JP2020176768A - Heat exchanger and refrigeration system using the same - Google Patents

Heat exchanger and refrigeration system using the same Download PDF

Info

Publication number
JP2020176768A
JP2020176768A JP2019079458A JP2019079458A JP2020176768A JP 2020176768 A JP2020176768 A JP 2020176768A JP 2019079458 A JP2019079458 A JP 2019079458A JP 2019079458 A JP2019079458 A JP 2019079458A JP 2020176768 A JP2020176768 A JP 2020176768A
Authority
JP
Japan
Prior art keywords
flow path
header flow
heat exchanger
header
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019079458A
Other languages
Japanese (ja)
Inventor
拓也 奥村
Takuya Okumura
拓也 奥村
健二 名越
Kenji Nagoshi
健二 名越
和希 大旗
Kazuki OHATA
和希 大旗
憲昭 山本
Kensho Yamamoto
憲昭 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019079458A priority Critical patent/JP2020176768A/en
Priority to CN202080004002.1A priority patent/CN112424553A/en
Priority to PCT/JP2020/003931 priority patent/WO2020213227A1/en
Publication of JP2020176768A publication Critical patent/JP2020176768A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide a heat exchanger to which a header flow path pipe can be fixedly joined reliably and firmly even when the heat exchanger is brazed sideways in a laminating direction; and to provide a refrigeration system using the heat exchanger.SOLUTION: A heat exchanger includes: a pair of header flow paths 8, 9; a plurality of heat transfer flow paths 10 connecting the pair of header flow paths with each other; header flow path openings 11, 12 as gateways of the header flow paths; and header flow path pipes 5, 6 joined to the header flow path openings. The header flow path pipes are respectively structured as follows: beads 15 are respectively formed at the outer peripheries of the header flow paths respectively to be engaged with the header flow path openings; and also brazing material 14 is made to melt respectively among the opening edges of the header flow path openings and the beads at the header flow path pipes to join end plates and the header flow path pipes. Thereby, at the time of brazing and joining, the brazing material is uniformly applied among the beads of the head flow path pipes and the edges of the header flow path openings of the end plates by heavy surface tension, so that the whole area of the outer peripheries of the pipes can be fixedly connected reliably and firmly.SELECTED DRAWING: Figure 5

Description

本発明は熱交換器およびそれを用いた冷凍システムに関し、特に、プレートフィンを積層して構成したプレートフィン積層型の熱交換器とそれを用いた冷凍システムに関する。 The present invention relates to a heat exchanger and a refrigeration system using the same, and more particularly to a plate fin laminated type heat exchanger configured by laminating plate fins and a refrigeration system using the same.

一般に空気調和機や冷凍機等の冷凍システムは、圧縮機によって圧縮した冷媒を凝縮器や蒸発器等の熱交換器に循環させ空気等の第2流体と熱交換させて冷房もしくは暖房を行うが、前記熱交換器の熱交換効率によってシステムとしての性能や省エネ性が大きく左右される。従って、熱交換器は高効率化が強く求められている。 Generally, in a refrigerating system such as an air conditioner or a refrigerator, the refrigerant compressed by the compressor is circulated to a heat exchanger such as a condenser or an evaporator to exchange heat with a second fluid such as air for cooling or heating. The heat exchange efficiency of the heat exchanger greatly affects the performance and energy saving of the system. Therefore, heat exchangers are strongly required to have high efficiency.

このような中にあって、冷凍システムの熱交換器は、一般的には、フィン群に伝熱管を貫通させて構成したフィンチューブ型熱交換器が用いられており、その伝熱管の細径化を図って熱交換効率の向上及び小型化が進められている。 Under such circumstances, as the heat exchanger of the refrigeration system, a fin tube type heat exchanger configured by penetrating a heat transfer tube through a fin group is generally used, and the diameter of the heat transfer tube is small. The heat exchange efficiency is being improved and the size is being reduced.

しかしながら、上記伝熱管の細径化には限度があるため、熱交換効率の向上及び小型化は限界に近づきつつある。 However, since there is a limit to the reduction in diameter of the heat transfer tube, improvement of heat exchange efficiency and miniaturization are approaching the limit.

そこで出願人は、上記フィンチューブ型熱交換器をプレートフィン積層型熱交換器に代えて使用することを提案している(例えば、特許文献1参照)。 Therefore, the applicant has proposed to use the fin tube type heat exchanger in place of the plate fin laminated heat exchanger (see, for example, Patent Document 1).

図12は特許文献1記載のプレートフィン積層型熱交換器を示し、このプレートフィン積層型熱交換器は、複数の凹状溝101aによって伝熱流路101を形成したプレートフィ102をエンドプレート103間に多数積層して構成してあり、前記伝熱流路101はプレートフィン102の他端部側でUターンする形状として冷媒の入口あるいは出口となるヘッダ流路A104及びヘッダ流路B105をプレートフィン102の一端部側に纏めた形としている。そして、上記ヘッダ流路A104及びヘッダ流路B105にヘッダ流路管A106、ヘッダ流路管B107を接続して構成している。 FIG. 12 shows a plate fin laminated heat exchanger described in Patent Document 1. In this plate fin laminated heat exchanger, a plate fill 102 in which a heat transfer flow path 101 is formed by a plurality of concave grooves 101a is formed between end plates 103. The heat transfer flow path 101 is configured by stacking a large number of heat transfer channels 101, and has a shape in which a U-turn is made on the other end side of the plate fins 102. It has a shape that is gathered on one end side. Then, the header flow path tube A106 and the header flow path tube B107 are connected to the header flow path A104 and the header flow path B105.

図13は上記ヘッダ流路管A106、ヘッダ流路管B107の接続構成を示し、上記ヘッダ流路管A106、ヘッダ流路管B107は、エンドプレート103に設けたヘッダ流路用開口A108、ヘッダ流路用開口B109の外周部に環状溝110を設け、この環状溝110にヘッダ流路管A106、ヘッダ流路管B107の端部を嵌合させ、ロウ付けして接合している。 FIG. 13 shows the connection configuration of the header flow path tube A106 and the header flow path tube B107, and the header flow path tube A106 and the header flow path tube B107 are the header flow path opening A108 and the header flow provided in the end plate 103. An annular groove 110 is provided on the outer peripheral portion of the road opening B109, and the ends of the header flow path pipe A106 and the header flow path pipe B107 are fitted to the annular groove 110 and joined by brazing.

