JP2020176598A - Axial flow compressor - Google Patents

Axial flow compressor Download PDF

Info

Publication number
JP2020176598A
JP2020176598A JP2019081063A JP2019081063A JP2020176598A JP 2020176598 A JP2020176598 A JP 2020176598A JP 2019081063 A JP2019081063 A JP 2019081063A JP 2019081063 A JP2019081063 A JP 2019081063A JP 2020176598 A JP2020176598 A JP 2020176598A
Authority
JP
Japan
Prior art keywords
upstream
downstream
stationary blade
inner boundary
radial inner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019081063A
Other languages
Japanese (ja)
Other versions
JP7273363B2 (en
Inventor
裕児 小林
Yuji Kobayashi
裕児 小林
佐藤 大祐
Daisuke Sato
大祐 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2019081063A priority Critical patent/JP7273363B2/en
Publication of JP2020176598A publication Critical patent/JP2020176598A/en
Application granted granted Critical
Publication of JP7273363B2 publication Critical patent/JP7273363B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

To provide an axial flow compressor that can suppress a decrease in efficiency of a stator vane row as much as possible to improve the overall efficiency when a radial inner boundary line of a main flow passage of a rear stage rotor vane row is widened toward the downstream side.SOLUTION: An axial flow compressor includes an annular main flow passage defined by radial outer and inner boundary surfaces, a stator vane row disposed in the main flow passage, and upstream side and downstream side rotor vane rows which are disposed immediately upstream and immediately downstream of the stator vane row, respectively. The radial inner boundary line, which is the intersection line of the radial inner boundary surface and the meridional plane of the main flow passage, lies: (1) radially outside the upstream ends of the upstream side and downstream side rotor vane rows at the respective downstream side ends thereof; (2) radially inside the upstream end of the stator vane row at the downstream end thereof; and (3) radially inside the straight line connecting the upstream end and the downstream end of the stator vane row between them, and is composed of an upstream side curve part and a downstream side linear part, in which the curve part is smoothly connected to the downstream side and upstream side radial inner boundary lines at a connecting point to the linear part and the upstream end of the stator vane row, respectively.SELECTED DRAWING: Figure 1

Description

本開示は、軸流圧縮機に関する。 The present disclosure relates to an axial compressor.

例えばターボファンエンジン等のガスタービンエンジンは、主要構成要素として圧縮機、燃焼器及びタービンを備えている。 For example, a gas turbine engine such as a turbofan engine includes a compressor, a combustor and a turbine as main components.

このうち、圧縮機は、ガスタービンエンジンに吸入された空気(ターボファンエンジンの場合は、吸入された後にファンによって圧縮された空気)を圧縮して燃焼器に供給する機能を有するターボ機械である。圧縮機には、軸流式、遠心式等の形式があるが、ガスタービンエンジンでは軸流式の圧縮機(軸流圧縮機)が採用されることが多く、以下では、この軸流圧縮機について述べる。 Of these, the compressor is a turbo machine that has the function of compressing the air sucked into the gas turbine engine (in the case of a turbo fan engine, the air compressed by the fan after being sucked) and supplying it to the combustor. .. There are various types of compressors such as axial flow type and centrifugal type, but in gas turbine engines, axial flow type compressors (axial flow compressors) are often adopted. Will be described.

軸流圧縮機は、軸方向に配列された1つ又は複数の段を備えており、それぞれの段は、動翼が周方向に等間隔で配置されることにより形成される動翼列と、静翼が周方向に等間隔で配置されることにより形成される静翼列とから成っている。なお、動翼列は各段の上流側に、静翼列は各段の下流側に、それぞれ配置されている。また、最も上流側の段の動翼列の上流には入口案内翼(IGV;Inlet Guide Vane)が配置され、最も下流側の段の静翼列を形成する静翼は出口案内翼(OGV;Outlet Guide Vane)と称される。 The axial flow compressor includes one or more stages arranged in the axial direction, and each stage has a moving blade row formed by arranging the moving blades at equal intervals in the circumferential direction. It consists of a row of stationary blades formed by arranging the stationary blades at equal intervals in the circumferential direction. The moving blade row is arranged on the upstream side of each stage, and the stationary blade row is arranged on the downstream side of each stage. Inlet Guide Vane (IGV) is arranged upstream of the moving blade row of the most upstream stage, and the stationary blade forming the stationary blade row of the most downstream stage is the exit guide blade (OGV; It is called Outlet Guide Vane).

動翼列を構成する動翼は、通常、翼部と、当該翼部の径方向内端に結合されたプラットフォームと、を備えている。動翼は、さらに、プラットフォームの径方向内側にダブテールを備えており、圧縮機ロータの外周面に設けられダブテールと相補的な断面形状を有するスロットに当該ダブテールが嵌め込まれることにより、圧縮機ロータに取り付けられる。上述したプラットフォームは、動翼列を構成する全ての動翼が圧縮機ロータに取り付けられた状態において、全体としてリングを形成するような形状を有しており、このとき、プラットフォームの外面は、後述する主流流路の径方向内側境界面を形成する。なお、軸流圧縮機においては、動翼と圧縮機ロータが一体化されたブリスク(BLISK;Bladed Disk)が採用されることもあるが、この場合には、ブリスクの外周面(動翼の翼部の径方向内端が結合されている面)が、上述したプラットフォームと同様に、後述する主流流路の径方向内側境界面を形成する。 The rotor blades constituting the rotor blade train usually include a blade portion and a platform coupled to the radial inner end of the blade portion. The rotor blades are further provided with a dovetail on the radial inside of the platform, and the dovetail is fitted into the compressor rotor by fitting the dovetail into a slot provided on the outer peripheral surface of the compressor rotor and having a cross-sectional shape complementary to the dovetail. It is attached. The above-mentioned platform has a shape that forms a ring as a whole when all the moving blades constituting the moving blade row are attached to the compressor rotor. At this time, the outer surface of the platform is described later. Form a radial inner interface of the mainstream flow path. In the axial flow compressor, a blisk (BLISK; Bladed Disk) in which the moving blade and the compressor rotor are integrated may be adopted. In this case, the outer peripheral surface of the blisk (the blade of the moving blade) is used. The surface to which the radial inner ends of the portions are joined) forms the radial inner interface of the mainstream flow path, which will be described later, similar to the platform described above.

