JP2020172082A - Post-curing unit of optical solid shaped article and post-curing method - Google Patents

Post-curing unit of optical solid shaped article and post-curing method Download PDF

Info

Publication number
JP2020172082A
JP2020172082A JP2019076410A JP2019076410A JP2020172082A JP 2020172082 A JP2020172082 A JP 2020172082A JP 2019076410 A JP2019076410 A JP 2019076410A JP 2019076410 A JP2019076410 A JP 2019076410A JP 2020172082 A JP2020172082 A JP 2020172082A
Authority
JP
Japan
Prior art keywords
post
light
curing
optical
ultraviolet led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019076410A
Other languages
Japanese (ja)
Inventor
佑樹 荒毛
Yuki Arake
佑樹 荒毛
勇哉 大長
Yuya Onaga
勇哉 大長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CMET Inc
Original Assignee
CMET Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CMET Inc filed Critical CMET Inc
Priority to JP2019076410A priority Critical patent/JP2020172082A/en
Publication of JP2020172082A publication Critical patent/JP2020172082A/en
Pending legal-status Critical Current

Links

Abstract

To provide a post-curing unit for post-curing while preventing yellow discoloration of an optical solid shaped article at post-curing, a post-curing/post-processing unit for post-processing for further reducing the discoloration after the post-curing, and a post-curing method and a post-curing/post-processing method using these units.SOLUTION: A post-curing unit for an optical solid shaped article includes: a housing for accommodating an optical solid shaped article; and an ultraviolet LED configured to emit light in which total intensity of light with wavelength 385 nm or higher is 10% or less based on all intensity of light emitted from the ultraviolet LED. A post-curing/post-processing unit includes light irradiation means configured to emit light including light with wavelength within a range of 430-500 nm and not including light with wavelength 400 nm or lower together with the ultraviolet LED inside the housing. A method for post-curing an optical solid shaped article uses the post-curing unit. A method for post-curing/post-processing an optical solid shaped article uses the post-curing/post-processing unit.SELECTED DRAWING: Figure 3

Description

本発明は、光硬化性樹脂組成物を用いて光造形して得られる光学的立体造形物の後硬化装置および後硬化方法、並びに後硬化・後処理装置および後硬化・後処理方法に関する。より詳細には、本発明は、光硬化性樹脂組成物を用いて光造形して得られる光学的立体造形物を後硬化する際の黄変などの変色を防止または抑制しながら光学的立体造形物を短縮された後硬化時間で円滑に後硬化することのできる光学的立体造形物の後硬化装置および後硬化方法、並びに光硬化性樹脂組成物を用いて光造形して得られる光学的立体造形物を後硬化する際の黄変などの変色を防止または抑制しながら光学的立体造形物の後硬化を短い後硬化時間で円滑に行い、その後に当該後硬化した光学的立体造形物の色調を更に向上させることのできる光学的立体造形物の後硬化・後処理装置および後硬化・後処理方法に関する。 The present invention relates to a post-curing device and a post-curing method for an optically three-dimensional model obtained by stereolithography using a photocurable resin composition, and a post-curing / post-treatment device and a post-curing / post-treatment method. More specifically, the present invention provides optical three-dimensional modeling while preventing or suppressing discoloration such as yellowing when post-curing an optically three-dimensional model obtained by photoforming using a photocurable resin composition. An optical three-dimensional model obtained by photo-curing using a post-curing device and post-curing method for an optically three-dimensional object capable of smoothly post-curing the object in a shortened post-curing time, and a photocurable resin composition. While preventing or suppressing discoloration such as yellowing when the modeled object is post-cured, the post-curing of the optically three-dimensional modeled object is smoothly performed in a short post-curing time, and then the color tone of the post-cured optical three-dimensional modeled object. The present invention relates to a post-curing / post-treatment device and a post-curing / post-treatment method for an optically three-dimensional model capable of further improving the above.

近年、三次元CADに入力されたデータに基づいて光硬化性樹脂組成物を光硬化させて立体造形物を製造する光学的立体造形装置(光造形装置)および当該装置を用いる光学的立体造形方法(光造形方法)が実用化されている。
光学的立体造形技術では、光硬化性樹脂組成物よりなる造形面に、コンピューターで制御された光を選択的に照射して所定の厚みに光硬化させて所定の形状パターンを有する硬化樹脂層を形成し、その硬化樹脂層の上または下に更に1層分の光硬化性樹脂組成物を施して造形面を形成させ、その造形面にコンピューターで制御された光を選択的に照射して所定の厚みに光硬化させて所定の形状パターンを有する硬化樹脂層を形成するという造形操作を、所定の寸法および形状の立体造形物が得られるまで多数回繰り返す方法が一般に広く採用されている。
この光学的立体造形技術で得られる立体造形物は、設計の途中で各種工業製品の外観デザインを検証するためのモデル、部品の機能性をチェックするためのモデル、鋳型を製作するための樹脂型、金型を製作するためのベースモデルなどとして広く利用されており、近年では、美術品の復元、模造や現代アート、ガラス張りの建築物のデザインプレゼンテーションモデルのような美術工芸品などにも用いられるようになっている。
In recent years, an optical three-dimensional modeling device (stereolithography device) for producing a three-dimensional model by photocuring a photocurable resin composition based on data input to a three-dimensional CAD, and an optical three-dimensional modeling method using the device. (Stereolithography method) has been put into practical use.
In the optical three-dimensional modeling technology, a cured resin layer having a predetermined shape pattern is formed by selectively irradiating a modeling surface made of a photocurable resin composition with light controlled by a computer and photocuring it to a predetermined thickness. A photocurable resin composition for one layer is further applied above or below the cured resin layer to form a modeled surface, and the modeled surface is selectively irradiated with computer-controlled light to determine a predetermined value. A method of repeating the molding operation of forming a cured resin layer having a predetermined shape pattern by photocuring to the thickness of the above is generally widely adopted until a three-dimensional model having a predetermined size and shape is obtained.
The three-dimensional model obtained by this optical three-dimensional modeling technology is a model for verifying the appearance design of various industrial products in the middle of design, a model for checking the functionality of parts, and a resin mold for manufacturing a mold. It is widely used as a base model for making molds, and in recent years, it is also used for restoration of works of art, imitation and contemporary art, and arts and crafts such as design presentation models of glass-walled buildings. It has become like.

光学的立体造形装置を使用して、光造形を行って造形しただけの光学的立体造形物(green optical three-dimensional object)(以下、「グリーン光学的立体造形物」または「後硬化前の光学的立体造形物」ということがある)は、未だ完全に硬化しておらず、ベタついたり、強度、形状安定性、寸法安定性などの点で劣ることが多く、そのため熱処理または紫外線照射処理を行って後硬化することが一般に広く行われている(例えば、特許文献1、特許文献2などを参照)。
加熱による後硬化は、通常、グリーン光学的立体造形物を加熱室に収容して60〜80℃程度の温度に加熱することによって行われる。しかし、耐熱性の低い樹脂では変形することがあり、汎用性のある方法とはいえない。
また、紫外線照射による後硬化は、通常、高圧水銀灯、低圧水銀灯、蛍光灯、メタルハライドランプなどの、紫外線を含む光を発射する放電ランプを用いて当該放電ランプから紫外線を含む光をグリーン光学的立体造形物に照射することによって行われている。
An optical three-dimensional object that is simply modeled by performing optical modeling using an optical three-dimensional modeling device (hereinafter, "green optical three-dimensional object" or "optical before post-curing". (Sometimes referred to as "three-dimensional model") is not completely cured yet, and is often inferior in terms of stickiness, strength, shape stability, dimensional stability, etc. Therefore, heat treatment or ultraviolet irradiation treatment is performed. It is generally widely practiced to perform and then cure (see, for example, Patent Document 1, Patent Document 2, etc.).
Post-curing by heating is usually performed by accommodating a green optical three-dimensional model in a heating chamber and heating it to a temperature of about 60 to 80 ° C. However, a resin having low heat resistance may be deformed, so it cannot be said to be a versatile method.
In addition, post-curing by ultraviolet irradiation usually uses a discharge lamp that emits light containing ultraviolet rays, such as a high-pressure mercury lamp, a low-pressure mercury lamp, a fluorescent lamp, and a metal halide lamp, and greens the light containing ultraviolet rays from the discharge lamp. It is done by irradiating the modeled object.

高圧水銀灯、低圧水銀灯、蛍光灯、メタルハライドランプなどの放電ランプから紫外線を含む光を照射してグリーン光学的立体造形物を後硬化する技術は、熱処理による後硬化に比べて、熱による光学的立体造形物の変形、収縮、着色などが生じにくいうえ、短時間で処理が行えるという長所がある。
しかし、高圧水銀灯、低圧水銀灯、蛍光灯、メタルハライドランプなどの放電ランプは、電流が増加するとランプの電圧が低下するという負特性(負の電圧・電流特性)を有していてランプを電源に直接接続すると電流が無制限に流れてランプが破壊されてしまうため、ランプ電流を安定化するための安定器(電流制限回路)が必要である。そのため、高圧水銀灯、低圧水銀灯、蛍光灯、メタルハライドランプなどの放電ランプを光学的立体造形物の後硬化装置に設置して紫外線照射方式によるグリーン光学的立体造形物の後硬化処理を行う場合は、後硬化装置に放電ランプと共に安定器を設置しなければならず、安定器の設置場所の確保が必要であり、しかも後硬化装置への放電ランプや安定器の設置の複雑化、配線の複雑化、ノイズの発生、消費電力の増大、コスト増などを招いている。
The technique of post-curing a green optical three-dimensional model by irradiating light containing ultraviolet rays from a discharge lamp such as a high-pressure mercury lamp, a low-pressure mercury lamp, a fluorescent lamp, or a metal halide lamp is a technique for post-curing a green optical three-dimensional object, as compared with post-curing by heat treatment. It has the advantages that it is less likely to deform, shrink, and color the modeled object, and that it can be processed in a short time.
However, discharge lamps such as high-pressure mercury lamps, low-pressure mercury lamps, fluorescent lamps, and metal halide lamps have the negative characteristic (negative voltage / current characteristics) that the voltage of the lamp decreases as the current increases, and the lamp is directly connected to the power supply. If connected, an unlimited amount of current will flow and the lamp will be destroyed. Therefore, a ballast (current limiting circuit) is required to stabilize the lamp current. Therefore, when a discharge lamp such as a high-pressure mercury lamp, a low-pressure mercury lamp, a fluorescent lamp, or a metal halide lamp is installed in a post-ballasting device for an optical three-dimensional model and a green optical three-dimensional model is post-cured by an ultraviolet irradiation method, It is necessary to install a ballast together with the discharge lamp in the post-curing device, and it is necessary to secure a place to install the ballast. Moreover, the installation of the discharge lamp and the stabilizer in the post-curing device is complicated, and the wiring is complicated. , Noise is generated, power consumption is increased, and cost is increased.

さらに、放電ランプは多量の熱を発生するため、光学的立体造形物の後硬化装置にこれらの放電ランプを設置するに当たっては、放熱、耐熱、耐火などの点に十分に配慮した設計にする必要がある。
また、高圧水銀灯、低圧水銀灯、蛍光灯、メタルハライドランプなどの放電ランプは、消費電力が大きいため、グリーン光学的立体造形物の後硬化時のエネルギー消費量が高くなり、コスト増を招いている。
さらにこれら放電ランプには、使用量の多寡はあるものの、すべて水銀が使われているため、近年いわゆる水俣条約に代表されるような法規制が厳しくなっており、環境保全の麺でも使用量の削減が求められている。
Furthermore, since discharge lamps generate a large amount of heat, it is necessary to design the discharge lamps in consideration of heat dissipation, heat resistance, fire resistance, etc. when installing these discharge lamps in a post-curing device for an optically three-dimensional object. There is.
Further, since discharge lamps such as high-pressure mercury lamps, low-pressure mercury lamps, fluorescent lamps, and metal halide lamps consume a large amount of power, the energy consumption during post-curing of a green optical three-dimensional model increases, which causes an increase in cost.
Furthermore, although these discharge lamps use a large amount of mercury, all of them use mercury, so in recent years the laws and regulations as represented by the so-called Minamata Convention have become stricter, and the amount of noodles used for environmental conservation is also high. Reduction is required.

その上、高圧水銀灯、低圧水銀灯、蛍光灯、メタルハライドランプなどの放電ランプを用いてグリーン光学的立体造形物に紫外線を照射して後硬化を行うと、放電ランプの種類によっては(特に近紫外線を用いた場合)、後硬化時に光学的立体造形物の黄変の度合が大きくなるという問題があり、またベタつきなどの解消効果が少ない。
光学的立体造形物の用途の拡大に伴って、黄変などの変色がなくて無色透明性に優れる光学的立体造形物、また染料や顔料などの着色剤を用いて製造した光学的立体造形物では変色などによる色調の悪化がなくて着色剤本来の良好な色調に着色された光学的立体造形物が求められるようになっている。
かかる点から、グリーン光学的立体造形物を高圧水銀灯、低圧水銀灯、蛍光灯、メタルハライドランプなどの紫外線を含む光を発射する放電ランプを用いて後硬化した際に生ずる光学的立体造形物の黄変を防止または抑制することのできる、紫外線による光学的立体造形物の後硬化技術の開発が求められている。
In addition, if a green optical three-dimensional object is irradiated with ultraviolet rays using a discharge lamp such as a high-pressure mercury lamp, a low-pressure mercury lamp, a fluorescent lamp, or a metal halide lamp and then cured, depending on the type of discharge lamp (especially near-ultraviolet rays). (When used), there is a problem that the degree of yellowing of the optically three-dimensional model becomes large during post-curing, and the effect of eliminating stickiness is small.
With the expansion of applications of optical three-dimensional objects, optical three-dimensional objects that do not discolor such as yellowing and have excellent colorless transparency, and optical three-dimensional objects manufactured using colorants such as dyes and pigments. Then, there is a demand for an optical three-dimensional model that is colored in the original good color tone of the colorant without deterioration of the color tone due to discoloration or the like.
From this point of view, yellowing of the optical three-dimensional model occurs when the green optical three-dimensional model is post-cured using a discharge lamp that emits light containing ultraviolet rays, such as a high-pressure mercury lamp, a low-pressure mercury lamp, a fluorescent lamp, and a metal halide lamp. There is a need for the development of post-curing technology for optically three-dimensional objects that can prevent or suppress the above.

さらに、光硬化性樹脂組成物を光造形して得られる光学的立体造形物では、後硬化時の黄変に限らず、後硬化前の光造形自体によっても多少なりとも黄変などの変色が生じて無色透明性に劣ったり、着色剤を用いたものでは黄変などの変色によって色調の低下が生ずることがある。
光造形時に生ずる光学的立体造形物における黄変などの変色や色調不良の原因は未だ十分に解明されていないが、光硬化性樹脂組成物中に含まれているラジカル重合性有機化合物、カチオン重合性有機化合物、光感受性ラジカル重合開始剤、光感受性カチオン重合開始剤などの化合物や、光硬化によって生成した樹脂成分などが、光学的立体造形時の光(特に紫外線)の照射によって化学的に不安定になって変質した結果、共役二重結合や孤立したラジカルなどの発色団・助色団を有する構造部分や成分が光学的立体造形物中に生成することによると推測される。
Further, in the optical three-dimensional model obtained by stereolithography of the photocurable resin composition, discoloration such as yellowing may occur not only due to yellowing during post-curing but also due to the stereolithography itself before post-curing. It may be colorless and inferior in transparency, or if a colorant is used, the color tone may be deteriorated due to discoloration such as yellowing.
The causes of discoloration such as yellowing and poor color tone in the optically three-dimensional structure that occur during photomodeling have not yet been fully elucidated, but the radically polymerizable organic compound and cationic polymerization contained in the photocurable resin composition Compounds such as sex organic compounds, photosensitive radical polymerization initiators, photosensitive cationic polymerization initiators, and resin components generated by photocuring are chemically impervious to light (particularly ultraviolet rays) during optical three-dimensional modeling. As a result of stabilization and alteration, it is presumed that structural parts and components having chromophores and auxiliary colors such as conjugated double bonds and isolated radicals are generated in the optically three-dimensional model.

上記の点から、光硬化性樹脂組成物を用いて光造形を行って得られる光学的立体造形物(グリーン光学的立体造形物)に紫外線を照射して後硬化する際に生ずる黄変などの変色を円滑に防止または抑制することのできる、構造が簡単で且つ熱効率に優れる後硬化装置および当該後硬化装置を用いた後硬化方法の開発が求められている。
さらに、光硬化性樹脂組成物を用いて光造形を行って得られる光学的立体造形物の後硬化と併せて、光造形時に生ずる黄変などの変色を低減するための後処理を行うことのできる後硬化・後処理装置および当該装置を用いた後硬化・後処理方法の開発が求められている。
From the above points, yellowing that occurs when an optical three-dimensional model (green optical three-dimensional model) obtained by stereolithography using a photocurable resin composition is irradiated with ultraviolet rays and then cured. There is a need for the development of a post-curing device having a simple structure and excellent thermal efficiency, which can smoothly prevent or suppress discoloration, and a post-curing method using the post-curing device.
Further, in addition to the post-curing of the optically three-dimensional model obtained by stereolithography using the photocurable resin composition, post-treatment for reducing discoloration such as yellowing that occurs during stereolithography is performed. There is a need to develop a post-curing / post-treatment device that can be used and a post-curing / post-treatment method using the device.

特開2002−86574号公報JP-A-2002-86574. 特開2010−189641号公報JP-A-2010-189641

本発明の目的は、電流・電圧を安定化するための安定器が不要で、安定器を併設しなくても紫外線を安定した状態で発射することができ、それによって安定器の設置場所の確保が不要で、装置全体の構造や配線を簡単にでき、放熱、耐熱、耐火などの対策が不要であるかまたは最小限にすることができ、消費電力が小さくて熱効率に優れ、コストの低減を図ることができ、しかも後硬化時の光学的立体造形物の黄変などの変色を防止または抑制しながら、ベタつきがなく、色調、外観に優れ、強度などの力学的特性にも優れる光学的立体造形物(後硬化した光学的立体造形物)を円滑に製造することのできる、光学的立体造形物の後硬化装置および後硬化方法を提供することである。 An object of the present invention is that a stabilizer for stabilizing current and voltage is not required, and ultraviolet rays can be emitted in a stable state without a stabilizer, thereby securing a place for installing the stabilizer. The structure and wiring of the entire device can be simplified, and measures such as heat dissipation, heat resistance, and fire resistance can be eliminated or minimized, power consumption is low, thermal efficiency is excellent, and cost reduction is achieved. Optical three-dimensional object that can be achieved, and while preventing or suppressing discoloration such as yellowing of the optically three-dimensional object during post-curing, it is not sticky, has excellent color tone and appearance, and has excellent mechanical properties such as strength. It is an object of the present invention to provide a post-curing apparatus and a post-curing method for an optical three-dimensional model capable of smoothly producing a model (post-cured optical three-dimensional model).

さらに、本発明の目的は、光硬化性樹脂組成物を用いて光造形を行って得られる光学的立体造形物(グリーン光学的立体造形物)に紫外線を照射して後硬化する際に生ずる光学的立体造形物の黄変などの変色の防止または抑制と併せて、光造形時に生じた黄変などの変色を低減することができ、しかも電流・転圧を安定化するための安定器が不要で、安定器を併設しなくても紫外線を安定した状態で発射することができて、装置全体の構造や配線を簡単にでき、放熱、耐熱、耐火などの対策が不要であるかまたは最小限にすることができ、消費電力が小さくて熱効率に優れ、コストの低減を図ることのできる、光学的立体造形物の後硬化・後処理装置および後硬化・後処理方法を提供することである。 Furthermore, an object of the present invention is the optics generated when an optical three-dimensional model (green optical three-dimensional model) obtained by stereolithography using a photocurable resin composition is irradiated with ultraviolet rays and then cured. In addition to preventing or suppressing discoloration such as yellowing of a three-dimensional model, it is possible to reduce discoloration such as yellowing that occurs during stereolithography, and there is no need for a stabilizer to stabilize current and rolling compaction. Therefore, it is possible to emit ultraviolet rays in a stable state without installing a stabilizer, the structure and wiring of the entire device can be simplified, and measures such as heat dissipation, heat resistance, and fire resistance are unnecessary or minimal. It is an object of the present invention to provide a post-curing / post-treatment apparatus and a post-curing / post-treatment method for an optically three-dimensional object, which can reduce power consumption, excellent thermal efficiency, and cost.

本発明者らは、上記の目的を達成すべく検討を行ってきた。そして、光硬化性樹脂組成物を用いて光造形して得られる光学的立体造形物(グリーン光学的立体造形物)の紫外線照射による後硬化装置において、紫外線発射光源として、高圧水銀灯、低圧水銀灯、蛍光灯、メタルハライドランプなどの放電ランプを用いる代わりに、紫外線LEDを用いれば、安定器が不要なため、安定器の設置場所の確保が不要になって、後硬化装置の構造や配線の簡素化およびコストの低減を図れること、さらに放熱、耐熱、耐火などの対策を最小限にすることができ、しかも消費電力を少なくしてエネルギーコストを低減できることに思い至った。
そこで、本発明者らは、光学的立体造形物(グリーン光学的立体造形物)の紫外線照射による後硬化装置において、紫外線発射光源として、高圧水銀灯、低圧水銀灯、蛍光灯、メタルハライドランプなどの放電ランプの代わりに、種々の紫外線LEDを用いて、グリーン光学的立体造形物を後硬化する実験を繰返し行って後硬化時の光学的立体造形物の黄変の度合を調べ、黄変を防止しながら光学的立体造形物を後硬化することのできる紫外線LEDがあるか否か、またどのような紫外線LEDが有効かについて種々検討を重ねた。
The present inventors have studied to achieve the above object. Then, in a post-curing device by ultraviolet irradiation of an optical three-dimensional model (green optical three-dimensional model) obtained by photomolding using a photocurable resin composition, high-pressure mercury lamps, low-pressure mercury lamps, etc. are used as ultraviolet emission light sources. If an ultraviolet LED is used instead of a discharge lamp such as a fluorescent lamp or a metal halide lamp, a stabilizer is not required, so it is not necessary to secure a place for installing the ballast, and the structure and wiring of the post-curing device are simplified. I came up with the idea that it is possible to reduce costs, minimize measures such as heat dissipation, heat resistance, and fire resistance, and reduce energy consumption by reducing power consumption.
Therefore, the present inventors have used discharge lamps such as high-pressure mercury lamps, low-pressure mercury lamps, fluorescent lamps, and metal halide lamps as ultraviolet emission light sources in post-curing devices for optical three-dimensional objects (green optical three-dimensional objects) by irradiating them with ultraviolet rays. Instead of using various ultraviolet LEDs, the experiment of post-curing the green optical three-dimensional model is repeated to check the degree of yellowing of the optical three-dimensional model during post-curing, and while preventing yellowing. Various studies have been conducted on whether or not there is an ultraviolet LED capable of post-curing an optically three-dimensional object, and what kind of ultraviolet LED is effective.

その結果、「385nm以上の波長の光の合計強度が紫外線LEDから発射される光の全強度に基づいて10%以下である光を発射する紫外線LED」[以下で、この紫外線LEDを「紫外線LED(A)」ということがある]を用いて、グリーン光学的立体造形物の後硬化を行うと、短縮された後硬化時間で、後硬化時の光学的立体造形物の黄変を防止または抑制しながら、色調、外観に優れると共に、ベタつきがなく、強度などの力学的特性にも優れる、後硬化した光学的立体造形物を円滑に製造できることを見出した。
また、本発明者らは、385nm以上の波長の光の合計強度が紫外線LEDから発射される光の全強度に基づいて10%以下である光を発射する当該紫外線LED(A)としては、当該紫外線LEDから発射される光のピーク波長が370nm以下であるもの、および/または385nm以上の波長の光を含まない光を発射するものが、後硬化時の黄変防止などの点からより好適であることを見出した。
As a result, "an ultraviolet LED that emits light in which the total intensity of light having a wavelength of 385 nm or more is 10% or less based on the total intensity of light emitted from the ultraviolet LED" [hereinafter, this ultraviolet LED is referred to as "ultraviolet LED". (A) ”is sometimes used to perform post-curing of a green optical three-dimensional model, which prevents or suppresses yellowing of the optical three-dimensional model during post-curing with a shortened post-curing time. At the same time, they have found that it is possible to smoothly produce a post-cured optical three-dimensional model having excellent color tone and appearance, non-stickiness, and excellent mechanical properties such as strength.
Further, the present inventors consider the ultraviolet LED (A) that emits light having a total intensity of light having a wavelength of 385 nm or more of 10% or less based on the total intensity of light emitted from the ultraviolet LED. Those having a peak wavelength of light emitted from an ultraviolet LED of 370 nm or less and / or those emitting light having a wavelength of 385 nm or more that does not contain light are more preferable from the viewpoint of preventing yellowing during post-curing. I found that there is.

