)(c)、図22(a)(b)(c)において、計算対象領域BxL、BxC、BxR及び受信ステアリング角度は、それぞれ、図9(a)(b)(c)、図10(a)(b)(c)に示した計算対象領域BxL、BxC、BxR及び受信ステアリング角度θRL、θRC、θRRと同じである。
図21(a)(b)(c)、図22(a)(b)(c)に示すように、計算対象領域BxL、BxC、BxRにおいて、任意の観測点PijL、PijC、PijRに対する整相加算処理において受信開口RxL、RxC、RxRは、それぞれ、送信ステアリング角度θTを基準角度としたとき、整相加算処理における受信開口RxL、RxC、RxRの振動子列は、以下のように選択される。すなわち、対象となる観測点PijL、PijC、PijRに対する受信開口RxL、RxC、RxRの列中心から観測点Pijに引いた直線NLL、NLC、NLRの垂直方向に対する角度θL、θC、θR(受信方向の角度とする)が、それぞれ基準角度θTと同一となるように選択される。このとき、送信ステアリング角度θTが0°である図21(a)(b)(c)の例では、観測点Pijに最も近接する振動子RwOL、RwOC、RwORと観測点PijL,PijC、PijRとを結ぶ直線NLL、NLC、NLRを受信開口Rxの中心とするように選択される。また、受信開口RxL、RxC、RxR内において、観測点Pijから距離が小さい受波振動子ほど大きな重み数列(受信アポダイゼーション)が適用される構成としてもよい。
係る構成により、実施の形態2に係る超音波診断装置では、受信開口設定部10431は、列中心が観測点Pijに最も空間的に近接する振動子と合致するよう受信開口Rx振動子列を選択し、送信イベントに依存せず観測点Pijの位置に基づいて、観測点Pijを中心として対称な受信開口Rxを用いて受信ビームフォーマを行う。そのため、観測点Pijまでの超音波の伝播距離が増加に伴い減衰することを鑑みても、観測点Pijからの反射波を、観測点Pに対して最も伝播減衰の影響を少なくして受信することができる。更に、送信伝播方向にステアリングがかかりグレーティングローブを生じやすいUsO2領域内のPijに対する受信を開口中心とステアリング角度の異なる方向で受信することにより、送信と受信のグレーティングローブの重なりを減少させることができ、アーチファクトが減少して信号品質を向上することができる。加えて、実施の形態1と同様に、実質的な送信方向数および角度が増加することにより、浅部に存在する異方性反射部材からの反射波を効果的に受波して、穿刺針等の鏡面反射部材の視認性を向上できる。
<変形例2>
以下、実施の形態2に係る超音波診断装置の変形例を説明する。実施の形態2に係る超音波診断装置では、送信部103は、送信振動子の列の中に、2つに分割された部分振動子列部分からなる第1の部分振動子列Tx1に方位方向に挟まれた第3の部分振動子列Tx3と、方位方向に2つに分割された第1の部分振動子列Tx1を挟む2つの第2の部分振動子列Tx2を選択し、第2の部分振動子列Tx2及び第3の部分振動子列Tx3から、第1の部分振動子列Tx1と比べて高い周波数領域の信号強度が大きい超音波ビームを送信させる構成とした。変形例2に係る超音波診断装置では、実施の形態2に係る構成において、さらに、送信部103は、方位方向における第2の部分振動子列Tx2と第1の部分振動子列Tx1との間に、第4の部分振動子列Tx4を選択し、第4の部分振動子列Tx4には超音波ビームを送信させない構成を採ることを特徴とする。
図23は、変形例2に係る超音波診断装置の送信部103による送信に係る超音波ビームの伝播経路を示す模式図である。図23に示すように、変形例2では、送信部103は、第3の部分振動子列Tx3と、方位方向に列Tx3を挟む2つの第1の部分振動子列Tx1と、方位方向に2つの振動子列Tx1を挟む2つの第2の部分振動子列Tx2と、方位方向における第1の部分振動子列Tx1と第2の部分振動子列Tx2との間に第4の振動子の列(以後、「列Tx4」と記す場合がある)を選択する。そして、第3の部分振動子列Tx3及び第2の部分振動子列Tx2からそれぞれ超音波ビームUsIn、UsO2を、第1の部分振動子列Tx1から超音波ビームUsO1を送信させて、列Tx2及び列Tx3に対し列Tx1と異なる周波数分布を持つ駆動信号を生成して供給するとともに、第4の部分振動子列Tx4には超音波ビームを送信させない構成を採ることを特徴とする。
係る構成では、送信振動子の列Txに含まれる振動子の個数は、列Tx4の振動子の個数の2倍に相当する数だけ増加する。しかしながら、第4の部分振動子列Tx4には超音波ビームを送信させないことから、駆動信号pwの印加に伴い消費エネルギーは増加しない。そのため、図23に示すように、列Tx4の方位方向における幅をM0とするとき、変形例2に係る構成を採ることにより、駆動信号pwの印加に伴う消費エネルギーや振動子発熱の増加を抑制しつつ、UsIn領域とUsO2領域の角度差を増加することができる。その結果、整相加算処理における受信開口内で受信できる実質的な視野角を拡大し、浅部やその周辺領域に位置する異方性高反射部材からの反射波をより一層効果的に受波して、穿刺針等の鏡面反射部材の視認性を向上できる。
≪実施の形態1、2に係るその他の変形例≫
実施の形態1、2に係る超音波診断装置を説明したが、本開示は、その本質的な特徴的構成要素を除き、以上の実施の形態1に何ら限定を受けるものではない。例えば、実施の形態1、2及びその変形例に対して当業者が各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
以下、そのような形態の一例として、実施の形態1、2の変形例について説明する。
<変形例3>
実施の形態1、2に係る超音波診断装置では、送信部103は、送信振動子の列の中に、2つに分割された部分振動子列部分からなる第1の部分振動子列Tx1に方位方向に挟まれた第3の部分振動子列Tx3と、方位方向に2つに分割された第1の部分振動子列Tx1を挟む2つの第2の部分振動子列Tx2を選択し、第2の部分振動子列Tx2及び第3の部分振動子列Tx3から、第1の部分振動子列Tx1と比べて高い周波数領域の信号強度が大きい超音波ビームを送信させる構成とした。しかしながら、第2の部分振動子列Tx2から送信させる超音波ビームの周波数特性はこれに限定されるものではなく、異なる態様に変更してもよい。具体的には、変形例3に係る超音波診断装置は、高い周波数領域における減衰が少ない浅部における超音波照射領域Ax内の周辺領域に、列Tx2から高い周波数領域の信号強度が大きい超音波ビームUsO3を照射する構成とする部分振動子列に分割した送信の態様も採ることができる。
図24は、変形例3に係る超音波診断装置の送信部103による送信に係る超音波ビームの伝播経路を示す模式図である。図24に示すように、変形例3に係る超音波診断装置では、送信部103は、送信振動子の列の中に、2つに分割された部分振動子列部分からなる第1の部分振動子列Tx1に方位方向に挟まれた第3の部分振動子列Tx3と、方位方向に2つに分割された第1の部分振動子列Tx1を挟む2つの第2の部分振動子列Tx2を選択し、第3の部分振動子列Tx3から超音波ビームUsInを送信させ、第1の部分振動子列Tx1から超音波ビームUsO1を送信させ、第2の部分振動子列Tx2から、中心周波数よりも高い周波数領域の信号強度が第3の部分振動子列Tx3と比べて大きく、且つ、中心周波数よりも低い周波数領域の信号強度が第3の部分振動子列Tx3及び第1の部分振動子列Tx1と比べて小さい超音波ビームUsO3を送信させる構成を採る点で実施の形態1、2と相違する。
図25は、変形例3に係る超音波診断装置の送信部103の送信に係る送信に係る超音波ビームにおいて、送信焦点FPの深さFDと送信振動子の駆動信号内容との関係を示す模式図であり、行列方向の表記の意味は図6と同じである。超音波診断装置100では、図25に示すように、送信焦点FPの深さが「3」以上であるとき、送信部103は、複数の振動子101aから複数の送信振動子の列Txq(q=1〜qmax:qは自然数、qmaxは3以上)を選択する。そして、それぞれの送信振動子の列Txqに対し、「A、B、D」に対応する周波数分布からなる駆動信号pwq(q=1〜qmax)を個別に供給して、それぞれの送信振動子の列Txqから送信焦点FPに集束する超音波ビームを送信させる構成を採る。