静翼列を構成する静翼は、通常、翼部と、当該翼部の径方向外端及び内端にそれぞれ結合されたアウターバンド及びインナーバンドと、を備えている。静翼は、圧縮機ケーシングの内周にアウターバンドが固定されることにより、圧縮機ケーシングに取り付けられる。アウターバンド及びインナーバンドは、静翼列を構成する全ての静翼が圧縮機ケーシングに取り付けられた状態において、それぞれ全体としてリングを形成するような形状を有しており、このとき、アウターバンドの内面及びインナーバンドの外面は、それぞれ、後述する主流流路の径方向外側境界面及び径方向内側境界面を形成する。 The stationary blades constituting the stationary blade row usually include a blade portion and an outer band and an inner band coupled to the radial outer end and inner end of the blade portion, respectively. The stationary blade is attached to the compressor casing by fixing the outer band to the inner circumference of the compressor casing. The outer band and the inner band each have a shape that forms a ring as a whole in a state where all the stationary blades constituting the stationary blade row are attached to the compressor casing. At this time, the outer band The inner surface and the outer surface of the inner band form a radial outer boundary surface and a radial inner boundary surface of the mainstream flow path, which will be described later, respectively.

動翼列を構成する動翼の翼部、及び、静翼列を構成する静翼の翼部は、軸方向に延びる環状の主流流路内に配置されている。主流流路は、軸流圧縮機の作動流体である空気が流れる流路である。主流流路を流れる空気は、動翼列を通過する際に回転エネルギーを付与されて絶対流速が上昇する一方で相対流速が減少することにより静圧が上昇し、静翼列を通過する際に絶対流速が減少することにより静圧が上昇する、という過程が繰り返されることにより、次第に圧縮される。 The blades of the rotor blades constituting the rotor blades and the blades of the rotor blades forming the rotor blades are arranged in the annular mainstream flow path extending in the axial direction. The mainstream flow path is a flow path through which air, which is the working fluid of the axial flow compressor, flows. Rotational energy is applied to the air flowing through the mainstream flow path when passing through the rotor blade row, and while the absolute flow velocity increases, the static pressure rises due to the decrease in the relative flow velocity, and when passing through the rotor blade row, By repeating the process in which the static pressure rises as the absolute flow velocity decreases, it is gradually compressed.

ここで、主流流路の径方向外端は、動翼列においては、動翼の翼部の径方向外端と対向する圧縮機ケーシングの内周面によって、静翼列においては、静翼のアウターバンドの内面によって、それぞれ画定されている。また、主流流路の径方向内端は、動翼列においては、動翼のプラットフォームの外面によって、静翼列においては、静翼のインナーバンドの外面によって、それぞれ画定されている。 Here, the radial outer end of the mainstream flow path is formed by the inner peripheral surface of the compressor casing facing the radial outer end of the blade portion of the rotor blade in the rotor blade row. Each is defined by the inner surface of the outer band. The radial inner end of the mainstream flow path is defined by the outer surface of the blade platform in the rotor blade row and by the outer surface of the inner band of the rotor blade in the rotor blade row.

一方、動翼列と静翼列の間の部位において、主流流路の径方向外端は、圧縮機ケーシングの内周面によって画定されているが、主流流路の径方向内端には、実体としての面が存在しない。これは、動翼のプラットフォームと静翼のインナーバンドの間には、前者が回転部品であり後者が静止部品であるために、軸方向のギャップが存在するからである。そこで、当該ギャップにおいては、これを挟んで軸方向に隣接する動翼のプラットフォームの外面と静翼のインナーバンドの外面の軸方向における端部(上流端又は下流端)同士を結ぶ仮想的な面が、主流流路の径方向内端を画定していると見なす。 On the other hand, in the portion between the moving blade row and the stationary blade row, the radial outer end of the mainstream flow path is defined by the inner peripheral surface of the compressor casing, but the radial inner end of the mainstream flow path is defined. There is no surface as an entity. This is because there is an axial gap between the platform of the moving wing and the inner band of the stationary wing because the former is a rotating part and the latter is a stationary part. Therefore, in the gap, a virtual surface connecting the outer surface of the moving blade platform and the outer surface of the inner band of the stationary blade in the axial direction (upstream end or downstream end) adjacent to each other in the axial direction. Is considered to define the radial inner end of the mainstream flow path.

主流流路は、以上のように、その径方向外端及び内端を画定されているが、径方向外端を画定する面を径方向外側境界面、径方向内端を画定する面を径方向内側境界面と称することにする。また、径方向外側境界面及び径方向内側境界面のそれぞれと、子午面(軸流圧縮機の回転中心軸を含む平面)との交線を、径方向外側境界線及び径方向内側境界線と称することにする。 As described above, the mainstream flow path is defined with its radial outer end and inner end, but the surface defining the radial outer end is the radial outer boundary surface, and the surface defining the radial inner end is the diameter. It will be referred to as the directional inner interface. In addition, the intersection of the radial outer boundary surface and the radial inner boundary surface and the meridional surface (the plane including the rotation center axis of the axial flow compressor) is defined as the radial outer boundary line and the radial inner boundary line. I will call it.

主流流路の子午面における断面形状(即ち、径方向外側境界線及び径方向内側境界線の形状)は、軸流圧縮機の要求仕様を満足すべく決定されるが、軸流圧縮機の後段部(最下流の段を含む幾つかの段)においては、径方向外側境界線及び径方向内側境界線が、軸方向にほぼ平行(上下方向を径方向、左右方向を軸方向(左が上流側、右が下流側)として描いた図においては、ほぼ水平)となることが多い。 The cross-sectional shape of the meridional surface of the mainstream flow path (that is, the shape of the radial outer boundary line and the radial inner boundary line) is determined to satisfy the required specifications of the axial flow compressor, but is the latter stage of the axial flow compressor. In the part (several steps including the most downstream step), the radial outer boundary line and the radial inner boundary line are almost parallel in the axial direction (vertical direction is radial direction, left and right direction is axial direction (left is upstream). In the figure drawn with the side and right as the downstream side), it is often almost horizontal).