特開2018−66531号公報JP-A-2018-66531

上記構成からなる特許文献1記載のプレートフィン積層型熱交換器は、伝熱流路101となる凹状溝101aをプレスによって形成できるので、この凹状溝101aによって形成した伝熱流路101の断面積は従来のフィンチューブ型熱交換器のチューブに比べ極端に小さくすることができ、熱交換効率を向上させ、且つ熱交換器全体を小型化できる利点がある。 In the plate fin laminated heat exchanger described in Patent Document 1 having the above configuration, the concave groove 101a serving as the heat transfer flow path 101 can be formed by pressing, so that the cross-sectional area of the heat transfer flow path 101 formed by the concave groove 101a is conventional. It has the advantages that it can be made extremely small compared to the tube of the fin tube type heat exchanger, the heat exchange efficiency can be improved, and the entire heat exchanger can be miniaturized.

しかしながら、上記構成ではプレートフィン102のヘッダ流路用開口A108、ヘッダ流路用開口B109に対するヘッダ流路管A106、ヘッダ流路管B107の接合強度が不十分なものとなったり、冷媒漏れが発生したりする等の課題があった。 However, in the above configuration, the joint strength of the header flow path tube A106 and the header flow path tube B107 with respect to the header flow path opening A108 of the plate fin 102 and the header flow path opening B109 becomes insufficient, or refrigerant leakage occurs. There were issues such as headers.

即ち、上記構成のプレートフィン積層型熱交換器は、熱交換器を積層方向横向けにしてヘッダ流路管A106、ヘッダ流路管B107を炉中ロウ付けし、エンドプレート103、プレートフィン102の接合一体化とともに、ヘッダ流路管A106、ヘッダ流路管B107も接合一体化する。 That is, in the plate fin laminated heat exchanger having the above configuration, the header flow path pipe A106 and the header flow path pipe B107 are brazed in the furnace with the heat exchanger turned sideways in the stacking direction, and the end plate 103 and the plate fin 102 Along with the joint integration, the header flow path pipe A106 and the header flow path pipe B107 are also joined and integrated.

しかしながら、前記した構成では熱交換器を積層方向横向けにしてロウ付けすると、ロウ材111が重力の影響により鉛直下方に流れてしまい、ヘッダ流路管A106、ヘッダ流路管B107の管外周に均一にロウ材を回して接合することができず、接合強度が不十分なものとなるのであった。 However, in the above configuration, when the heat exchanger is brazed laterally in the stacking direction, the brazing material 111 flows vertically downward due to the influence of gravity, and is formed on the outer periphery of the header flow path pipe A106 and the header flow path pipe B107. It was not possible to rotate the brazing material uniformly and join it, and the joining strength became insufficient.

また、ヘッダ流路管A106、ヘッダ流路管B107は、ヘッダ流路用開口A108、ヘッダ流路用開口B109の外周部に設けてある環状溝110に嵌合させているため、嵌合代を大きくとることができず、その結果シール面積が少なくなって冷媒漏れが発生する恐れがある。 Further, since the header flow path tube A106 and the header flow path tube B107 are fitted into the annular groove 110 provided on the outer peripheral portion of the header flow path opening A108 and the header flow path opening B109, a fitting allowance is provided. It cannot be made large, and as a result, the sealing area may be reduced and refrigerant leakage may occur.

本発明はこのような点に鑑みてなしたもので熱交換器を積層方向横向けにしてロウ付けしてもヘッダ流路管を確実かつ強固に接合固定できる熱交換器とそれを用いた冷凍システムを提供することを目的としたものである。 The present invention has been made in view of these points. A heat exchanger capable of reliably and firmly joining and fixing the header flow path tube even when the heat exchanger is laid horizontally in the stacking direction and brazed, and refrigeration using the heat exchanger. The purpose is to provide a system.

本発明は、上記目的を達成するため、ヘッダ流路管はその外周にビードを設けて前記ヘッダ流路用開口に嵌合するとともに、前記ヘッダ流路用開口の口縁とヘッダ流路管のビードとの間にロウ材を溶融固化させてエンドフレートとヘッダ流路管とを接合した構成としている。 In order to achieve the above object, the present invention provides a bead on the outer periphery of the header flow path tube to fit the header flow path tube into the header flow path opening, and the mouth edge of the header flow path opening and the header flow path tube. The brazing material is melted and solidified between the bead and the end freight and the header flow tube is joined.

これにより、ヘッダ流路管の炉中ロウ付接合時、ロウ材は溶融して前記ヘッダ流路用開口の口縁とヘッダ流路管のビードとの間の隙間を表面張力によって均一に広がり管外周全域を確実かつ強固に接続固定することができる。また、管外周のビードがヘッダ流路用開口への挿入時の位置決めの役割を果たすので、ヘッダ流路管はヘッダ流路用開口内への嵌合代を大きくすることができ、これによって流体漏れも防止でき、かつ、接合強度も更に向上させることができる。 As a result, when the header flow path tube is brazed in the furnace, the brazing material melts and the gap between the mouth edge of the header flow path opening and the bead of the header flow path tube is uniformly expanded by surface tension. The entire outer circumference can be securely and firmly connected and fixed. Further, since the bead on the outer periphery of the pipe plays a role of positioning at the time of insertion into the opening for the header flow path, the header flow path pipe can increase the fitting allowance in the opening for the header flow path, whereby the fluid can be increased. Leakage can be prevented, and the bonding strength can be further improved.