また、本発明者らは、紫外線LED(A)ではなくて、385nm以上の波長の光の合計強度が紫外線LEDから発射される光の全強度に基づいて10%を超える光を発射する紫外線LED(例えば、385nm以上の波長の光の合計強度が50%を超えるピーク波長が385nmで365〜420nmの波長の光を発射する紫外線LED、385nm以上の波長の光の合計強度が90%を超えるピーク波長が405nmで380〜430nmの波長の光を発射する紫外線LED、ピーク波長が395nmで375〜415nmの波長の光を発射する紫外線LEDなど)を用いてグリーン光学的立体造形物の後硬化を行ったところ、安定器の不要な紫外線LEDの使用によって後硬化装置の構造や配線の簡素化、消費電力の低減、発熱対策や防火対策の省略や縮小はできるものの、後硬化に長い時間を要し、しかも後硬化によって光学的立体造形物の黄色度が増してしまい、色調に優れる後硬化光学的立体造形物が得られず、本発明の目的を達成できなかった。 Further, the present inventors are not an ultraviolet LED (A), but an ultraviolet LED in which the total intensity of light having a wavelength of 385 nm or more emits more than 10% based on the total intensity of the light emitted from the ultraviolet LED. (For example, an ultraviolet LED that emits light having a peak wavelength of 385 nm and a wavelength of 365 to 420 nm with a total intensity of light having a wavelength of 385 nm or more exceeding 50%, and a peak having a total intensity of light having a wavelength of 385 nm or more exceeding 90%. Post-curing of a green optical three-dimensional model using an ultraviolet LED that emits light with a wavelength of 405 nm and a wavelength of 380 to 430 nm, an ultraviolet LED that emits light with a peak wavelength of 395 nm and a wavelength of 375 to 415 nm, etc.) However, by using an ultraviolet LED that does not require a stabilizer, the structure and wiring of the post-curing device can be simplified, power consumption can be reduced, and heat generation measures and fire prevention measures can be omitted or reduced, but post-curing takes a long time. Moreover, the yellowness of the optically three-dimensional model is increased by the post-curing, and the post-cured optical three-dimensional model having excellent color tone cannot be obtained, so that the object of the present invention cannot be achieved.

紫外線LEDであっても、発射される光の内容の違いによって、グリーン光学的立体造形物の後硬化に要する時間が異なったり、後硬化時の黄変度に違いが生ずる理由は明確ではないが、紫外線LEDなどの光源から発射される光に、385nm以上の波長の光がかなりの割合で含まれていて、特に波長405nmの光(h線)が所定の強度以上で含まれ、且つ当該光源から発射される光に黄変を阻止し得る波長の光が含まれていないときに、385nm以上の波長の光、特に405nmの光(h線)の作用によって、後硬化に要する時間が長くなり、さらに後硬化時に黄変が生ずるのではないかと推測される。 Even with an ultraviolet LED, it is not clear why the time required for post-curing of a green optical three-dimensional model differs or the degree of yellowing during post-curing differs depending on the content of the emitted light. , Light emitted from a light source such as an ultraviolet LED contains light having a wavelength of 385 nm or more in a considerable proportion, and particularly light having a wavelength of 405 nm (h line) is contained in a predetermined intensity or more, and the light source is concerned. When the light emitted from the light does not contain light having a wavelength that can prevent yellowing, the action of light having a wavelength of 385 nm or more, especially light of 405 nm (h line), increases the time required for post-curing. Furthermore, it is speculated that yellowing may occur during post-curing.

後硬化時の黄変の防止または抑制に有効な「385nm以上の波長の光の合計強度が紫外線LEDから発射される光の全強度に基づいて10%以下である光を発射する紫外線LED(A)」は、放電ランプとは異なり、安定器などの機器が不要で、且つ熱の発生が小さくて放熱、耐熱、耐火などの熱対策を省略または最小限にすることができるため、後硬化装置の簡素化を図ることができ、更に放電ランプを用いる場合に比べて、消費電力を大幅に低減することができた。
また、本発明者らは、当該紫外線LED(A)は、1個の紫外線LEDのサイズが小さく、発熱量が小さく、消費電力も小さいため、後硬化装置のハウジング内に複数設置することができ、複数設置しても消費電力を抑制することができ、複数の設置によって、光学的立体造形物全体に紫外線を均一またはほぼ均一に照射することができ、それによって全体の物性の均一性に優れる光学的立体造形物が得られることを見出した。
An ultraviolet LED (A) that emits light in which the total intensity of light having a wavelength of 385 nm or more is 10% or less based on the total intensity of the light emitted from the ultraviolet LED, which is effective in preventing or suppressing yellowing during post-curing. ) ”, Unlike discharge lamps, does not require equipment such as ballasts, generates less heat, and can omit or minimize heat measures such as heat dissipation, heat resistance, and fire resistance. In addition, it was possible to significantly reduce the power consumption as compared with the case of using a discharge lamp.
Further, the present inventors can install a plurality of the ultraviolet LEDs (A) in the housing of the post-curing device because the size of one ultraviolet LED is small, the amount of heat generated is small, and the power consumption is also small. , Power consumption can be suppressed even if multiple installations are made, and by multiple installations, it is possible to irradiate the entire optical three-dimensional model with ultraviolet rays uniformly or almost uniformly, and thereby the overall uniformity of physical properties is excellent. We have found that an optically three-dimensional model can be obtained.

さらに、本発明者らは、前記した紫外線LED(A)は、軽量で、通電回路も簡素なため、紫外線LEDのハウジング内での移動、回転、前進・後退、揺動および角度変更のいずれか1つまたは2つ以上を可能にする手段を設けることで、当該紫外線LED(A)と光学的立体造形物との距離、グリーン光学的立体造形物への紫外線の照射位置、照射角度(照射方向)などを変化・調節することができ、それによって光学的立体造形物の全体を紫外線によって均一またはほぼ均一に照射して、全体の物性の均一性に優れる光学的立体造形物が得られることを見出した。 Furthermore, the present inventors have stated that the ultraviolet LED (A) is lightweight and has a simple energizing circuit, so that the ultraviolet LED can be moved, rotated, moved forward / backward, swung, or changed in angle in the housing. By providing a means for enabling one or two or more, the distance between the ultraviolet LED (A) and the optical three-dimensional model, the position of irradiating the green optical three-dimensional object with ultraviolet rays, and the irradiation angle (irradiation direction). ) Etc. can be changed and adjusted, so that the entire optical three-dimensional model can be uniformly or almost uniformly irradiated with ultraviolet rays to obtain an optical three-dimensional model with excellent uniformity of overall physical properties. I found it.

また、本発明者らは、後硬化装置のハウジング内に、紫外線LED(A)と共に、430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光を発射する光照射手段[以下、これを「光照射手段(B)」ということがある]を設けて、
両者への通電を切り替え得るようにして、紫外線LED(A)によって「385nm以上の波長の光の合計強度が紫外線LEDから発射される光の全強度に基づいて10%以下である光」を照射して光学的立体造形物を後硬化した後、光照射手段(B)側へと通電を切り替えて、光照射手段(B)によって「430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光」を照射するか;または、
紫外線LED(A)から、385nm以上の波長の光の合計強度が紫外線LED(A)から発射される光の全強度に基づいて10%以下である光を照射して後硬化すると同時に、光照射手段(B)により430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光を照射する;
と、後硬化時の黄変を防止または抑制できるだけでなく、光造形時に生じた光学的立体造形物の黄変などの変色をも低減しながら、力学的特性などに優れ、しかも色調や外観に一層優れる立体造形物が短い時間で得られることを見出した。
さらに、本発明者らは、後処理における「430〜500nmの範囲内の波長を有する光を含み且つ400nm以下の波長の光を含まない光」を発射する光源として、青色LEDが好適に用い得ることを見出し、それらの種々の知見に基づいて本発明を完成した。
Further, the present inventors emit light having a wavelength in the range of 430 to 500 nm and not including light having a wavelength of 400 nm or less in the housing of the post-curing device together with the ultraviolet LED (A). A light irradiation means [hereinafter, this may be referred to as a "light irradiation means (B)"] is provided.
The ultraviolet LED (A) irradiates "light having a total intensity of light having a wavelength of 385 nm or more of 10% or less based on the total intensity of light emitted from the ultraviolet LED" so that the energization of both can be switched. After the optically three-dimensional object is post-cured, the energization is switched to the light irradiation means (B) side, and the light irradiation means (B) contains light having a wavelength in the range of 430 to 500 nm and has a wavelength. Is irradiated with "light that does not contain light of 400 nm or less"; or
The total intensity of light having a wavelength of 385 nm or more is irradiated from the ultraviolet LED (A) to be 10% or less based on the total intensity of the light emitted from the ultraviolet LED (A). By means (B), light containing light having a wavelength in the range of 430 to 500 nm and not containing light having a wavelength of 400 nm or less is irradiated;
Not only can it prevent or suppress yellowing during post-curing, but it also reduces discoloration such as yellowing of optically three-dimensional objects that occurs during stereolithography, and has excellent mechanical properties, as well as color tone and appearance. We have found that even better three-dimensional objects can be obtained in a short time.
Furthermore, the present inventors can preferably use a blue LED as a light source for emitting "light having a wavelength in the range of 430 to 500 nm and not including light having a wavelength of 400 nm or less" in the post-treatment. We found that, and completed the present invention based on these various findings.

すなわち、本発明は、
(1) 光硬化性樹脂組成物を用いて光造形を行って製造した光学的立体造形物の後硬化装置であって;
光学的立体造形物を収容するためのハウジング;および、
ハウジングに収容した光学的立体造形物に紫外線を照射して後硬化するための紫外線LEDを備え;
前記紫外線LEDが、当該紫外線LEDから発射される光の全強度に基づいて、385nm以上の波長の光の合計強度が10%以下である光を発射する紫外線LED(A)である;
ことを特徴とする光学的立体造形物の後硬化装置である。
That is, the present invention
(1) A post-curing device for an optically three-dimensional model manufactured by performing stereolithography using a photocurable resin composition;
Housing for accommodating optical three-dimensional objects; and
Equipped with an ultraviolet LED for irradiating the optical three-dimensional object housed in the housing with ultraviolet rays and then curing it;
The ultraviolet LED is an ultraviolet LED (A) that emits light having a total intensity of 10% or less of light having a wavelength of 385 nm or more based on the total intensity of the light emitted from the ultraviolet LED;
This is a post-curing device for an optically three-dimensional object.

そして、本発明は、
(2) 紫外線LED(A)から発射される光のピーク波長が370nm以下である、前記(1)の光学的立体造形物の後硬化装置;
(3) 紫外線LED(A)から発射される光が、385nm以上の波長の光を含まない光である、前記(1)または(2)の光学的立体造形物の後硬化装置;
(4) ハウジング内に、紫外線LED(A)を1個または2個以上を備える、前記(1)〜(3)のいずれかの後硬化装置;
(5) 紫外線LED(A)と光学的立体造形物との距離、紫外線LED(A)から発射される紫外線の照射方向および光学的立体造形物への紫外線の照射位置のいずれか1つまたは2つ以上を調節するための調節手段(Sa)を有する、前記(1)〜(4)のいずれかの後硬化装置;
(6) 調節手段(Sa)が、ハウジング内での紫外線LED(A)の移動、回転、前進・後退、揺動、紫外線LED(A)からの紫外線の発射角度の変更および紫外線LED(A)への光学的立体造形物の前進・後退のいずれか1つまたは2つ以上を司る手段である、前記(1)〜(5)のいずれかの光学的立体造形物の後硬化装置;および、
(7) ハウジングが直方体形状を有している前記(1)〜(6)のいずれかの光学的立体造形物の後硬化装置;
である。
And the present invention
(2) The post-curing device for the optical three-dimensional object according to (1) above, wherein the peak wavelength of the light emitted from the ultraviolet LED (A) is 370 nm or less;
(3) The post-curing device for the optical three-dimensional object according to (1) or (2) above, wherein the light emitted from the ultraviolet LED (A) does not include light having a wavelength of 385 nm or more;
(4) The post-curing device according to any one of (1) to (3) above, comprising one or two or more ultraviolet LEDs (A) in the housing;
(5) Any one or 2 of the distance between the ultraviolet LED (A) and the optical three-dimensional object, the irradiation direction of the ultraviolet rays emitted from the ultraviolet LED (A), and the irradiation position of the ultraviolet rays on the optical three-dimensional object. A post-curing device according to any one of (1) to (4) above, which has an adjusting means (Sa) for adjusting one or more;
(6) The adjusting means (Sa) moves, rotates, moves forward / backward, swings the ultraviolet LED (A) in the housing, changes the emission angle of ultraviolet rays from the ultraviolet LED (A), and changes the ultraviolet LED (A). A post-curing device for an optical three-dimensional object according to any one of (1) to (5) above, which is a means for controlling one or two or more of the advancement and retreat of the optical three-dimensional object to the LED;
(7) A post-curing device for an optically three-dimensional object according to any one of (1) to (6) above, wherein the housing has a rectangular parallelepiped shape;
Is.

さらに、本発明は、
(8) 前記(1)〜(7)のいずれかの後硬化装置のハウジング内に、紫外線LED(A)と共に、430〜500nmの範囲内の波長の光を含み且つ400nm以下の波長の光を含まない光を発射する光照射手段(B)を更に設置し、紫外線LED(A)と光照射手段(B)への通電を制御する制御手段(C)を有することを特徴とする光学的立体造形物の後硬化・後処理装置である。
そして、本発明は、
(9) 光照射手段(B)が、青色LEDである前記(8)の光学的立体造形物の後硬化・後処理装置;
(10) 紫外線LED(A)と光照射手段(B)への通電を制御する制御手段(C)が;
紫外線LED(A)に通電して紫外線LED(A)から所定時間にわたって光を発射させた後に紫外線LED(A)への通電を停止し、次いで光照射手段(B)に通電して光照射手段(B)から所定時間にわたって光を発射させる制御手段(C−1)(タイムスイッチなど)であるか;または、
紫外線LED(A)への通電と光照射手段(B)への通電を並行して行う制御手段(C−2)である;
前記(8)または(9)の光学的立体造形物の後硬化・後処理装置;および、
(11) 光学的立体造形物と光照射手段(B)との距離および光学的立体造形物に対する光照射手段(B)から発射される光の照射角度のいずれか一方または両方を調節するための調節手段(Sb)を有する、前記(8)〜(10)のいずれかの光学的立体造形物の後硬化・後処理装置;
である。
Furthermore, the present invention
(8) In the housing of the post-curing device according to any one of (1) to (7) above, light having a wavelength in the range of 430 to 500 nm and light having a wavelength of 400 nm or less is emitted together with the ultraviolet LED (A). An optical stereoscopic structure characterized in that a light irradiation means (B) for emitting light not included is further installed, and a control means (C) for controlling energization of an ultraviolet LED (A) and a light irradiation means (B) is provided. It is a post-curing / post-treatment device for shaped objects.
And the present invention
(9) The post-curing / post-treatment device for the optical three-dimensional object of (8), wherein the light irradiation means (B) is a blue LED;
(10) The control means (C) for controlling the energization of the ultraviolet LED (A) and the light irradiation means (B);
After energizing the ultraviolet LED (A) and emitting light from the ultraviolet LED (A) for a predetermined time, the energization of the ultraviolet LED (A) is stopped, and then the light irradiating means (B) is energized and the light irradiating means. Is it a control means (C-1) (time switch, etc.) that emits light from (B) for a predetermined time; or
It is a control means (C-2) that energizes the ultraviolet LED (A) and the light irradiation means (B) in parallel;
Post-curing / post-treatment device for the optical three-dimensional model of (8) or (9);
(11) For adjusting one or both of the distance between the optical three-dimensional object and the light irradiation means (B) and the irradiation angle of the light emitted from the light irradiation means (B) on the optical three-dimensional object. A post-curing / post-treatment device for an optically three-dimensional object according to any one of (8) to (10) above, which has an adjusting means (Sb);
Is.

また、本発明は、
(12) 前記(1)〜(7)のいずれかの後硬化装置のハウジング内または前記(8)〜(11)のいずれかの後硬化・後硬化装置のハウジング内に、光硬化性樹脂組成物を用いて光造形を行って製造した光学的立体造形物を収容した後、当該光学的立体造形物に、紫外線LED(A)から、385nm以上の波長の光の合計強度が紫外線LED(A)から発射される光の全強度に基づいて10%以下である光を照射して光学的立体造形物を後硬化することを特徴とする光学的立体造形物の後硬化方法;および、
(13) 前記(8)〜(11)のいずれかの後硬化・後硬化装置のハウジング内に、光硬化性樹脂組成物を用いて光造形を行って製造した光学的立体造形物を収容した後に、
当該光学的立体造形物に、紫外線LED(A)から、385nm以上の波長の光の合計強度が紫外線LED(A)から発射される光の全強度に基づいて10%以下である光を照射して後硬化し、次いで光照射手段(B)により430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光を照射するか;或いは、
紫外線LED(A)から、385nm以上の波長の光の合計強度が紫外線LED(A)から発射される光の全強度に基づいて10%以下である光を照射して後硬化するのと並行して光照射手段(B)により430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光を照射する;
ことを特徴とする光学的立体造形物の後硬化・後処理方法;
である。
In addition, the present invention
(12) A photocurable resin composition in the housing of the post-curing device according to any one of (1) to (7) or in the housing of the post-curing / post-curing device according to any one of (8) to (11). After accommodating an optical three-dimensional model manufactured by performing optical modeling using an object, the total intensity of light having a wavelength of 385 nm or more from the ultraviolet LED (A) is the ultraviolet LED (A) in the optical three-dimensional object. ), A method of post-curing an optical three-dimensional structure, which comprises irradiating light of 10% or less based on the total intensity of the light emitted from) to post-cure the optical three-dimensional model;
(13) An optically three-dimensional model produced by stereolithography using a photocurable resin composition was housed in the housing of the post-curing / post-curing apparatus according to any one of (8) to (11). later,
The optically three-dimensional object is irradiated with light having a total intensity of light having a wavelength of 385 nm or more of 10% or less based on the total intensity of light emitted from the ultraviolet LED (A) from the ultraviolet LED (A). Then, the light irradiation means (B) is used to irradiate light having a wavelength in the range of 430 to 500 nm and not having a wavelength of 400 nm or less;
In parallel with irradiating the ultraviolet LED (A) with light having a total intensity of light having a wavelength of 385 nm or more of 10% or less based on the total intensity of the light emitted from the ultraviolet LED (A) and then curing the light. The light irradiation means (B) irradiates light having a wavelength in the range of 430 to 500 nm and not containing light having a wavelength of 400 nm or less;
A post-curing / post-treatment method for an optically three-dimensional object, which is characterized by the above;
Is.

ハウジング内に、385nm以上の波長の光の合計強度が紫外線LEDから発射される光の全強度に基づいて10%以下である光[紫外線(a)]を発射する紫外線LED(A)を備える本発明の後硬化装置または後硬化・後処理装置に光学的立体造形物(グリーン光学的立体造形物)を収容して紫外線LEDから紫外線(a)を照射して後硬化を行う本発明の方法により、短い後硬化時間で、後硬化時の光学的立体造形物の黄変を防止または抑制しながら、色調、外観に優れると共に、ベタつきがなく、強度などの力学的特性に優れる、後硬化した光学的立体造形物を生産性よく円滑に製造することができる。
ハウジング内に、当該紫外線LED(A)と共に430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光[可視光(b)]を発射する光照射手段(B)を備える本発明の後硬化・後処理装置に光学的立体造形物(グリーン光学的立体造形物)を収容して、紫外線LED(A)により紫外線(a)を照射して光学的立体造形物(グリーン光学的立体造形物)を後硬化した後に光照射手段(B)により可視光(b)を照射する本発明の方法、または紫外線LED(A)により紫外線(a)を照射して光学的立体造形物(グリーン光学的立体造形物)を後硬化するのと並行して光照射手段(B)により可視光(b)を照射する本発明の方法により、光造形時や後硬化時に生じた黄変などの着色が一層低減された、色調および外観に一層優れる、ベタつきがなく、強度などの力学的特性に優れる光学的立体造形物を短縮された時間で円滑に製造することができる。
A book comprising an ultraviolet LED (A) that emits light [ultraviolet (a)] in which the total intensity of light having a wavelength of 385 nm or more is 10% or less based on the total intensity of light emitted from the ultraviolet LED. According to the method of the present invention, an optical three-dimensional object (green optical three-dimensional object) is housed in a post-curing device or a post-curing / post-treatment device of the present invention, and ultraviolet (a) is irradiated from an ultraviolet LED to perform post-curing. Post-cured optics with a short post-curing time, which prevents or suppresses yellowing of the optical three-dimensional structure during post-curing, has excellent color tone and appearance, is not sticky, and has excellent mechanical properties such as strength. It is possible to smoothly and productively manufacture a three-dimensional model.
Light irradiation means (B) that emits light [visible light (b)] that contains light having a wavelength in the range of 430 to 500 nm together with the ultraviolet LED (A) and does not contain light having a wavelength of 400 nm or less in the housing. The post-curing / post-treatment apparatus of the present invention provided with (1) accommodates an optical three-dimensional object (green optical three-dimensional object) and irradiates the ultraviolet (a) with an ultraviolet LED (A) to irradiate the optical three-dimensional object. The method of the present invention in which visible light (b) is irradiated by the light irradiation means (B) after the (green optical three-dimensional model) is post-cured, or optical light (a) is irradiated by the ultraviolet LED (A). By the method of the present invention in which visible light (b) is irradiated by the light irradiation means (B) in parallel with the post-curing of the three-dimensional model (green optical three-dimensional model), it occurs during photo modeling or post-curing. It is possible to smoothly produce an optical three-dimensional model having further reduced coloring such as yellowing, better color tone and appearance, no stickiness, and excellent mechanical properties such as strength in a shortened time.

本発明の後硬化装置および後硬化・後処理装置においてグリーン光学的立体造形物を後硬化するための光源として設置している紫外線LED(A)および本発明の後硬化・後処理装置で後処理用光源として好ましく用いられる青色LEDは、光学的立体造形物の後硬化に従来用いられてきた放電ランプとは異なり、安定器などの機器が不要で、且つ熱の発生が小さくて放熱、耐熱、耐火などの熱対策を省略または最小限にすることができるため、後硬化装置および後硬化・後処理装置の簡素化を図ることができ、更に放電ランプを用いる場合に比べて、消費電力を大幅に低減することができる。
本発明の後硬化装置および後硬化・後処理装置で後硬化用の光源として用いている紫外線LED(A)および本発明の後硬化・後処理装置で後処理用の光源として好ましく用いられる青色LEDは、1個のサイズが小さく、発熱量が小さく、消費電力も小さいため、後硬化装置のハウジング内に複数設置することができ、複数設置しても消費電力を抑制することができ、複数の設置によって、光学的立体造形物全体に紫外線を均一またはほぼ均一に照射することができ、それによって全体の物性の均一性に優れる光学的立体造形物を得ることができる。
Post-treatment with the ultraviolet LED (A) installed as a light source for post-curing a green optical three-dimensional object in the post-curing device and post-curing / post-treatment device of the present invention and the post-curing / post-treatment device of the present invention. Unlike the discharge lamps that have been conventionally used for post-curing optical three-dimensional objects, the blue LED, which is preferably used as a light source, does not require equipment such as a stabilizer, generates less heat, and dissipates heat and heat. Since heat measures such as fire resistance can be omitted or minimized, the post-curing device and the post-curing / post-treatment device can be simplified, and the power consumption is significantly higher than when a discharge lamp is used. Can be reduced to.
The ultraviolet LED (A) used as a light source for post-curing in the post-curing device and the post-curing / post-treatment device of the present invention, and the blue LED preferably used as a light source for post-treatment in the post-curing / post-treatment device of the present invention. Because one size is small, the amount of heat generated is small, and the power consumption is small, a plurality of LEDs can be installed in the housing of the post-curing device, and even if a plurality of LEDs are installed, the power consumption can be suppressed. By the installation, the entire optical three-dimensional model can be uniformly or substantially uniformly irradiated with ultraviolet rays, whereby an optical three-dimensional object having excellent overall uniformity of physical properties can be obtained.