図26(a)(b)(c)(d)は、送信部103における送信に係る超音波ビームの周波数分布を示す模式図であり、列Tx3、列Tx1、列Tx2から送信される超音波ビームを、それぞれUsIn、UsO1、UsO3とするとき、(a)はUsInの周波数分布、(b)はUsO1の周波数分布であり、図7(a)、(b)に示す実施の形態1のものと同じである。また、図26(c)はUsO3の周波数分布、(d)は、UsIn、UsO1、UsO3の周波数分布を重ね合わせたときの周波数分布を示す。
図26(a)、(b)の周波数分布は、図7(a)、(b)に示す実施の形態1のものと同じであるため、説明を省略する。
図27は、変形例3に係る超音波診断装置において、送信部103により列Tx3から送信される超音波ビームUsO3の減衰を説明するための模式図である。
図26(c)(d)に示すように、列Tx2に供給させる駆動信号pw2の周波数分布は、基本波f1、f2、f3の周波数成分を含む列Tx3に供給させる駆動信号pw3の周波数分布と比べて、基本波f3の周波数成分において信号強度が高い構成からなる(pw2H)。したがって、変形例3に係る超音波診断装置では、駆動信号pw1を列Tx1に印加し、駆動信号pw3を列Tx3に印加することにより、実施の形態1において列Tx2から送信される超音波ビームUsO2と比べて高い周波数領域の信号強度が大きい超音波ビームUsO3を列Tx2から送信させることができる。
係る構成により、列Tx2から高い周波数領域の信号強度が大きい超音波ビームUsO3を照射することにより、超音波ビームのステアリング角度が大きく振動子100aの指向性によって正面方向への照射に比べてビームの強度が低下する傾向にあるUsO3領域内にも、高調波成分を充分生成し得る強度の送信を行うことができ浅部の描画における高解像度化を図ることができる。また、浅部に存在することが多い異方性反射部材からの反射波を効果的に受波して、穿刺針等の鏡面反射部材の視認性を向上することができる。
一方、図26(c)(d)に示すように、列Tx2に供給させる駆動信号pw2の周波数分布は、基本波f1、f2、f3の周波数成分を含む列Tx3に供給させる駆動信号pw3の周波数分布と比べて、基本波f1の周波数成分において信号強度が低い構成からなる(pw2L)。したがって、変形例3に係る超音波診断装置では、実施の形態1において列Tx2から送信される超音波ビームUsO2と比べて低い周波数領域の信号強度が小さい超音波ビームUsO3を列Tx2から送信させることができる。
同様に、図26(c)(d)に示すように、列Tx2に供給させる駆動信号pw2の周波数分布は、基本波f4の周波数成分を含む列Tx1に供給させる駆動信号pw1の周波数分布と比べて、基本波f4の周波数成分において信号強度が低い構成からなる(pw2L)。したがって、変形例3に係る超音波診断装置では、駆動信号pw3を列Tx3に印加することにより、実施の形態1において列Tx2から送信される超音波ビームUsO1と比べて低い周波数領域の信号強度が小さい超音波ビームUsO3を列Tx2から送信させることができる。
低い周波数領域からなる基本波を含む超音波ビームは深達度が高く、深部では低い周波数の基本波成分に基づきビームプロファイルが形成される。深部でのビームプロファイルは単一ピーク形状であることが好ましいが、実施の形態1において列Tx2から送信される超音波ビームUsO2では、深部における超音波照射領域Ax内の周辺領域が中心領域よりも、低い周波数領域からなる超音波ビームの強度が高くなる傾向があり、場合によっては深部における超音波ビームのスプリットが生じることがあった。
これに対し、変形例3に係る超音波診断装置では、列Tx2から送信される超音波ビームUsO3が、実施の形態1において列Tx2から送信される超音波ビームUsO2と比べて深達度が高い低い周波数領域の信号強度が小さいことから、図27に示すように、列Tx3から送信される超音波ビームUsO3が減衰により深部まで到達せず、その結果、深部における超音波ビームのスプリットの発生を抑制することができる。
次に、変形例3に係る超音波診断装置の送信部103における送信処理について説明する。図28(a)(b)は、本開示に係る超音波診断装置において、送信焦点の深さが所定値未満であるときの、送信部103による送信に係る超音波ビームの伝播経路を示す模式図である。
図25に示すように、変形例3に係る超音波診断装では、送信焦点FPの深さが「2」であるとき、送信部103は、複数の振動子101aから複数の送信振動子の列Tx3、Tx2を選択する、そして、列Tx3、Tx2に対し、「A、D」に対応する周波数分布からなる駆動信号pw3、pw2を供給する。そして、図28(a)に示すように、それぞれの送信振動子の列Tx3、Tx2から送信焦点FPに集束する超音波ビームUsIn、UsO3を送信させる構成を採る。
また、図25に示すように、変形例3に係る超音波診断装置では、送信焦点FPの深さが「1」であるとき、送信部103は、複数の振動子101aから複数の送信振動子の列Tx3のみを選択する、そして、列Tx3に対し、「A」に対応する周波数分布からなる駆動信号pw3を供給する。そして、図28(b)に示すように送信振動子の列Tx3から送信焦点FPに集束する超音波ビームUsInのみを送信させる構成を採る。
詳細には、送信焦点FPの深さが所定値以下であるとき、送信焦点FPへの両音波ビームの集束を可能にするために送信振動子の列Txに含める送信振動子の総数が減少させることが好ましい。例えば、図25に示す例では、送信焦点FPの深さが「2」であるとき送信振動子の総数は18個、送信焦点FPの深さが「1」であるとき送信振動子の総数は8個となる。超音波ビームUsIn、UsO3を形成するための振動子の個数の最小値は8(64×1/16)以上であるので、送信焦点FPの深さが「2」であるとき送信可能な超音波ビームは2種となり、高周波基本波成分を含むUsInとUsO3とが選択される。送信焦点FPの深さが「1」であるとき送信可能な超音波ビームは1種となり、高周波基本波成分を含み領域内方に位置するUsInのみが選択される。このように送信焦点毎に設定される送信振動子数に応じて振動子群の割り当てを変更する構成とすることにより、送信焦点FPの深さが所定値以下で送信振動素子数が少ない場合でも、高周波基本波成分を含む超音波ビームを形成することができ、なおかつ送信波の深達度を確保することができる。
<変形例4>
実施の形態1、2に係る超音波診断装置では、送信部103は、送信振動子の列の中に、2つに分割された部分振動子列部分からなる第1の部分振動子列Tx1に方位方向に挟まれた第3の部分振動子列Tx3と、方位方向に2つに分割された第1の部分振動子列Tx1を挟む2つの第2の部分振動子列Tx2を選択し、第2の部分振動子列Tx2及び第3の部分振動子列Tx3から、第1の部分振動子列Tx1と比べて高い周波数領域の信号強度が大きい超音波ビームを送信させる構成とした。
しかしながら、本開示にかかる態様では、第1の振動子列TX1が2つの部分振動子列部分に分割されておらず、第1の振動子列TX1は連続した単一の振動列からなる構成を採る。そして第1の部分振動子列Tx1を挟む第2の振動子列Tx2は備えるが、第3の振動子列Tx3を備えない態様に変更してもよい。
図29は、変形例4に係る超音波診断装置の送信部103による送信に係る超音波ビームの伝播経路を示す模式図である。図29に示すように、変形例4に係る超音波診断装置では、送信部103は、送信振動子の列の中に、第1の部分振動子列Tx1から超音波ビームUsO1を送信させ、第2の部分振動子列Tx2から、第1の部分振動子列Tx1から送信される超音波ビームUsO1と比べて高い周波数領域の信号強度が大きい超音波ビームビームUsO2を送信させる構成を採る。これにより、方位方向において2つの第2の部分振動子列Tx2に挟まれた状態で、第1の部分振動子列Tx1と比べて高い周波数領域の信号強度が大きい超音波ビームを送信させる第3の部分振動子列Tx3を備えていない点で実施の形態1、2と相違する。