このような形状の主流流路を備える軸流圧縮機において、後段部の動翼列における主流流路の径方向内側境界線を、下流側へ向かって径が拡大するようなもの(即ち、上述したような図においては、右上がりとなるようなもの)とすることにより、当該動翼列の効率が向上することが知られている。これは、翼部の後縁近傍におけるコーナー剥離が抑制され、これに起因する全圧損失が低減するためである。 In an axial compressor provided with a mainstream flow path having such a shape, the diameter of the radial inner boundary line of the mainstream flow path in the rear rotor blade row is expanded toward the downstream side (that is, described above). It is known that the efficiency of the rotor blade train is improved by setting the rotor blade row upward to the right in such a figure. This is because corner peeling in the vicinity of the trailing edge of the wing portion is suppressed, and the total pressure loss caused by this is reduced.

ただし、この場合には、全体として軸方向にほぼ平行に延びる形状を維持すべく、径方向内側境界線は、動翼列において下流側へ向かって径を拡大させた分だけ、静翼列において下流側へ向かって径を縮小させる必要があった。そして、そのような静翼列における径方向内側境界線は、通常、静翼列の入口(インナーバンドの上流端)に対応する点と、静翼列の出口(インナーバンドの下流端)に対応する点とを結ぶ直線とされていた。 However, in this case, in order to maintain the shape extending almost parallel to the axial direction as a whole, the radial inner boundary line is formed in the rotor blade row by the amount that the diameter is increased toward the downstream side in the rotor blade row. It was necessary to reduce the diameter toward the downstream side. And, the radial inner boundary line in such a stationary blade row usually corresponds to the point corresponding to the inlet of the stationary blade row (upstream end of the inner band) and the outlet of the stationary blade row (downstream end of the inner band). It was supposed to be a straight line connecting the points to be used.

しかしながら、径方向内側境界線を、動翼列において下流側へ向かって径を拡大させた分だけ、静翼列において下流側へ向かって直線的に径が縮小するようなものとすると、静翼列を通過する空気の減速量が大きくなり、流れの剥離が発生して全圧損失が増大する結果、静翼列の効率が低下してしまうという問題があった。この静翼列の効率の低下は、上述した動翼列の効率の向上を相殺する(場合によっては、これを上回る)ものであり、軸流圧縮機の全体効率を向上させるために、その抑制が求められていた。 However, assuming that the radial inner boundary line is linearly reduced in diameter toward the downstream side in the rotor blade row by the amount that the diameter is increased toward the downstream side in the rotor blade row, the stationary blade is used. There is a problem that the deceleration amount of the air passing through the row is increased, the flow is separated, the total pressure loss is increased, and the efficiency of the blade row is lowered. This decrease in the efficiency of the stationary blade train offsets (in some cases exceeds) the above-mentioned improvement in the efficiency of the moving blade train, and suppresses it in order to improve the overall efficiency of the axial flow compressor. Was sought.

本開示は、以上のような問題点に鑑みてなされたものであって、後段部の動翼列における主流流路の径方向内側境界線が、下流側へ向かって径が拡大するようなものとされている場合に、全体効率を向上させるべく、静翼列の効率の低下を可及的に抑制することができる軸流圧縮機を提供することを目的とする。 The present disclosure has been made in view of the above problems, and the radial inner boundary line of the mainstream flow path in the moving blade row in the rear stage expands in diameter toward the downstream side. In this case, it is an object of the present invention to provide an axial flow compressor capable of suppressing a decrease in the efficiency of the stationary blade row as much as possible in order to improve the overall efficiency.

上記課題を解決するために、本開示の軸流圧縮機は、径方向外側境界面及び径方向内側境界面によって画定される環状の主流流路と、前記主流流路内に配置された少なくとも1つの静翼列と、前記主流流路内における前記静翼列の直上流及び直下流にそれぞれ配置された上流側動翼列及び下流側動翼列と、を含み、前記主流流路の前記径方向内側境界面と子午面との交線である径方向内側境界線は、
(1)前記上流側動翼列及び前記下流側動翼列のそれぞれの下流端において上流端よりも径方向外側に位置し、
(2)前記静翼列の下流端において上流端よりも径方向内側に位置し、
且つ、
(3)前記静翼列の上流端と下流端の間において、これらを結ぶ直線よりも径方向内側に位置し、且つ、上流側の曲線部と下流側の直線部とから成っており、
前記曲線部は、前記直線部との接続点及び前記静翼列の上流端のそれぞれにおいて、それぞれ下流側及び上流側に位置する前記径方向内側境界線と滑らかに接続されている。
In order to solve the above problems, the axial flow compressor of the present disclosure includes an annular mainstream flow path defined by a radial outer boundary surface and a radial inner boundary surface, and at least one arranged in the mainstream flow path. The diameter of the mainstream flow path includes the two stationary blade rows and the upstream and downstream blade rows arranged immediately upstream and downstream of the stationary blade row in the mainstream flow path, respectively. The radial inner boundary, which is the intersection of the inner interface and the meridional surface, is
(1) At each downstream end of the upstream rotor blade row and the downstream rotor blade row, the rotor blade row is located radially outside the upstream end.
(2) Located at the downstream end of the stationary blade row in the radial direction from the upstream end,
and,
(3) Between the upstream end and the downstream end of the stationary blade row, it is located radially inside the straight line connecting them, and is composed of a curved portion on the upstream side and a straight portion on the downstream side.
The curved portion is smoothly connected to the radial inner boundary line located on the downstream side and the upstream side, respectively, at the connection point with the straight portion and the upstream end of the stationary blade row.

本開示の軸流圧縮機によれば、後段部の動翼列における主流流路の径方向内側境界線が、下流側へ向かって径が拡大するようなものとされている場合に、静翼列の効率の低下を可及的に抑制することができ、ひいては軸流圧縮機全体の効率を向上させることができるという、優れた効果を得ることができる。 According to the axial flow compressor of the present disclosure, when the radial inner boundary line of the mainstream flow path in the rear rotor blade row is set to increase in diameter toward the downstream side, the stationary blade It is possible to obtain an excellent effect that the decrease in the efficiency of the row can be suppressed as much as possible, and the efficiency of the entire axial compressor can be improved.