本発明の後硬化装置および後硬化・後処理装置においてグリーン光学的立体造形物の後硬化用の光源として用いている紫外線LED(A)および本発明の後硬化・後処理装置で後処理用の光源として好ましく用いられる青色LEDは、軽量で、通電回路も簡素なため、当該紫外線LED(A)や青色LEDのハウジング内での移動、回転、前進・後退、揺動および角度変更のいずれか1つまたは2つ以上可能にするための調節手段を設けることができる。当該調節手段を有する本発明の後硬化装置および後硬化・後処理装置では、紫外線LED(A)および/または青色LEDと光学的立体造形物との距離、光学的立体造形物への紫外線(a)および/または可視光(b)の照射位置、照射角度(照射方向)などを変化・調節することができ、それによって、光学的立体造形物の全体に紫外線(a)、または紫外線(a)と可視光(b)を均一またはほぼ均一に照射でき、全体の物性の均一性に優れる光学的立体造形物が製造することができる。 The ultraviolet LED (A) used as a light source for post-curing of a green optical three-dimensional model in the post-curing device and the post-curing / post-treatment device of the present invention, and the post-curing / post-treatment device of the present invention for post-treatment. Since the blue LED preferably used as a light source is lightweight and has a simple energization circuit, any one of movement, rotation, forward / backward movement, swinging, and angle change of the ultraviolet LED (A) and the blue LED in the housing 1 Adjustment means may be provided to allow one or more. In the post-curing device and the post-curing / post-treatment device of the present invention having the adjusting means, the distance between the ultraviolet LED (A) and / or the blue LED and the optical three-dimensional object, and the ultraviolet light (a) to the optical three-dimensional object. ) And / or the irradiation position of visible light (b), the irradiation angle (irradiation direction), etc. can be changed and adjusted, whereby the ultraviolet rays (a) or the ultraviolet rays (a) are applied to the entire optical three-dimensional object. And visible light (b) can be uniformly or almost uniformly irradiated, and an optically three-dimensional model having excellent overall uniformity of physical properties can be produced.

図1は、本発明の後硬化装置の一例を示す図である。FIG. 1 is a diagram showing an example of a post-curing device of the present invention. 図2は、本発明の後硬化装置の別の例を示す図である。FIG. 2 is a diagram showing another example of the post-curing device of the present invention. 図3は、本発明の後硬化装置の更に別の例を示す図である。FIG. 3 is a diagram showing still another example of the post-curing apparatus of the present invention. 図4は、本発明の後硬化装置の更に別の例を示す図である。FIG. 4 is a diagram showing still another example of the post-curing apparatus of the present invention. 図5は、本発明の後硬化装置の更に別の例を示す図である。FIG. 5 is a diagram showing still another example of the post-curing apparatus of the present invention. 図6は、本発明の後硬化・後処理装置の一例を示す図である。FIG. 6 is a diagram showing an example of the post-curing / post-treatment apparatus of the present invention. 図7は、本発明の後硬化・後処理装置の別の例を示す図である。FIG. 7 is a diagram showing another example of the post-curing / post-treatment apparatus of the present invention.

以下に本発明について詳細に説明する。
本発明の光学的立体造形物の後硬化装置は、光硬化性樹脂組成物を用いて光造形(光学的立体造形)を行って製造した光学的立体造形物(グリーン光学的立体造形物)を収容するためのハウジングと、グリーン光学的立体造形物に紫外線を照射して後硬化するための紫外線LED(A)を備え、紫外線LED(A)からは、「385nm以上の波長の光の合計強度が当該紫外線LED(A)から発射される光の全強度に基づいて10%以下である光」[紫外線(a)]が発射される。
The present invention will be described in detail below.
The post-curing apparatus for the optically three-dimensional object of the present invention is an optical three-dimensional object (green optical three-dimensional object) produced by performing optical modeling (optical three-dimensional modeling) using a photocurable resin composition. It is equipped with a housing for accommodating and an ultraviolet LED (A) for irradiating a green optical three-dimensional object with ultraviolet rays and then curing it. From the ultraviolet LED (A), "the total intensity of light having a wavelength of 385 nm or more". Is 10% or less based on the total intensity of the light emitted from the ultraviolet LED (A) "[ultraviolet (a)] is emitted.

本発明の後硬化装置において、ハウジングの形状は特に制限されず、光学的立体造形物の全体を収容し得るハウジングであればいずれでもよく、例えば、立方体形をも含めた直方体形、円筒形、半円筒形、半球形、円錐台形、角錐台形などを挙げることができる。
そのうちでも、ハウジングの形状は、立方体形をも含めた直方体形であることが、ハウジングの製造が容易であり、ハウジング内への光学的立体造形物の収容を円滑に行うことができ、ハウジングへの紫外線LED(A)の配置や取付け、ハウジング内での調節手段(Sa)、ひいてはそれらに取り付けた紫外線LED(A)の移動、回転、前進・後退、揺動、紫外線LED(A)からの紫外線(a)の発射角度の変更などが容易であるなどの点から、好ましい。
In the post-curing apparatus of the present invention, the shape of the housing is not particularly limited, and any housing that can accommodate the entire optical three-dimensional object may be used. Examples include a semi-cylindrical shape, a hemispherical shape, a conical trapezoidal shape, and a pyramidal trapezoidal shape.
Among them, if the shape of the housing is a rectangular parallelepiped shape including a cube shape, the housing can be easily manufactured, and the optically three-dimensional object can be smoothly accommodated in the housing. Arrangement and installation of the ultraviolet LED (A), adjustment means (Sa) in the housing, and movement, rotation, forward / backward, swing, and ultraviolet LED (A) of the ultraviolet LED (A) attached to them. It is preferable because it is easy to change the emission angle of the ultraviolet ray (a).

ハウジングは、側周部、上部および下部の全てが壁、板状部材(上板、下板など)、扉、蓋などによって覆われた形状であることが、ハウジング外への紫外線の漏れ防止と人体への安全性、電気的電磁気的な安全性および機械的な安全性などの点から好ましい。
ハウジングへの光学的立体造形物の収容口は、ハウジングの形状や構造に応じて、ハウジングの側周部、下部または上部のいずれに設けてもよいが、側周部や上部が取り出しが簡便であることから望ましく、当該収容口に紫外線がハウジング外に漏れないようにするための開閉可能な扉や蓋などを取り付けることが望ましい。
The housing has a shape in which the side circumference, the upper part and the lower part are all covered with walls, plate-like members (upper plate, lower plate, etc.), doors, lids, etc. to prevent ultraviolet rays from leaking to the outside of the housing. It is preferable in terms of safety to the human body, electromagnetic safety and mechanical safety.
Depending on the shape and structure of the housing, the storage port for the optically three-dimensional object in the housing may be provided on the side peripheral portion, the lower portion, or the upper portion of the housing, but the side peripheral portion and the upper portion are easy to take out. Therefore, it is desirable to attach a door or lid that can be opened and closed to prevent ultraviolet rays from leaking to the outside of the housing.

ハウジングのサイズは、後処理を行う光学的立体造形物のサイズ、形状、構造などに応じて決めることができる。ハウジングのサイズをある程度大きくしておくと、サイズ、形状、構造などが異なる種々の光学的立体造形物に対して共通して使用することができ、便利である。 The size of the housing can be determined according to the size, shape, structure, and the like of the optical three-dimensional object to be post-processed. If the size of the housing is increased to some extent, it can be commonly used for various optical three-dimensional objects having different sizes, shapes, structures, and the like, which is convenient.

ハウジングを形成する素材の種類は特に制限されず、紫外線LED(A)から発射される紫外線によって劣化が生じにくく、丈夫で、形状保持性があり、光照射手段や距離調節手段などの配置や取付けを円滑に行うことのできる材料であればいずれでもよく、例えば、プラスチック、強化プラスチック、金属、ガラス、セラミックス、木材、段ボールやその他の強化紙、前記した材料の2つ以上を組み合わせた複合材料などから製造することができる。
ただし、内面は紫外線や可視光線を反射(拡散反射でも、鏡面反射でもよい)する素材(例えばアルミニウム、特にアルマイト処理などの表面処理時に紫外線反射率を高めたものなど)を用いたほうが、内面に当たって反射する光を効率よく用いることができるため、照射を短時間または低出力で行うことができる。
The type of material that forms the housing is not particularly limited, and it is not easily deteriorated by the ultraviolet rays emitted from the ultraviolet LED (A), is durable, has shape retention, and arranges and attaches light irradiation means and distance adjusting means. Any material can be used as long as it can smoothly perform the above, for example, plastic, reinforced plastic, metal, glass, ceramics, wood, corrugated paper or other reinforced paper, composite material combining two or more of the above-mentioned materials, etc. Can be manufactured from.
However, it is better to use a material that reflects ultraviolet rays and visible light (diffuse reflection or specular reflection) (for example, aluminum, especially one with increased ultraviolet reflectance during surface treatment such as alumite treatment) for the inner surface. Since the reflected light can be used efficiently, irradiation can be performed in a short time or with a low output.

本発明の光学的立体造形物の後硬化装置では、ハウジング内に、「385nm以上の波長の光の合計強度が紫外線LED(A)から発射される光の全強度に基づいて10%以下である光」[紫外線(a)]を発射する紫外線LED(A)が配置されている。
本発明では、紫外線LED(A)として、入手の容易性、グリーン光学的立体造形物の後硬化速度、実装の容易さ、コストなどの点から、
《1》385nm以上の波長の光の合計強度が紫外線LEDから発射される光の全強度に基づいて10%以下、好ましくは5%以下、より好ましくは3%以下である光を発射する紫外線LED;
《2》385nm以上の波長の光の合計強度が紫外線LEDから発射される光の全強度に基づいて10%以下、好ましくは5%以下、より好ましくは3%以下で、且つピーク波長が380nm以下、特に370nm以下である光を発射する紫外線LED;
《3》385nm以上の波長の光の合計強度が紫外線LEDから発射される光の全強度に基づいて10%以下、好ましくは5%以下、より好ましくは3%以下で、且つ400nmを超える波長の光を含まない光を発射する紫外線LED;
《4》385nm以上の波長の光の合計強度が紫外線LEDから発射される光の全強度に基づいて10%以下、好ましくは5%以下、より好ましくは3%以下で、ピーク波長が380nm以下、特に370nm以下で、且つ400nmを超える波長の光を含まない光を発射する紫外線LED;
などが好ましく用いられ、特に前記《3》および《4》がより好ましく用いられる。
In the post-curing apparatus for the optically three-dimensional object of the present invention, "the total intensity of light having a wavelength of 385 nm or more is 10% or less based on the total intensity of light emitted from the ultraviolet LED (A)" in the housing. An ultraviolet LED (A) that emits "light" [ultraviolet (a)] is arranged.
In the present invention, the ultraviolet LED (A) is easy to obtain, the post-curing speed of the green optical three-dimensional object, the ease of mounting, the cost, and the like.
<< 1 >> An ultraviolet LED that emits light having a total intensity of light having a wavelength of 385 nm or more, which is 10% or less, preferably 5% or less, more preferably 3% or less, based on the total intensity of light emitted from the ultraviolet LED. ;
<< 2 >> The total intensity of light having a wavelength of 385 nm or more is 10% or less, preferably 5% or less, more preferably 3% or less, and the peak wavelength is 380 nm or less, based on the total intensity of light emitted from the ultraviolet LED. Ultraviolet LEDs that emit light, especially below 370 nm;
<< 3 >> The total intensity of light having a wavelength of 385 nm or more is 10% or less, preferably 5% or less, more preferably 3% or less, and a wavelength exceeding 400 nm, based on the total intensity of light emitted from the ultraviolet LED. Ultraviolet LED that emits light that does not contain light;
<< 4 >> The total intensity of light having a wavelength of 385 nm or more is 10% or less, preferably 5% or less, more preferably 3% or less, and the peak wavelength is 380 nm or less, based on the total intensity of light emitted from the ultraviolet LED. In particular, an ultraviolet LED that emits light having a wavelength of 370 nm or less and not containing light having a wavelength exceeding 400 nm;
Etc. are preferably used, and in particular, the above-mentioned << 3 >> and << 4 >> are more preferably used.

本発明で用い得る紫外線LED(A)の具体例としては、
*385nm以上の波長の光の合計強度が当該紫外線LED(A)から発射される光の全強度に基づいて10%以下(以下、「385nm以上の波長の光の合計強度が10%以下」というように略記することがある)で、ピーク波長が365nmで且つ波長350〜400nmの紫外線を発射する紫外線LED;
*385nm以上の波長の光の合計強度が10%以下で、ピーク波長が355nmで且つ波長280〜350nmの紫外線を発射する紫外線LED;
*385nm以上の波長の光の合計強度が10%以下で、ピーク波長が275nmで且つ波長250〜325nmの紫外線を発射する紫外線LED;
*385nm以上の波長の光の合計強度が10%以下で、ピーク波長が310nmで且つ波長250〜280nmの紫外線を発射する紫外線LED;
などを挙げることができる。これらの紫外線LEDとしては種々のものが販売されており、本発明ではこれらの紫外線LEDの1種または2種以上を用いることができる。
上記で例示した紫外線LEDを含めて、本発明では、紫外線LED(A)として、パワーLEDと呼ばれる表面実装形のものを単数または複数個使ったものが、入手性、グリーン光学的立体造形物の後硬化速度、実装の容易さ、コスト、などの点から好ましく用いられる。
ここで、本明細書における紫外線LEDから発射される光の「ピーク波長」とは、紫外線LEDから発射される光に1つのピークのみが存在する場合は当該1つのピークの波長をいい、また複数の「ピーク」が存在する場合には光強度の最も高いピークの波長をいう。
As a specific example of the ultraviolet LED (A) that can be used in the present invention,
* The total intensity of light having a wavelength of 385 nm or more is 10% or less based on the total intensity of light emitted from the ultraviolet LED (A) (hereinafter, "the total intensity of light having a wavelength of 385 nm or more is 10% or less". An ultraviolet LED that emits ultraviolet rays with a peak wavelength of 365 nm and a wavelength of 350 to 400 nm;
* An ultraviolet LED that emits ultraviolet rays with a total intensity of light having a wavelength of 385 nm or more of 10% or less, a peak wavelength of 355 nm, and a wavelength of 280 to 350 nm;
* An ultraviolet LED that emits ultraviolet rays with a total intensity of light having a wavelength of 385 nm or more of 10% or less, a peak wavelength of 275 nm, and a wavelength of 250 to 325 nm;
* An ultraviolet LED that emits ultraviolet rays with a total intensity of light having a wavelength of 385 nm or more of 10% or less, a peak wavelength of 310 nm, and a wavelength of 250 to 280 nm;
And so on. Various types of these ultraviolet LEDs are on the market, and one or more of these ultraviolet LEDs can be used in the present invention.
In the present invention, including the ultraviolet LED exemplified above, as the ultraviolet LED (A), one or a plurality of surface mount type LEDs called power LEDs are available, which is a green optical three-dimensional model. It is preferably used in terms of post-curing speed, ease of mounting, cost, and the like.
Here, the "peak wavelength" of the light emitted from the ultraviolet LED in the present specification means the wavelength of the one peak when the light emitted from the ultraviolet LED has only one peak, and a plurality of wavelengths. When there is a "peak" of, it means the wavelength of the peak with the highest light intensity.

紫外線LEDとしては、ピーク波長が385nmで波長300〜450nmの光(紫外線と一部可視光)を発射する紫外線LED、ピーク波長が390nmで波長380〜420nmの光(紫外線と一部可視光)を発射する紫外線LED、ピーク波長が395nmで波長360〜420nmの光(紫外線と一部可視光)を発射する紫外線LEDなども販売されているが、これらの紫外線LEDは、385nm以上の波長の光の合計強度が10%を超えていて、特に波長が400nmを超える光を含んでいるため、グリーン光学的立体造形物の後硬化に使用すると光学的立体造形物の黄変などの変色が生じ易く、また後硬化に時間がかかり、本発明での使用には適さない。 The ultraviolet LED includes an ultraviolet LED that emits light having a peak wavelength of 385 nm and a wavelength of 300 to 450 nm (ultraviolet and partially visible light), and light having a peak wavelength of 390 nm and a wavelength of 380 to 420 nm (ultraviolet and partially visible light). Ultraviolet LEDs that emit ultraviolet rays and ultraviolet LEDs that emit light with a peak wavelength of 395 nm and a wavelength of 360 to 420 nm (ultraviolet rays and some visible light) are also on the market, but these ultraviolet LEDs are of light having a wavelength of 385 nm or more. Since the total intensity exceeds 10% and contains light having a wavelength exceeding 400 nm, discoloration such as yellowing of the optical three-dimensional model is likely to occur when used for post-curing of the green optical three-dimensional model. In addition, it takes time to post-cure and is not suitable for use in the present invention.

本発明の装置で用いる紫外線LED(A)は、入手性、グリーン光学的立体造形物の後硬化速度、入手価格、機器の組み立ての容易さなどの点から、出力(紫外線LEDチップ1個の出力)が50〜10000mWであることが好ましく、100〜5000mWであることがより好ましく用いられ、300〜3000mWであることが更に好ましい。
紫外線LED(A)の出力が小さすぎると、LED(A)の取り付け個数が少ない場合にグリーン光学的立体造形物の後硬化に長い時間を要するようになり、後硬化の時間を短縮するためにLED(A)の取り付け個数を多くすると組み立てに労力を要する。一方、紫外線LED(A)の出力が大きすぎると、LED(A)の取り付け個数が少ないために照射する光が場所によって不均一になり易い。
The ultraviolet LED (A) used in the apparatus of the present invention has an output (output of one ultraviolet LED chip) in terms of availability, post-curing speed of a green optical three-dimensional model, acquisition price, ease of assembling the device, and the like. ) Is preferably 50 to 10000 mW, more preferably 100 to 5000 mW, and even more preferably 300 to 3000 mW.
If the output of the ultraviolet LED (A) is too small, it will take a long time for the post-curing of the green optical three-dimensional model when the number of mounted LEDs (A) is small, in order to shorten the post-curing time. If the number of LEDs (A) attached is large, labor is required for assembly. On the other hand, if the output of the ultraviolet LED (A) is too large, the number of LEDs (A) attached is small, so that the emitted light tends to be non-uniform depending on the location.

本発明の装置で用いる紫外線LED(A)の形状は、特に制限されず、球形や楕円球形(砲弾型、ランプ型)、管形(直管形、円管形、分岐管形)、球形や楕円球形(砲弾型、ランプ型)、点形、チップ形、多セグメント形、表面実装形、直方体形、可撓性チューブ形、コード形、ファイバー式などのいずれでもよい。入手性、実装の容易さなどの点からは、パワーLEDと呼ばれる表面実装形のものを単数または複数個使ったものが、少ない配置数または取付け数で照射量を大きくすることができるてん、入手性、耐久性、生産コスト、素子1個あたりの発光強度などから好ましく用いられる。
また、直管形の紫外線LED(A)を用いた場合には、設計が簡便で、後硬化装置の製作が容易であり、1個当たりの紫外線(a)の照射量が多い。直管形の紫外線LED(A)は、いずれも、光学的立体造形物の後硬化を短時間で効率よく実施することができる。
The shape of the ultraviolet LED (A) used in the apparatus of the present invention is not particularly limited, and is spherical, elliptical spherical (bullet type, lamp type), tubular (straight tube, circular tube, branch tube), spherical or It may be an elliptical sphere (bullet type, lamp type), point type, chip type, multi-segment type, surface mount type, rectangular body type, flexible tube type, cord type, fiber type or the like. From the viewpoint of availability and ease of mounting, a surface mount type LED called a power LED that uses one or more can increase the irradiation amount with a small number of arrangements or mountings. It is preferably used because of its properties, durability, production cost, light emission intensity per element, and the like.
Further, when the straight tube type ultraviolet LED (A) is used, the design is simple, the post-curing device can be easily manufactured, and the irradiation amount of the ultraviolet (a) per one is large. All of the straight tube type ultraviolet LEDs (A) can efficiently perform post-curing of the optically three-dimensional model in a short time.

ハウジング内に配置する紫外線LED(A)の数は、ハウジング内に収容する光学的立体造形物のサイズや形状、紫外線LED(A)のサイズ、形状、ハウジングのサイズ、形状、構造などに応じて1個以上の数から選択することができる。
複数の紫外線LED(A)を配置すると、グリーン光学的立体造形物への紫外線(a)の照射量を多くして、光学的立体造形物の後硬化をより短時間で速やかに行うことができるので、複数の紫外線LED(A)をハウジング内に配置することが好ましい。
The number of ultraviolet LEDs (A) arranged in the housing depends on the size and shape of the optical three-dimensional object accommodated in the housing, the size and shape of the ultraviolet LED (A), the size, shape, structure of the housing, and the like. You can choose from one or more numbers.
By arranging a plurality of ultraviolet LEDs (A), the amount of ultraviolet rays (a) irradiated to the green optical three-dimensional object can be increased, and the post-curing of the optical three-dimensional object can be performed more quickly and quickly. Therefore, it is preferable to arrange a plurality of ultraviolet LEDs (A) in the housing.

本発明の後硬化装置では、ハウジング内に紫外線LED(A)を配置するに当たって、紫外線LED(A)をハウジングの上部(天井)、下部(底部)および/または側周部(壁部)にそのまま直接取り付けてもよいし、または取付け部材(Ta)を介して取り付けてもよい。
その際の紫外線LED(A)の配置位置は、ハウジングの側周部、上部および下部のうちの1箇所だけであっても、2箇所以上であってもいずれでもよい。ハウジングの側周部と上部と下部の2箇所以上に、各箇所にそれぞれ複数の紫外線LED(A)を配置すると、光学的立体造形物への紫外線(a)の照射強度を高くなり、光学的立体造形物の後硬化をより短時間で効率よく行うことができる。
限定されるものではないが、ハウジングが直方体形(立方体を含む)である場合には、上部のみに紫外線LED(A)を配置する態様、下部のみに紫外線LED(A)を配置する態様、上部と下部の両方にそれぞれ紫外線LED(A)を配置する態様、4つの方形の側面(側壁部分)のうちの1つの側面(側壁部分)に紫外線LED(A)を配置する態様、4つの方形の側面(側壁部分)のうちの2つ以上の側面(側壁部分)にそれぞれ紫外線LED(A)を配置する態様、4つの方形の側面(側壁部分)のうちの1つまたは2つ以上の側面(側壁部分)と上部と下部のいずれか一方または両方にそれぞれ紫外線LED(A)を配置する態様などの種々の態様を採用することができる。
ハウジングに複数の紫外線LED(A)を配置するに当たっては、複数の紫外線LED(A)を、例えば等間隔になるようにして整列した状態で配置すると、光学的立体造形物に紫外線(a)を均等またはそれに近い状態で照射することができる。
具体的には、例えば、直管形の紫外線LED(A)を互いに平行に並べて複数配置する方式、球形(砲弾形)の紫外線LED(A)を縦と横方向に並べて複数配置する方式、パワーLEDを縦と横方向に並べて複数配置する方式などが好ましく採用される。
In the post-curing apparatus of the present invention, when arranging the ultraviolet LED (A) in the housing, the ultraviolet LED (A) is directly placed on the upper part (ceiling), lower part (bottom) and / or side peripheral part (wall part) of the housing. It may be mounted directly or via a mounting member (Ta).
At that time, the ultraviolet LED (A) may be arranged at only one location on the side peripheral portion, the upper portion and the lower portion of the housing, or at two or more locations. When a plurality of ultraviolet LEDs (A) are arranged at two or more locations on the side peripheral portion of the housing and at the upper and lower portions, the irradiation intensity of the ultraviolet rays (a) on the optically three-dimensional object is increased, and the optical three-dimensional object is optically increased. Post-curing of the three-dimensional model can be performed efficiently in a shorter time.
Although not limited, when the housing has a rectangular shape (including a cube), the ultraviolet LED (A) is arranged only in the upper part, the ultraviolet LED (A) is arranged only in the lower part, and the upper part. A mode in which the ultraviolet LED (A) is arranged on both the lower side and the lower portion, respectively, a mode in which the ultraviolet LED (A) is arranged on one side surface (side wall portion) of the four square side surfaces (side wall portion). A mode in which the ultraviolet LED (A) is arranged on each of two or more side surfaces (side wall portions) of the side surfaces (side wall portions), and one or two or more side surfaces (side walls) of four square side surfaces (side wall portions). Various aspects such as arranging the ultraviolet LED (A) on one or both of the side wall portion) and the upper part and the lower part can be adopted.
When arranging the plurality of ultraviolet LEDs (A) in the housing, for example, when the plurality of ultraviolet LEDs (A) are arranged in an aligned state at equal intervals, the ultraviolet rays (a) are emitted to the optically three-dimensional object. Irradiation can be performed evenly or close to it.
Specifically, for example, a method of arranging a plurality of straight tube type ultraviolet LEDs (A) in parallel with each other, a method of arranging a plurality of spherical (bullet-shaped) ultraviolet LEDs (A) vertically and horizontally, and a power. A method of arranging a plurality of LEDs side by side in the vertical and horizontal directions is preferably adopted.