係る構成においても、実施の形態1、2と同様に、第2の部分振動子列Tx2から高い周波数領域の信号強度が大きい超音波ビームUsO2を照射するとともに、観測点Pijからの反射波を、計算対象領域Bxqの受信ステアリング角度θRCに対応した受信開口Rxqにて広視野角から反射波を受波することができる。そのため、浅部やその周辺領域に位置する異方性反射部位からの反射波を、複数の計算対象領域Bxqの何れかの受信開口Rxで受波できる確率を高め、受信開口Rxqの何れかにより最も感度よく受波することができる。
<変形例5>
実施の形態1、2に係る超音波診断装置では、プローブ101は、複数の振動子101aが方位方向に列設されている構成とした。しかしながら、プローブ101の形状はリニアプローブの他、例えば、コンベックスプローブからなる構成としてもよい。
図30は、変形例4に係る超音波診断装置において、送信部103による送信に係る超音波ビームの伝播経路を示す模式図である。図30に示すように、変形例4に係る超音波診断装置では、複数の振動子101Caが凸面上に列設されたコンベックスプローブ101Cであり、方位方向と垂直な方向を深さ方向としたとき、複数の計算対象領域BxL、BxC、BxRのうち、領域中心線に平行な走査線の延伸方向の深さ方向に対する角度が小さい計算対象領域BxCと、当該角度が大きい計算対象領域BxL、BxRとの深さ方向の長さは等価であることを特徴とする。
コンベックスプローブは深さ方向の計測範囲が20〜30cmとリニアプローブに比べて大きい。そのため、コンベックスプローブではフレームレートの縮減が求められる。
これに対し、変形例4に係る超音波診断装置では、上記した構成により、走査線の延伸方向の深さ方向に対する角度に係わらず計算対象領域Bxの深さ方向の長さを確保し深部までの計測を可能にすることができる。そのため、深さ方向の計測範囲が大きいというコンベックスプローブの特性に適応できる。
また、変形例4に係る超音波診断装置では、送信ステアリング角度θTを単一方向としてもよい。これにより、フレームレートの縮減が必要というコンベックスプローブの特性に適応できる。
≪その他の変形例≫
(1)実施の形態に係る超音波診断装置100では、送信部103、受信部104の構成は、実施の形態に記載した構成以外にも、適宜変更することができる。例えば、上記した実施の形態1、2に係る超音波診断装置では、整相加算部は、複数の計算対象領域について、計算対象領域内に位置する複数の観測点について整相加算処理を行い音響線信号のサブフレームデータを複数生成し、画像化信号合成部は、生成された音響線信号のサブフレームデータに基づく信号を、観測点の位置を基準に合成して超音波画像化信号の前記フレームデータを生成する構成とした。これに対し、変形例に係る超音波診断装置では、複数の計算対象領域について、整相加算部による整相加算処理から得られた信号を、例えば、画像メモリー部106a等のメモリに格納しておき、それらに基づき、1フレーム分のフレームデータを生成する構成としてもよい。すなわち、複数の計算対象領域に対応したデータ集合としてサブフレームデータを生成する処理を介さずに、超音波画像化信号のフレームデータを生成する構成としてもよい。
(2)送信部103は、実施の形態では、プローブ101に存する複数の振動子101aの一部に当たる送信振動子の列からなる送信振動子の列Txを設定し、超音波送信ごとに送信振動子の列Txを列方向に漸次移動させながら超音波送信を繰り返し、プローブ101に存する全ての振動子101aから超音波送信を行う構成としてもよいし、プローブ101に存する全ての振動子101aから超音波送信を行う構成としてもよい。
(3)計算対象領域Bxは、矩形領域に限定されず、台形や円弧状等のその他の形状の領域としてもよい。また、計算対象領域Bxの数は、3に限定されず、2、4、6、7、又はそれ以上であってもよく、また、L、C、Rの3態様にも限定されない。また、計算対象領域Bxは振動子列の中心線に対し左右対称であることにも限定されない。また、超音波照射領域Axと相似の砂時計型の領域としてもよい。また、送信イベントごと設定される計算対象領域Bxが振動子列方向に重なるように設定してもよい。合成開口法により重なる領域の音響線信号を合成することにより生成される超音波画像のS/N比を向上できる。
(4)送受信に係るステアリング角度は、−10°/0°/+10°に限定されないことは言うまでもない。−30°/0°/+30°や他の角度であってもよい。また、送信に係るステアリング角度と受信に係るステアリング角度を異なる構成としてもよい。また、異なる送信ステアリング角度への超音波ビームの照射はシーケンシャルに行うことに限定されず、プローブ素子数やシステムch数が充分であれば同時に行ってもよい。
(5)振動子101aの個数は、任意に設定することができる。また、リニア走査方式の電子スキャンプローブとしてもよく、電子走査方式あるいは機械走査方式の何れを採用してもよく、また、リニア走査方式、セクタ走査方式あるいはコンベックス走査方式の何れの方式を採用することもできる。
(6)本開示を上記実施の形態に基づいて説明してきたが、本発明は、上記の実施の形態に限定されず、以下のような場合も本発明に含まれる。
例えば、本発明は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、上記メモリは、上記コンピュータプログラムを記憶しており、上記マイクロプロセッサは、上記コンピュータプログラムにしたがって動作するとしてもよい。例えば、本発明の超音波診断装置の診断方法のコンピュータプログラムを有しており、このプログラムに従って動作する(又は接続された各部位に動作を指示する)コンピュータシステムであってもよい。
また、上記超音波診断装置の全部、もしくは一部、またビームフォーミング部の全部又は一部を、マイクロプロセッサ、ROM、RAM等の記録媒体、ハードディスクユニットなどから構成されるコンピュータシステムで構成した場合も本発明に含まれる。上記RAM又はハードディスクユニットには、上記各装置と同様の動作を達成するコンピュータプログラムが記憶されている。上記マイクロプロセッサが、上記コンピュータプログラムにしたがって動作することにより、各装置はその機能を達成する。
また、上記の各装置を構成する構成要素の一部又は全部は、1つのシステムLSI(Large Scale Integration(大規模集積回路))から構成されているとしてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。なお、LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。上記RAMには、上記各装置と同様の動作を達成するコンピュータプログラムが記憶されている。上記マイクロプロセッサが、上記コンピュータプログラムにしたがって動作することにより、システムLSIは、その機能を達成する。例えば、本発明のビームフォーミング方法がLSIのプログラムとして格納されており、このLSIがコンピュータ内に挿入され、所定のプログラム(ビームフォーミング方法)を実施する場合も本発明に含まれる。
なお、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサー(Reconfigurable Processor)を利用してもよい。
さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。
また、各実施の形態に係る、超音波診断装置の機能の一部又は全てを、CPU等のプロセッサがプログラムを実行することにより実現してもよい。上記超音波診断装置の診断方法や、ビームフォーミング方法を実施させるプログラムが記録された非一時的なコンピュータ読み取り可能な記録媒体であってもよい。プログラムや信号を記録媒体に記録して移送することにより、プログラムを独立した他のコンピュータシステムにより実施するとしてもよい、また、上記プログラムは、インターネット等の伝送媒体を介して流通させることができるのは言うまでもない。