本開示の実施形態の軸流圧縮機の後段部における主流流路の子午面における断面形状を示す概略説明図である。It is schematic explanatory drawing which shows the cross-sectional shape in the meridional plane of the mainstream flow path in the rear part of the axial flow compressor of the embodiment of this disclosure. 本開示の実施形態の軸流圧縮機の後段部における主流流路の子午面における断面形状を示す概略説明図であって、径方向内側境界線のうち静翼列区間を拡大して示している。It is a schematic explanatory view which shows the cross-sectional shape in the meridional plane of the mainstream flow path in the latter stage part of the axial flow compressor of this disclosure, and shows the stationary blade row section of the radial inner boundary line enlarged. .. 本開示の軸流圧縮機の径方向内側境界線の静翼列区間における曲線区間と直線区間との接続点の位置を代表するパラメータを種々に変えた場合の静翼の全圧損失係数を示すグラフであって、(A)は接続点の軸方向位置を代表するパラメータと全圧損失係数の関係を、(B)は接続点の径方向位置を代表するパラメータと全圧損失係数の関係を、それぞれ示している。The total pressure loss coefficient of the stationary blade is shown when the parameters representing the positions of the connection points between the curved section and the straight section in the stationary blade row section of the radial inner boundary line of the axial flow compressor of the present disclosure are variously changed. In the graph, (A) shows the relationship between the parameter representing the axial position of the connection point and the total pressure loss coefficient, and (B) shows the relationship between the parameter representing the radial position of the connection point and the total pressure loss coefficient. , Each is shown. CFD解析を通じて求めた静翼の全圧損失係数のスパン方向分布を示すグラフである。It is a graph which shows the span direction distribution of the total pressure drop coefficient of a stationary blade obtained through CFD analysis.

以下、本開示の実施形態について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings.

図1は、本開示の実施形態の軸流圧縮機の後段部における主流流路の子午面における断面形状を示す概略説明図である。 FIG. 1 is a schematic explanatory view showing a cross-sectional shape of a mainstream flow path in a meridional surface in a rear portion of an axial compressor according to an embodiment of the present disclosure.

主流流路100は、矢印AFで示すように空気が流れる環状の流路であって、その内部には、静翼(列)120が配置されている。静翼(列)120の直上流及び直下流には、それぞれ上流側動翼(列)110及び下流側動翼(列)130が配置されている。なお、図1においては、上流側動翼(列)110の翼部の前縁110L及び後縁110T、静翼(列)120の翼部の前縁120L及び後縁120T、並びに、下流側動翼(列)130の翼部の前縁130L及び後縁130Tを、模式的に直線で示している。 The mainstream flow path 100 is an annular flow path through which air flows as shown by arrow AF, and a stationary blade (row) 120 is arranged inside the mainstream flow path 100. An upstream moving blade (row) 110 and a downstream moving blade (row) 130 are arranged immediately upstream and immediately downstream of the stationary blade (row) 120, respectively. In FIG. 1, the front edge 110L and the trailing edge 110T of the blade portion of the upstream moving blade (row) 110, the front edge 120L and the trailing edge 120T of the blade portion of the stationary blade (row) 120, and the downstream side movement The front edge 130L and the trailing edge 130T of the wing portion of the wing (row) 130 are schematically shown by a straight line.

主流流路100の径方向外端は、圧縮機ケーシング(図示省略)の内面によって形成される径方向外側境界面によって画定されるが、主流流路100の子午面における断面形状を示す図1において、当該径方向外側境界面は、径方向外側境界線200として示されている。 The radial outer end of the mainstream flow path 100 is defined by a radial outer boundary surface formed by the inner surface of the compressor casing (not shown), and is shown in FIG. 1 showing the cross-sectional shape of the mainstream flow path 100 in the meridional surface. , The radial outer boundary surface is shown as the radial outer boundary line 200.

一方、主流流路100の径方向内端は、径方向内側境界面によって画定されるが、主流流路100の子午面における断面形状を示す図1において、当該径方向内側境界面は、径方向内側境界線300として示されている。 On the other hand, the radial inner end of the mainstream flow path 100 is defined by the radial inner boundary surface, and in FIG. 1, which shows the cross-sectional shape of the mainstream flow path 100 in the meridional surface, the radial inner boundary surface is radial. It is shown as the inner border 300.

背景技術欄で述べたように、軸流圧縮機の後段部における主流流路100の径方向内側境界線300は、軸方向にほぼ平行(上下方向が径方向Rに、左右方向が軸方向X(左が上流側、右が下流側)に、それぞれ対応する図1においては、ほぼ水平)に延びている。このことを示すために、図1には、軸方向に平行な(同図においては水平な)仮想的な直線Lを示してある。 As described in the background technology column, the radial inner boundary line 300 of the mainstream flow path 100 in the rear stage of the axial flow compressor is substantially parallel to the axial direction (vertical direction is radial direction R, left and right direction is axial direction X). (Left is the upstream side, right is the downstream side), and in the corresponding FIG. 1, they extend almost horizontally). To show this, FIG. 1 shows a virtual straight line L parallel to the axial direction (horizontal in the figure).

以下、主流流路100の径方向内側境界線300の形状について詳述する。 Hereinafter, the shape of the radial inner boundary line 300 of the mainstream flow path 100 will be described in detail.

図1において、径方向内側境界線300の上には、形状の定義にあたって必要となる複数の点が示されている。 In FIG. 1, a plurality of points necessary for defining the shape are shown on the radial inner boundary line 300.

310U及び310Dは、それぞれ上流側動翼110のプラットフォーム(図示省略)の上流端及び下流端に対応する点である。また、320U及び320Dは、それぞれ静翼120のインナーバンド(図示省略)の上流端及び下流端に対応する点である。さらに、330U及び330Dは、それぞれ下流側動翼130のプラットフォーム(図示省略)の上流端及び下流端に対応する点である。 The points 310U and 310D correspond to the upstream end and the downstream end of the platform (not shown) of the upstream moving blade 110, respectively. Further, 320U and 320D correspond to the upstream end and the downstream end of the inner band (not shown) of the stationary blade 120, respectively. Further, 330U and 330D are points corresponding to the upstream end and the downstream end of the platform (not shown) of the downstream rotor blade 130, respectively.