本発明は、上記構成により、熱交換器を積層方向横向けにしてロウ付けしてもヘッダ流路管を確実かつ強固に接合固定でき、流体漏れがない熱交換器とそれを用いた信頼性の高い冷凍システムを提供することができる。 According to the above configuration, the header flow path pipe can be securely and firmly joined and fixed even if the heat exchanger is brazed sideways in the stacking direction, and the heat exchanger without fluid leakage and the reliability using the heat exchanger. High refrigeration system can be provided.

本発明の実施の形態1におけるプレートフィン積層型熱交換器の外観を示す斜視図Perspective view showing the appearance of the plate fin laminated heat exchanger according to the first embodiment of the present invention. 同プレートフィン積層型熱交換器を上下に分離した状態で示す分解斜視図An exploded perspective view showing the plate fin laminated heat exchanger separated vertically. 同プレートフィン積層型熱交換器の側面図Side view of the plate fin laminated heat exchanger 図1のA−A断面図AA sectional view of FIG. 同プレートフィン積層型熱交換器のヘッダ流路管の接続構成を示す拡大断面図An enlarged cross-sectional view showing a connection configuration of a header flow path tube of the plate fin laminated heat exchanger. 同プレートフィン積層型熱交換器のヘッダ流路管接続後の構成を示す拡大断面図An enlarged cross-sectional view showing the configuration of the plate fin laminated heat exchanger after connecting the header flow path tube. 同プレートフィン積層型熱交換器を構成するプレートフィンの平面図Top view of plate fins constituting the plate fin laminated heat exchanger 同プレートフィン積層型熱交換器を構成するプレートフィンの分解斜視図An exploded perspective view of the plate fins constituting the plate fin laminated heat exchanger. 本発明の実施の形態1におけるプレートフィン積層型熱交換器の変形例を示す分解斜視図An exploded perspective view showing a modified example of the plate fin laminated heat exchanger according to the first embodiment of the present invention. 本発明の実施の形態2における空気調和機の冷凍サイクル図Refrigeration cycle diagram of the air conditioner according to the second embodiment of the present invention. 同空気調和機の室内機を示す概略断面図Schematic cross-sectional view showing the indoor unit of the air conditioner 本出願人が提案した従来のプレートフィン積層型熱交換器の分解斜視図An exploded perspective view of the conventional plate fin laminated heat exchanger proposed by the applicant. 同プレートフィン積層型熱交換器のヘッダ流路管の接続構成を示す断面図A cross-sectional view showing a connection configuration of a header flow path tube of the plate fin laminated heat exchanger.

第1の発明は、熱交換機であり、この熱交換器は、一対のヘッダ流路と、前記一対のヘッダ流路間を繋ぐ複数の伝熱流路と、前記ヘッダ流路の出入口となるヘッダ流路用開口と、前記ヘッダ流路用開口に接合したヘッダ流路管と、を備え、前記ヘッダ流路管はその外周にビードを設けて前記ヘッダ流路用開口に嵌合するとともに、前記ヘッダ流路用開口の口縁とヘッダ流路管のビードとの間にロウ材を溶融固化させてエンドフレートとヘッダ流路管とを接合した構成としている。 The first invention is a heat exchanger, in which the heat exchanger includes a pair of header flow paths, a plurality of heat transfer flow paths connecting the pair of header flow paths, and a header flow serving as an inlet / outlet of the header flow paths. The header flow path tube includes a path opening and a header flow path tube joined to the header flow path opening, and the header flow path tube is provided with a bead on the outer periphery thereof to fit into the header flow path opening and the header. The brazing material is melted and solidified between the mouth edge of the opening for the flow path and the bead of the header flow path tube to join the end freight and the header flow path tube.

これにより、ヘッダ流路管の炉中ロウ付接合時、ロウ材は溶融して前記ヘッダ流路用開口の口縁とヘッダ流路管のビードとの間の隙間を表面張力によって均一に広がり、管外周全域を確実かつ強固に接続固定することができる。また、管外周のビードがヘッダ流路用開口への挿入時の位置決めの役割を果たすので、ヘッダ流路管はヘッダ流路用開口内への嵌合代を大きくすることができ、これによって流体漏れも防止でき、かつ、接合強度も更に向上させることができる。 As a result, when the header flow path tube is brazed in the furnace, the brazing material melts and the gap between the mouth edge of the header flow path opening and the bead of the header flow path tube is uniformly widened by surface tension. The entire outer circumference of the pipe can be securely and firmly connected and fixed. Further, since the bead on the outer periphery of the pipe plays a role of positioning at the time of insertion into the opening for the header flow path, the header flow path pipe can increase the fitting allowance in the opening for the header flow path, whereby the fluid can be increased. Leakage can be prevented, and the bonding strength can be further improved.

第2の発明は、第1の発明において、前記ヘッダ流路及び伝熱流路はヘッダ流路となる開口及び伝熱流路となる内部流路を有するプレートフィンをエンドプレート間に複数積層して構成し、且つ、前記ヘッダ流路の出入口となるヘッダ流路用開口は前記エンドプレートに設け、前記エンドプレートのヘッダ流路用開口にヘッダ流路管を嵌合して接合した構成としている。 In the second invention, in the first invention, the header flow path and the heat transfer flow path are configured by laminating a plurality of plate fins having an opening serving as a header flow path and an internal flow path serving as a heat transfer flow path between end plates. In addition, the header flow path opening that serves as the entrance / exit of the header flow path is provided in the end plate, and the header flow path tube is fitted and joined to the header flow path opening of the end plate.

これにより、この熱交換器はプレートフィンを積層することによって構成でき、しかも上記プレートフィンはヘッダ流路となる開口及び内部流路となる凹状溝を有する二枚のプレートを接合することによって形成でき、その伝熱流路となる内部流路用の凹状溝はプレス成形することによって形成できるので、伝熱流路をパイプ等で形成する場合に比べ大きく細径化できる。これによって熱交換効率を向上させ、高効率かつ信頼性の高い熱交換器とすることができる。 Thereby, this heat exchanger can be configured by stacking plate fins, and the plate fins can be formed by joining two plates having an opening as a header flow path and a concave groove as an internal flow path. Since the concave groove for the internal flow path serving as the heat transfer flow path can be formed by press molding, the diameter can be made larger than that when the heat transfer flow path is formed by a pipe or the like. As a result, the heat exchange efficiency can be improved, and a highly efficient and highly reliable heat exchanger can be obtained.