本発明の後硬化装置は、紫外線LED(A)と光学的立体造形物との距離、紫外線LED(A)から発射される紫外線(a)の照射方向(照射角度)および光学的立体造形物に対する紫外線(a)の照射位置のいずれか1つまたは2つ以上を調節するための調節手段(Sa)をハウジング内に有してもよいし、または有していなくてもよい。
調節手段(Sa)を有することによって、ハウジング内に収容したグリーン光学的立体造形物のサイズ、形状、数、ハウジング内でのグリーン光学的立体造形物の配置位置や配置状態などに応じて、紫外線LED(A)と光学的立体造形物との距離、紫外線LED(A)から発射される紫外線(a)の照射方向(照射角度)および光学的立体造形物に対する紫外線(a)の照射位置などを調節して、グリーン光学的立体造形物全体に紫外線(a)を均一に且つ速やかに照射することが可能になり、それによって、全体にバランスのとれた力学的特性を有し、外観、色調、寸法精度などにも優れる後硬化した立体造形物を円滑に得ることができ、また場合によってはハウジング内に配置する紫外線LED(A)の数を減らすことができる。
The post-curing apparatus of the present invention relates to the distance between the ultraviolet LED (A) and the optical three-dimensional object, the irradiation direction (irradiation angle) of the ultraviolet (a) emitted from the ultraviolet LED (A), and the optical three-dimensional object. The housing may or may not have adjusting means (Sa) for adjusting any one or more of the ultraviolet (a) irradiation positions.
By having the adjusting means (Sa), ultraviolet rays are emitted according to the size, shape, number of green optical three-dimensional objects housed in the housing, the arrangement position and arrangement state of the green optical three-dimensional objects in the housing, and the like. The distance between the LED (A) and the optical three-dimensional object, the irradiation direction (irradiation angle) of the ultraviolet ray (a) emitted from the ultraviolet LED (A), the irradiation position of the ultraviolet ray (a) on the optical three-dimensional object, and the like. Adjustable to allow the entire green optical three-dimensional object to be uniformly and quickly irradiated with ultraviolet light (a), thereby having a well-balanced mechanical property throughout, appearance, color, It is possible to smoothly obtain a post-cured three-dimensional object having excellent dimensional accuracy and the like, and in some cases, it is possible to reduce the number of ultraviolet LEDs (A) arranged in the housing.

調節手段(Sa)としては、ハウジング内での紫外線LED(A)の移動、回転、前進・後退、揺動、紫外線LED(A)からの紫外線の照射方向(発射角度)の変更および紫外線LED(A)への光学的立体造形物の前進・後退などのいずれか1つまたは2つ以上を司る手段を挙げることができる。
本発明の後硬化装置で用いる紫外線LED(A)は、軽量で構造的にも簡素であるため、ハウジング内での移動、回転、前進・後退、揺動、紫外線LED(A)からの紫外線の照射方向(発射角度)の変更などが容易である。
本発明の後硬化装置で用いる紫外線LED(A)は、電圧・電流を安定化させるための安定器が不要で紫外線LED(A)に通電するための電気回路が簡単であるため、紫外線LED(A)への通電回路の過度の複雑化を招くことなく調節手段(Sa)を設けることができる。
The adjusting means (Sa) includes movement, rotation, forward / backward movement, rocking of the ultraviolet LED (A) in the housing, change of the ultraviolet irradiation direction (launch angle) from the ultraviolet LED (A), and the ultraviolet LED (Sa). Examples thereof include means for controlling any one or two or more of the forward / backward movement of the optical three-dimensional object to A).
Since the ultraviolet LED (A) used in the post-curing device of the present invention is lightweight and structurally simple, movement, rotation, forward / backward movement, rocking, and ultraviolet rays from the ultraviolet LED (A) in the housing It is easy to change the irradiation direction (launch angle).
The ultraviolet LED (A) used in the post-curing device of the present invention does not require a ballast for stabilizing voltage and current, and has a simple electric circuit for energizing the ultraviolet LED (A). The adjusting means (Sa) can be provided without causing excessive complexity of the energizing circuit to A).

調節手段(Sa)を設けるに当たっては、紫外線LED(A)をハウジング内に取り付ける取付け部材(Ta)が調節手段(Sa)を兼ねるようにしてもよいし、または取付け部材(Ta)とは別に調節手段(Sa)を設けてもよい。いずれの場合も取付け部材(Ta)に紫外線LED(A)を取り付けた状態で、調節手段(Sa)をハウジング内で移動、回転、前進・後退、揺動および/または角度変更することによって、紫外線LED(A)と光学的立体造形物との距離、紫外線LED(A)から発射される紫外線(a)の照射方向(照射角度)および光学的立体造形物に対する紫外線(a)の照射位置のいずれか1つまたは2つ以上を変化・調節することができる。 In providing the adjusting means (Sa), the mounting member (Ta) for mounting the ultraviolet LED (A) in the housing may also serve as the adjusting means (Sa), or is adjusted separately from the mounting member (Ta). Means (Sa) may be provided. In either case, with the ultraviolet LED (A) attached to the attachment member (Ta), the adjusting means (Sa) is moved, rotated, advanced / retracted, swung and / or angled in the housing to change the ultraviolet rays. Either the distance between the LED (A) and the optical three-dimensional object, the irradiation direction (irradiation angle) of the ultraviolet rays (a) emitted from the ultraviolet LED (A), or the irradiation position of the ultraviolet rays (a) on the optical three-dimensional object. One or more can be changed and adjusted.

調節手段(Sa)がハウジング内で紫外線LED(A)を移動させる手段である場合は、その機構は特に制限されず、例えば、ハウジング内(ハウジングの天井、側壁および/または底面)に設けた直線状の軌道、曲線状の軌道、円軌道、楕円軌道またはその他の形状の軌道とそれらの軌道に沿って移動する取付け部材などを挙げることができ、当該取付け部材に紫外線LED(A)を取り付けた状態で取付け部材を前記した軌道に沿って移動させることによって、紫外線LED(A)をハウジング内でることにより、紫外線LED(A)をハウジング内で直線状、曲線状、円状、楕円状および/またはその他の形状の軌道に沿って移動させることができる。 When the adjusting means (Sa) is a means for moving the ultraviolet LED (A) in the housing, the mechanism is not particularly limited, and for example, a straight line provided in the housing (ceiling, side wall and / or bottom surface of the housing). Shaped orbits, curved orbits, circular orbits, elliptical orbits or other shaped orbits and mounting members that move along those orbits can be mentioned, and an ultraviolet LED (A) is attached to the mounting member. By moving the mounting member along the track described above in the state, the ultraviolet LED (A) is placed in the housing, so that the ultraviolet LED (A) is linear, curved, circular, elliptical and / in the housing. Alternatively, it can be moved along an orbit of other shapes.

調節手段(Sa)がハウジング内で紫外線LED(A)を回転させる手段である場合は、例えば、ハウジング内(ハウジングの天井、側壁および/または底面)に取り付けた、回転軸の周りを回転する円板などの回転体よりなる取付け部材を挙げることができ、当該取付け部材の所定の1箇所または複数個所(例えば回転体の周辺に近い位置および/または周辺と中心との間の位置など)に紫外線LED(A)を取り付けることによって、紫外線LED(A)をハウジング内で回転軸の周りに回転させることができる。 When the adjusting means (Sa) is a means for rotating the ultraviolet LED (A) in the housing, for example, a circle rotating around a rotating shaft mounted in the housing (ceiling, side wall and / or bottom surface of the housing). A mounting member made of a rotating body such as a plate can be mentioned, and ultraviolet rays are emitted to a predetermined one or a plurality of places (for example, a position near the periphery of the rotating body and / or a position between the periphery and the center) of the mounting member. By attaching the LED (A), the ultraviolet LED (A) can be rotated around a rotating shaft in the housing.

調節手段(Sa)がハウジング内で紫外線LED(A)を前進・後退させる手段である場合は、例えば、ハウジング内(ハウジングの天井、側壁および/または底面)に取り付けた、当該取り付け箇所とそれと対向する方向に向かってリンク式、クランク式、ネジ式、シリンダー式、バネ式などの方式で前進・後退する取付け部材を挙げることができ、当該取付け部材に紫外線LED(A)を取り付けることによって、紫外線LED(A)をハウジング内で前進・後退させることができる。 When the adjusting means (Sa) is a means for advancing / retracting the ultraviolet LED (A) in the housing, for example, the mounting portion mounted in the housing (ceiling, side wall and / or bottom surface of the housing) and facing the mounting location. There are mounting members that move forward and backward in the direction of linking, cranking, screwing, cylinders, springs, etc. By attaching the ultraviolet LED (A) to the mounting member, ultraviolet rays are emitted. The LED (A) can be moved forward and backward in the housing.

調節手段(Sa)がハウジング内で紫外線LED(A)を揺動させる手段である場合は、例えば、揺動モータによって揺動する取付け部材、リンク機構によって揺動する取付け部材などを挙げることができ、当該取付け部材に紫外線LED(A)を取り付けることによって、紫外線LED(A)をハウジング内で揺動させることができる。 When the adjusting means (Sa) is a means for swinging the ultraviolet LED (A) in the housing, for example, a mounting member swinging by a swing motor, a mounting member swinging by a link mechanism, and the like can be mentioned. By attaching the ultraviolet LED (A) to the mounting member, the ultraviolet LED (A) can be swung in the housing.

調節手段(Sa)の作動は、手動によって行うようにしてもよいし、または電動によって行うようにしてもよい。
ハウジング内への取付け部材(Ta)および調節手段(Sa)の設置個所、設置数、設置方式などは特に制限されず、ハウジングの形状、構造、サイズ、ハウジングに配置する紫外線LED(A)の数、形状、構造、配置形態、ハウジング内に収容する光学的立体造形物(グリーン光学的立体造形物)のサイズ、形状、構造などに応じて、1個または2個以上の手段(Sa)を、ハウジングの上部(天井)、下部(底部)および側周部(壁部)の1箇所または2箇所以上に取り付けることができる。
The operation of the adjusting means (Sa) may be performed manually or electrically.
The location, number of installations, installation method, etc. of the mounting member (Ta) and adjusting means (Sa) in the housing are not particularly limited, and the shape, structure, size of the housing, and the number of ultraviolet LEDs (A) to be arranged in the housing. , One or more means (Sa) depending on the shape, structure, arrangement form, size, shape, structure, etc. of the optical three-dimensional object (green optical three-dimensional object) to be accommodated in the housing. It can be attached to one or more locations on the top (ceiling), bottom (bottom) and side circumferences (walls) of the housing.

また、調節手段(Sa)を設ける代わりに、または調節手段(Sa)を設けると同時に、光学的立体造形物を前進・後退および/または回転させる手段をハウジング内に設けることによっても、紫外線LED(A)と光学的立体造形物(グリーン光学的立体造形物)との距離、光学的立体造形物に対する紫外線(a)の照射位置を変化・調節することができる。
光学的立体造形物を前進・後退および/または回転させる手段としては、前進・後退および/または回転が可能な、光学的立体造形物の載置台などを挙げることができる。
Further, instead of providing the adjusting means (Sa), or at the same time as providing the adjusting means (Sa), by providing a means for advancing / retreating and / or rotating the optical three-dimensional object in the housing, the ultraviolet LED ( The distance between the optical three-dimensional object (A) and the optical three-dimensional object (green optical three-dimensional object) and the irradiation position of ultraviolet rays (a) on the optical three-dimensional object can be changed and adjusted.
As a means for advancing / retreating and / or rotating the optical three-dimensional object, a mounting table for the optical three-dimensional object capable of advancing / retreating and / or rotating can be mentioned.

本発明の後硬化装置は、ハウジング内に、紫外線LED(A)と共に、必要に応じて、光学的立体造形物の色調の更なる向上のために「430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光」[可視光(b)]を発射する光照射手段(B)を更に有していてもよく、この場合には、光学的立体造形物の後硬化とその後の後処理が行われるため、本発明の装置は、「後硬化・後処理装置」となる。
ハウジング内に、紫外線LED(A)と光照射手段(B)の両方を有する後硬化・後処理装置は、紫外線LED(A)と光照射手段(B)への通電を制御する制御手段(C)を有する。
後硬化・後処理装置における制御手段(C)は、手動式であってもまたは電動式であってもいずれでもよい。
The post-curing apparatus of the present invention, together with the ultraviolet LED (A), is a light having a wavelength in the range of 430 to 500 nm, if necessary, for further improvement of the color tone of the optical three-dimensional structure. It may further have a light irradiation means (B) for emitting "light containing light having a wavelength of 400 nm or less" [visible light (b)], and in this case, an optical three-dimensional object. Since the post-curing and the subsequent post-treatment are performed, the apparatus of the present invention is a "post-curing / post-treatment apparatus".
The post-curing / post-treatment device having both the ultraviolet LED (A) and the light irradiation means (B) in the housing is a control means (C) that controls energization of the ultraviolet LED (A) and the light irradiation means (B). ).
The control means (C) in the post-curing / post-treatment apparatus may be a manual type or an electric type.

紫外線LED(A)と光照射手段(B)への通電を制御する制御手段(C)としては、
・紫外線LED(A)に通電して紫外線LED(A)から所定時間にわたって光を発射させた後に紫外線LED(A)への通電を停止し、次いで光照射手段(B)に通電して光照射手段(B)から所定時間にわたって光を発射させる制御手段(C−1)(タイムスイッチなど);
・紫外線LED(A)への通電と光照射手段(B)への通電を並行して行う制御手段(C−2);
などを挙げることができる。
制御手段(C−1)を採用した場合には、グリーン光学的立体造形物を制御手段(C−1)によって、紫外線LED(A)に通電して、紫外線LED(A)から、紫外線(a)(385nm以上の波長の光の合計強度が10%以下である光)を所定の時間にわたって発射させてグリーン光学的立体造形物を後硬化した後、紫外線LED(A)への通電を停止し、次いで光照射手段(B)に通電して光照射手段(B)から可視光(b)(430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光)を所定時間にわたって発射させて後硬化した光学的立体造形物を更に後処理する。
また、制御手段(C−2)を採用した場合には、グリーン光学的立体造形物を後硬化・後硬化装置のハウジング内に収容した後、紫外線LED(A)から、385nm以上の波長の光の合計強度が紫外線LED(A)から発射される光の全強度に基づいて10%以下である光を照射して後硬化し、それに並行して光照射手段(B)により430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光を照射して光学的立体造形物を処理する。
紫外線LED(A)による紫外線(a)の照射と光照射手段(B)による可視光(b)の照射を並行して行う後者による場合は、
・紫外線LED(A)による紫外線(a)の照射の開始時から終了時の全期間にわたって光照射手段(B)により可視光(b)を同時に照射してもよいし;
・紫外線LED(A)による紫外線(a)の照射の途中段階で光照射手段(B)による可視光(b)の照射を開始し、紫外線LED(A)による紫外線(a)の照射の終了時に光照射手段(B)による可視光(b)の照射を同時に終了してもよいし;または、
・紫外線LED(A)による紫外線(a)の照射の途中段階で光照射手段(B)による可視光(b)の照射を開始し、紫外線(a)の照射が終了して所定期間が経った後に光照射手段(B)による可視光(b)の照射を終了してもよい。
As the control means (C) for controlling the energization of the ultraviolet LED (A) and the light irradiation means (B),
-The ultraviolet LED (A) is energized to emit light from the ultraviolet LED (A) for a predetermined time, then the energization of the ultraviolet LED (A) is stopped, and then the light irradiating means (B) is energized to irradiate light. Control means (C-1) (time switch, etc.) that emits light from means (B) for a predetermined time;
A control means (C-2) that energizes the ultraviolet LED (A) and the light irradiation means (B) in parallel;
And so on.
When the control means (C-1) is adopted, the green optical three-dimensional object is energized by the control means (C-1) to the ultraviolet LED (A), and the ultraviolet LED (A) is transmitted to the ultraviolet (a). ) (Light having a total intensity of light having a wavelength of 385 nm or more of 10% or less) is emitted for a predetermined time to post-cure the green optical three-dimensional object, and then the energization of the ultraviolet LED (A) is stopped. Then, the light irradiation means (B) is energized and the light irradiation means (B) emits visible light (b) (light containing light having a wavelength in the range of 430 to 500 nm and not containing light having a wavelength of 400 nm or less). Is fired for a predetermined time to further post-treat the post-cured optical three-dimensional object.
Further, when the control means (C-2) is adopted, after the green optical three-dimensional model is housed in the housing of the post-curing / post-curing device, the light having a wavelength of 385 nm or more is emitted from the ultraviolet LED (A). Is irradiated with light having a total intensity of 10% or less based on the total intensity of light emitted from the ultraviolet LED (A) and then cured, and in parallel with this, the range of 430 to 500 nm is provided by the light irradiation means (B). The optically three-dimensional object is processed by irradiating light containing light having a wavelength within and not containing light having a wavelength of 400 nm or less.
In the case of the latter, in which the irradiation of ultraviolet rays (a) by the ultraviolet LED (A) and the irradiation of visible light (b) by the light irradiation means (B) are performed in parallel,
-Visible light (b) may be simultaneously irradiated by the light irradiation means (B) for the entire period from the start to the end of the irradiation of the ultraviolet rays (a) by the ultraviolet LED (A);
-When the irradiation of visible light (b) by the light irradiation means (B) is started in the middle of the irradiation of the ultraviolet rays (a) by the ultraviolet LED (A) and the irradiation of the ultraviolet rays (a) by the ultraviolet LED (A) is completed. Irradiation of visible light (b) by the light irradiation means (B) may be terminated at the same time; or
-The irradiation of visible light (b) by the light irradiation means (B) was started in the middle of the irradiation of the ultraviolet rays (a) by the ultraviolet LED (A), and the irradiation of the ultraviolet rays (a) was completed for a predetermined period of time. The irradiation of visible light (b) by the light irradiation means (B) may be terminated later.

ハウジング内に配置する光照射手段(B)の種類は、430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない可視光(b)を光学的立体造形物に照射し得る光照射手段である限りは特に制限されない。
可視光(b)に係る「430〜500nmの範囲内の波長を有する光を含む」とは、可視光(b)が、430〜500nmの範囲内の波長の光(波長が430〜500nmの範囲内にある青色光)を少なくとも含んでいることを意味する。
可視光(b)は、「430〜500nmの波長範囲内に1つまたは2つ以上のエネルギー強度のピークを有し且つ波長が400nm以下の光を含まない光」であってもよいし、「430〜500nmの波長範囲内に光エネルギー強度のピークを持たないが、430〜500nmの波長範囲内に少なくとも光のエネルギーが分布していて且つ波長が400nm以下の光を含まない光」であってもよいし、または前記2つの光の併用であってもよい。
The type of light irradiation means (B) arranged in the housing is visible light (b) containing light having a wavelength in the range of 430 to 500 nm and not including light having a wavelength of 400 nm or less as an optical three-dimensional object. It is not particularly limited as long as it is a light irradiation means capable of irradiating.
“Including light having a wavelength in the range of 430 to 500 nm” related to visible light (b) means that the visible light (b) is light having a wavelength in the range of 430 to 500 nm (wavelength in the range of 430 to 500 nm). It means that it contains at least the blue light inside.
The visible light (b) may be "light having one or more energy intensity peaks in the wavelength range of 430 to 500 nm and not containing light having a wavelength of 400 nm or less" or "light. Light that does not have a peak of light energy intensity in the wavelength range of 430 to 500 nm, but has at least light energy distributed in the wavelength range of 430 to 500 nm and does not contain light having a wavelength of 400 nm or less. " It may be a combination of the two lights.

可視光(b)が、「430〜500nmの波長範囲内に1つまたは2つ以上のエネルギー強度のピークを有し且つ波長が400nm以下の光を含まない光」である場合は、430〜500nmの波長範囲における光エネルギー強度のピーク形状は、なだらかな山型形状および尖った山型形状のいずれであってもよい。可視光(b)が430〜500nmの波長範囲内に2つ以上の光エネルギー強度のピークを有している場合は、個々のピークの形状および高さは同じであってもよいし、または異なっていてもいずれでもよい。 When the visible light (b) is "light having one or two or more energy intensity peaks in the wavelength range of 430 to 500 nm and not containing light having a wavelength of 400 nm or less", it is 430 to 500 nm. The peak shape of the light energy intensity in the wavelength range of is either a gentle chevron shape or a sharp chevron shape. If the visible light (b) has two or more light energy intensity peaks in the wavelength range of 430-500 nm, the shapes and heights of the individual peaks may be the same or different. It doesn't matter if it is.

また、可視光(b)が、「430〜500nmの波長範囲内に光エネルギー強度のピークを持たないが、430〜500nmの波長範囲内に少なくとも光のエネルギーが分布していて且つ波長が400nm以下の光を含まない光」である場合は、430〜500nmの波長範囲では、当該430〜500nmの波長範囲の全体にわたって光エネルギー強度が均一またはほぼ均一に分布していてもよいし(波長を横軸および光エネルギー強度を縦軸にとった場合に430〜500nmの波長範囲にわたって平坦またはほぼ平坦な光エネルギー強度分布を有し且つ波長が400nm以下の光を含まない光であってもよいし)、430〜500nmの波長範囲の一方から他方に向かって(430nmから500nmに向かってまたは500nmから430nmに向かって)光エネルギー強度がテーパー状をなして増加または低下していて且つ波長が400nm以下の光を含まない光であってもよい。場合によっては、可視光(b)は、430〜500nmの波長範囲のいずれかの波長箇所において光エネルギー強度が低くなった谷形の光エネルギー強度の分布を有し且つ波長が400nm以下の光を含まない光であってもよい。 Further, the visible light (b) does not have a peak of light energy intensity in the wavelength range of 430 to 500 nm, but at least the light energy is distributed in the wavelength range of 430 to 500 nm and the wavelength is 400 nm or less. In the case of "light that does not contain light", the light energy intensity may be uniformly or substantially uniformly distributed over the entire wavelength range of 430 to 500 nm in the wavelength range of 430 to 500 nm (transverse wavelength). When the axis and the light energy intensity are taken on the vertical axis, the light may have a flat or almost flat light energy intensity distribution over a wavelength range of 430 to 500 nm and may not contain light having a wavelength of 400 nm or less). , The light energy intensity is tapered from one to the other (from 430 nm to 500 nm or from 500 nm to 430 nm) in the wavelength range of 430 to 500 nm, and the wavelength is 400 nm or less. It may be light that does not contain light. In some cases, visible light (b) emits light having a valley-shaped light energy intensity distribution with low light energy intensity at any wavelength in the wavelength range of 430 to 500 nm and a wavelength of 400 nm or less. The light may not be included.