また、上記実施形態に係る超音波診断装置の各構成要素は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)やプロセッサなどのプログラマブルデ
バイスとソフトウェアにより実現される構成であってもよい。後者の構成は、いわゆるGPGPU(General-Purpose computing on Graphics Processing Unit)である。これらの構成要素は一個の回路部品とすることができるし、複数の回路部品の集合体にすることもできる。また、複数の構成要素を組合せて一個の回路部品とすることができるし、複数の回路部品の集合体にすることもできる。
上記実施形態に係る超音波診断装置では、記憶装置であるデータ格納部を超音波診断装置内に含む構成としたが、記憶装置はこれに限定されず、半導体メモリ、ハードディスクドライブ、光ディスクドライブ、磁気記憶装置、等が、超音波診断装置に外部から接続される構成であってもよい。
また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。
また、上記のステップが実行される順序は、本発明を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。
また、超音波診断装置には、プローブ及び表示部が外部から接続される構成としたが、これらは、超音波診断装置内に一体的に具備されている構成としてもよい。
また、プローブは、送受信部の一部の機能をプローブに含んでいてもよい。例えば、送受信部から出力された送信電気信号を生成するための制御信号に基づき、プローブ内で送信電気信号を生成し、この送信電気信号を超音波に変換する。併せて、受信した反射超音波を受信電気信号に変換し、プローブ内で受信電気信号に基づき受信信号を生成する構成を採ることができる。
また、各実施の形態に係る超音波診断装置、及びその変形例の機能のうち少なくとも一部を組み合わせてもよい。更に上記で用いた数字は、全て本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。
さらに、本実施の形態に対して当業者が思いつく範囲内の変更を施した各種変形例も本発明に含まれる。
≪まとめ≫
以上、説明したように、本実施の形態に係る超音波診断装置は、
複数の振動子が方位方向に列設された超音波プローブを用いて被検体に超音波ビームを送信し、被検体から得られた反射波に基づいて音響線信号を生成する超音波診断装置であって、
超音波ビームの集束点に対応する送信焦点を決定し、前記複数の振動子から送信振動子の列を選択して、前記送信振動子の列から送信焦点に集束する超音波ビームを送信させる送信部と、
前記複数の振動子から選択される複数の受波振動子の列が受波した反射波に基づいて、前記受波振動子各々に対応する複数の受信信号の列を生成する入力部と、
前記被検体の解析対象範囲から一部分が重複する複数の計算対象領域を決定し、前記受波振動子の列から受信開口の振動子列を選択して、複数の計算対象領域について、当該領域中の複数の観測点について、受信開口内に含まれる複数の振動子に対応する複数の受信信号列を整相加算する整相加算部と、
前記整相加算部による整相加算結果を観測点の位置を基準に合成して超音波画像化信号のフレームデータを生成する画像化信号合成部とを備え、
前記送信部は、前記送信振動子の列として、第1の部分振動子列と、方位方向に前記第1の部分振動子列を挟む2つの第2の部分振動子列を、選択し、
前記第2の部分振動子列から、前記第1の部分振動子列よりも高い周波数領域における信号強度が大きい超音波ビームを送信させる部分振動子列に分割した送信を行い、
前記整相加算部は、方位方向における領域が計算対象領域毎に異なる複数の計算対象領域を設定し、それぞれの計算対象領域内に位置する複数の観測点について整相加算処理を行うことを特徴とする。
係る構成により、複雑な送信制御を必要としない安価な装置において送信回数を増やして動画性能を落とすことなく、超音波照射領域の浅部の周辺領域における異方性高反射部材の視認性の向上し、高角度の異方性反射部位の描出性を従来より改善することができる。
また、別の態様では、前記第1の部分振動子列は、方位方向において複数に分割された部分振動子列部分からなり、
前記送信部は、前記送信振動子の列として、方位方向において複数の前記第1の部分振動子列部分に挟まれた第3の部分振動子列を、さらに、選択し、前記第1の部分振動子列よりも高い周波数領域における信号強度が大きい超音波ビームを送信させる部分振動子列に分割した送信を行う構成としてもよい。
また、別の態様では、前記送信焦点の深さが所定値以上であるとき、部分振動子列に分割した送信を行う構成としてもよい。
また、別の態様では、前記整相加算部は、計算対象領域内に位置する複数の観測点について整相加算処理を行い音響線信号のサブフレームデータを複数生成し、
前記画像化信号合成部は、生成された前記音響線信号のサブフレームデータに基づく信号を、観測点の位置を基準に合成して超音波画像化信号の前記フレームデータを生成する構成としてもよい。
係る構成により、高い周波数領域における減衰が少ない浅部における超音波照射領域Ax内に、列Tx3から高い周波数領域の信号強度が大きい超音波ビームUsO2を照射するとともに、観測点Pijからの反射波を、計算対象領域Bxqの受信ステアリング角度θRCに対応した受信開口Rxqにて広視野角から反射波を受波することができる。そのため、例えば、高角度の穿刺針軸、縦境界、前距腓靭帯等といった浅部やその周辺領域に位置する異方性高反射部材からの反射波を、複数の計算対象領域Bxqの何れかの受信開口Rxで受波できる確率を高め、受信開口Rxqの何れかにより最も感度よく受波することができる。
この結果、複雑な送信制御を必要としない安価な装置において、超音波照射領域の浅部の周辺領域における異方性高反射部材の視認性の向上し、高角度の異方性反射部位の描出性を従来より改善することができる。
また、別の態様では、方位方向と垂直な方向を深さ方向とし、送信ステアリング角度を基準角度としたとき、前記整相加算部は、複数の計算対象領域のうち基準角度の指す方向に対する、計算対象領域の方位方向の中心を通る領域中心線の角度が大きい計算対象領域を、当該角度が小さい計算対象領域よりも深さ方向に短く設定する構成としてもよい。
係る構成により、受信ステアリング角度θRの大きい計算対象領域Bxを深部まで拡大しても画像表示領域にならず、また、送受信に係る伝播経路が長く減衰が大きいためにS/Nの良好な信号が得られにくいといった受信ステアリング角度θR拡大のデメリットが軽減され、演算のためのリソースを効率的に利用して視野角を効果的に拡大し、浅部に位置することが多い異方性高反射部材からの反射波を効率的に受波してその視認性を拡大できる。
また、別の態様では、前記整相加算部は、整相加算処理における受信開口の振動子列を、当該受信開口の列中心が、観測点が前記第3の部分振動子列の両端と前記送信焦点とを通る2つの直線間の領域に位置する場合には前記第3の部分振動子列に含まれ、観測点が前記第2の部分振動子列の両端と前記送信焦点とを通る2つの直線間の領域に位置する場合には前記第2の部分振動子列に含まれるように、設定する構成としてもよい。
係る構成により、整相加算処理における受信の視野角を受信ステアリング角度θRの増加に比例して拡大することができる。
また、別の態様では、前記整相加算部は、送信ステアリング角度を基準角度としたとき、整相加算処理における受信開口の振動子列を、対象となる列中心が観測点に対し、受信方向の角度が基準角度と同一となるよう選択する構成としてもよい。
係る構成により、観測点Pijからの反射波を、観測点Pに対して最も感度よく受信することができるとともに、グレーティングローブに起因するアーチファクトが減少して信号S/N比を向上することができる。