径方向内側境界線300のうち、点310Uから点310Dまでの区間、点320Uから点320Dまでの区間、点330Uから点330Dまでの区間を、便宜的にそれぞれ上流側動翼列区間310、静翼列区間320、下流側動翼列区間330と称することにする。 Of the radial inner boundary line 300, the section from the point 310U to the point 310D, the section from the point 320U to the point 320D, and the section from the point 330U to the point 330D are, for convenience, the upstream side moving blade row section 310 and the static. It will be referred to as a blade row section 320 and a downstream moving blade row section 330.

また、点310Dから点320Uまでの区間は、上流側動翼110のプラットフォームの下流端と静翼120のインナーバンドの上流端の間に存在するギャップに対応する区間であり、これを静翼列上流側ギャップ区間315と称することにする。さらに、点320Dから点330Uまでの区間は、静翼120のインナーバンドの下流端と下流側動翼130のプラットフォームの上流端の間に存在するギャップに対応する区間であり、これを静翼列下流側ギャップ区間325と称することにする。 The section from the point 310D to the point 320U corresponds to the gap existing between the downstream end of the platform of the upstream rotor blade 110 and the upstream end of the inner band of the stationary blade 120, and this is a stationary blade row. It will be referred to as the upstream gap section 315. Further, the section from the point 320D to the point 330U is a section corresponding to the gap existing between the downstream end of the inner band of the stationary blade 120 and the upstream end of the platform of the downstream rotor blade 130, and this is a stationary blade row. It will be referred to as the downstream gap section 325.

上流側動翼列区間310及び下流側動翼列区間330は、下流側へ向かって径が拡大する(即ち、図1において右上がりとなる)ものとして構成されている。即ち、上流側動翼列区間310の下流端の点310Dは、上流端の点310Uよりも径方向外側に位置している。同様に、下流側動翼列区間330の下流端の点330Dは、上流端の点330Uよりも径方向外側に位置している。 The upstream rotor blade row section 310 and the downstream rotor blade row section 330 are configured so that their diameters increase toward the downstream side (that is, they rise to the right in FIG. 1). That is, the point 310D at the downstream end of the upstream rotor blade row section 310 is located radially outside the point 310U at the upstream end. Similarly, the point 330D at the downstream end of the downstream rotor blade row section 330 is located radially outside the point 330U at the upstream end.

静翼列上流側ギャップ区間315及び静翼列下流側ギャップ区間325は、仮想的な面であり、便宜上、径が一定(即ち、図1において水平)の区間と見なす。 The gap section 315 on the upstream side of the stationary blade row and the gap section 325 on the downstream side of the stationary blade row are virtual surfaces, and are regarded as sections having a constant diameter (that is, horizontal in FIG. 1) for convenience.

なお、図1においては、上流側動翼列区間310及び静翼列上流側ギャップ区間315を共に直線として示しているが、上流側動翼列区間310は、点310Dにおいて静翼列上流側ギャップ区間315と滑らかに接続される曲線を含んでいることが好ましい。同様に、図1においては、静翼列下流側ギャップ区間325及び下流側動翼列区間330を共に直線として示しているが、下流側動翼列区間330は、点330Uにおいて静翼列下流側ギャップ区間325と滑らかに接続される曲線を含んでいることが好ましい。 In addition, in FIG. 1, both the upstream side moving blade row section 310 and the stationary blade row upstream side gap section 315 are shown as straight lines, but the upstream side moving blade row section 310 is the stationary blade row upstream side gap at the point 310D. It is preferable to include a curve that is smoothly connected to the section 315. Similarly, in FIG. 1, both the stationary blade row downstream gap section 325 and the downstream rotor blade row section 330 are shown as straight lines, but the downstream rotor blade row section 330 is on the downstream side of the stationary blade row at the point 330U. It preferably includes a curve that is smoothly connected to the gap section 325.

静翼列区間320は、上流側動翼列区間310において下流側へ向かって径を拡大させた分だけ、下流側へ向かって径が縮小する(即ち、図1において全体として右下がりとなる)ものとして構成されているが、その形状について、以下で詳述する。 The diameter of the stationary blade row section 320 is reduced toward the downstream side by the amount that the diameter is increased toward the downstream side in the upstream side moving blade row section 310 (that is, the diameter is downward as a whole in FIG. 1). Although it is configured as a thing, its shape will be described in detail below.

図2は、本開示の実施形態の軸流圧縮機の後段部における主流流路の子午面における断面形状を示す概略説明図であって、径方向内側境界線300のうち静翼列区間320を拡大して示している。 FIG. 2 is a schematic explanatory view showing a cross-sectional shape of the mainstream flow path in the meridional plane in the rear stage of the axial compressor of the present disclosure, and shows a stationary blade row section 320 of the radial inner boundary line 300. It is shown enlarged.

静翼列区間320は、上流側の曲線区間320C(曲線部)及び下流側の直線区間320S(直線部)から成っており、これら両区間は接続点320Mにおいて滑らかに接続されている。また、静翼列区間320は、その上流端の点320Uにおいて、それよりも上流側の径方向内側境界線300(即ち静翼列上流側ギャップ区間315;図示省略)と、また、その下流端の点320Dにおいて、それよりも下流側の径方向内側境界線300(即ち静翼列下流側ギャップ区間325;図示省略)と、それぞれ滑らかに接続されている。なお、曲線区間320Cを構成する曲線としては、例えば3次以上の高次の曲線を用いることができる。 The stationary blade row section 320 is composed of a curved section 320C (curved section) on the upstream side and a straight section 320S (straight section) on the downstream side, and both sections are smoothly connected at the connection point 320M. Further, the stationary blade row section 320 has a radial inner boundary line 300 (that is, a stationary blade row upstream side gap section 315; not shown) on the upstream side of the point 320U at the upstream end thereof, and a downstream end thereof. At point 320D, it is smoothly connected to the radial inner boundary line 300 (that is, the gap section 325 on the downstream side of the stationary blade row; not shown) on the downstream side of the point 320D. As the curve constituting the curve section 320C, for example, a high-order curve having a third order or higher can be used.