可視光(b)としては、例えば、
《a》波長が400nm以下の光を含まない波長が430〜500nmまたは450〜500nmの光(いずれも青色光);
《b》430〜500nmの波長範囲内の光(青色光)と共に、500nmを超える波長を有する光[例えば、波長500〜570nmの光(緑色光)、波長530〜590nmの光(黄緑色光)、波長570〜590nmの光(黄色光)、波長590〜620nmの光(橙色光)、波長620〜750nmの光(赤色光)の1種または2種以上]を含み、且つ波長が400nm以下の光を含まない光;
《c》波長が400nm以下の光を含まない白色光;
などを挙げることができる。
Visible light (b) includes, for example,
<< a >> Light having a wavelength of 430 to 500 nm or 450 to 500 nm (both are blue light), which does not include light having a wavelength of 400 nm or less;
<< b >> Light having a wavelength exceeding 500 nm together with light in the wavelength range of 430 to 500 nm (for example, light having a wavelength of 500 to 570 nm (green light), light having a wavelength of 530 to 590 nm (yellow-green light)). , One or more of light having a wavelength of 570 to 590 nm (yellow light), light having a wavelength of 590 to 620 nm (orange light), and light having a wavelength of 620 to 750 nm (red light)] and having a wavelength of 400 nm or less. Light without light;
<< c >> White light containing no light having a wavelength of 400 nm or less;
And so on.

光学的立体造形物に可視光(b)を照射するための光照射手段(B)として用いる光源の種類は特に制限されず、430〜500nmの範囲内の波長を有する可視光を含み且つ波長が400nm以下の光を含まない可視光(b)を光学的立体造形物に照射することのできる光源であればいずれも使用できる。
そのうちでも、光照射手段(B)としては、波長が400nm以下の光を含まず430〜500nmの範囲内の光(青色)を発射する青色LED、または波長が400nm以下の光を含まず430〜500nmの範囲内の波長の光を含む白色LEDが好ましく用いられ、特に前記した青色LEDが、電圧・電流を安定化するための安定器の併設が不要で、熱の発生が少なく、消費電力が小さく、しかも軽量で取り扱い性などに優れる点から、より好ましく用いられる。
The type of light source used as the light irradiation means (B) for irradiating the optical three-dimensional object with visible light (b) is not particularly limited, and includes visible light having a wavelength in the range of 430 to 500 nm and has a wavelength of Any light source that can irradiate the optical three-dimensional object with visible light (b) that does not contain light of 400 nm or less can be used.
Among them, as the light irradiation means (B), a blue LED that emits light (blue) having a wavelength in the range of 430 to 500 nm without including light having a wavelength of 400 nm or less, or a blue LED that does not include light having a wavelength of 400 nm or less is 430 to A white LED containing light having a wavelength in the range of 500 nm is preferably used, and in particular, the above-mentioned blue LED does not require the addition of a ballast for stabilizing voltage and current, generates less heat, and consumes less power. It is more preferably used because it is small, lightweight, and has excellent handleability.

光照射手段(B)として用いられる光源(特に青色LED)の形状は、特に制限されず、管形(直管形、円管形、分岐管形)、球形や楕円球形(砲弾型、ランプ型)、点形、チップ形、多セグメント形、直方体形、可撓性チューブ形、コード形などのいずれでもよい。
ハウジング内に配置する光照射手段(B)の数は、ハウジング内に収容する光学的立体造形物のサイズや形状、光照射手段(B)のサイズ、形状、種類、ハウジングのサイズ、形状、構造、ハウジング内に配置する紫外線LEDの数、形状、配置場所などに応じて1個以上の数から選択することができる。
光学的立体造形物のより多くの面に対して可視光(b)を照射すると、光学的立体造形物の色調をより短時間で速やかに向上させることができるので、複数の光照射手段(B)をハウジングに配置することが好ましい。
The shape of the light source (particularly the blue LED) used as the light irradiation means (B) is not particularly limited, and is tubular (straight tube, circular tube, branch tube), spherical or elliptical spherical (bullet type, lamp type). ), Point type, chip type, multi-segment type, rectangular parallelepiped type, flexible tube type, cord type and the like.
The number of light irradiation means (B) arranged in the housing is the size and shape of the optical three-dimensional model housed in the housing, the size, shape, type of the light irradiation means (B), the size, shape and structure of the housing. , It can be selected from one or more depending on the number, shape, arrangement location, etc. of the ultraviolet LEDs arranged in the housing.
By irradiating more surfaces of the optical three-dimensional object with visible light (b), the color tone of the optical three-dimensional object can be improved quickly in a shorter time, and thus a plurality of light irradiation means (B). ) Is preferably placed in the housing.

光照射手段(B)の配置位置は、ハウジングの側周部、上部および下部のうちの1箇所だけであっても、2箇所以上であってもいずれでもよい。ハウジングの側周部と上部と下部の2箇所以上に、各箇所にそれぞれ複数の光照射手段を配置すると、光学的立体造形物の多くの面に可視光(b)が照射されるようになり、光学的立体造形物の黄変などの変色をより短時間で効率よく低減することができる。
限定されるものではないが、ハウジングが直方体形(立方体を含む)である場合には、上部のみに光照射手段(B)を配置する態様、下部のみに光照射手段(B)を配置する態様、上部と下部の両方にそれぞれ光照射手段(B)を配置する態様、4つの方形の側面(側壁部分)のうちの1つの側面(側壁部分)に光照射手段(B)を配置する態様、4つの方形の側面(側壁部分)のうちの2つ以上の側面(側壁部分)にそれぞれ光照射手段(B)を配置する態様、4つの方形の側面(側壁部分)のうちの1つまたは2つ以上の側面(側壁部分)と上部と下部のいずれか一方または両方にそれぞれ光照射手段(B)を配置する態様などの種々の態様を採用することができる。
The position of the light irradiation means (B) may be only one of the side peripheral portion, the upper portion and the lower portion of the housing, or may be two or more locations. By arranging a plurality of light irradiation means at each of the two or more locations on the side peripheral portion of the housing and at the upper and lower portions, visible light (b) is emitted to many surfaces of the optical three-dimensional model. , Discoloration such as yellowing of an optically three-dimensional object can be efficiently reduced in a shorter time.
Although not limited, when the housing has a rectangular parallelepiped shape (including a cube), a mode in which the light irradiation means (B) is arranged only in the upper part and a mode in which the light irradiation means (B) is arranged only in the lower part. , A mode in which the light irradiation means (B) is arranged on both the upper part and the lower part, respectively, a mode in which the light irradiation means (B) is arranged on one side surface (side wall portion) of the four rectangular side surfaces (side wall portion). A mode in which the light irradiation means (B) is arranged on each of two or more side surfaces (side wall portions) of the four rectangular side surfaces (side wall portions), and one or two of the four square side surfaces (side wall portions). Various embodiments can be adopted, such as arranging the light irradiation means (B) on one or more of one or more side surfaces (side wall portions) and the upper portion and the lower portion, respectively.

本発明の後硬化・後処理装置は、光照射手段(B)と光学的立体造形物との距離、光照射手段(B)から発射される可視光(b)の照射方向(照射角度)および光学的立体造形物に対する可視光(b)の照射位置のいずれか1つまたは2つ以上を調節するための調節手段(Sb)をハウジング内に有することができる。
調節手段(Sb)を有することによって、ハウジング内に収容した光学的立体造形物(後硬化後の光学的立体造形物)のサイズ、形状、数、ハウジング内での光学的立体造形物の配置位置や配置状態などに応じて、光照射手段(B)と光学的立体造形物との距離、光照射手段(B)から発射される可視光(b)の照射方向(照射角度)および光学的立体造形物に対する可視光(b)の照射位置などを調節して、光学的立体造形物全体に可視光(b)を均一に且つ速やかに照射することが可能になり、それによって、全体にバランスのとれた力学的特性を有し、寸法精度などに優れ、しかも外観や色調に一層優れる後硬化・後処理した立体造形物を円滑に得ることができ、また場合によってはハウジング内に配置する光照射手段(B)の数を減らすことができる。
The post-curing / post-treatment apparatus of the present invention includes the distance between the light irradiation means (B) and the optically three-dimensional object, the irradiation direction (irradiation angle) of visible light (b) emitted from the light irradiation means (B), and the irradiation angle. An adjusting means (Sb) for adjusting any one or more of the irradiation positions of visible light (b) on the optically three-dimensional object can be provided in the housing.
By having the adjusting means (Sb), the size, shape, number of the optical three-dimensional object (optical three-dimensional object after post-curing) housed in the housing, and the arrangement position of the optical three-dimensional object in the housing. The distance between the light irradiation means (B) and the optical three-dimensional object, the irradiation direction (irradiation angle) of the visible light (b) emitted from the light irradiation means (B), and the optical three-dimensional object, depending on the light irradiation means (B) and the arrangement state. By adjusting the irradiation position of visible light (b) on the modeled object, it becomes possible to uniformly and quickly irradiate the entire optical three-dimensional modeled object with visible light (b), thereby achieving a balance throughout. It is possible to smoothly obtain post-cured and post-treated three-dimensional shaped objects that have excellent mechanical properties, excellent dimensional accuracy, and even better appearance and color tone, and in some cases, light irradiation placed inside the housing. The number of means (B) can be reduced.

光照射手段(B)と光学的立体造形物との距離、光照射手段(B)から発射される可視光(b)の照射方向(照射角度)および光学的立体造形物に対する可視光(b)の照射位置のいずれか1つまたは2つ以上を調節するための調節手段(Sb)は、光照射手段(B)をハウジング内に取り付けるための取付け部材(Tb)との兼用であってもよいし、または取付け部材(Tb)とは別に設けてもよい。 The distance between the light irradiation means (B) and the optical three-dimensional object, the irradiation direction (irradiation angle) of the visible light (b) emitted from the light irradiation means (B), and the visible light (b) for the optical three-dimensional object. The adjusting means (Sb) for adjusting any one or more of the irradiation positions of the above may also be used as a mounting member (Tb) for mounting the light irradiation means (B) in the housing. Alternatively, it may be provided separately from the mounting member (Tb).

光照射手段(B)の取付け部材(Tb)並びに照射手段(B)と光学的立体造形物との距離、光照射手段(B)から発射される可視光(b)の照射方向(照射角度)および光学的立体造形物に対する可視光(b)の照射位置のいずれか1つまたは2つ以上を調節するための調節手段(Sb)は、紫外線LED(A)の取付け部材(Ta)並びに紫外線LED(A)と光学的立体造形物との距離、紫外線LED(A)から発射される紫外線(a)の照射方向(照射角度)および光学的立体造形物に対する紫外線(a)の照射位置のいずれか1つまたは2つ以上を調節するための調節手段(Sa)と別に設けてもよいし、取付け部材(Ta)と取付け部材(Tb)を兼用として紫外線LED(A)と光照射手段(B)の両方を同じ取付け部材に取り付けてもよいし、調節手段(Sa)と調節手段(Sb)を兼用として同じ調節手段によって紫外線LED(A)および光照射手段(B)と光学的立体造形物との距離、紫外線LED(A)から発射される紫外線(a)または光照射手段(B)から発射される可視光(b)の照射方向(照射角度)および光学的立体造形物に対する紫外線(a)または可視光(b)の照射位置を調節するようにしてもよい。
取付け部材と調節手段の一方または両方を、紫外線LED(A)と光照射手段(B)とで兼用にすると、後硬化・後処理装置の構造を簡素化することができる。
The attachment member (Tb) of the light irradiation means (B), the distance between the irradiation means (B) and the optically three-dimensional object, and the irradiation direction (irradiation angle) of the visible light (b) emitted from the light irradiation means (B). And the adjusting means (Sb) for adjusting any one or more of the irradiation positions of visible light (b) on the optically three-dimensional object is the mounting member (Ta) of the ultraviolet LED (A) and the ultraviolet LED. Either the distance between (A) and the optical three-dimensional object, the irradiation direction (irradiation angle) of the ultraviolet (a) emitted from the ultraviolet LED (A), or the irradiation position of the ultraviolet (a) on the optical three-dimensional object. It may be provided separately from the adjusting means (Sa) for adjusting one or two or more, or the ultraviolet LED (A) and the light irradiating means (B) are also used as the mounting member (Ta) and the mounting member (Tb). Both may be attached to the same mounting member, or the ultraviolet LED (A), the light irradiation means (B), and the optical three-dimensional object can be combined with the adjusting means (Sa) and the adjusting means (Sb) by the same adjusting means. Distance, the irradiation direction (irradiation angle) of the ultraviolet rays (a) emitted from the ultraviolet LED (A) or the visible light (b) emitted from the light irradiation means (B), and the ultraviolet rays (a) for the optically three-dimensional object. Alternatively, the irradiation position of the visible light (b) may be adjusted.
When one or both of the mounting member and the adjusting means are used in combination with the ultraviolet LED (A) and the light irradiation means (B), the structure of the post-curing / post-treatment device can be simplified.

何ら限定されるものではないが、本発明の後硬化装置および後硬化・後処理装置について図を参照して説明する。
図1〜図5は、本発明の後硬化装置の具体例の概略図(透視図)であり、図6および図7は、本発明の後硬化・後処理装置の具体例の概略図(透視図)である。
図1〜図7において、1はハウジング、2は紫外線LED(A)、3は紫外線LED(A)の取付け部材(Ta))、4は光学的立体造形物、5は網、6は紫外線LED(A)の取付け部材兼調節手段、7は光照射手段(B)、8は紫外線LED(A)と照射手段(B)の取付け部材兼調節手段を示す。
The post-curing apparatus and the post-curing / post-treatment apparatus of the present invention will be described with reference to the drawings without limitation.
1 to 5 are schematic views (perspective views) of specific examples of the post-curing device of the present invention, and FIGS. 6 and 7 are schematic views (perspective view) of specific examples of the post-curing / post-treatment device of the present invention. Figure).
In FIGS. 1 to 7, 1 is a housing, 2 is an ultraviolet LED (A), 3 is an ultraviolet LED (A) mounting member (Ta)), 4 is an optical three-dimensional object, 5 is a net, and 6 is an ultraviolet LED. (A) indicates a mounting member / adjusting means, 7 indicates a light irradiation means (B), and 8 indicates a mounting member / adjusting means for the ultraviolet LED (A) and the irradiation means (B).

図1は、直方体形のハウジング1内の対向する2つの側周壁と当該2つの側周壁に挟まれた1つの側周壁に、取付け部材(Ta)3によって紫外線LED(A)2を2個ずつ取り付けた本発明の後硬化装置の例を示す図である。
図1の後硬化装置では、紫外線LED(A)2は、調節手段(Sa)を用いることなく取付け部材(Ta)3によってハウジング1の側周壁に固定した状態で取り付けられていてもよいし、または紫外線LED(A)から発射される紫外線(a)が光学的立体造形物に効率よく照射されるように、取付け部材(Ta)3を、紫外線LED(A)2からの紫外線(a)の発射角度の変更・調節機能および/または紫外線LED(A)2を光学的立体造形物4に向かって前進・後退させる機能を有する調節手段(Sa)(図示せず)との兼用のものとしてもよい。
FIG. 1 shows two ultraviolet LEDs (A) 2 by a mounting member (Ta) 3 on two opposing side peripheral walls and one side peripheral wall sandwiched between the two side peripheral walls in a rectangular parallelepiped housing 1. It is a figure which shows the example of the post-curing apparatus of this invention attached.
In the post-curing apparatus of FIG. 1, the ultraviolet LED (A) 2 may be attached to the side peripheral wall of the housing 1 by the attachment member (Ta) 3 without using the adjusting means (Sa). Alternatively, the mounting member (Ta) 3 is attached to the ultraviolet rays (a) from the ultraviolet LED (A) 2 so that the ultraviolet rays (a) emitted from the ultraviolet LED (A) are efficiently irradiated to the optically three-dimensional object. It can also be used as an adjustment means (Sa) (not shown) having a function of changing / adjusting the firing angle and / or a function of moving the ultraviolet LED (A) 2 forward / backward toward the optical three-dimensional model 4. Good.

図2は、直方体形のハウジング1内に光学的立体造形物4を載置するための網5を配置し、網5を挟んでハウジングの対向する2つの側周壁の上部と下部に紫外線LED(A)2を各2個ずつ取り付け、それぞれの紫外線LED(A)から紫外線(a)を発射させて、光学的立体造形物4の上方と光学的立体造形物4の下方から紫外線(a)して光学的立体造形物の後硬化を行うようにした本発明の後硬化装置の例を示す図である。
図2の後硬化装置においても、紫外線LED(A)2は、調節手段(Sa)を用いることなく取付け部材(Ta)3によってハウジング1の側周壁に固定した状態で取り付けられていてもよいし、または紫外線LED(A)2から発射される紫外線(a)が光学的立体造形物に効率よく照射されるように、取付け部材(Ta)を紫外線LED(A)2からの紫外線(a)の発射角度の変更・調節機能および/または紫外線LED(A)2を光学的立体造形物4に向かって前進・後退させる機能を有する調節手段(Sa)(図示せず)と兼用としてもよい。
In FIG. 2, a net 5 for placing an optical three-dimensional object 4 is arranged in a rectangular housing 1, and ultraviolet LEDs (ultraviolet LEDs) are placed on the upper and lower portions of two opposite side peripheral walls of the housing with the net 5 in between. A) Two 2 are attached to each, and ultraviolet rays (a) are emitted from each ultraviolet LED (A) to emit ultraviolet rays (a) from above the optical three-dimensional model 4 and below the optical three-dimensional model 4. It is a figure which shows the example of the post-curing apparatus of this invention which performed post-curing of an optical three-dimensional object.
Also in the post-curing device of FIG. 2, the ultraviolet LED (A) 2 may be mounted in a state of being fixed to the side peripheral wall of the housing 1 by the mounting member (Ta) 3 without using the adjusting means (Sa). Or, the mounting member (Ta) is of the ultraviolet (a) from the ultraviolet LED (A) 2 so that the ultraviolet (a) emitted from the ultraviolet LED (A) 2 is efficiently irradiated to the optically three-dimensional object. It may also be used as an adjustment means (Sa) (not shown) having a function of changing / adjusting the firing angle and / or a function of advancing / retreating the ultraviolet LED (A) 2 toward the optical three-dimensional model 4.

図3は、6a[紫外線LED(A)2の取付け板]、6b(ハウジング1への固定板)および6c(リンク機構)から構成される、ハウジング1内で前進(下降)および後退(上昇)が可能な取付け部材兼調節手段6の6aに多数の紫外線LED(A)2を取り付けた本発明の後硬化装置の一例を示す図である。
図3の後硬化装置では、ハウジング1の内部に光学的立体造形物(図示せず)を収容した後、ハウジング1の上部に配置されている紫外線LED(A)2を、取付け部材兼調節手段6によって前進(下降)させて、ハウジング1の底部に配置した光学的立体造形物の上端が紫外線LED(A)2に近接する位置まで下降させ、次いで紫外線LED(A)2の移動を停止した状態で、紫外線LED(A)2を作動(点灯)させて紫外線(a)を発射させて紫外線(a)を光学的立体造形物に照射して、光学的立体造形物の黄変を防ぎながら光学的立体造形物を後硬化させる。
FIG. 3 shows forward (down) and backward (up) in the housing 1 composed of 6a [mounting plate of ultraviolet LED (A) 2], 6b (fixing plate to housing 1) and 6c (link mechanism). It is a figure which shows an example of the post-curing apparatus of this invention which attached a large number of ultraviolet LEDs (A) 2 to 6a of a mounting member and adjustment means 6 capable of
In the post-curing device of FIG. 3, after the optical three-dimensional object (not shown) is housed inside the housing 1, the ultraviolet LED (A) 2 arranged on the upper part of the housing 1 is attached to the mounting member and adjusting means. 6 was used to move forward (lower) so that the upper end of the optical three-dimensional model placed at the bottom of the housing 1 was lowered to a position close to the ultraviolet LED (A) 2, and then the movement of the ultraviolet LED (A) 2 was stopped. In this state, the ultraviolet LED (A) 2 is operated (lit) to emit the ultraviolet (a) to irradiate the optical three-dimensional object with the ultraviolet (a) while preventing yellowing of the optical three-dimensional object. The optical three-dimensional model is post-cured.

図4は、ハウジング1の上面(天井)に、中心軸6dの周りに回転する円板などの回転体6fからなる取付け部材兼調節手段6を配置し、当該取付け部材兼調節手段6の回転体6fに紫外線LED(A)2を取り付けた本発明の後硬化装置の一例を示す図である。
図4の後硬化装置では、ハウジング1の内部に光学的立体造形物4を収容した後、紫外線LED(A)2を作動(点灯)させて紫外線LED(A)2から紫外線(a)を発射させると同時に当該取付け部材兼調節手段6を回転させながら光学的立体造形物に紫外線(a)を照射して、光学的立体造形物の黄変を防ぎながら光学的立体造形物を後硬化させる。
In FIG. 4, a mounting member / adjusting means 6 made of a rotating body 6f such as a disk rotating around a central axis 6d is arranged on the upper surface (ceiling) of the housing 1, and the rotating body of the mounting member / adjusting means 6 is arranged. It is a figure which shows an example of the post-curing apparatus of this invention which attached the ultraviolet LED (A) 2 to 6f.
In the post-curing device of FIG. 4, after the optical three-dimensional object 4 is housed inside the housing 1, the ultraviolet LED (A) 2 is operated (lit) to emit ultraviolet rays (a) from the ultraviolet LED (A) 2. At the same time, the mounting member / adjusting means 6 is rotated to irradiate the optical three-dimensional object with ultraviolet rays (a) to post-cure the optical three-dimensional object while preventing yellowing of the optical three-dimensional object.

図5は、ハウジング1の上面(天井)に、円形または楕円形の軌道6gと当該軌道6gに沿って回転移動する移動体6hからなる取付け部材兼調節手段6を配置し、当該取付け部材兼調節手段6の移動体6hに紫外線LED(A)2を取り付けた本発明の後硬化装置の一例を示す図である。
図5の後硬化装置では、ハウジング1の内部に光学的立体造形物4を収容した後、紫外線LED(A)2を作動(点灯)させて紫外線LED(A)2から紫外線(a)を発射させると同時に移動体6hを軌道6gに沿って移動させながら光学的立体造形物に紫外線(a)を照射して、光学的立体造形物の黄変を防ぎながら光学的立体造形物を後硬化させる。
FIG. 5 shows, on the upper surface (ceiling) of the housing 1, a mounting member / adjusting means 6 composed of a circular or elliptical track 6g and a moving body 6h that rotates and moves along the track 6g is arranged, and the mounting member / adjusting means 6 is arranged. It is a figure which shows an example of the post-curing apparatus of this invention which attached the ultraviolet LED (A) 2 to the moving body 6h of means 6.
In the post-curing device of FIG. 5, after the optical three-dimensional object 4 is housed inside the housing 1, the ultraviolet LED (A) 2 is operated (lit) to emit ultraviolet rays (a) from the ultraviolet LED (A) 2. At the same time, the moving body 6h is moved along the orbit 6g and the optical three-dimensional object is irradiated with ultraviolet rays (a) to post-cure the optical three-dimensional object while preventing yellowing of the optical three-dimensional object. ..