また、別の態様では、前記送信部は、方位方向における全送信開口領域内に、さらに、超音波ビームを送信させない第4の部分振動子列を選択する構成としてもよい。
係る構成により、駆動信号pwの印加に伴う消費エネルギーの増加を抑制しつつ、送信振動子の列Tx全体の方位方向の幅を増加することができ、整相加算処理における受信の視野角の絶対値を拡大できる。
また、別の態様では、前記送信部は、前記第2の部分振動子列から、中心周波数よりも高い周波数領域の信号強度が第3の部分振動子列と比べて大きく、且つ、中心周波数よりも低い周波数領域の信号強度が第3の部分振動子列及び第1の部分振動子列と比べて小さい超音波ビームを送信させる構成としてもよい。
係る構成により、ステアリング角度における振動子100aの指向性低下に伴うUsO3領域における高調波成分の信号強度の低下を補うとともに、深部における超音波ビームのスプリットの発生を抑制することができる。
また、別の態様では、前記第2の部分振動子列から、中心周波数よりも高い周波数領域の信号強度が第3の部分振動子列と比べて大きく、且つ、中心周波数よりも低い周波数領域の信号強度が第3の部分振動子列と比べて小さい超音波ビームを送信させる構成としてもよい。
また、別の態様では、前記送信部は、前記送信焦点の深さが所定値未満であるとき、前記送信焦点と方位方向の位置が重なる第3の部分振動子列を前記送信振動子の列に選択し、前記第3の部分振動子列から所定値以上の周波数領域を含む超音波ビームを送信させる構成としてもよい。
係る構成により、送信焦点FPの深さが所定値以下である場合でも、高周波基本波成分を充分に含む超音波ビームを形成することができ、浅部における解像度を向上することができる。
また、別の態様では、振動子の接線方向と垂直な方向を深さ方向としたとき、複数の計算対象領域のうち、領域中心線に平行な走査線の延伸方向の深さ方向に対する角度が小さい計算対象領域と、当該角度が大きい計算対象領域との深さ方向の長さは等価である構成としてもよい。
係る構成により、走査線の延伸方向の深さ方向に対する角度に係わらず計算対象領域Bxの深さ方向の長さを確保し深部までの計測を可能にして、深さ方向の計測範囲が大きいというコンベックスプローブの特性に適応できる。また、送信ステアリング角度θTを単一方向とすることにより、フレームレートの縮減が必要というコンベックスプローブの特性に適応できる。
また、別の態様では、送信部は、方位方向の位置が異なる前記送信焦点を複数設定し、前記送信振動子の列からそれぞれ送信焦点に集束する超音波ビームを順次送信させ、
前記画像化信号合成部は、複数の前記送信焦点に対応して前記超音波画像化信号のフレームデータを生成するとともに、さらに、生成された前記超音波画像化信号のフレームデータを観測点の位置を基準に合成して超音波画像化信号の統合フレームデータを生成する構成としてもよい。
係る構成により、整相加算処理における受信の視野角の絶対値と方向数を拡大し、浅部やその周辺領域に位置する異方性高反射部材に対して、これらの部材からの反射波を何れかの受信開口Rxqで捕捉できる確率を高め、異方性高反射部材の視認性を高めることができる。
また、別の態様では、送信部は、前記複数の振動子から送信振動子の列を方位方向に漸次移動させて複数回選択し、当該選択に対応して前記送信焦点を方位方向に複数設定することにより、前記送信振動子の列からそれぞれの送信焦点に集束する超音波ビームを順次送信させ、
前記画像化信号合成部は、複数の前記送信振動子の列及び前記送信焦点に対応して前記超音波画像化信号のフレームデータを生成するとともに、さらに、生成された前記超音波画像化信号のフレームデータ音を観測点の位置を基準に合成して超音波画像化信号の統合フレームデータを生成する構成としてもよい。
係る構成により、同一の観測点について、送信振動子の列Txの位置の異ならせた複数の受信信号に基づき超音波画像化信号を生成することができ、空間分解能及びS/N比を向上することができる。さらに、異方性反射部材が、プローブ101aに存在する複数の振動子101aの両端よりもさらに外方の浅部に位置する場合において、当該異方性反射部材からの反射波を効果的に受波して、穿刺針等の鏡面反射部材の視認性を向上することができる。
また、別の態様では、前記送信部は、同一走査線上に極性反転した一対の超音波を送信させ、
前記受信部は、前記一対の超音波に基づく一対の反射波に基づき受信信号列を生成し、
前記画像生成部は、前記一対の反射波に基づく受信信号列から高調波成分を抽出し、当該高調波成分に基づいて超音波画像化信号を生成する構成としてもよい。
係る構成により、音響線信号に対しパルスインバージョン法を実施して基本波が充分に滅殺された高調波成分を抽出するTHIを用いることにより十分な空間分解能及びS/N比が得ることができる。
また、別の態様では、前記送信部は、第3の送信振動子列もしくは第2の送信振動子列の少なくとも何れか一方に対し、周波数分布が、振動子の−20dB送信周波数帯域に含まれる周波数帯域であって、−20dB送信周波数帯域の中心周波数よりも低周波側と、中心周波数よりも高周波側とのそれぞれに強度ピークを有し、かつ複数の強度ピークの間の周波数領域における強度は、強度ピークの強度の最大値を基準として−20dB以上である駆動信号を供給する構成としてもよい。
係る構成により、高周波基本波成分が音響レンズにより集束して、浅部領域から高調波成分が生成することにより、浅部の描画における高解像度化を図ることができるとともに、浅部に存在することが多い異方性反射部材からの反射波を効果的に受波して、穿刺針等の鏡面反射部材の視認性を向上することができる。更に、低周波基本波成分により送信焦点位置にも高調波を生成しうる音圧を形成することがことができるため、浅部から送信焦点領域までの広い深度範囲にわたってS/Nの良好な高調波画像が得られるようになる。
また、別の態様では、前記送信部は、第1の送信振動子列及に対し、周波数分布が、振動子の−20dB送信周波数帯域に含まれる周波数帯域であって、−20dB送信周波数帯域の中心周波数よりも低周波側に最大強度ピークを有する駆動信号を供給する構成としてもよい。
係る構成により、UsO1領域内の浅部領域における高調波生成を抑制し、観測点Pijが設定されるUsIn、UsO2、UsO3領域への音響ノイズを混入を抑制しつつ、発熱および減衰が少ない低い周波数領域の信号強度を含む超音波ビームUsO1を列Tx2から送信することにより深達度を向上することができ、印加エネルギーを効率的に活用できる。
また、別の態様では、前記送信部が第3の送信振動子列及び第2の送信振動子列に供給する駆動信号の−20dB周波数帯域が、第1の送信振動子列に供給する駆動信号の−20dB周波数帯域よりも広い構成としてもよい。
また、本実施の形態に係る超音波診断装置制御方法は、
複数の振動子が方位方向に列設された超音波プローブを用いて被検体に超音波ビームを送信し、被検体から得られた反射波に基づいて音響線信号を生成する超音波診断装置の制御方法であって、
超音波ビームの集束点に対応する送信焦点を決定し、前記複数の振動子から送信振動子の列を選択して、前記送信振動子の列から送信焦点に集束する超音波ビームを送信させる送信ステップと、
前記複数の振動子から選択される複数の受波振動子の列が受波した反射波に基づいて、前記受波振動子各々に対応する複数の受信信号の列を生成する入力ステップと、
前記被検体の解析対象範囲から一部分が重複する複数の計算対象領域を決定し、前記受波振動子の列から受信開口の振動子列を選択して、複数の計算対象領域について、当該領域中の複数の観測点について、受信開口内に含まれる複数の振動子に対応する複数の受信信号列を整相加算する整相加算ステップと、
前記整相加算部による整相加算結果を観測点の位置を基準に合成して超音波画像化信号のフレームデータを生成する画像合成ステップとを備え、
前記送信ステップでは、前記送信振動子の列として、第1の部分振動子列と、方位方向に前記第1の部分振動子列を挟む2つの第2の部分振動子列を、選択し、