上述したように、静翼列区間320は、下流側へ向かって径が縮小する(即ち、図2において全体として右下がりとなる)ものとして構成されている。即ち、静翼列区間320の下流端の点320Dは、上流端の点320Uよりも径方向内側に位置している。また、静翼列区間320は、上流端の点320Uと下流端の点320Dを結ぶ直線320‘よりも径方向内側に位置している。なお、直線320‘は、背景技術欄で述べたように、静翼列区間において下流側へ向かって径が縮小する径方向内側境界線として、従来技術において採用されていたものである。 As described above, the stationary blade row section 320 is configured such that the diameter decreases toward the downstream side (that is, the diameter decreases to the right as a whole in FIG. 2). That is, the point 320D at the downstream end of the stationary blade row section 320 is located radially inside the point 320U at the upstream end. Further, the stationary blade row section 320 is located radially inside the straight line 320'connecting the point 320U at the upstream end and the point 320D at the downstream end. As described in the background technology column, the straight line 320'has been adopted in the prior art as a radial inner boundary line whose diameter decreases toward the downstream side in the stationary blade row section.

ここで、曲線区間320Cと直線区間320Sとの接続点320Mの軸方向X及び径方向Rにおける位置は、これを種々に変えてCFD(Computational Fluid Dynamics;数値流体力学)解析を行い、静翼120の全圧損失係数が最小となるように選定した。 Here, the positions of the connection point 320M between the curved section 320C and the straight section 320S in the axial direction X and the radial direction R are variously changed to perform CFD (Computational Fluid Dynamics) analysis, and the stationary blade 120. It was selected so that the total pressure loss coefficient of was minimized.

このとき、接続点320Mの軸方向Xにおける位置は、静翼120の翼部の前縁120Lから接続点320Mまでの軸方向距離Lxを、静翼120のアキシャルコード(axial chord;軸方向に計った翼弦長(前縁から後縁までの距離))Cxで除した無次元パラメータLx/Cxで代表させた。なお、アキシャルコードがスパン方向に変化する静翼の場合、アキシャルコードとしては、例えばスパン方向位置50%における値を用いればよい。 At this time, the position of the connection point 320M in the axial direction X is such that the axial distance Lx from the front edge 120L of the blade portion of the stationary blade 120 to the connection point 320M is measured in the axial chord of the stationary blade 120. The chord length (distance from the front edge to the trailing edge) was represented by the non-dimensional parameter Lx / Cx divided by Cx. In the case of a stationary blade whose axial code changes in the span direction, for example, a value at a position of 50% in the span direction may be used as the axial code.

また、接続点320Mの径方向Rにおける位置は、静翼列区間320の上流端の点320Uと接続点320Mの半径差DRを、静翼列区間320の上流端の点320Uと下流端の点320Dの半径差DRtで除した無次元パラメータDR/DRtで代表させた。 Further, the position of the connection point 320M in the radial direction is the radius difference DR between the upstream end point 320U and the connection point 320M of the stationary blade row section 320, and the upstream end point 320U and the downstream end point of the stationary blade row section 320. It was represented by the non-dimensional parameter DR / DRt divided by the radius difference DRt of 320D.

無次元パラメータLx/Cx及びDR/DRtを種々に変えてCFD解析を行い、静翼120の全圧損失係数を求めた結果を、図3に示す。 FIG. 3 shows the results of obtaining the total pressure drop coefficient of the stationary blade 120 by performing CFD analysis with various dimensionless parameters Lx / Cx and DR / DRt.

図3は、径方向内側境界線300の静翼列区間320における曲線区間320Cと直線区間320Sとの接続点320Mの位置を代表するパラメータを種々に変えた場合の静翼120の全圧損失係数を示すグラフであって、(A)は接続点320Mの軸方向位置を代表するパラメータLx/Cxと全圧損失係数の関係を、(B)は接続点320Mの径方向位置を代表するパラメータDR/DRtと全圧損失係数の関係を、それぞれ示している。なお、両グラフとも、縦軸は全圧損失係数であり、横軸はそれぞれのパラメータをパーセンテージ表示したものである。 FIG. 3 shows the total pressure loss coefficient of the stationary blade 120 when the parameters representing the positions of the connection points 320M between the curved section 320C and the straight section 320S in the stationary blade row section 320 of the radial inner boundary line 300 are variously changed. (A) is the relationship between the parameter Lx / Cx representing the axial position of the connection point 320M and the total pressure loss coefficient, and (B) is the parameter DR representing the radial position of the connection point 320M. The relationship between / DRt and the total pressure loss coefficient is shown respectively. In both graphs, the vertical axis is the total pressure drop coefficient, and the horizontal axis is the percentage display of each parameter.

図3(A)からは、静翼120の全圧損失係数を可及的に小さくするためには、接続点320Mの軸方向位置を代表するパラメータLx/Cxを10〜30%とすることが好ましいことが分かる。これは、静翼列120のハブ(根元)の近傍(即ち、径方向内側境界面の近傍)においては、マッハ数が極大となるLx/Cx≒30%よりも下流側の領域で流れの減速が大きいため、これよりも上流側の領域に曲線区間320Cを配置して径方向内側境界線300の静翼列区間320を径方向内向きにえぐってマッハ数の極大値を小さく抑えると、これよりも下流側の領域で流れの減速が緩和されるためと考えられる。なお、グラフは、軸流圧縮機が設計点で作動している場合を示している。 From FIG. 3A, in order to reduce the total pressure loss coefficient of the vane 120 as much as possible, the parameter Lx / Cx representing the axial position of the connection point 320M can be set to 10 to 30%. It turns out to be preferable. This is because in the vicinity of the hub (root) of the stationary blade row 120 (that is, in the vicinity of the radial inner boundary surface), the flow is decelerated in the region downstream of Lx / Cx≈30% where the Mach number is maximum. Therefore, if the curved section 320C is arranged in the region on the upstream side of this and the stationary blade row section 320 of the radial inner boundary line 300 is scooped inward in the radial direction to keep the maximum value of the Mach number small, this This is thought to be because the deceleration of the flow is mitigated in the area downstream of the area. The graph shows the case where the axial flow compressor is operating at the design point.