図6は、直方体形のハウジング1内に光学的立体造形物4を載置するための網5を配置し、網5を挟んでハウジングの対向する2つの側周壁の上部と下部に紫外線LED(A)2を各2個ずつ取り付けると共に、ハウジング1の上面(天井)またはその近傍と、ハウジング1の下面(底部)またはその近傍に複数の管状の青色LED[照射手段(B)]7を配置した本発明の後硬化・後処理装置の一例を示す図である。
図6の後硬化・後処理装置では、
・紫外線LED(A)2と青色LED7への通電を制御する制御手段(C)として、制御手段(C−1)を採用して、ハウジング1内の網5の上に光学的立体造形物4を載置した後、紫外線LED(A)2に通電して光学的立体造形物4に紫外線(a)を所定時間照射して光学的立体造形物を後硬化させ、次いで紫外線LED(A)2への通電を停止した後、青色LED[光照射手段(B)]7に通電して青色LED7から可視光(b)を発射させて光学的立体造形物4に可視光(b)を所定時間照射して後処理を行って、黄変度の一層低減した光学的立体造形物4としてもよいし;または、
・紫外線LED(A)2と青色LED7への通電を制御する制御手段(C)として、通電手段(C−2)を採用して、ハウジング1内の網5の上に光学的立体造形物4を載置した後、紫外線LED(A)2への通電と、青色LED7への通電を並行して行って、光学的立体造形物の後硬化と後処理を並行して行ってもよい。
In FIG. 6, a net 5 for placing an optical three-dimensional object 4 is arranged in a rectangular parallelepiped housing 1, and ultraviolet LEDs (ultraviolet LEDs) are placed on the upper and lower portions of two opposing side peripheral walls of the housing with the net 5 in between. A) Two 2 each are attached, and a plurality of tubular blue LEDs [irradiation means (B)] 7 are arranged on or near the upper surface (ceiling) of the housing 1 and on or near the lower surface (bottom) of the housing 1. It is a figure which shows an example of the post-curing / post-treatment apparatus of this invention.
In the post-curing / post-treatment device of FIG. 6,
-As the control means (C) for controlling the energization of the ultraviolet LED (A) 2 and the blue LED 7, the control means (C-1) is adopted, and the optical three-dimensional object 4 is placed on the net 5 in the housing 1. The ultraviolet LED (A) 2 is energized and the optical three-dimensional model 4 is irradiated with the ultraviolet (a) for a predetermined time to post-cure the optical three-dimensional object, and then the ultraviolet LED (A) 2 is placed. After stopping the energization of the optical three-dimensional object 4, the blue LED [light irradiation means (B)] 7 is energized to emit visible light (b) from the blue LED 7, and the visible light (b) is applied to the optical three-dimensional object 4 for a predetermined time. It may be irradiated and post-treated to obtain an optically three-dimensional model 4 having a further reduced degree of yellowing; or
-As the control means (C) for controlling the energization of the ultraviolet LED (A) 2 and the blue LED 7, the energization means (C-2) is adopted, and the optical three-dimensional object 4 is placed on the net 5 in the housing 1. The ultraviolet LED (A) 2 may be energized and the blue LED 7 may be energized in parallel to perform post-curing and post-treatment of the optical three-dimensional object in parallel.

図7は、6a[紫外線LED(A)2と青色LED7の取付け板]、6b(ハウジング1への固定板)および6c(リンク機構)から構成される、ハウジング1内で前進(下降)および後退(上昇)が可能な取付け部材兼調節手段6の6aに多数の紫外線LED(A)2と多数の青色LED7を1列おきに交互に配置した本発明の後硬化・後処理装置の一例を示す図である。
図7の後硬化装置では、ハウジング1の内部に光学的立体造形物(図示せず)を収容した後、ハウジング1の上部に配置されている紫外線LED(A)2および青色LED7を、取付け部材兼調節手段6によって前進(下降)させて、ハウジング1の底部に配置した光学的立体造形物の上端が紫外線LED(A)2および青色LED7に近接する位置まで下降させ、次いで紫外線LED(A)2および青色LED7の移動を停止した状態で、
・紫外線LED(A)2に通電して光学的立体造形物に紫外線(a)を所定時間照射して光学的立体造形物を後硬化させ、次いで紫外線LED(A)2への通電を停止した後、青色LED7に通電して青色LED7から可視光(b)を発射させて光学的立体造形物に可視光(b)を所定時間照射して後処理を行って、黄変度の一層低減した光学的立体造形物4としてもよいし[制御手段(C−1)(タイムスイッチなど)を採用した場合];
紫外線LED(A)2への通電と、青色LED7への通電を並行して行って、光学的立体造形物の後硬化と後処理を並行して行ってもよい[制御手段(C−2)を採用した場合]。
FIG. 7 shows forward (down) and backward movement in the housing 1 composed of 6a [mounting plate of ultraviolet LED (A) 2 and blue LED 7], 6b (fixing plate to housing 1) and 6c (link mechanism). An example of the post-curing / post-treatment apparatus of the present invention in which a large number of ultraviolet LEDs (A) 2 and a large number of blue LEDs 7 are alternately arranged every other row on 6a of a mounting member / adjusting means 6 capable of (raising) is shown. It is a figure.
In the post-curing device of FIG. 7, after the optical three-dimensional object (not shown) is housed inside the housing 1, the ultraviolet LED (A) 2 and the blue LED 7 arranged in the upper part of the housing 1 are attached to the mounting member. It is advanced (lowered) by the adjusting means 6 so that the upper end of the optical three-dimensional structure arranged at the bottom of the housing 1 is lowered to a position close to the ultraviolet LED (A) 2 and the blue LED 7, and then the ultraviolet LED (A). With the movement of 2 and the blue LED 7 stopped,
-The ultraviolet LED (A) 2 was energized and the optical three-dimensional object was irradiated with ultraviolet rays (a) for a predetermined time to post-cure the optical three-dimensional object, and then the energization of the ultraviolet LED (A) 2 was stopped. After that, the blue LED 7 was energized to emit visible light (b) from the blue LED 7, and the optical three-dimensional object was irradiated with visible light (b) for a predetermined time to perform post-treatment to further reduce the degree of yellowing. It may be an optical three-dimensional model 4 [when a control means (C-1) (time switch or the like) is adopted];
The ultraviolet LED (A) 2 may be energized and the blue LED 7 may be energized in parallel to perform post-curing and post-treatment of the optical three-dimensional object in parallel [control means (C-2). When is adopted].

本発明の後硬化装置または後硬化・後処理装置を使用して、光学的立体造形物の後硬化を行うに当たっては、ハウジング内に配置されている複数の紫外線LED(A)の全てを作動(点灯)させて後硬化を行ってもよいし、または複数の紫外線LED(A)の一部を作動(点灯)させて後硬化を行ってもよい。
また、本発明の後硬化・後処理装置を使用して、光学的立体造形物の後硬化と後処理を行うに当たっては、ハウジング内に配置されている複数の紫外線LED(A)の全てを作動(点灯)させるかまたは一部を作動(点灯)させて後硬化を行い、ついでハウジング内に配置されている複数の照射手段(B)の全てを作動(点灯)させるかまたは一部を作動(点灯)させて後処理を行う。
複数の紫外線LED(A)のうちの一部を作動(点灯)させて後硬化を行う場合、また複数の照射手段(B)の一部を作動(点灯)させて後処理を行う場合には、どの位置に配置した紫外線LED(A)または照射手段(B)を作動(点灯)させ、どの位置に配置した紫外線LED(A)または照射手段(B)の作動(点灯)を停止させるかについては、ハウジングのサイズ、形状、構造や、紫外線LED(A)および照射手段(B)の形状、サイズ、ハウジングの内側でのそれらの配置数や配置形態、立体造形物の形状、構造、サイズ、ハウジング内での光学的立体造形の配置位置などに応じて、より少ない光エネルギーの使用量で、より短い時間で、後処理を効率よく間に行なえる条件を選択して決めることが望ましい。
In performing post-curing of an optically three-dimensional model using the post-curing device or the post-curing / post-treatment device of the present invention, all of the plurality of ultraviolet LEDs (A) arranged in the housing are operated ( It may be lit) to perform post-curing, or a part of the plurality of ultraviolet LEDs (A) may be operated (lit) to perform post-curing.
Further, when the post-curing / post-treatment apparatus of the present invention is used to perform post-curing and post-treatment of the optically three-dimensional model, all of the plurality of ultraviolet LEDs (A) arranged in the housing are operated. (Lights) or partially operates (lights) to perform post-curing, and then activates (lights) or partially operates (lights) all of the plurality of irradiation means (B) arranged in the housing. Light up) to perform post-processing.
When a part of the plurality of ultraviolet LEDs (A) is operated (lit) for post-curing, or when a part of the plurality of irradiation means (B) is operated (lit) for post-treatment. , Which position the ultraviolet LED (A) or irradiation means (B) is activated (lit) and which position the ultraviolet LED (A) or irradiation means (B) is activated (lit) is stopped. Is the size, shape, and structure of the housing, the shape and size of the ultraviolet LEDs (A) and irradiation means (B), the number and form of their arrangement inside the housing, and the shape, structure, and size of the three-dimensional model. It is desirable to select and determine the conditions under which post-processing can be efficiently performed in a shorter time with less light energy usage, etc., depending on the arrangement position of the optical three-dimensional modeling in the housing.

本発明の後硬化装置または後硬化・後処理装置を使用して、光学的立体造形物(グリーン光学的立体造形物)に紫外線(a)(385nm以上の波長の光の合計強度が10%以下の光)を照射して光学的立体造形物の後硬化を行うに当たっては、光学的立体造形物の表面での紫外線(a)の照射強度が0.1〜10mW/cm2、更に0.3〜7mW/cm2、特に0.5〜5mW/cm2になるようにして紫外線(a)を照射することが好ましい。光学的立体造形物への紫外線(a)の合計照射強度が低いと、後硬化に時間がかかるようになり、また光学的立体造形物の後硬化が十分に行われず、光学的立体造形物の力学的特性の低下、硬度不足、垂れ下がりなどの変形などを生じ易くなる。一方、紫外線(a)の合計照射強度が高すぎると、着色や変形の原因となる過照射に部分的になり易い。 Using the post-curing device or post-curing / post-treatment device of the present invention, the total intensity of ultraviolet rays (a) (light having a wavelength of 385 nm or more) is 10% or less on the optical three-dimensional model (green optical three-dimensional model). In performing post-curing of the optical three-dimensional model by irradiating it with (light), the irradiation intensity of ultraviolet rays (a) on the surface of the optical three-dimensional model is 0.1 to 10 mW / cm 2 , and further 0.3. It is preferable to irradiate the ultraviolet rays (a) at ~ 7 mW / cm 2 , especially 0.5 to 5 mW / cm 2 . If the total irradiation intensity of ultraviolet rays (a) on the optical three-dimensional object is low, it takes time to post-cure, and the post-curing of the optical three-dimensional object is not sufficiently performed, so that the optical three-dimensional object is not sufficiently cured. Deformation such as deterioration of mechanical properties, insufficient hardness, and sagging is likely to occur. On the other hand, if the total irradiation intensity of the ultraviolet rays (a) is too high, it tends to be partially over-irradiated, which causes coloring and deformation.

また、本発明の後硬化・後処理装置を使用して、前記した光学的立体造形物の後硬化と、可視光(b)(430〜500nmの範囲内の波長の光を含み且つ400nm以下の波長の光を含まない光)の照射による光学的立体造形物の後処理を逐次にまたは並行して行うに当っては、可視光(b)が照射される光学的立体造形物の表面での波長430〜500nmの光の照射強度が5W/m2以上、更に10W/m2以上、特に15W/m2以上になるようにして可視光(b)を照射することが好ましい。光学的立体造形物の照射表面での波長430〜500nmの光の照射強度が低いと、光学的立体造形物の更なる脱色を短時間で効率よく行いにくくなる。 Further, using the post-curing / post-treatment apparatus of the present invention, the post-curing of the above-mentioned optical three-dimensional model and visible light (b) (including light having a wavelength in the range of 430 to 500 nm and 400 nm or less are included. In performing the post-treatment of the optical three-dimensional object by irradiation with light of a wavelength) sequentially or in parallel, the surface of the optical three-dimensional object irradiated with visible light (b) It is preferable to irradiate visible light (b) so that the irradiation intensity of light having a wavelength of 430 to 500 nm is 5 W / m 2 or more, further 10 W / m 2 or more, particularly 15 W / m 2 or more. If the irradiation intensity of light having a wavelength of 430 to 500 nm on the irradiation surface of the optical three-dimensional object is low, it becomes difficult to efficiently perform further decolorization of the optical three-dimensional object in a short time.

光学的立体造形物における光を照射される表面での後硬化時の紫外線(a)の照射強度は、放射照度計を使用して、光学的立体造形物における紫外線(a)を照射されている表面での紫外線(a)の全波長域の光の光照射強度Q(単位:mW/cm2)の合計を測定することによって求めることができる。
また、光学的立体造形物における光を照射される表面での後処理時の波長が430〜500nmの範囲内の光(可視光)の照射強度は、以下の《1》または《2》の方法で求めることができる。
《1》 光学的立体造形物への光照射処理時に、分光照度計を使用して、光を照射されている光学的立体造形物の表面での波長ごとの分光照射強度P(λ)(単位:W/m2・nm)を430〜500nmの波長範囲について測定して、430〜500nmの波長範囲における分光照射強度P(λ)を積分(合計)して、光学的立体造形物の光を照射されている表面での波長が430〜500nmの範囲内の光の照射強度(W/m2)の合計を求める方法[430〜500nmの波長領域について波長ごとの分光照射強度P(λ)をそのまま直接測定できる分光照度計を用いる場合]。
《2》 光学的立体造形物への光照射処理時に、放射照度計を使用して、光学的立体造形物における光を照射されている表面での380〜780nmの波長範囲(可視光域)の光の照射強度Q(単位:W/m2)の合計を測定すると共に、光スペクトラムアナライザーを使用して、光学的立体造形物における光を照射されている表面での380〜780nmの波長範囲(可視光域)における相対分光強度曲線Fを求め、当該相対分光強度曲線Fから、380〜780nmの波長範囲(可視光域)での相対分光強度の積分値LAおよび430〜500nmの波長範囲での相対分光強度の積分値LBをそれぞれ算出し、式:Q×(LB/LA)から、光学的立体造形物の光を照射されている表面での波長が430〜500nmの範囲内の光の照射強度の合計を求める方法[430〜500nmの波長領域について波長ごとの分光照射強度P(λ)をそのまま直接測定する分光照度計を使用しない場合]。
The irradiation intensity of ultraviolet rays (a) at the time of post-curing on the surface irradiated with light in the optical three-dimensional object is irradiated with ultraviolet rays (a) in the optical three-dimensional object using an irradiance meter. It can be obtained by measuring the total light irradiation intensity Q (unit: mW / cm 2 ) of light in the entire wavelength range of ultraviolet rays (a) on the surface.
Further, the irradiation intensity of light (visible light) having a wavelength in the range of 430 to 500 nm at the time of post-treatment on the surface to be irradiated with light in the optical three-dimensional object is determined by the method of << 1 >> or << 2 >> below. Can be found at.
<< 1 >> Spectral irradiation intensity P (λ) (unit) for each wavelength on the surface of the optically three-dimensional object being irradiated with light using a spectrophotometer during the light irradiation process on the optical three-dimensional object. : W / m 2 · nm) is measured in the wavelength range of 430 to 500 nm, and the spectral irradiation intensity P (λ) in the wavelength range of 430 to 500 nm is integrated (totaled) to obtain the light of the optically three-dimensional object. Method for obtaining the total irradiation intensity (W / m 2 ) of light in the wavelength range of 430 to 500 nm on the irradiated surface [Spectroimulation intensity P (λ) for each wavelength in the wavelength region of 430 to 500 nm When using a spectrophotometer that can measure directly as it is].
<< 2 >> When the optical three-dimensional object is irradiated with light, an irradiance meter is used to cover the wavelength range (visible light range) of 380 to 780 nm on the surface of the optical three-dimensional object being irradiated with light. In addition to measuring the total light irradiation intensity Q (unit: W / m 2 ), a wavelength range of 380 to 780 nm (380 to 780 nm) on the light-irradiated surface of the optical three-dimensional object using an optical spectrum analyzer. obtains the relative spectral intensity curve F in the visible light region), from the relative spectral intensity curve F, the integral value L a and the wavelength range of 430~500nm the relative spectral intensity in the wavelength range of 380 to 780 nm (visible light region) calculating the relative spectral intensity integrated value L B, respectively, wherein: Q from × (L B / L a) , a wavelength in the range of 430~500nm at the surface being irradiated with light of an optical three-dimensional object Method for obtaining the total irradiation intensity of light in [When not using a spectral irradiance meter that directly measures the spectral irradiance intensity P (λ) for each wavelength in the wavelength region of 430 to 500 nm].

光学的立体造形物への後硬化時の紫外線(a)の照射時間および後処理時の可視光(b)の照射時間は、光学的立体造形物と紫外線LED(A)または光照射手段(B)との間の距離、紫外線LED(A)および光照射手段(B)の種類、紫外線LED(A)または光照射手段(B)から発射される紫外線(a)または可視光(b)のエネルギー強度、光学的立体造形物のサイズ、形状、光学的立体造形物を形成している樹脂の種類、光学的立体造形物の製造に用いた光硬化性樹脂組成物に含まれる成分の種類や成分組成などによって異なり得る。一般的には、紫外線(a)を照射しての後硬化時間は1分〜1時間程度、特に5分〜30分程度が好ましく、可視光(b)を照射しての後処理時間は10分〜10時間程度、特に1時間〜6時間程度が好ましい。
紫外線(a)の照射による後硬化に当たっては、紫外線(a)の単位面積当たりの照射強度(mW/cm2)とその照射時間(分)との積として求められる単位面積当たりの積算照射エネルギーが0.1〜100J/cm2であることが好ましく、0.3〜50J/cm2であることがより好ましく、0.5〜10J/cm2であることがさらに好ましい。
また、可視光(b)の照射による後処理に当たっては、可視光(b)の単位面積当たりの照射強度(W/m2)とその照射時間(時間)との積として求められる単位面積当たりの積算照射エネルギーが、5〜5000kJ/m2であることが好ましく、10〜3000kJ/m2であることがより好ましく、50〜1000kJ/m2であることがさらに好ましい。
The irradiation time of ultraviolet rays (a) during post-curing and the irradiation time of visible light (b) during post-treatment on the optical three-dimensional object are the optical three-dimensional object and the ultraviolet LED (A) or the light irradiation means (B). ), The type of ultraviolet LED (A) and light irradiating means (B), the energy of ultraviolet (a) or visible light (b) emitted from the ultraviolet LED (A) or light irradiating means (B). Strength, size and shape of the optical three-dimensional model, type of resin forming the optical three-dimensional model, type and component of the component contained in the photocurable resin composition used for manufacturing the optical three-dimensional model It may vary depending on the composition and the like. Generally, the post-curing time after irradiation with ultraviolet rays (a) is preferably about 1 minute to 1 hour, particularly preferably about 5 minutes to 30 minutes, and the post-treatment time after irradiation with visible light (b) is 10. Minutes to 10 hours, particularly preferably about 1 to 6 hours.
In post-curing by irradiation with ultraviolet rays (a), the integrated irradiation energy per unit area obtained as the product of the irradiation intensity (mW / cm 2 ) per unit area of ultraviolet rays (a) and the irradiation time (minutes) is calculated. is preferably 0.1~100J / cm 2, more preferably 0.3~50J / cm 2, further preferably 0.5~10J / cm 2.
Further, in the post-treatment by irradiation with visible light (b), the per unit area obtained as the product of the irradiation intensity (W / m 2 ) per unit area of visible light (b) and the irradiation time (time) thereof. total irradiation energy is preferably from 5~5000kJ / m 2, more preferably from 10~3000kJ / m 2, further preferably 50~1000kJ / m 2.

光学的立体造形物に紫外線(a)を照射して後硬化する際の温度、および光学的立体造形物に可視光(b)を照射して後処理する際の温度(光学的立体造形物の温度および/または雰囲気温度)は特に制限されないが、一般的には、15〜50℃の雰囲気温度、特に20〜40℃の雰囲気温度で後硬化または後硬化と後処理を行うことが、紫外線(a)や可視光(b)の照射操作の簡便性、光学的立体造形物における変色の改善効果、熱による光学的立体造形物の変形防止などの点から好ましい。 The temperature at which the optical three-dimensional object is irradiated with ultraviolet rays (a) to be post-cured, and the temperature at which the optical three-dimensional object is irradiated with visible light (b) for post-treatment (optical three-dimensional object). The temperature and / or atmospheric temperature) is not particularly limited, but in general, post-curing or post-curing and post-treatment at an atmospheric temperature of 15 to 50 ° C., particularly an atmospheric temperature of 20 to 40 ° C. It is preferable from the viewpoints of ease of irradiation operation of a) and visible light (b), improvement effect of discoloration in the optical three-dimensional model, and prevention of deformation of the optical three-dimensional object due to heat.

本発明の後硬化装置または後硬化・後処理装置を使用して後硬化または後硬化・後処理を行う光学的立体造形物(グリーン光学的立体造形物)としては、光硬化性樹脂組成物を使用し、当該光硬化性樹脂組成物よりなる造形面に、光を選択的に照射して所定の厚みに光硬化させて所定の形状パターンを有する硬化樹脂層を形成し、その硬化樹脂層の上に更に1層分の光硬化性樹脂組成物を施して造形面を形成させ、その造形面に光を選択的に照射して所定の厚みに光硬化させて所定の形状パターンを有する硬化樹脂層を形成する造形操作を多数回繰り返して行う光造形方法によって得られる光学的立体造形物であればいずれでもよい。 As an optical three-dimensional model (green optical three-dimensional model) that is post-cured or post-cured / post-treated using the post-curing device or the post-curing / post-treatment device of the present invention, a photocurable resin composition is used. The molded surface made of the photocurable resin composition is selectively irradiated with light and photocured to a predetermined thickness to form a cured resin layer having a predetermined shape pattern, and the cured resin layer is formed. A photocurable resin composition for one layer is further applied on the top to form a molding surface, and the molding surface is selectively irradiated with light to be photocured to a predetermined thickness to have a predetermined shape pattern. Any optical three-dimensional model obtained by a stereolithography method in which the layer forming operation is repeated many times may be used.

本発明の後硬化装置または後硬化・後処理装置を使用して後硬化または後硬化・後処理を行う光学的立体造形物は、《1》ラジカル重合性有機化合物および光感受性ラジカル重合開始剤を含有する光硬化性樹脂組成物、《2》カチオン重合性有機化合物および光感受性カチオン重合開始剤を含有する光硬化性樹脂組成物、または《3》ラジカル重合性有機化合物、カチオン重合性有機化合物、光感受性ラジカル重合開始剤および光感受性カチオン重合開始剤を含有する光硬化性樹脂組成物のいずれから製造されていてもよい。そのうちでも、光学的立体造形物は、前記《3》の光硬化性樹脂組成物、すなわちラジカル重合性有機化合物、カチオン重合性有機化合物、光感受性ラジカル重合開始剤および光感受性カチオン重合開始剤を含有する光硬化性樹脂組成物を用いて製造されていることが、光学的立体造形物を製造する際の造形速度が速く、しかも光学的立体造形物の力学的特性および造形精度などに優れることから好ましい。
前記《2》および《3》の光硬化性樹脂組成物、特に前記《3》の光硬化性樹脂組成物において、光硬化性樹脂組成物中に含まれるカチオン重合性有機化合物の一部として、オキセタン基を1個有するモノオキセタン化合物およびオキセタン基を2個以上有するポリオキセタン化合物から選ばれる少なくとも1種のオキセタン化合物を含有させると、光硬化性樹脂組成物の光硬化感度が向上すると共に、硬化時の体積収縮率の低減による寸法精度の向上、耐水性および耐湿性の改良による寸法安定性の向上などを図ることができる。
The optically three-dimensional product to be post-cured or post-cured / post-treated using the post-curing device or post-curing / post-treatment device of the present invention contains << 1 >> radical-polymerizable organic compound and photosensitive radical polymerization initiator. A photocurable resin composition containing, << 2 >> a photocurable resin composition containing a cationically polymerizable organic compound and a photosensitive cationic polymerization initiator, or << 3 >> a radically polymerizable organic compound, a cationically polymerizable organic compound, It may be produced from either a photocurable resin composition containing a photosensitive radical polymerization initiator and a photosensitive cationic polymerization initiator. Among them, the optical three-dimensional model contains the photocurable resin composition of the above << 3 >>, that is, a radically polymerizable organic compound, a cationically polymerizable organic compound, a photosensitive radical polymerization initiator and a photosensitive cationic polymerization initiator. Because it is manufactured using the photocurable resin composition, the molding speed at the time of manufacturing the optically three-dimensional model is high, and the mechanical properties and molding accuracy of the optical three-dimensional model are excellent. preferable.
In the photocurable resin compositions of << 2 >> and << 3 >>, particularly in the photocurable resin composition of << 3 >>, as a part of the cationically polymerizable organic compound contained in the photocurable resin composition. When at least one oxetane compound selected from a monooxetane compound having one oxetane group and a polyoxetane compound having two or more oxetane groups is contained, the photocurable resin composition is improved in photocuring sensitivity and cured. It is possible to improve dimensional accuracy by reducing the volume shrinkage rate at the time, and improve dimensional stability by improving water resistance and moisture resistance.