第3の発明は冷凍システムであり、この冷凍システムは冷凍サイクルを構成する熱交換器を前記第1または第2の発明に記載の熱交換器としたものである。 A third invention is a refrigeration system, in which the heat exchanger constituting the refrigeration cycle is the heat exchanger according to the first or second invention.

これにより、この冷凍システムは、熱交換器の信頼性が高いから、冷凍システムの信頼性を高いものとすることができる。 As a result, in this refrigeration system, the reliability of the heat exchanger is high, so that the reliability of the refrigeration system can be made high.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態ではプレートフィンを積層して構成した熱交換器を例にして説明するが、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, a heat exchanger configured by stacking plate fins will be described as an example, but the present invention is not limited to this embodiment.

(実施の形態1)
図1は本実施の形態1のプレートフィン積層型熱交換器の外観を示す斜視図、図2は同プレートフィン積層型熱交換器を上下に分離した状態で示す分解斜視図、図3は同プレートフィン積層型熱交換器の要部側面図、図4は図1のA−A断面図、図5はプレートフィン積層型熱交換器のヘッダ流路管の接続構成を示す拡大断面図、図6は同プレートフィン積層型熱交換器を構成するプレートフィンの平面図、図7は同プレートフィン積層型熱交換器を構成するプレートフィンの分解斜視図である。
(Embodiment 1)
FIG. 1 is a perspective view showing the appearance of the plate fin laminated heat exchanger of the first embodiment, FIG. 2 is an exploded perspective view showing the plate fin laminated heat exchanger separated into upper and lower parts, and FIG. 3 is the same. A side view of a main part of the plate fin laminated heat exchanger, FIG. 4 is a sectional view taken along the line AA of FIG. 1, and FIG. 5 is an enlarged sectional view showing a connection configuration of a header flow path tube of the plate fin laminated heat exchanger. 6 is a plan view of the plate fins constituting the plate fin laminated heat exchanger, and FIG. 7 is an exploded perspective view of the plate fins constituting the plate fin laminated heat exchanger.

本実施の形態のプレートフィン積層型熱交換器(以下、単に熱交換器と称す)1は、図1、図2に示すように、略長方形状のプレートフィン2をエンドプレート3間に複数積層してロウ材により接合一体化し熱交換コア部4を形成している。そして、蒸発器として用いる場合には入口となり凝縮器として用いる場合は出口となるヘッダ流路管A5及びその逆となるヘッダ流路管B6が接続している。 In the plate fin laminated heat exchanger (hereinafter, simply referred to as a heat exchanger) 1 of the present embodiment, as shown in FIGS. 1 and 2, a plurality of substantially rectangular plate fins 2 are laminated between the end plates 3. Then, they are joined and integrated with a brazing material to form the heat exchange core portion 4. A header flow path tube A5, which serves as an inlet when used as an evaporator and an outlet when used as a condenser, and a header flow path tube B6 which is vice versa are connected.

上記熱交換コア部4の両側のエンドプレート3、3は、プレートフィン積層体を挟持した形でロウ付けされ、ボルト・ナット若しくはカシメピン軸等の締結手段7によりその長手方向両端部を連結固定し、熱交換器としての剛性を保持している。 The end plates 3 and 3 on both sides of the heat exchange core portion 4 are brazed so as to sandwich the plate fin laminate, and both ends in the longitudinal direction are connected and fixed by fastening means 7 such as bolts, nuts or caulking pin shafts. , Maintains rigidity as a heat exchanger.

また、上記熱交換コア部4を構成するプレートフィン2は、図8に示すように、前記ヘッダ流路管A5及びヘッダ流路管B6に繋がる一対のヘッダ流路8、9を形成する開口A8a、開口B9a、及び上記A8aと開口B9aとの間を繋ぎ伝熱流路10となる凹状溝10aを設けた一対のプレート2a、2b(図8参照)を貼り合わせて形成している。 Further, as shown in FIG. 8, the plate fins 2 constituting the heat exchange core portion 4 have openings A8a forming a pair of header flow paths 8 and 9 connected to the header flow path pipe A5 and the header flow path pipe B6. , And a pair of plates 2a and 2b (see FIG. 8) provided with a concave groove 10a that connects the opening B9a and the opening B9a to form a heat transfer flow path 10 are formed by laminating.

なお、上記前記伝熱流路10は、本実施の形態では、略U字状に折り返して形成することにより、図1、図2、図7、図8に示すように、プレートフィン2に設けたヘッダ流路8、9を一端部側に纏め、これに接続するヘッダ流路管A5及びヘッダ流路管B6が隣接する形となっている。 In the present embodiment, the heat transfer flow path 10 is formed by folding back in a substantially U shape so as to be provided on the plate fin 2 as shown in FIGS. 1, 2, 7, and 8. The header flow paths 8 and 9 are grouped on one end side, and the header flow path tube A5 and the header flow path tube B6 connected to the header flow path tube 8 and 9 are adjacent to each other.

次に、上記ヘッダ流路管A5及びヘッダ流路管B6の接続構成を図4〜図6を用いて説明する。なお、ヘッダ流路管A5及びヘッダ流路管B6の接続構成は両者とも同じ構成なので、蒸発器と使用されるときに冷媒の入口側となるヘッダ流路管A5の接続構成を中心に説明していく。 Next, the connection configuration of the header flow path pipe A5 and the header flow path pipe B6 will be described with reference to FIGS. 4 to 6. Since the connection configuration of the header flow path pipe A5 and the header flow path pipe B6 are the same, the connection configuration of the header flow path pipe A5 which is the inlet side of the refrigerant when used with the evaporator will be mainly described. To go.