また、図3(B)からは、静翼120の全圧損失係数を可及的に小さくするためには、接続点320Mの径方向位置を代表するパラメータDR/DRtを25〜75%とすることが好ましいことが分かる。なお、図中のDは軸流圧縮機が設計点で作動している場合を、NSは軸流圧縮機が絞り側の条件(Near Stall条件)で作動している場合を、それぞれ示しているが、いずれの場合においても、パラメータDR/DRtを25〜75%とした場合に、全圧損失係数を小さく抑えられることが分かる。 Further, from FIG. 3B, in order to reduce the total pressure loss coefficient of the stationary blade 120 as much as possible, the parameter DR / DRt representing the radial position of the connection point 320M is set to 25 to 75%. It turns out that is preferable. In the figure, D indicates that the axial compressor is operating at the design point, and NS indicates that the axial compressor is operating under the conditions on the throttle side (Near Stall condition). However, in any case, it can be seen that the total pressure loss coefficient can be suppressed to a small value when the parameter DR / DRt is set to 25 to 75%.

そこで、パラメータLx/Cxを20%に、パラメータDR/DRtを50%に、それぞれ設定してCFD解析を行い、静翼120の全圧損失係数のスパン方向分布を求めた結果を、図4に示す。 Therefore, CFD analysis was performed with the parameters Lx / Cx set to 20% and the parameters DR / DRt set to 50%, respectively, and the results of obtaining the span direction distribution of the total pressure loss coefficient of the stationary blade 120 are shown in FIG. Shown.

図4は、静翼120の全圧損失係数のスパン方向分布を示すグラフであって、縦軸はスパン方向位置(翼部のハブから計った高さを翼部の全高で除した無次元値をパーセンテージ表示したもの)、横軸は全圧損失係数である。また、図中のIVは本開示の実施形態の軸流圧縮機(径方向内側境界線300のうち静翼列区間320として、曲線区間320C及び直線区間320Sから成る上述した態様のものを採用した場合)における静翼120の全圧損失係数を、PAは従来技術による軸流圧縮機(径方向内側境界線のうち静翼列区間として、その上流端の点と下流端の点を結ぶ直線(320‘)を採用した場合)を、それぞれ示している。 FIG. 4 is a graph showing the distribution of the total pressure loss coefficient of the stationary blade 120 in the span direction, and the vertical axis is the span direction position (the height measured from the hub of the blade portion divided by the total height of the blade portion). Is displayed as a percentage), and the horizontal axis is the total pressure loss coefficient. Further, as IV in the figure, the axial flow compressor of the embodiment of the present disclosure (the stationary blade row section 320 of the radial inner boundary line 300, which has the above-described embodiment consisting of the curved section 320C and the straight section 320S, is adopted. The total pressure loss coefficient of the stationary blade 120 in the case) is set by the PA using a conventional axial flow compressor (as a stationary blade row section of the radial inner boundary line, a straight line connecting the points at the upstream end and the points at the downstream end (case). When 320') is adopted), they are shown respectively.

図4に示すように、スパン方向位置0〜40%の領域において、本開示の実施形態の軸流圧縮機における静翼120の全圧損失係数(IV)が、従来技術による軸流圧縮機における静翼の全圧損失係数(PA)と比較して、全体的に小さく抑えられていることが分かる。なお、ハブのごく近くの領域(スパン方向位置約3%を中心とする領域)において、本開示の実施形態の軸流圧縮機における静翼120の全圧損失係数(IV)が、従来技術による軸流圧縮機における静翼の全圧損失係数(PA)を上回っているが、当該領域を通過する空気の流量は僅かであるため、その影響は微小である。即ち、本開示の実施形態の軸流圧縮機における静翼120の全圧損失係数(IV)は、従来技術による軸流圧縮機における静翼の全圧損失係数(PA)と比較して、全体として小さく抑えられているといえる。 As shown in FIG. 4, in the region of the span direction position 0 to 40%, the total pressure loss coefficient (IV) of the stationary blade 120 in the axial flow compressor according to the present disclosure is the axial flow compressor according to the prior art. It can be seen that the total pressure loss coefficient (PA) of the stationary blade is kept small as a whole. In a region very close to the hub (a region centered on a position in the span direction of about 3%), the total pressure loss coefficient (IV) of the stationary blade 120 in the axial flow compressor of the embodiment of the present disclosure is based on the prior art. Although it exceeds the total pressure loss coefficient (PA) of a stationary blade in an axial compressor, the effect is small because the flow rate of air passing through the region is small. That is, the total pressure loss coefficient (IV) of the stationary blade 120 in the axial flow compressor of the present disclosure is as a whole as compared with the total pressure loss coefficient (PA) of the stationary blade in the axial flow compressor according to the prior art. It can be said that it is kept small.

100 主流流路
110 上流側動翼列
120 静翼列
130 下流側動翼列
300 径方向内側境界線
320C 曲線区間(曲線部)
320M 接続点
320S 直線区間(直線部)
100 Mainstream flow path 110 Upstream side moving blade row 120 Static blade row 130 Downstream side moving blade row 300 Radial inner boundary line 320C Curved section (curved part)
320M Connection point 320S Straight section (straight section)

Claims (2)