前記第2の部分振動子列から、前記第1の部分振動子列よりも高い周波数領域における信号強度が大きい超音波ビームを送信させる部分振動子列に分割した送信を行い、
前記整相加算ステップでは、方位方向における領域が計算対象領域毎に異なる複数の計算対象領域を設定し、それぞれの計算対象領域内に位置する複数の観測点について整相加算処理を行うことを特徴とする。
係る構成により、複雑な送信制御を必要としない安価な装置において送信回数を増やして動画性能を落とすことなく、超音波照射領域の浅部の周辺領域における異方性高反射部材の視認性の向上し、高角度の異方性反射部位の描出性を従来より改善することができる。
また、別の態様では、前記第1の部分振動子列は、方位方向において複数に分割された部分振動子列からなり、
前記送信ステップでは、前記送信振動子の列として、方位方向において複数の前記第1の部分振動子列に挟まれた第3の部分振動子列を、さらに、選択し、第1の部分振動子列よりも高い周波数領域における信号強度が大きい超音波ビームを送信させる部分振動子列に分割した送信を行う構成としてもよい。
また、別の態様では、前記送信ステップでは、前記送信焦点の深さが所定値以上であるとき、部分振動子列に分割した送信を行う構成としてもよい。
また、別の態様では、前記整相加算ステップでは、計算対象領域内に位置する複数の観測点について整相加算処理を行い音響線信号のサブフレームデータを複数生成し、
前記画像合成ステップでは、生成された前記音響線信号のサブフレームデータに基づく信号を、観測点の位置を基準に合成して超音波画像化信号の前記フレームデータを生成する構成としてもよい。
係る構成により、複雑な送信制御を必要としない安価な装置において送信回数を増やして動画性能を落とすことなく、超音波照射領域の浅部の周辺領域における異方性高反射部材の視認性の向上し、高角度の異方性反射部位の描出性を従来より改善することができる。
≪補足≫
以上で説明した実施の形態は、いずれも本発明の好ましい一具体例を示すものである。実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、工程、工程の順序などは一例であり、本発明を限定する主旨ではない。また、実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない工程については、より好ましい形態を構成する任意の構成要素として説明される。
また、上記の工程が実行される順序は、本発明を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記工程の一部が、他の工程と同時(並列)に実行されてもよい。
また、発明の理解の容易のため、上記各実施の形態で挙げた各図の構成要素の縮尺は実際のものと異なる場合がある。また本発明は上記各実施の形態の記載によって限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
本開示にかかる超音波診断装置、及び超音波診断装置の制御方法は、従来の超音波診断装置の性能向上、特に画質向上として有用である。また本開示は超音波への適用のみならず、複数のアレイ素子を用いたセンサ等の用途にも応用できる。
100 超音波診断装置
150 超音波信号処理装置
101、101C プローブ
101a、101Ca 超音波振動子
102 ケーブル
103 送信部
104 受信部
1041 入力部
1042 受信信号保持部
1043 整相加算部
10431 受信開口設定部
10432 遅延時間適算出部
10433 遅延処理部
10434 加算部
10435 合成部
105 超音波画像化信号生成部
105a 高調波成分抽出部
106 画像化信号合成部
106a 画像メモリー部
107 DSC
108 表示部
109 制御部
1000 超音波信号処理システム

Claims (23)

  1. 複数の振動子が方位方向に列設された超音波プローブを用いて被検体に超音波ビームを送信し、被検体から得られた反射波に基づいて音響線信号を生成する超音波診断装置であって、
    超音波ビームの集束点に対応する送信焦点を決定し、前記複数の振動子から送信振動子の列を選択して、前記送信振動子の列から送信焦点に収束する超音波ビームを送信させる送信部と、
    前記複数の振動子から選択される複数の受波振動子の列が受波した反射波に基づいて、前記受波振動子各々に対応する複数の受信信号の列を生成する入力部と、
    前記被検体の解析対象範囲から一部分が重複する複数の計算対象領域を決定し、前記受波振動子の列から受信開口の振動子列を選択して、複数の計算対象領域について、当該領域中の複数の観測点について、受信開口内に含まれる複数の振動子に対応する複数の受信信号列を整相加算する整相加算部と、
    前記整相加算部による整相加算結果を観測点の位置を基準に合成して超音波画像化信号を生成する画像化信号合成部とを備え、
    前記送信部は、前記送信振動子の列として、第1の部分振動子列と、方位方向に前記第1の部分振動子列を挟む2つの第2の部分振動子列を、選択し、
    前記第2の部分振動子列から、前記第1の部分振動子列よりも高い周波数領域における信号強度が大きい超音波ビームを送信させる部分振動子列に分割した送信を行い、
    前記整相加算部は、方位方向における領域が計算対象領域毎に異なる複数の計算対象領域を設定し、それぞれの計算対象領域内に位置する複数の観測点について整相加算処理を行う
    超音波診断装置。
  2. 前記第1の部分振動子列は、方位方向において複数に分割された部分振動子列部分からなり、
    前記送信部は、前記送信振動子の列として、方位方向において複数の前記第1の部分振動子列部分に挟まれた第3の部分振動子列を、さらに、選択し、前記第1の部分振動子列よりも高い周波数領域における信号強度が大きい超音波ビームを送信させる部分振動子列に分割した送信を行う
    請求項1に記載の超音波診断装置。
  3. 前記送信部は、前記送信焦点の深さが所定値以上であるとき、部分振動子列に分割した送信を行う
    請求項1または2に記載の超音波診断装置。
  4. 前記整相加算部は、計算対象領域内に位置する複数の観測点について整相加算処理を行い音響線信号のサブフレームデータを複数生成し、
    前記画像化信号合成部は、生成された前記音響線信号のサブフレームデータに基づく信号を、観測点の位置を基準に合成して超音波画像化信号の前記フレームデータを生成する
    請求項2又は3の何れか1項に記載の超音波診断装置。
  5. 送信ステアリング角度を基準角度としたとき、
    前記整相加算部は、複数の計算対象領域のうち前記基準角度の指す方向に対する領域中心線の角度が大きい計算対象領域を、当該角度が小さい計算対象領域よりも深さ方向に短く設定する
    請求項2〜4の何れか1項に記載の超音波診断装置。
  6. 前記整相加算部は、整相加算処理における受信開口の振動子列を、当該受信開口の列中心が、観測点が前記第3の部分振動子列の両端と前記送信焦点とを通る2つの直線間の領域に位置する場合には前記第3の部分振動子列に含まれ、観測点が前記第2の部分振動子列の両端と前記送信焦点とを通る2つの直線間の領域に位置する場合には前記第2の部分振動子列に含まれるように、設定する
    請求項2に記載の超音波診断装置。
  7. 前記整相加算部は、送信ステアリング角度を基準角度としたとき、整相加算処理における受信開口の振動子列を、対象となる列中心が観測点に対し、受信方向の角度が前記基準角度と同一となるよう選択する
    請求項2〜5の何れか1項に記載の超音波診断装置。
  8. 前記送信部は、方位方向における全送信開口領域内に、さらに、超音波ビームを送信させない第4の部分振動子列を選択する
    請求項2〜7の何れか1項に記載の超音波診断装置。
  9. 前記送信部は、前記第2の部分振動子列から、中心周波数よりも高い周波数領域の信号強度が第3の部分振動子列と比べて大きく、且つ、中心周波数よりも低い周波数領域の信号強度が第3の部分振動子列及び第1の部分振動子列と比べて小さい超音波ビームを送信させる