図4〜図6において、熱交換コア部のエンドプレート3にはプレートフィン2のヘッダ流路8、9と対向する位置にヘッダ流路用開口11、12が形成している。そして、ヘッダ流路管A5とヘッダ流路管B6は上記ヘッダ流路用開口11、12に嵌合し、リング状のロウ材14を溶かしてヘッダ流路用開口11、12に接続固定している。 In FIGS. 4 to 6, header flow path openings 11 and 12 are formed in the end plate 3 of the heat exchange core portion at positions facing the header flow paths 8 and 9 of the plate fins 2. Then, the header flow path pipe A5 and the header flow path pipe B6 are fitted into the header flow path openings 11 and 12, and the ring-shaped brazing material 14 is melted and connected and fixed to the header flow path openings 11 and 12. There is.

ここで、上記ヘッダ流路管A5とヘッダ流路管B6は、図5に拡大して示すように、管外周部にビード加工を施して環状のビード15が形成してあり、ロウ材14は上記ビード15とヘッダ流路用開口11、12の口縁との間に設置して溶融固化し、ヘッダ流路管A5とヘッダ流路管B6をヘッダ流路用開口11、12に固定している。 Here, as shown in an enlarged view of FIG. 5, the header flow path pipe A5 and the header flow path pipe B6 are beaded on the outer peripheral portion of the pipe to form an annular bead 15, and the brazing material 14 is formed. It is installed between the bead 15 and the rims of the header flow path openings 11 and 12 to melt and solidify, and the header flow path pipe A5 and the header flow path pipe B6 are fixed to the header flow path openings 11 and 12. There is.

すなわち、上記のように構成した熱交換器は、積層方向横向けにしてヘッダ流路管A5、ヘッダ流路管B6を炉中ロウ付けすると、図6のように、ロウ材14はヘッダ流路管A5とヘッダ流路管B6のビード15とエンドプレート3のヘッダ流路用開口11、12の口縁との間で溶融した際、その表面張力によって管外周に略均等に回り込み固形化する。 That is, in the heat exchanger configured as described above, when the header flow path tube A5 and the header flow path tube B6 are brazed in the furnace with the header flow path tube A5 and the header flow path tube B6 oriented sideways in the stacking direction, the brazing material 14 is formed in the header flow path as shown in FIG. When the bead 15 of the pipe A5 and the header flow path pipe B6 and the rim of the header flow path openings 11 and 12 of the end plate 3 are melted, the surface tension thereof wraps around the outer circumference of the pipe substantially evenly and solidifies.

したがって、ヘッダ流路管A5とヘッダ流路管B6は管外周を均一にロウ材でエンドプレートのヘッダ流路用開口11、12に接合でき、その接合は確実かつ強固なものとなる。 Therefore, the header flow path pipe A5 and the header flow path pipe B6 can be uniformly joined to the header flow path openings 11 and 12 of the end plate by using a brazing material on the outer periphery of the pipe, and the joining is reliable and strong.

また、前記ヘッダ流路管A5とヘッダ流路管B6はエンドプレート3のヘッダ流路用開口11、12にロウ付けされる際、ロウ材14が溶融し、ヘッダ流路管A5及びヘッダ流路管B6とヘッダ流路用開口11、12との隙間に回り込むと同時に、エンドプレート3にビード15が引き寄せられて位置決めされることになる。 Further, when the header flow path pipe A5 and the header flow path pipe B6 are brazed to the header flow path openings 11 and 12 of the end plate 3, the brazing material 14 melts, and the header flow path pipe A5 and the header flow path At the same time as wrapping around the gap between the tube B6 and the header flow path openings 11 and 12, the bead 15 is attracted to the end plate 3 and positioned.

したがって、ヘッダ流路管A5とヘッダ流路管B6はヘッダ流路用開口11、12にエンドプレート3の厚み全てを嵌合代とすることができる。よって、ヘッダ流路管とヘッダ流路用開口との間のシール面積を大きくすることができ、ヘッダ流路管A5とヘッダ流路管B6の接続部からの冷媒の漏れを防止できるとともに、接合強度も高め、信頼性を向上させることができる。加えて、環状溝を形成する必要がなくなるので、加工性も向上する。 Therefore, in the header flow path pipe A5 and the header flow path pipe B6, the entire thickness of the end plate 3 can be used as the fitting allowance in the header flow path openings 11 and 12. Therefore, the sealing area between the header flow path pipe and the header flow path opening can be increased, and the leakage of the refrigerant from the connection portion between the header flow path pipe A5 and the header flow path pipe B6 can be prevented and joined. The strength can also be increased and the reliability can be improved. In addition, since it is not necessary to form an annular groove, workability is also improved.

また、本実施の形態の熱交換器は、ヘッダ流路となる開口及び凹状溝によって形成され伝熱流路となる内部流路を有するプレートフィン2をエンドプレート3間に複数積層して熱交換コア部4を構成しているので、交換効率を向上させて高効率かつ信頼性の高い熱交換器とすることができる。 Further, in the heat exchanger of the present embodiment, a plurality of plate fins 2 having an internal flow path formed by an opening serving as a header flow path and a concave groove and serving as a heat transfer flow path are laminated between the end plates 3 to form a heat exchange core. Since the part 4 is configured, it is possible to improve the exchange efficiency and obtain a highly efficient and highly reliable heat exchanger.

すなわち、熱交換器はプレートフィン2を積層することによって構成でき、しかも上記プレートフィン2はヘッダ流路となる開口及び内部流路となる凹状溝を有する二枚のプレートを接合することによって形成でき、しかもその伝熱流路10となる内部流路用の凹状溝10aはプレス成形することによって形成できるので、伝熱流路10をパイプ等で形成する場合に比べ大きく細径化できる。これによって熱交換効率を向上させ、小型高効率かつ信頼性の高い熱交換器とすることができる。 That is, the heat exchanger can be configured by stacking the plate fins 2, and the plate fins 2 can be formed by joining two plates having an opening serving as a header flow path and a concave groove serving as an internal flow path. Moreover, since the concave groove 10a for the internal flow path serving as the heat transfer flow path 10 can be formed by press molding, the diameter of the heat transfer flow path 10 can be made larger than that in the case of forming the heat transfer flow path 10 with a pipe or the like. As a result, the heat exchange efficiency can be improved, and a compact, highly efficient and highly reliable heat exchanger can be obtained.