径方向外側境界面及び径方向内側境界面によって画定される環状の主流流路と、
前記主流流路内に配置された少なくとも1つの静翼列と、
前記主流流路内における前記静翼列の直上流及び直下流にそれぞれ配置された上流側動翼列及び下流側動翼列と、を含む軸流圧縮機であって、
前記主流流路の前記径方向内側境界面と子午面との交線である径方向内側境界線は、
(1)前記上流側動翼列及び前記下流側動翼列のそれぞれの下流端において上流端よりも径方向外側に位置し、
(2)前記静翼列の下流端において上流端よりも径方向内側に位置し、
且つ、
(3)前記静翼列の上流端と下流端の間において、これらを結ぶ直線よりも径方向内側に位置し、且つ、上流側の曲線部と下流側の直線部とから成っており、
前記曲線部は、前記直線部との接続点及び前記静翼列の上流端のそれぞれにおいて、それぞれ下流側及び上流側に位置する前記径方向内側境界線と滑らかに接続されている、軸流圧縮機。
An annular mainstream flow path defined by a radial outer interface and a radial inner interface,
With at least one stationary blade array arranged in the mainstream flow path,
An axial flow compressor including an upstream-side moving wing train and a downstream-side moving wing train arranged immediately upstream and immediately downstream of the stationary blade train in the mainstream flow path, respectively.
The radial inner boundary line, which is the line of intersection between the radial inner boundary surface and the meridional surface of the mainstream flow path, is
(1) Located at each downstream end of the upstream side moving wing train and the downstream side moving wing train, and located radially outside the upstream end.
(2) Located at the downstream end of the stationary blade row in the radial direction from the upstream end,
and,
(3) Between the upstream end and the downstream end of the stationary blade row, it is located radially inside the straight line connecting them, and is composed of a curved portion on the upstream side and a straight portion on the downstream side.
Axial flow compression in which the curved portion is smoothly connected to the radial inner boundary line located on the downstream side and the upstream side, respectively, at the connection point with the straight portion and the upstream end of the stationary blade row. Machine.
前記静翼列を構成する静翼の前縁から前記接続点までの軸方向距離をLx、前記静翼のアキシャルコードをCxとするとき、LxをCxで除したパラメータは0.1〜0.3の範囲にあり、
前記径方向内側境界線の前記静翼列の上流端に対応する点と前記接続点の半径差をDR、前記径方向内側境界線の前記静翼列の上流端に対応する点と下流端に対応する点の半径差をDRtとするとき、DRをDRtで除したパラメータは0.25〜0.75の範囲にある、
請求項1に記載の軸流圧縮機。
When the axial distance from the front edge of the stationary blades constituting the stationary blade row to the connection point is Lx and the axial code of the stationary blade is Cx, the parameter obtained by dividing Lx by Cx is 0.1 to 0. In the range of 3
The radial difference between the point corresponding to the upstream end of the stationary blade row and the connection point of the radial inner boundary line is DR, and the point corresponding to the upstream end of the stationary blade row and the downstream end of the radial inner boundary line When the radius difference of the corresponding points is DRt, the parameter obtained by dividing DR by DRt is in the range of 0.25 to 0.75.
The axial flow compressor according to claim 1.
JP2019081063A 2019-04-22 2019-04-22 axial compressor Active JP7273363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019081063A JP7273363B2 (en) 2019-04-22 2019-04-22 axial compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019081063A JP7273363B2 (en) 2019-04-22 2019-04-22 axial compressor

Publications (2)

Publication Number Publication Date
JP2020176598A true JP2020176598A (en) 2020-10-29
JP7273363B2 JP7273363B2 (en) 2023-05-15

Family

ID=72936517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019081063A Active JP7273363B2 (en) 2019-04-22 2019-04-22 axial compressor

Country Status (1)

Country Link
JP (1) JP7273363B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167899A (en) * 1980-04-28 1981-12-23 United Technologies Corp Compressing section of axial flow rotary machine
JPH07247996A (en) * 1994-03-11 1995-09-26 Ishikawajima Harima Heavy Ind Co Ltd Passage form of compressor
US20040013520A1 (en) * 2002-07-20 2004-01-22 Volker Guemmer Fluid flow machine (turbomachine) with increased rotor-stator ratio
JP2006138319A (en) * 2004-11-10 2006-06-01 United Technol Corp <Utc> Rotor for gas turbine engine, vane element and engine designing method
US20150211546A1 (en) * 2014-01-24 2015-07-30 Pratt & Whitney Canada Corp. Multistage axial flow compressor
JP2017031847A (en) * 2015-07-30 2017-02-09 三菱日立パワーシステムズ株式会社 Axial flow compressor, gas turbine with the same, and stationary blade of axial flow compressor
JP2017531122A (en) * 2014-08-29 2017-10-19 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Controlled convergent compressor flow path for gas turbine engines

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167899A (en) * 1980-04-28 1981-12-23 United Technologies Corp Compressing section of axial flow rotary machine
JPH07247996A (en) * 1994-03-11 1995-09-26 Ishikawajima Harima Heavy Ind Co Ltd Passage form of compressor
US20040013520A1 (en) * 2002-07-20 2004-01-22 Volker Guemmer Fluid flow machine (turbomachine) with increased rotor-stator ratio
JP2006138319A (en) * 2004-11-10 2006-06-01 United Technol Corp <Utc> Rotor for gas turbine engine, vane element and engine designing method
US20150211546A1 (en) * 2014-01-24 2015-07-30 Pratt & Whitney Canada Corp. Multistage axial flow compressor
JP2017531122A (en) * 2014-08-29 2017-10-19 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Controlled convergent compressor flow path for gas turbine engines
JP2017031847A (en) * 2015-07-30 2017-02-09 三菱日立パワーシステムズ株式会社 Axial flow compressor, gas turbine with the same, and stationary blade of axial flow compressor

Also Published As

Publication number Publication date
JP7273363B2 (en) 2023-05-15

Similar Documents

Publication Publication Date Title
JP6929050B2 (en) Turbomachinery and turbine blades for turbomachinery
EP2159398B1 (en) Separation-resistant inlet duct for mid-turbine frames
JP6877985B2 (en) Turbomachinery and turbine nozzles for it
JP6421091B2 (en) Axial flow compressor, gas turbine including the same, and stationary blade of axial flow compressor
US7118331B2 (en) Stator vane assembly for a turbomachine
US9726197B2 (en) Turbomachine element
JP6877984B2 (en) Turbomachinery and turbine blades for it
EP2518326A2 (en) Centrifugal compressor assembly with stator vane row
JP2016109124A (en) Axial compressor endwall treatment for controlling leakage flow
JP5850968B2 (en) Nozzle ring with non-uniformly distributed wings and uniform throat area
JP6971564B2 (en) Turbomachinery and turbine nozzles for it
EP3163028A1 (en) Compressor apparatus
US10900366B2 (en) Passageway between a shroud and a rotor platform in a turbine engine
JP2016138549A (en) Axial compressor rotor incorporating splitter blades
JP2012122443A (en) Centrifugal turbomachine
JP2016125481A (en) Axial compressor rotor incorporating non-axisymmetric hub flowpath and splittered blades
JP2017519154A (en) Diffuser for centrifugal compressor
CN112983885B (en) Shroud for a splitter and rotor airfoil of a fan of a gas turbine engine
JP5426305B2 (en) Turbo machine
US20190017385A1 (en) Rotor of a fluid flow engine
EP3098383B1 (en) Compressor airfoil with compound leading edge profile
JP2012188957A (en) Axial flow turbine
JP2011099438A (en) Steampath flow separation reduction system
JP6804265B2 (en) System for integrating turbine parts
JP7273363B2 (en) axial compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20221102

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230411

R151 Written notification of patent or utility model registration

Ref document number: 7273363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151