前記《1》および《3》の光硬化性樹脂組成物で用いるラジカル重合性有機化合物としては、光感受性ラジカル重合開始剤の存在下に光を照射したときに重合反応および/または架橋反応を生ずる化合物のいずれもが使用でき、代表例としては、(メタ)アクリレート系化合物、不飽和ポリエステル化合物、アリルウレタン系化合物、ポリチオール化合物などを挙げることができ、前記したラジカル重合性有機化合物の1種または2種以上を用いることができる。そのうちでも、1分子中に少なくとも1個の(メタ)アクリル基を有する化合物が好ましく用いられ、具体例としては、エポキシ化合物と(メタ)アクリル酸との反応生成物、アルコール類の(メタ)アクリル酸エステル、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレートなどを挙げることができる。 The radically polymerizable organic compound used in the photocurable resin compositions of << 1 >> and << 3 >> causes a polymerization reaction and / or a crosslinking reaction when irradiated with light in the presence of a photosensitive radical polymerization initiator. Any of the compounds can be used, and typical examples thereof include (meth) acrylate compounds, unsaturated polyester compounds, allyl urethane compounds, polythiol compounds, etc., and one of the above-mentioned radically polymerizable organic compounds or Two or more types can be used. Among them, a compound having at least one (meth) acrylic group in one molecule is preferably used, and specific examples thereof include a reaction product of an epoxy compound and (meth) acrylic acid, and (meth) acrylic of alcohols. Examples thereof include acid esters, urethane (meth) acrylates, polyester (meth) acrylates, and polyether (meth) acrylates.

上記したエポキシ化合物と(メタ)アクリル酸との反応生成物としては、芳香族エポキシ化合物、脂環族エポキシ化合物および/または脂肪族エポキシ化合物と、(メタ)アクリル酸との反応により得られる(メタ)アクリレート系反応生成物を挙げることができる。芳香族エポキシ化合物と(メタ)アクリル酸との反応により得られる(メタ)アクリレート系反応生成物の具体例としては、ビスフェノールAやビスフェノールFなどのビスフェノール化合物またはそのアルキレンオキサイド付加物とエピクロルヒドリンなどのエポキシ化剤との反応によって得られるグリシジルエーテルを、(メタ)アクリル酸と反応させて得られる(メタ)アクリレート、エポキシノボラック樹脂と(メタ)アクリル酸を反応させて得られる(メタ)アクリレート系反応生成物などを挙げることができる。 The reaction product of the above-mentioned epoxy compound and (meth) acrylic acid is obtained by reacting an aromatic epoxy compound, an alicyclic epoxy compound and / or an aliphatic epoxy compound with (meth) acrylic acid (meth). ) Acrylic reaction products can be mentioned. Specific examples of the (meth) acrylate-based reaction product obtained by the reaction of an aromatic epoxy compound with (meth) acrylic acid include a bisphenol compound such as bisphenol A or bisphenol F or an alkylene oxide adduct thereof and an epoxy such as epichlorohydrin. (Meta) acrylate obtained by reacting glycidyl ether obtained by reaction with an agent with (meth) acrylic acid, (meth) acrylate-based reaction generation obtained by reacting epoxy novolac resin with (meth) acrylic acid You can mention things.

また、上記したアルコール類の(メタ)アクリル酸エステルとしては、分子中に少なくとも1個の水酸基をもつ芳香族アルコール、脂肪族アルコール、脂環族アルコールおよび/またはそれらのアルキレンオキサイド付加体と、(メタ)アクリル酸との反応により得られる(メタ)アクリレートを挙げることができる。
より具体的には、例えば、2−エチルヘキシル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソオクチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート[ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなど]、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、前記したジオール、トリオール、テトラオール、ヘキサオールなどの多価アルコールのアルキレンオキシド付加物の(メタ)アクリレートなどを挙げることができる。
そのうちでも、アルコール類の(メタ)アクリレートとしては、多価アルコールと(メタ)アクリル酸との反応により得られる1分子中に2個以上の(メタ)アクリル基を有する(メタ)アクリレートが好ましく用いられる。
また、前記した(メタ)アクリレート化合物のうちで、メタクリレート化合物よりも、アクリレート化合物が重合速度の点から好ましく用いられる。
Further, as the (meth) acrylic acid ester of the above-mentioned alcohols, aromatic alcohols having at least one hydroxyl group in the molecule, fatty alcohols, alicyclic alcohols and / or their alkylene oxide adducts and ( Examples thereof include (meth) acrylate obtained by reacting with (meth) acrylic acid.
More specifically, for example, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isooctyl (meth). Acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, diethylene glycol di (meth) ) Acrylate, Triethylene glycol di (meth) acrylate, Neopentyl glycol di (meth) acrylate, Polyethylene glycol di (meth) acrylate, Polypropylene glycol di (meth) acrylate, Trimethylol propanthry (meth) acrylate, Pentaerythritol tri ( Meta) acrylate, dipentaerythritol poly (meth) acrylate [dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc.], ethoxylated pentaerythritol tetra (meth) acrylate, diol, triol, tetra Examples thereof include (meth) acrylates of alkylene oxide adducts of polyhydric alcohols such as oar and hexaol.
Among them, as the (meth) acrylate of alcohols, (meth) acrylate having two or more (meth) acrylic groups in one molecule obtained by the reaction of a polyhydric alcohol and (meth) acrylic acid is preferably used. Be done.
Further, among the (meth) acrylate compounds described above, an acrylate compound is preferably used rather than a methacrylate compound in terms of polymerization rate.

また、上記したウレタン(メタ)アクリレートとしては、例えば、水酸基含有(メタ)アクリル酸エステルとイソシアネート化合物を反応させて得られる(メタ)アクリレートを挙げることができる。前記水酸基含有(メタ)アクリル酸エステルとしては、脂肪族2価アルコールと(メタ)アクリル酸とのエステル化反応によって得られる水酸基含有(メタ)アクリル酸エステルが好ましく、具体例としては、2−ヒドロキシエチル(メタ)アクリレートなどを挙げることができる。また、前記イソシアネート化合物としては、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートなどのような1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物が好ましい。 Further, examples of the urethane (meth) acrylate described above include (meth) acrylate obtained by reacting a hydroxyl group-containing (meth) acrylic acid ester with an isocyanate compound. As the hydroxyl group-containing (meth) acrylic acid ester, a hydroxyl group-containing (meth) acrylic acid ester obtained by an esterification reaction between an aliphatic dihydric alcohol and (meth) acrylic acid is preferable, and as a specific example, 2-hydroxy Ethyl (meth) acrylate and the like can be mentioned. Further, as the isocyanate compound, a polyisocyanate compound having two or more isocyanate groups in one molecule such as tolylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate and the like is preferable.

さらに、上記したポリエステル(メタ)アクリレートとしては、水酸基含有ポリエステルと(メタ)アクリル酸との反応により得られるポリエステル(メタ)アクリレートを挙げることができる。
また、上記したポリエーテル(メタ)アクリレートとしては、水酸基含有ポリエーテルとアクリル酸との反応により得られるポリエーテルアクリレートを挙げることができる。
Further, examples of the polyester (meth) acrylate described above include polyester (meth) acrylate obtained by reacting a hydroxyl group-containing polyester with (meth) acrylic acid.
Further, examples of the above-mentioned polyether (meth) acrylate include a polyether acrylate obtained by reacting a hydroxyl group-containing polyether with acrylic acid.

上記《2》および《3》の光硬化性樹脂組成物で用い得るカチオン重合性有機化合物としては、例えば、<1>脂環族エポキシ樹脂、脂肪族エポキシ樹脂、芳香族エポキシ樹脂などのエポキシ化合物;<2>環状エーテルまたは環状アセタール化合物(オキセタン化合物、テトラヒドロフラン、2,3−ジメチルテトラヒドロフランのようなオキソラン化合物、トリオキサン、1,3−ジオキソラン、1,3,6−トリオキサンシクロオクタンなど);<3>環状ラクトン化合物(β−プロピオラクトン、ε−カプロラクトンなど);<4>チイラン化合物(エチレンスルフィド、チオエピクロロヒドリンなど);<5>チエタン化合物(1,3−プロピンスルフィド、3,3−ジメチルチエタンなど);<6>ビニルエーテル化合物[エチレングリコールジビニルエーテル、アルキルビニルエーテル、3,4−ジヒドロピラン−2−メチル(3,4−ジヒドロピラン−2−カルボキシレート)、トリエチレングリコールジビニルエーテルなど];<7>エポキシ化合物とラクトンとの反応によって得られるスピロオルソエステル化合物;<8>ビニルシクロヘキサン、イソブチレン、ポリブタジエンのようなエチレン性不飽和化合物などを挙げることができる。 Examples of the cationically polymerizable organic compound that can be used in the photocurable resin compositions of << 2 >> and << 3 >> include epoxy compounds such as <1> alicyclic epoxy resin, aliphatic epoxy resin, and aromatic epoxy resin. <2> Cyclic ether or cyclic acetal compounds (oxetan compounds, oxolane compounds such as tetrahydrofuran, 2,3-dimethyltetrahydrofuran, trioxane, 1,3-dioxolane, 1,3,6-trioxanecyclooctane, etc.); <3 > Cyclic lactone compounds (β-propiolactone, ε-caprolactone, etc.); <4> Thiyran compounds (ethylene sulfide, thioepichlorohydrin, etc.); <5> Thietan compounds (1,3-propine sulfide, 3, 3-Dimethylthietan, etc.); <6> Vinyl ether compounds [ethylene glycol divinyl ether, alkyl vinyl ether, 3,4-dihydropyran-2-methyl (3,4-dihydropyran-2-carboxylate), triethylene glycol di Vinyl ether and the like]; <7> Spiroorthoester compound obtained by reacting an epoxy compound with lactone; <8> Ethylene unsaturated compounds such as vinylcyclohexane, isobutylene and polybutadiene can be mentioned.

上記したうちでも、カチオン重合性有機化合物としては、エポキシ化合物[特に1分子中に2個以上のエポキシ基を有するポリエポキシ化合物(エポキシ樹脂)]が好ましく用いられ、当該エポキシ化合物とオキセタン化合物の併用がより好ましい。特に、1分子中に2個以上のエポキシ基を有する脂環式ポリエポキシ化合物(脂環族エポキシ樹脂)とオキセタン化合物を併用すると、光硬化性樹脂組成物の粘度が低くなって造形が円滑に行われ、しかもカチオン重合速度、厚膜硬化性、解像度、紫外線透過性などが良好になり、得られる光学的立体造形物の体積収縮率が小さくなる。 Among the above, as the cationically polymerizable organic compound, an epoxy compound [particularly, a polyepoxy compound having two or more epoxy groups in one molecule (epoxy resin)] is preferably used, and the epoxy compound and the oxetane compound are used in combination. Is more preferable. In particular, when an alicyclic polyepoxy compound (alicyclic epoxy resin) having two or more epoxy groups in one molecule and an oxetane compound are used in combination, the viscosity of the photocurable resin composition becomes low and the molding becomes smooth. Moreover, the cationic polymerization rate, the thick film curability, the resolution, the ultraviolet transmittance, and the like are improved, and the volume shrinkage rate of the obtained optically three-dimensional structure is reduced.

上記した脂環族エポキシ樹脂(脂環式ポリエポキシ化合物)としては、少なくとも1個の脂環族環を有する多価アルコールのポリグリシジルエーテル、或いはシクロヘキセンまたはシクロペンテン環含有化合物を過酸化水素、過酸等の適当な酸化剤でエポキシ化して得られるシクロヘキセンオキサイドまたはシクロペンテンオキサイド含有化合物などを挙げることができる。より具体的には、脂環族エポキシ樹脂(脂環式ポリエポキシ化合物)として、例えば、水素添加ビスフェノールAジグリシジルエーテル、3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレート、2−(3,4−エポキシシクロヘキシル−5,5−スピロ−3,4−エポキシ)シクロヘキサン−メタ−ジオキサン、ビス(3,4−エポキシシクロヘキシルメチル)アジペート、ビニルシクロヘキセンジオキサイド、4−ビニルエポキシシクロヘキサン、ビス(3,4−エポキシ−6−メチルシクロヘキシルメチル)アジペート、3,4−エポキシ−6−メチルシクロヘキシル−3,4−エポキシ−6−メチルシクロヘキサンカルボキシレート、メチレンビス(3,4−エポキシシクロヘキサン)、ジシクロペンタジエンジエポキサイド、エチレングリコールのジ(3,4−エポキシシクロヘキシルメチル)エーテル、エチレンビス(3,4−エポキシシクロヘキサンカルボキシレート)などを挙げることができる。 As the above-mentioned alicyclic epoxy resin (alicyclic polyepoxy compound), polyglycidyl ether of a polyhydric alcohol having at least one alicyclic ring, or a cyclohexene or cyclopentene ring-containing compound is hydrogenated or peracid. Cyclohexene oxide or a cyclopentene oxide-containing compound obtained by epoxidation with an appropriate oxidizing agent such as the above can be mentioned. More specifically, as the alicyclic epoxy resin (alicyclic polyepoxy compound), for example, hydrogenated bisphenol A diglycidyl ether, 3,4-epoxycyclohexylmethyl-3', 4'-epoxycyclohexanecarboxylate, 2- (3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy) cyclohexane-meth-dioxane, bis (3,4-epoxycyclohexylmethyl) adipate, vinylcyclohexene dioxide, 4-vinyl epoxycyclohexane , Bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, 3,4-epoxy-6-methylcyclohexyl-3,4-epoxy-6-methylcyclohexanecarboxylate, methylenebis (3,4-epoxycyclohexane) , Dicyclopentadiene diepoxyside, di (3,4-epoxycyclohexylmethyl) ether of ethylene glycol, ethylenebis (3,4-epoxycyclohexanecarboxylate) and the like.

また、上記した脂肪族エポキシ樹脂としては、例えば、脂肪族多価アルコールまたはそのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジルアクリレートやグリシジルメタクリレートのホモポリマー、コポリマーなどを挙げることができる。より具体的には、例えば、1,4−ブタンジオールのジグリシジルエーテル、1,6−ヘキサンジオールのジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールプロパンのジグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ソルビトールのテトラグリシジルエーテル、ジペンタエリスリトールのヘキサグリシジルエーテル、ポリエチレングリコールのジグリシジルエーテル、ポリプロピレングリコールのジグリシジルエーテル、エチレングリコール、プロピレングリコール、グリセリン等の脂肪族多価アルコールに1種または2種以上のアルキレンオキサイドを付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル、脂肪族長鎖二塩基酸のジグリシジルエステルなどを挙げることができる。 Examples of the above-mentioned aliphatic epoxy resin include polyglycidyl ethers of aliphatic polyhydric alcohols or alkylene oxide adducts thereof, polyglycidyl esters of aliphatic long-chain polybasic acids, homopolymers of glycidyl acrylates and glycidyl methacrylates, and copolymers. And so on. More specifically, for example, diglycidyl ether of 1,4-butanediol, diglycidyl ether of 1,6-hexanediol, triglycidyl ether of glycerin, diglycidyl ether of trimethylolpropane, triglycidyl of trimethylolpropane. One or two types of aliphatic polyhydric alcohols such as ether, tetraglycidyl ether of sorbitol, hexaglycidyl ether of dipentaerythritol, diglycidyl ether of polyethylene glycol, diglycidyl ether of polypropylene glycol, ethylene glycol, propylene glycol, and glycerin. Examples thereof include polyglycidyl ether, which is a polyether polyol obtained by adding the above alkylene oxide, and diglycidyl ester of an aliphatic long-chain dibasic acid.

また、上記した芳香族エポキシ樹脂としては、例えば少なくとも1個の芳香核を有する1価または多価フェノール或いはそのアルキレンオキサイド付加体のモノまたはポリグリシジルエーテルを挙げることができ、具体的には、例えばビスフェノールAやビスフェノールFまたはそのアルキレンオキサイド付加体とエピクロルヒドリンとの反応によって得られるグリシジルエーテル、エポキシノボラック樹脂、フェノール、クレゾール、ブチルフェノールまたはこれらにアルキレンオキサイドを付加することにより得られるポリエーテルアルコールのモノグリシジルエーテルなどを挙げることができる。 Further, examples of the above-mentioned aromatic epoxy resin include monovalent or polyhydric phenol having at least one aromatic nucleus or mono or polyglycidyl ether of an alkylene oxide adduct thereof, and specifically, for example. Monoglycidyl ether of glycidyl ether, epoxy novolac resin, phenol, cresol, butylphenol obtained by reaction of bisphenol A or bisphenol F or its alkylene oxide adduct with epichlorohydrin, or monoglycidyl ether of a polyether alcohol obtained by adding alkylene oxide to these. And so on.

また、上記したオキセタン化合物としては、分子中にオキセタン基を1個有するモノオキセタン化合物(OXm)および分子中にオキセタン基を2個以上有するポリオキセタン化合物(OXp)の1種または2種以上を用いることができる。
モノオキセタン化合物(OXm)としては、1分子中にオキセタン基を1個有する化合物であればいずれも使用でき、例えば、トリメチレンオキシド、3,3−ジメチルオキセタン、3,3−ジクロロメチルオキセタン、3−メチル−3−フェノキシメチルオキセタン、分子中にオキセタン基1個とアルコール性水酸基1個を有するモノオキセタンモノアルコールなどを挙げることができ、そのうちでも、反応性、光硬化性樹脂組成物の粘度などの点からモノオキセンタンモノアルコール化合物が好ましく用いられる。
特に、モノオキセタンモノアルコール化合物のうちでも、下記の一般式(I−a)で表されるモノオキセタン化合物(I−a)および下記の一般式(I−b)で表されるモノオキセタン化合物(I−b)から選ばれる少なくとも1種のモノオキセタン化合物が、入手容易性、反応性などの点から好ましく用いられる。特に、モノオキセタン化合物(OXm)として、下記の一般式(I−b)で表されるモノオキセタン化合物(I−b)を用いると、光造形用樹脂組成物およびそれから得られる立体造形物の耐水性がより良好になる。
Further, as the above-mentioned oxetane compound, one or more of a monooxetane compound (OXm) having one oxetane group in the molecule and a polyoxetane compound (OXp) having two or more oxetane groups in the molecule are used. be able to.
As the monooxetane compound (OXm), any compound having one oxetane group in one molecule can be used. For example, trimethylene oxide, 3,3-dimethyloxetane, 3,3-dichloromethyloxetane, 3 −Methyl-3-phenoxymethyloxetane, monooxetane monoalcohol having one oxetane group and one alcoholic hydroxyl group in the molecule, and the like, among which the reactivity, the viscosity of the photocurable resin composition, etc. From this point of view, a monooxetane monoalcohol compound is preferably used.
In particular, among the monooxetane monoalcohol compounds, the monooxetane compound (Ia) represented by the following general formula (Ia) and the monooxetane compound represented by the following general formula (Ib) ( At least one monooxetane compound selected from Ib) is preferably used from the viewpoint of availability, reactivity and the like. In particular, when the monooxetane compound (Ib) represented by the following general formula (Ib) is used as the monooxetane compound (OXm), the resin composition for stereolithography and the three-dimensional model obtained from the resin composition are water resistant. The sex becomes better.

(式中、R1およびR2は炭素数1〜5のアルキル基、R3はエーテル結合を有していてもよい炭素数2〜10のアルキレン基、qは1〜6の整数を示す。) (In the formula, R 1 and R 2 are alkyl groups having 1 to 5 carbon atoms, R 3 is an alkylene group having 2 to 10 carbon atoms which may have an ether bond, and q is an integer of 1 to 6. )

上記の一般式(I−a)において、R1の例としては、メチル、エチル、プロピル、ブチル、ペンチルを挙げることができる。また、上記の一般式(I−a)において、qは1〜6のうちのいずれでもよいが、1であることが、入手性、反応性の点から好ましい。
モノオキセタン化合物(I−a)の具体例としては、3−ヒドロキシメチル−3−メチルオキセタン、3−ヒドロキシメチル−3−エチルオキセタン、3−ヒドロキシメチル−3−プロピルオキセタン、3−ヒドロキシメチル−3−ノルマルブチルオキセタン、3−ヒドロキシメチル−3−プロピルオキセタンなどを挙げることができ、これらの1種または2種以上を用いることができる。そのうちでも、入手の容易性、反応性などの点から、3−ヒドロキシメチル−3−メチルオキセタン、3−ヒドロキシメチル−3−エチルオキセタンがより好ましく用いられる。
In the above general formula (Ia), examples of R 1 include methyl, ethyl, propyl, butyl, and pentyl. Further, in the above general formula (Ia), q may be any of 1 to 6, but 1 is preferable from the viewpoint of availability and reactivity.
Specific examples of the monooxetane compound (Ia) include 3-hydroxymethyl-3-methyloxetane, 3-hydroxymethyl-3-ethyloxetane, 3-hydroxymethyl-3-propyloxetane, and 3-hydroxymethyl-3. -Normal butyl oxetane, 3-hydroxymethyl-3-propyl oxetane and the like can be mentioned, and one or more of these can be used. Among them, 3-hydroxymethyl-3-methyloxetane and 3-hydroxymethyl-3-ethyloxetane are more preferably used from the viewpoint of availability, reactivity and the like.

上記の一般式(I−b)において、R2の例としては、メチル、エチル、プロピル、ブチル、ペンチルを挙げることができる。
また、上記の一般式(I−b)において、R3は炭素数2〜10のアルキレン基であれば、鎖状のアルキレン基または分岐したアルキレン基のいずれであってもよく、或いはアルキレン基(アルキレン鎖)の途中にエーテル結合(エーテル系酸素原子)を有する炭素数2〜10の鎖状または分岐状のアルキレン基であってもよい。R3の具体例としては、エチレン基、トリメチレン基、テトラメチレン基、エトキシエチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、3−オキシペンチレン基などを挙げることができる。そのうちでも、R3はトリメチレン基、テトラメチレン基、ペンタメチレン基、ヘプタメチレン基またはエトキシエチレン基であることが、合成の容易性、化合物が常温で液体であり、取り扱い易いなどの点から好ましい。
In the above general formula (I-b), examples of R 2 include methyl, ethyl, propyl, butyl, and pentyl.
Further, in the above general formula (Ib), R 3 may be either a chain alkylene group or a branched alkylene group as long as it is an alkylene group having 2 to 10 carbon atoms, or an alkylene group ( It may be a chain or branched alkylene group having 2 to 10 carbon atoms having an ether bond (ether-based oxygen atom) in the middle of the alkylene chain). Specific examples of R 3 include an ethylene group, a trimethylene group, a tetramethylene group, an ethoxyethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, and a 3-oxypentylene group. Among them, it is preferable that R 3 is a trimethylene group, a tetramethylene group, a pentamethylene group, a heptamethylene group or an ethoxyethylene group from the viewpoints of ease of synthesis, the compound being liquid at room temperature, and easy handling.