また、前記ヘッダ流路管A5とヘッダ流路管B6をヘッダ流路用開口11、12に直接嵌合して接合するようにしているから、従来のヘッダ流路用開口11、12の外周に設けた環状溝に嵌合させて接続する場合に比べヘッダ流路管A5とヘッダ流路管B6の管径を小さくすることができる。よって、伝熱流路10をUターンさせて冷媒のヘッダ流路用開口11、12をプレートフィン2の一端部側に纏め、これに接続するヘッダ流路管A5とヘッダ流路管B6が隣接する形となっても、当該二つの管を合わせた外寸は小さく維持でき、プレートフィンの幅寸法を小さなものとすることができる。 Further, since the header flow path pipe A5 and the header flow path pipe B6 are directly fitted and joined to the header flow path openings 11 and 12, the outer periphery of the conventional header flow path openings 11 and 12 is formed. The pipe diameters of the header flow path pipe A5 and the header flow path pipe B6 can be made smaller than in the case of fitting and connecting to the provided annular groove. Therefore, the heat transfer flow path 10 is U-turned so that the header flow path openings 11 and 12 of the refrigerant are gathered on one end side of the plate fin 2, and the header flow path pipe A5 and the header flow path pipe B6 connected to this are adjacent to each other. Even if it becomes a shape, the outer dimension of the two pipes combined can be kept small, and the width dimension of the plate fin can be made small.

また、本実施の形態の熱交換器は、伝熱流路10をUターンさせたことによって、伝熱流路長を長く確保して熱交換性能を高めつつプレートフィン2の長さを短くすることもできる。 Further, in the heat exchanger of the present embodiment, by making a U-turn of the heat transfer flow path 10, the length of the heat transfer flow path can be secured long, the heat exchange performance can be improved, and the length of the plate fin 2 can be shortened. it can.

したがって、上記ヘッダ流路管A5とヘッダ流路管B6の直接嵌合による効果と伝熱流路10のUターン化効果が合わさって熱交換器1は大幅に小型化することができる。 Therefore, the heat exchanger 1 can be significantly miniaturized by combining the effect of the direct fitting of the header flow path pipe A5 and the header flow path pipe B6 and the effect of making the heat transfer flow path 10 U-turn.

なお、上記熱交換器1は伝熱流路10がUターンする形態のもので説明したが、これは図9に示すようにプレートフィン2の一端側にヘッダ流路管A5、反対側にヘッダ流路管B6を設けてこれらの間を繋ぐ伝熱流路10は一方向のみのものであってもよく、この場合もヘッダ流路管A5、ヘッダ流路管B6の接続構成は、前記した構成とすればよい。これにより、ヘッダ流路管A5、ヘッダ流路管B6の接合を確実かつ強固なものとすることができ、且つ接合部から冷媒が漏れるようなことがなくなって信頼性の高い熱交換器とすることができる。 The heat exchanger 1 has been described in a form in which the heat transfer flow path 10 makes a U-turn, but as shown in FIG. 9, this is a header flow path tube A5 on one end side of the plate fin 2 and a header flow on the opposite side. The heat transfer flow path 10 provided with the path pipe B6 and connected between them may be of only one direction, and in this case as well, the connection configuration of the header flow path pipe A5 and the header flow path pipe B6 is the same as the above-described configuration. do it. As a result, the joint between the header flow path pipe A5 and the header flow path pipe B6 can be made reliable and strong, and the refrigerant does not leak from the joint portion, resulting in a highly reliable heat exchanger. be able to.

(実施の形態2)
この実施の形態2は、前記実施形態の熱交換器を用いて構成した冷凍システムである。
(Embodiment 2)
The second embodiment is a refrigeration system configured by using the heat exchanger of the above embodiment.

本実施の形態では冷凍システムの一例として空気調和機を説明する。図10は空気調和機の冷凍サイクル図、図11は同空気調和機の室内機を示す概略断面図である。 In this embodiment, an air conditioner will be described as an example of a refrigeration system. FIG. 10 is a refrigeration cycle diagram of the air conditioner, and FIG. 11 is a schematic cross-sectional view showing an indoor unit of the air conditioner.

図10、図11において、この空気調和装置は、室外機51と、室外機51に接続された室内機52から構成されている。室外機51には、冷媒を圧縮する圧縮機53、冷房暖房運転時の冷媒回路を切り替える四方弁54、冷媒と外気の熱を交換する室外熱交換器55、冷媒を減圧する減圧器56が配設されている。また、室内機52には、冷媒と室内空気の熱を交換する室内熱交換器57と、室内送風機58とが配設されている。そして、前記圧縮機53、四方弁54、室内熱交換器57、減圧器56、室外熱交換器55を冷媒回路で連結してヒートポンプ式冷凍サイクルを形成している。 In FIGS. 10 and 11, the air conditioner is composed of an outdoor unit 51 and an indoor unit 52 connected to the outdoor unit 51. The outdoor unit 51 includes a compressor 53 for compressing the refrigerant, a four-way valve 54 for switching the refrigerant circuit during cooling and heating operation, an outdoor heat exchanger 55 for exchanging heat between the refrigerant and the outside air, and a decompressor 56 for reducing the refrigerant. It is installed. Further, the indoor unit 52 is provided with an indoor heat exchanger 57 for exchanging heat between the refrigerant and the indoor air, and an indoor blower 58. Then, the compressor 53, the four-way valve 54, the indoor heat exchanger 57, the decompressor 56, and the outdoor heat exchanger 55 are connected by a refrigerant circuit to form a heat pump type refrigeration cycle.