    請求項2〜8の何れか1項に記載の超音波診断装置。
  10. 前記送信部は、前記第2の部分振動子列から、中心周波数よりも高い周波数領域の信号強度が第3の部分振動子列と比べて大きく、且つ、中心周波数よりも低い周波数領域の信号強度が第3の部分振動子列と比べて小さい超音波ビームを送信させる
    請求項2〜9の何れか1項に記載の超音波診断装置。
  11. 前記送信部は、前記送信焦点の深さが所定値未満であるとき、前記送信焦点と方位方向の位置が重なる第3の部分振動子列を前記送信振動子の列に選択し、前記第3の部分振動子列から所定値以上の周波数領域を含む超音波ビームを送信させる
    請求項2〜9の何れか1項に記載の超音波診断装置。
  12. 振動子の接線方向と垂直な方向を深さ方向としたとき、複数の計算対象領域のうち、領域中心線に平行な走査線の延伸方向の深さ方向に対する角度が小さい計算対象領域と、当該角度が大きい計算対象領域との深さ方向の長さは等価である
    請求項2〜11の何れか1項に記載の超音波診断装置。
  13. 送信部は、方位方向の位置が異なる前記送信焦点を複数設定し、前記送信振動子の列からそれぞれ送信焦点に収束する超音波ビームを順次送信させ、
    前記画像化信号合成部は、複数の前記送信焦点に対応して前記超音波画像化信号のフレームデータを生成するとともに、さらに、生成された前記超音波画像化信号のフレームデータを観測点の位置を基準に合成して超音波画像化信号の統合フレームデータを生成する
    請求項2〜12の何れか1項に記載の超音波診断装置。
  14. 送信部は、前記複数の振動子から送信振動子の列を方位方向に漸次移動させて複数回選択し、当該選択に対応して前記送信焦点を方位方向に複数設定することにより、前記送信振動子の列からそれぞれの送信焦点に収束する超音波ビームを順次送信させ、
    前記画像化信号合成部は、複数の前記送信振動子の列及び前記送信焦点に対応して前記超音波画像化信号のフレームデータを生成するとともに、さらに、生成された前記超音波画像化信号のフレームデータ音を観測点の位置を基準に合成して超音波画像化信号の統合フレームデータを生成する
    請求項2〜12の何れか1項に記載の超音波診断装置。
  15. 前記整相加算部は、計算対象領域中の複数の観測点から受信開口内に含まれる振動子各々への反射波到達の遅延時間を算出し、振動子各々に対応する複数の受信信号列から遅延時間に基づいて、観測点からの反射波に基づく信号部分を特定して加算することにより整相加算を行う
    請求項2〜14の何れか1項に記載の超音波診断装置。
  16. 前記送信部は、同一走査線上に極性反転した一対の超音波を送信させ、
    前記受信部は、前記一対の超音波に基づく一対の反射波に基づき受信信号列を生成し、
    前記画像生成部は、前記一対の反射波に基づく受信信号列から高調波成分を抽出し、当該高調波成分に基づいて超音波画像化信号を生成する
    請求項2〜15の何れか1項に記載の超音波診断装置。
  17. 前記送信部は、第3の送信振動子列もしくは第2の送信振動子列の少なくとも何れか一方に対し、周波数分布が、振動子の−20dB送信周波数帯域に含まれる周波数帯域であって、−20dB送信周波数帯域の中心周波数よりも低周波側と、中心周波数よりも高周波側とのそれぞれに強度ピークを有し、かつ複数の強度ピークの間の周波数領域における強度は、強度ピークの強度の最大値を基準として−20dB以上である駆動信号を供給する
    請求項2〜16の何れか1項に記載の超音波診断装置。
  18. 前記送信部は、第1の送信振動子列及に対し、周波数分布が、振動子の−20dB送信周波数帯域に含まれる周波数帯域であって、−20dB送信周波数帯域の中心周波数よりも低周波側に最大強度ピークを有する駆動信号を供給する
    請求項2〜17の何れか1項に記載の超音波診断装置。
  19. 前記送信部が第3の送信振動子列及び第2の送信振動子列に供給する駆動信号の−20dB周波数帯域が、第1の送信振動子列に供給する駆動信号の−20dB周波数帯域よりも広い
    請求項2から17の何れか1項に記載の超音波診断装置。
  20. 複数の振動子が方位方向に列設された超音波プローブを用いて被検体に超音波ビームを送信し、被検体から得られた反射波に基づいて音響線信号を生成する超音波診断装置の制御方法であって、
    超音波ビームの集束点に対応する送信焦点を決定し、前記複数の振動子から送信振動子の列を選択して、前記送信振動子の列から送信焦点に収束する超音波ビームを送信させる送信ステップと、
    前記複数の振動子から選択される複数の受波振動子の列が受波した反射波に基づいて、前記受波振動子各々に対応する複数の受信信号の列を生成する入力ステップと、
    前記被検体の解析対象範囲から一部分が重複する複数の計算対象領域を決定し、前記受波振動子の列から受信開口の振動子列を選択して、複数の計算対象領域について、当該領域中の複数の観測点について、受信開口内に含まれる複数の振動子に対応する複数の受信信号列を整相加算する整相加算ステップと、
    前記整相加算部による整相加算結果を観測点の位置を基準に合成して超音波画像化信号を生成する画像化信号合成ステップとを備え、
    前記送信ステップでは、前記送信振動子の列として、第1の部分振動子列と、方位方向に前記第1の部分振動子列を挟む2つの第2の部分振動子列を、選択し、
    前記第2の部分振動子列から、前記第1の部分振動子列よりも高い周波数領域における信号強度が大きい超音波ビームを送信させる部分振動子列に分割した送信を行い、
    前記整相加算ステップでは、方位方向における領域が計算対象領域毎に異なる複数の計算対象領域を設定し、それぞれの計算対象領域内に位置する複数の観測点について整相加算処理を行う
    超音波診断装置の制御方法。
  21. 前記第1の部分振動子列は、方位方向において複数に分割された部分振動子列からなり、
    前記送信ステップでは、前記送信振動子の列として、方位方向において複数の前記第1の部分振動子列に挟まれた第3の部分振動子列を、さらに、選択し、第1の部分振動子列よりも高い周波数領域における信号強度が大きい超音波ビームを送信させる部分振動子列に分割した送信を行う
    請求項20に記載の超音波診断装置の制御方法。
  22. 前記送信ステップでは、前記送信焦点の深さが所定値以上であるとき、部分振動子列に分割した送信を行う,
    請求項20に記載の超音波診断装置の制御方法。
  23. 前記整相加算ステップでは、計算対象領域内に位置する複数の観測点について整相加算処理を行い音響線信号のサブフレームデータを複数生成し、
    前記画像合成ステップでは、生成された前記音響線信号のサブフレームデータに基づく信号を、観測点の位置を基準に合成して超音波画像化信号の前記フレームデータを生成する
    請求項21又は22に記載の超音波診断装置の制御方法。
JP2020058170A 2019-05-20 2020-03-27 超音波診断装置、及び超音波診断装置の制御方法 Active JP7363636B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/875,438 US20200367862A1 (en) 2019-05-20 2020-05-15 Ultrasound diagnostic device and ultrasound diagnostic device control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019094651 2019-05-20
JP2019094651 2019-05-20

Publications (2)

Publication Number Publication Date
JP2020189082A true JP2020189082A (ja) 2020-11-26