本実施形態による冷媒回路には、テトラフルオロプロペンまたはトリフルオロプロペンをベース成分とし、ジフルオロメタンまたはペンタフルオロエタンまたはテトラフルオロエタンを、地球温暖化係数が5以上、750以下となるように、望ましくは350以下、さらに望ましくは150以下となるようにそれぞれ2成分混合もしくは3成分混合した冷媒を使用している。 In the refrigerant circuit according to the present embodiment, tetrafluoropropene or trifluoropropene is used as a base component, and difluoromethane or pentafluoroethane or tetrafluoroethane is preferably used so that the global warming potential is 5 or more and 750 or less. Refrigerants mixed with two components or three components are used so as to be 350 or less, more preferably 150 or less, respectively.

上記空気調和機は、冷房運転時には、四方弁54を圧縮機53の吐出側と室外熱交換器55とが連通するように切り換える。これにより、圧縮機53によって圧縮された冷媒は高温高圧の冷媒となって四方弁54を通って室外熱交換器55に送られる。そして、外気と熱交換して放熱し、高圧の液冷媒となり、減圧器56に送られる。減圧器56では減圧されて低温低圧の二相冷媒となり、室内機52に送られる。室内機52では、冷媒は室内熱交換器57に入り室内空気と熱交換して吸熱し、蒸発気化して低温のガス冷媒となる。この時室内空気は冷却されて室内を冷房する。さらに冷媒は室外機51に戻り、四方弁54を経由して圧縮機53に戻される。 The air conditioner switches the four-way valve 54 so that the discharge side of the compressor 53 and the outdoor heat exchanger 55 communicate with each other during the cooling operation. As a result, the refrigerant compressed by the compressor 53 becomes a high-temperature and high-pressure refrigerant and is sent to the outdoor heat exchanger 55 through the four-way valve 54. Then, it exchanges heat with the outside air to dissipate heat, becomes a high-pressure liquid refrigerant, and is sent to the decompressor 56. The decompressor 56 reduces the pressure to become a low-temperature low-pressure two-phase refrigerant, which is sent to the indoor unit 52. In the indoor unit 52, the refrigerant enters the indoor heat exchanger 57, exchanges heat with the indoor air, absorbs heat, evaporates and vaporizes, and becomes a low-temperature gas refrigerant. At this time, the indoor air is cooled to cool the room. Further, the refrigerant returns to the outdoor unit 51 and is returned to the compressor 53 via the four-way valve 54.

暖房運転時には、四方弁54を圧縮機53の吐出側と室内機52とが連通するように切り換える。これにより、圧縮機53によって圧縮された冷媒は高温高圧の冷媒となって四方弁54を通り、室内機52に送られる。高温高圧の冷媒は室内熱交換器57に入り、室内空気と熱交換して放熱し、冷却され高圧の液冷媒となる。この時、室内空気は加熱されて室内を暖房する。その後、冷媒は減圧器56に送られ、減圧器56において減圧されて低温低圧の二相冷媒となり、室外熱交換器55に送られて外気と熱交換して蒸発気化し、四方弁54を経由して圧縮機53へ戻される。 During the heating operation, the four-way valve 54 is switched so that the discharge side of the compressor 53 and the indoor unit 52 communicate with each other. As a result, the refrigerant compressed by the compressor 53 becomes a high-temperature and high-pressure refrigerant, passes through the four-way valve 54, and is sent to the indoor unit 52. The high-temperature and high-pressure refrigerant enters the indoor heat exchanger 57, exchanges heat with the indoor air to dissipate heat, and is cooled to become a high-pressure liquid refrigerant. At this time, the indoor air is heated to heat the room. After that, the refrigerant is sent to the compressor 56, decompressed in the compressor 56 to become a low-temperature low-pressure two-phase refrigerant, sent to the outdoor heat exchanger 55 to exchange heat with the outside air, evaporate and vaporize, and pass through the four-way valve 54. Then, it is returned to the compressor 53.

上記のように構成された空気調和機は、その室外熱交換器55或いは室内熱交換器57に前記各実施の形態で示した冷媒漏れ等のない熱交換器を使用することにより、信頼性の高い冷凍システムとすることができる。 The air conditioner configured as described above is reliable by using the heat exchanger without refrigerant leakage or the like shown in each of the above embodiments for the outdoor heat exchanger 55 or the indoor heat exchanger 57. It can be a high refrigeration system.

本発明は、上記実施の形態の説明から明らかなように、熱交換器を積層方向横向けにしてロウ付けしてもヘッダ流路管を確実かつ強固に接合固定でき、流体漏れがない熱交換器とそれを用いた信頼性の高い冷凍システムとすることができる。よって、家庭用及び業務用エアコン等に用いる熱交換器や各種冷凍機器等に幅広く利用でき、その産業的価値は大なるものがある。 As is clear from the description of the above-described embodiment, the present invention can reliably and firmly join and fix the header flow path pipe even when the heat exchanger is brazed sideways in the stacking direction, and heat exchange without fluid leakage. It can be a vessel and a highly reliable refrigeration system using it. Therefore, it can be widely used in heat exchangers and various refrigeration equipment used for home and commercial air conditioners, and its industrial value is great.

1 熱交換器
2 プレートフィン
2a、2b プレート
3 エンドプレート
4 熱交換コア部
5 ヘッダ流路管A
6 ヘッダ流路管B
7 締結手段
8 ヘッダ流路
9 ヘッダ流路
10 伝熱流路
10a 凹状溝
11 ヘッダ流路用開口
12 ヘッダ流路用開口
14 ロウ材
15 ビード
51 室外機
52 室内機
53 圧縮機
54 四方弁
55 室外熱交換器
56 減圧器
57 室内熱交換器
1 Heat exchanger 2 Plate fins 2a, 2b Plates 3 End plates 4 Heat exchange cores 5 Header flow path tube A
6 Header flow path tube B
7 Fastening means 8 Header flow path 9 Header flow path 10 Heat transfer flow path 10a Concave groove 11 Header flow path opening 12 Header flow path opening 14 Row material 15 Bead 51 Outdoor unit 52 Indoor unit 53 Compressor 54 Four-way valve 55 Outdoor heat Exchanger 56 Decompressor 57 Indoor heat exchanger

Claims (3)

一対のヘッダ流路と、前記一対のヘッダ流路間を繋ぐ複数の伝熱流路と、前記ヘッダ流路の出入口となるヘッダ流路用開口と、前記ヘッダ流路用開口に接合したヘッダ流路管と、を備え、前記ヘッダ流路管はその外周にビードを設けて前記ヘッダ流路用開口に嵌合するとともに、前記ヘッダ流路用開口の口縁とヘッダ流路管のビードとの間にロウ材を溶融固化させてエンドフレートとヘッダ流路管とを接合した熱交換器。 A pair of header flow paths, a plurality of heat transfer flow paths connecting the pair of header flow paths, a header flow path opening that serves as an entrance / exit of the header flow path, and a header flow path joined to the header flow path opening. The header flow path tube is provided with a tube, and the header flow path tube is provided with a bead on the outer periphery thereof to fit into the header flow path opening, and between the mouth edge of the header flow path opening and the bead of the header flow path tube. A heat exchanger in which the brazing material is melted and solidified to join the end frate and the header flow path tube. 前記ヘッダ流路及び前記伝熱流路は前記ヘッダ流路となる前記開口及び前記伝熱流路となる内部流路を有するプレートフィンを前記エンドプレート間に複数積層して構成し、且つ、前記ヘッダ流路の出入口となる前記ヘッダ流路用開口は前記エンドプレートに設け、前記エンドプレートの前記ヘッダ流路用開口に前記ヘッダ流路管を挿入して接合した請求項1に記載の熱交換器。 The header flow path and the heat transfer flow path are configured by laminating a plurality of plate fins having the opening serving as the header flow path and the internal flow path serving as the heat transfer flow path between the end plates, and the header flow. The heat exchanger according to claim 1, wherein the header flow path opening serving as an entrance / exit of the road is provided in the end plate, and the header flow path tube is inserted into the header flow path opening of the end plate and joined. 冷凍サイクルを構成する熱交換器を前記第1または第2に記載の前記熱交換器とした冷凍システム。 A refrigeration system in which the heat exchanger constituting the refrigeration cycle is the heat exchanger according to the first or second aspect.
JP2019079458A 2019-04-18 2019-04-18 Heat exchanger and refrigeration system using the same Pending JP2020176768A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019079458A JP2020176768A (en) 2019-04-18 2019-04-18 Heat exchanger and refrigeration system using the same
CN202080004002.1A CN112424553A (en) 2019-04-18 2020-02-03 Heat exchanger and refrigeration system using the same
PCT/JP2020/003931 WO2020213227A1 (en) 2019-04-18 2020-02-03 Heat exchanger and refrigeration system in which heat exchanger is used

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019079458A JP2020176768A (en) 2019-04-18 2019-04-18 Heat exchanger and refrigeration system using the same

Publications (1)

Publication Number Publication Date
JP2020176768A true JP2020176768A (en) 2020-10-29

Family

ID=72837279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019079458A Pending JP2020176768A (en) 2019-04-18 2019-04-18 Heat exchanger and refrigeration system using the same

Country Status (3)

Country Link
JP (1) JP2020176768A (en)
CN (1) CN112424553A (en)
WO (1) WO2020213227A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180592A (en) * 1991-12-27 1993-07-23 Showa Alum Corp Heat exchanger
JP4077610B2 (en) * 2001-03-16 2008-04-16 カルソニックカンセイ株式会社 Housingless oil cooler
JP2009243563A (en) * 2008-03-31 2009-10-22 Showa Denko Kk Pipe coupling structure with hollow component
JP2014037914A (en) * 2012-08-16 2014-02-27 Calsonic Kansei Corp Heat exchanger
JP6504367B2 (en) * 2016-03-28 2019-04-24 パナソニックIpマネジメント株式会社 Heat exchanger
JP6767637B2 (en) * 2016-10-21 2020-10-14 パナソニックIpマネジメント株式会社 Heat exchanger and freezing system using it
JP6778851B2 (en) * 2016-12-15 2020-11-04 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration system using it

Also Published As

Publication number Publication date
WO2020213227A1 (en) 2020-10-22
CN112424553A (en) 2021-02-26

Similar Documents

Publication Publication Date Title
JP6767637B2 (en) Heat exchanger and freezing system using it
CN109328291B (en) Heat exchanger and refrigerating apparatus using the same
WO2018074343A1 (en) Heat exchanger and refrigeration system using same
JP2006329511A (en) Heat exchanger
WO2014184918A1 (en) Laminated header, heat exchanger, and air conditioner
JP2018066536A (en) Heat exchanger and refrigeration system using the same
JP2006003071A (en) Heat exchanger
JP2014224670A (en) Double-pipe heat exchanger
JP2001124481A (en) Heat exchanger
CN109416229B (en) Heat exchanger and refrigerating apparatus using the same
JP6934609B2 (en) Heat exchanger and freezing system using it
WO2020213227A1 (en) Heat exchanger and refrigeration system in which heat exchanger is used
JP2003279275A (en) Heat exchanger and refrigerating cycle device using this heat exchanger
JP6785408B2 (en) Heat exchanger and refrigeration system using it
EP4036507A1 (en) Plate-fin heat exchanger and refrigeration system using same
KR20190055614A (en) Plate heat exchanger and Air conditioner having the same
JP2004183960A (en) Heat exchanger
JP6928793B2 (en) Plate fin laminated heat exchanger and freezing system using it
KR200406575Y1 (en) Header pipe connection implement for condensation
JP2020118369A (en) Plate fin lamination type heat exchanger, and refrigeration system using the same
JP2023001419A (en) Heat exchanger and refrigeration system using the same
JP6872694B2 (en) Plate fin laminated heat exchanger and refrigeration system using it
JP6934608B2 (en) Plate fin laminated heat exchanger and freezing system using it
JP2023000451A (en) Plate fin lamination-type heat exchanger and refrigeration system using the same
JP6913858B2 (en) Plate fin laminated heat exchanger and refrigeration system using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210622