JP7363636B2 JP7363636B2 (ja) 2023-10-18

Family

ID=73453216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020058170A Active JP7363636B2 (ja) 2019-05-20 2020-03-27 超音波診断装置、及び超音波診断装置の制御方法

Country Status (2)

Country Link
US (1) US20200367862A1 (ja)
JP (1) JP7363636B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022211264A1 (ko) * 2021-03-30 2022-10-06 (주)무티 마이크로머시닝된 초음파 트랜스듀서 어레이를 포함하는 초음파 깊이별 다중집속 장치 및 그 동작방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7449879B2 (ja) 2021-01-18 2024-03-14 富士フイルムヘルスケア株式会社 超音波診断装置及びその制御方法
JP2022122036A (ja) * 2021-02-09 2022-08-22 富士フイルムヘルスケア株式会社 超音波撮像装置、および、超音波撮像方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054800A (ja) * 2006-08-30 2008-03-13 Aloka Co Ltd 超音波診断装置
US20170128038A1 (en) * 2015-11-06 2017-05-11 Konica Minolta, Inc. Ultrasound diagnostic device and ultrasound signal processing method
JP2018114195A (ja) * 2017-01-20 2018-07-26 コニカミノルタ株式会社 超音波診断装置
US20180317888A1 (en) * 2015-11-24 2018-11-08 Koninklijke Philips N.V. Ultrasound systems with microbeamformers for different transducer arrays

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054800A (ja) * 2006-08-30 2008-03-13 Aloka Co Ltd 超音波診断装置
US20170128038A1 (en) * 2015-11-06 2017-05-11 Konica Minolta, Inc. Ultrasound diagnostic device and ultrasound signal processing method
JP2017086297A (ja) * 2015-11-06 2017-05-25 コニカミノルタ株式会社 超音波診断装置、及び超音波信号処理方法
US20180317888A1 (en) * 2015-11-24 2018-11-08 Koninklijke Philips N.V. Ultrasound systems with microbeamformers for different transducer arrays
JP2018114195A (ja) * 2017-01-20 2018-07-26 コニカミノルタ株式会社 超音波診断装置
US20180206824A1 (en) * 2017-01-20 2018-07-26 Konica Minolta, Inc. Ultrasound diagnostic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022211264A1 (ko) * 2021-03-30 2022-10-06 (주)무티 마이크로머시닝된 초음파 트랜스듀서 어레이를 포함하는 초음파 깊이별 다중집속 장치 및 그 동작방법

Also Published As

Publication number Publication date
JP7363636B2 (ja) 2023-10-18
US20200367862A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
CN110251155B (zh) 超声波诊断装置以及超声波图像生成方法
JP7363636B2 (ja) 超音波診断装置、及び超音波診断装置の制御方法
JP5946427B2 (ja) 超音波検査装置、超音波検査方法、プログラム及び記録媒体
US8932225B2 (en) Ultrasonic diagnostic apparatus and ultrasonic diagnostic method
CN101912278A (zh) 超声动态弹性成像探头及方法
KR20140045189A (ko) 초음파 트랜스듀서를 이용한 전단파의 전파를 관측하는 방법, 장치 및 시스템
CN102365054B (zh) 超声波诊断装置及超声波图像处理装置
JP6665614B2 (ja) 超音波信号処理装置、超音波信号処理方法、及び、超音波診断装置
JP6746895B2 (ja) 超音波診断装置、及び超音波信号処理方法
JP5388416B2 (ja) 超音波診断装置および超音波診断装置の制御プログラム
US9354300B2 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
US9763646B2 (en) Method and systems for adjusting a pulse generated for ultrasound multi-line transmit
KR102249528B1 (ko) 미리 저장된 그라데이션 데이터 및 영상을 이용하여 초음파 영상의 밝기를 조정하는 방법, 장치 및 시스템.
JP5325502B2 (ja) 超音波画像形成装置および超音波画像形成方法
JP6344026B2 (ja) 超音波探触子及び超音波画像診断装置
CN107569254B (zh) 超声波信号处理装置、超声波信号处理方法以及超声波诊断装置
CN201767983U (zh) 超声动态弹性成像探头
US10076308B2 (en) Ultrasonic diagnosis apparatuses for generating harmonic images and methods of generating ultrasonic images including harmonic images
US11051789B2 (en) Ultrasound image diagnostic apparatus
JP7052385B2 (ja) 超音波信号処理装置、超音波信号処理方法、および、超音波診断装置
JP7147399B2 (ja) 超音波信号処理装置、超音波診断装置、および、超音波信号処理方法
JP2011000383A (ja) 超音波診断装置
JP6552724B2 (ja) 超音波診断装置および超音波診断装置の制御方法
Bruyn et al. Fundamentals of musculoskeletal ultrasound
JP6933102B2 (ja) 超音波信号処理装置、及び超音波信号処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230918

R150 Certificate of patent or registration of utility model

Ref document number: 7363636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150