ポリオキセタン化合物(OXp)としては、オキセタン基を2個以上有する化合物、例えばオキセタン基を2個、3個または4個以上有する化合物のうちのいずれもが使用でき、そのうちでもオキセタン基を2個有するジオキセタン化合物が好ましく用いられる。
特に、ジオキセタン化合物としては、下記の一般式(II);
As the polyoxetane compound (OXp), any compound having two or more oxetane groups, for example, a compound having two, three or four or more oxetane groups can be used, and among them, a compound having two oxetane groups can be used. A dioxetane compound is preferably used.
In particular, as the dioxetane compound, the following general formula (II);

(式中、2個のR4は互いに同じかまたは異なる炭素数1〜5のアルキル基、R5は芳香環を有しているかまたは有していない2価の有機基、rは0または1を示す。)
で表されるジオキセタン化合物が、入手の容易性、反応性、低吸湿性、得られる硬化物の力学的特性などの点から好ましく用いられる。
(Wherein two R 4 are mutually the same or different alkyl group of 1 to 5 carbon atoms, R 5 is a divalent organic group which has no or has an aromatic ring, r is 0 or 1 Shows.)
The dioxetane compound represented by is preferably used in terms of availability, reactivity, low hygroscopicity, mechanical properties of the obtained cured product, and the like.

上記の一般式(II)において、R4の例としては、メチル、エチル、プロピル、ブチル、ペンチルを挙げることができる。また、R5の例としては、炭素数1〜12の直鎖状または分岐状のアルキレン基(例えばエチレン基、プロピレン基、ブチレン基、ネオペンチレン基、n−ペンタメチレン基、n−ヘキサメチレン基など)、式:−CH2−Ph−CH2−または−CH2−Ph−Ph−CH2−で表される2価の基、水素添加ビスフェノールA残基、水素添加ビスフェノールF残基、水素添加ビスフェノールZ残基、シクロヘキサンジメタノール残基、トリシクロデカンジメタノール残基などを挙げることができる。
上記の一般式(II)で表されるジオキセタン化合物の具体例としては、下記の式(II−a)または式(II−b)で表されるジオキセタン化合物を挙げることができる。
In the above general formula (II), examples of R 4 include methyl, ethyl, propyl, butyl, and pentyl. Examples of R 5 include linear or branched alkylene groups having 1 to 12 carbon atoms (for example, ethylene group, propylene group, butylene group, neopentylene group, n-pentamethylene group, n-hexamethylene group and the like. ), the formula: -CH 2 -Ph-CH 2 - or -CH 2 -Ph-Ph-CH 2 - in the divalent group represented, hydrogenated bisphenol a residue, a hydrogenated bisphenol F residue, a hydrogenated Examples thereof include bisphenol Z residue, cyclohexanedimethanol residue, and tricyclodecanedimethanol residue.
Specific examples of the dioxetane compound represented by the above general formula (II) include a dioxetane compound represented by the following formula (II-a) or formula (II-b).

(式中、2個のR4は互いに同じか又は異なる炭素数1〜5のアルキル基、R5は芳香環を有しているかまたは有していない2価の有機基を示す。) (Wherein two R 4 are mutually the same or different alkyl group of 1 to 5 carbon atoms, R 5 represents a divalent organic group which has no or has an aromatic ring.)

上記の式(II−a)で表されるジオキセタン化合物の具体例としては、ビス(3−メチル−3−オキセタニルメチル)エーテル、ビス(3−エチル−3−オキセタニルメチル)エーテル、ビス(3−プロピル−3−オキセタニルメチル)エーテル、ビス(3−ブチル−3−オキセタニルメチル)エーテルなどを挙げることができる。
また、上記の式(II−b)で表されるジオキセタン化合物の具体例としては、上記の式(II−b)において2個のR4が共にメチル、エチル、プロピル、ブチルまたはペンチル基で、R5がエチレン基、プロピレン基、ブチレン基、ネオペンチレン基、n−ペンタメチレン基、n−ヘキサメチレン基など)、式:−CH2−Ph−CH2−または−CH2−Ph−Ph−CH2−で表される2価の基、水素添加ビスフェノールA残基、水素添加ビスフェノールF残基、水素添加ビスフェノールZ残基、シクロヘキサンジメタノール残基、トリシクロデカンジメタノール残基であるジオキセタン化合物を挙げることができる。
光造形用樹脂組成物は、前記したジオキセタン化合物のうちの1種または2種以上を含有することができる。
Specific examples of the dioxetane compound represented by the above formula (II-a) include bis (3-methyl-3-oxetanylmethyl) ether, bis (3-ethyl-3-oxetanylmethyl) ether, and bis (3-methyl-3-oxetanylmethyl) ether. Examples thereof include propyl-3-oxetanylmethyl) ether and bis (3-butyl-3-oxetanylmethyl) ether.
Specific examples of the dioxetane compounds represented by formula (II-b) is two R 4 are both methyl in the above formula (II-b), ethyl, propyl, butyl or pentyl group, R 5 is an ethylene group, a propylene group, butylene group, neopentylene group, n- pentamethylene group, n- hexamethylene group, etc.), the formula: -CH 2 -Ph-CH 2 - or -CH 2 -Ph-Ph-CH Dioxetane compounds which are divalent groups represented by 2 −, hydrogenated bisphenol A residue, hydrogenated bisphenol F residue, hydrogenated bisphenol Z residue, cyclohexanedimethanol residue, and tricyclodecanedimethanol residue. Can be mentioned.
The resin composition for stereolithography can contain one or more of the above-mentioned dioxetane compounds.

そのうちでも、ポリオキセタン化合物(OXp)として、上記の式(II−a)において、2個のR4が共にメチル基またはエチル基であるビス(3−メチル−3−オキセタニルメチル)エーテルおよび/またはビス(3−エチル−3−オキセタニルメチル)エーテルが、入手の容易性、低吸湿性、硬化物の力学的特性などの点から好ましく用いられ、特にビス(3−エチル−3−オキセタニルメチル)エーテルがより好ましく用いられる。 Among them, as polyoxetane compound (OXP), In the above formula (II-a), 2 pieces of R 4 are both methyl or ethyl bis (3-methyl-3-oxetanylmethyl) ether and / or Bis (3-ethyl-3-oxetanylmethyl) ether is preferably used because of its availability, low hygroscopicity, and mechanical properties of the cured product, and in particular, bis (3-ethyl-3-oxetanylmethyl) ether. Is more preferably used.

上記《2》および《3》の光硬化性樹脂組成物では、光硬化性樹脂組成物中に含まれるカチオン重合性有機化合物の質量に基づいて、1分子中に2個以上のエポキシ基を有するポリエポキシ化合物(エポキシ樹脂)を30質量%以上、更には40質量%以上、特に50質量%以上の割合で含有することが好ましい。
また、上記《2》および《3》の光硬化性樹脂組成物が、カチオン重合性有機化合物の一部としてオキセタン化合物を含有する場合は、オキセタン化合物の含有量は、カチオン重合性有機化合物の質量に基づいて、1〜70質量%であることが好ましく、1〜60質量%であることがより好ましい。
また、上記《3》の光硬化性樹脂組成物では、ラジカル重合性有機化合物:カチオン重合性有機化合物の含有割合が、質量比で、9:1〜1:9であることが好ましく、8:2〜2:8であることがより好ましい。
The photocurable resin compositions of << 2 >> and << 3 >> have two or more epoxy groups in one molecule based on the mass of the cationically polymerizable organic compound contained in the photocurable resin composition. It is preferable that the polyepoxy compound (epoxy resin) is contained in an amount of 30% by mass or more, more preferably 40% by mass or more, and particularly preferably 50% by mass or more.
When the photocurable resin compositions of << 2 >> and << 3 >> contain an oxetane compound as a part of the cationically polymerizable organic compound, the content of the oxetane compound is the mass of the cationically polymerizable organic compound. It is preferably 1 to 70% by mass, and more preferably 1 to 60% by mass.
Further, in the photocurable resin composition of << 3 >> above, the content ratio of the radically polymerizable organic compound: the cationically polymerizable organic compound is preferably 9: 1 to 1: 9 in terms of mass ratio, and 8: It is more preferably 2 to 2: 8.

上記《1》および《3》の光硬化性樹脂組成物が含有する光感受性ラジカル重合開始剤(以下「光ラジカル重合開始剤」という)としては、光を照射したときにラジカル重合性有機化合物のラジカル重合を開始させ得る重合開始剤のいずれもが使用でき、例えば、1−ヒドロキシ−シクロヘキシルフェニルケトンなどのフェニルケトン系化合物、ベンジルジメチルケタール、ベンジル−β−メトキシエチルアセタール、1−ヒドロキシシクロヘキシルフェニルケトンなどベンジルまたはそのジアルキルアセタール系化合物、ジエトキシアセトフェノン、2−ヒドロキシメチル−1−フェニルプロパン−1−オン、4′−イソプロピル−2−ヒドロキシ−2−メチル−プロピオフェノン、2−ヒドロキシ−2−メチル−プロピオフェノン、p−ジメチルアミノアセトフェノン、p−tert−ブチルジクロロアセトフェノン、p−tert−ブチルトリクロロアセトフェノン、p−アジドベンザルアセトフェノンなどアセトフェノン系化合物、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインノルマルブチルエーテル、ベンゾインイソブチルエーテルなどのベンゾインまたはそのアルキルエーテル系化合物、ベンゾフェノン、o−ベンゾイル安息香酸メチル、ミヒラースケトン、4,4′−ビスジエチルアミノベンゾフェノン、4,4′−ジクロロベンゾフェノンなどベンゾフェノン系化合物、チオキサントン、2−メチルチオキサントン、2−エチルチオキサントン、2−クロロチオキサントン、2−イソプロピルチオキサントンなどチオキサントン系化合物などを挙げることができる。 The photosensitive radical polymerization initiator (hereinafter referred to as "photoradical polymerization initiator") contained in the photocurable resin compositions of << 1 >> and << 3 >> is a radically polymerizable organic compound when irradiated with light. Any polymerization initiator capable of initiating radical polymerization can be used, for example, phenylketone compounds such as 1-hydroxy-cyclohexylphenylketone, benzyldimethylketal, benzyl-β-methoxyethyl acetal, 1-hydroxycyclohexylphenylketone. Such as benzyl or its dialkyl acetal compounds, diethoxyacetophenone, 2-hydroxymethyl-1-phenylpropan-1-one, 4'-isopropyl-2-hydroxy-2-methyl-propiophenone, 2-hydroxy-2- Acetphenone compounds such as methyl-propiophenone, p-dimethylaminoacetophenone, p-tert-butyldichloroacetophenone, p-tert-butyltrichloroacetophenone, p-azidobenzalacetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin Benzophenones such as isopropyl ether, benzoin normal butyl ether and benzoin isobutyl ether, or alkyl ether compounds thereof, benzophenone, methyl o-benzoyl benzoate, Michler's ketone, 4,4'-bisdiethylaminobenzophenone, 4,4'-dichlorobenzophenone and the like. Examples thereof include compounds, thioxanthone-based compounds such as thioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, and 2-isopropylthioxanthone.

上記《1》および《3》の光硬化性樹脂組成物は、光硬化性樹脂組成物の質量に基づいて、光ラジカル重合開始剤を0.5〜10質量%の割合で含有することが好ましく、1〜5質量%の割合で含有することがより好ましい。 The photocurable resin compositions of << 1 >> and << 3 >> preferably contain a photoradical polymerization initiator in a proportion of 0.5 to 10% by mass based on the mass of the photocurable resin composition. , 1 to 5% by mass, more preferably.

上記《2》および《3》の光硬化性樹脂組成物が含有する光感受性カチオン重合開始剤(以下「光カチオン重合開始剤」という)としては、光を照射したときにカチオン重合性有機化合物のカチオン重合を開始させ得る重合開始剤のいずれもが使用でき、例えば、テトラフルオロホウ酸トリフェニルフェナシルホスホニウム、ヘキサフルオロアンチモン酸トリフェニルスルホニウム、ビス−[4−(ジフェニルスルフォニオ)フェニル]スルフィドビスジヘキサフルオロアンチモネート、ビス−[4−(ジ4’−ヒドロキシエトキシフェニルスルフォニォ)フェニル]スルフィドビスジヘキサフルオロアンチモネート、ビス−[4−(ジフェニルスルフォニォ)フェニル]スルフィドビスジヘキサフルオロフォスフェート、テトラフルオロホウ酸ジフェニルヨードニウム、下記の一般式(III)で表される非アンチモン系の芳香族スルホニム化合物(III)などを挙げることができ、これらの1種または2種以上を用いることができる。 The photosensitive cationic polymerization initiator (hereinafter referred to as “photocationic polymerization initiator”) contained in the photocurable resin compositions of << 2 >> and << 3 >> is a cationically polymerizable organic compound when irradiated with light. Any polymerization initiator capable of initiating cationic polymerization can be used, for example, triphenylphenacylphosphonium tetrafluoroborate, triphenylsulfonium hexafluoroantimonate, bis- [4- (diphenylsulfonio) phenyl] sulfide. Bisdihexafluoroantimonate, bis- [4- (di4'-hydroxyethoxyphenylsulfonio) phenyl] sulfide bisdihexafluoroantimonate, bis- [4- (diphenylsulfonio) phenyl] sulfide bisdi Hexafluorophosphate, diphenyliodonium tetrafluoroborate, non-antimonic aromatic sulfonium compound (III) represented by the following general formula (III), etc. can be mentioned, and one or more of these can be mentioned. Can be used.

[上記の一般式(C−1)中、R6、R7およびR8は、それぞれ独立して、下記の式《i》〜《vi》で表されるいずれかの基であり; [In the above general formula (C-1), R 6 , R 7 and R 8 are independently any group represented by the following formulas << i >> to << vi >>;

(式中、Xは塩素原子またはフッ素原子を示し、dは0または1である。)
Rfは炭素数1〜8のフルオロアルキル基であり、mは上記の一般式(III)におけるカチオン[S+(R6)(R7)(R8)]が有する前記式《vi》で表される基の合計個数に1を足した数であり、nは0〜6の整数である。]
また、反応速度を向上させる目的で、必要に応じて、カチオン重合開始剤と共に光増感剤、例えばベンゾフェノン、ベンゾインアルキルエーテル、チオキサントンなどを用いてもよい。
(In the formula, X represents a chlorine atom or a fluorine atom, and d is 0 or 1.)
Rf is a fluoroalkyl group having 1 to 8 carbon atoms, and m is represented by the above formula << vi >> of the cations [S + (R 6 ) (R 7 ) (R 8 )] in the above general formula (III). It is a number obtained by adding 1 to the total number of groups to be formed, and n is an integer of 0 to 6. ]
Further, for the purpose of improving the reaction rate, a photosensitizer such as benzophenone, benzoin alkyl ether, thioxanthone or the like may be used together with the cationic polymerization initiator, if necessary.

上記《2》および《3》の光硬化性樹脂組成物は、光硬化性樹脂組成物の質量に基づいて、光カチオン重合開始剤を1〜10質量%の割合で含有することが好ましく、2〜6質量%の割合で含有することがより好ましい。 The photocurable resin compositions of << 2 >> and << 3 >> preferably contain a photocationic polymerization initiator in a proportion of 1 to 10% by mass based on the mass of the photocurable resin composition. More preferably, it is contained in a proportion of ~ 6% by mass.

光学的立体造形物の製造に用いる光硬化性樹脂組成物は、必要に応じて、顔料や染料等の変色剤、消泡剤、レベリング剤、増粘剤、難燃剤、酸化防止剤、充填剤(架橋ポリマー粒子、シリカ、ガラス粉、セラミックス粉、金属粉等)、改質用樹脂などの1種または2種以上を適量含有していることができる。 The photocurable resin composition used for producing an optically three-dimensional structure may be a discoloring agent such as a pigment or a dye, a defoaming agent, a leveling agent, a thickener, a flame retardant, an antioxidant, or a filler, if necessary. An appropriate amount of one or more of (crosslinked polymer particles, silica, glass powder, ceramic powder, metal powder, etc.), reforming resin, and the like can be contained.

本発明の後硬化装置または後硬化・後処理装置を使用して後硬化または後硬化・後処理する光学的立体造形物(グリーン光学的立体造形物)は、光硬化性樹脂組成物を用いて従来既知の光学的立体造形方法および装置を使用して製造することができる。その際に好ましく採用される光学的立体造形法の代表例としては、液状をなす光硬化性樹脂組成物に所望のパターンを有する硬化層が得られるように光を選択的に照射して硬化層を形成し、次いでこの硬化層に未硬化の液状の光硬化性樹脂組成物を供給し、同様に活性エネルギー線を照射して前記の硬化層と連続した硬化層を新たに形成する積層操作を繰り返すことによって最終的に目的とする立体的造形物を得る方法を挙げることができる。
その際の光としては、紫外線、電子線、X線、放射線、高周波などを挙げることができる。そのうちでも、300〜400nmの波長を有する紫外線が経済的な観点から好ましく用いられ、その際の光源としては、紫外線レーザー(例えば半導体励起固体レーザー、Arレーザー、He−Cdレーザーなど)、高圧水銀ランプ、超高圧水銀ランプ、低圧水銀ランプ、キセノンランプ、ハロゲンランプ、メタルハライドランプ、紫外線LED(発光ダイオード)、紫外線蛍光灯などを使用することができる。
The optical three-dimensional model (green optical three-dimensional model) to be post-cured or post-cured / post-treated using the post-curing device or the post-curing / post-treatment device of the present invention uses a photocurable resin composition. It can be manufactured using conventionally known optical three-dimensional modeling methods and devices. As a typical example of the optical three-dimensional modeling method preferably adopted at that time, the cured layer is selectively irradiated with light so that a cured layer having a desired pattern can be obtained on the liquid photocurable resin composition. Then, an uncured liquid photocurable resin composition is supplied to the cured layer, and similarly irradiated with active energy rays, a laminating operation for newly forming a cured layer continuous with the cured layer is performed. A method of finally obtaining the desired three-dimensional model by repeating the process can be mentioned.
Examples of the light at that time include ultraviolet rays, electron beams, X-rays, radiation, and high frequencies. Among them, ultraviolet rays having a wavelength of 300 to 400 nm are preferably used from an economical point of view, and as the light source at that time, an ultraviolet laser (for example, a semiconductor-pumped solid-state laser, an Ar laser, a He-Cd laser, etc.) and a high-pressure mercury lamp are used. , Ultra-high pressure mercury lamp, low pressure mercury lamp, xenon lamp, halogen lamp, metal halide lamp, ultraviolet LED (light emitting diode), ultraviolet fluorescent lamp and the like can be used.

光硬化性樹脂組成物よりなる造形面に光を照射して所定の形状パターンを有する各硬化樹脂層を形成するに当たっては、レーザー光などのような点状に絞られた光を使用して点描または線描方式で硬化樹脂層を形成してもよいし、または液晶シャッターまたはデジタルマイクロミラーシャッター(DMD)などのような微小光シャッターを複数配列して形成した面状描画マスクを通して造形面に光を面状に照射して硬化樹脂層を形成させる造形方式を採用してもよい。 When irradiating a molding surface made of a photocurable resin composition with light to form each cured resin layer having a predetermined shape pattern, stippling is performed using light focused in dots such as laser light. Alternatively, the cured resin layer may be formed by a line drawing method, or light is emitted to the modeling surface through a planar drawing mask formed by arranging a plurality of micro light shutters such as a liquid crystal shutter or a digital micromirror shutter (DMD). A modeling method may be adopted in which a cured resin layer is formed by irradiating the surface in a planar manner.

本発明の後硬化装置または後硬化・後処理装置を使用して後硬化または後硬化・後処理して得られる光学的立体造形物は、種々の分野で幅広く用いることができ、何ら限定されるものではないが、代表的な応用分野としては、設計の途中で外観デザインを検証するための形状確認モデル、部品の機能性をチェックするための機能試験モデル、鋳型を制作するためのマスターモデル、金型を制作するためのマスターモデル、試作金型用の直接型、美術工芸品などとして用いることができる。より具体的には、例えば、精密部品、電気・電子部品、家具、建築構造物、自動車用部品、各種容器類、鋳物などのモデル、母型、加工用のモデル、複雑な熱媒回路の設計用の部品、複雑な構造の熱媒挙動の解析企画用の部品、美術品の復元、模造や現代アート、ガラス張りの建築物のデザインプレゼンテーションモデルのような美術工芸品などの用途に有効に用いることができる。 The optical three-dimensional model obtained by post-curing or post-curing / post-treatment using the post-curing device or the post-curing / post-treatment device of the present invention can be widely used in various fields and is limited in any way. Although it is not a typical application field, a shape confirmation model for verifying the appearance design in the middle of design, a functional test model for checking the functionality of parts, a master model for producing a mold, etc. It can be used as a master model for making molds, a direct mold for prototype molds, arts and crafts, etc. More specifically, for example, precision parts, electrical / electronic parts, furniture, building structures, automobile parts, various containers, models of castings, master molds, models for processing, and design of complex heat medium circuits. Parts for use, parts for analysis of heat medium behavior of complex structures, restoration of works of art, imitation and contemporary art, arts and crafts such as design presentation models of glass-walled buildings, etc. Can be done.

以下に本発明を実施例などによって具体的に説明するが、本発明は実施例に何ら限定されるものではない。
685 以下の例において、光硬化性樹脂組成物の粘度、後硬化に用いた紫外線LEDまたは放電ランプおよび後処理に用いた青色LEDから発射される光の波長範囲およびピーク波長、後硬化に用いた紫外線LEDまたは放電ランプから発射される光における385nm以上の波長の光の合計強度、後硬化時の紫外線LEDまたは放電ランプによる光学的立体造形物(グリーン光学的立体造形物)への照射強度、後処理時の光学的立体造形物への青色LEDによる光の照射強度と波長430〜500nmの光の照射強度、並びに光学的立体造形物の後硬化前、後硬化後および後処理後の黄色度は以下のようにして測定または算出した。
The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples.
685 In the following examples, the viscosity of the photocurable resin composition, the wavelength range and peak wavelength of the light emitted from the UV LED or discharge lamp used for post-curing and the blue LED used for post-treatment, and used for post-curing. Total intensity of light with a wavelength of 385 nm or more in the light emitted from the ultraviolet LED or discharge lamp, irradiation intensity of the optical three-dimensional object (green optical three-dimensional object) by the ultraviolet LED or discharge lamp at the time of post-curing, after The irradiation intensity of light from the blue LED on the optical three-dimensional model during processing, the irradiation intensity of light with a wavelength of 430 to 500 nm, and the yellowness before, after, and after post-curing of the optical three-dimensional model are It was measured or calculated as follows.

(1)光硬化性樹脂組成物の粘度:
光硬化性樹脂組成物を25℃の恒温槽に入れて、光硬化性樹脂組成物の温度を25℃に調節した後、B型粘度計(株式会社東機産業製)を使用して回転速度20rpmで測定した。
(1) Viscosity of photocurable resin composition:
The photocurable resin composition is placed in a constant temperature bath at 25 ° C., the temperature of the photocurable resin composition is adjusted to 25 ° C., and then the rotation speed is increased using a B-type viscometer (manufactured by Toki Sangyo Co., Ltd.). It was measured at 20 rpm.

(2)紫外線LED、放電ランプ又は青色LEDからの発射光の波長範囲とピーク波長:
グリーン光学的立体造形物に紫外線LEDまたは放電ランプにより光を照射して後硬化を行う際に、または後硬化後の光学的立体造形物に青色LEDにより光を照射して後処理を行う際に、光スペクトラムアナライザ(安藤電機社製「AQ−6311」)のプローブを、光学的立体造形物の縦×横=20mm×45mmの方形の上面における対角線のほぼ交点に相当する位置に前記した放射照度計(鶴賀電気社製「HD2302」)のプローブと並べて取り付け、光学的立体造形物の光を照射された表面での100〜500nmの波長範囲(後硬化時)、または340〜850nmの波長範囲(後処理時)にわたって、5nm刻みで相対分光強度を測定して、相対分光強度曲線Fを求め、当該相対分光強度曲線Fから、それぞれの光源から発射される光の波長範囲とピーク波長を求めた。
(2) Wavelength range and peak wavelength of emitted light from ultraviolet LED, discharge lamp or blue LED:
When the green optical three-dimensional object is irradiated with light by an ultraviolet LED or a discharge lamp to perform post-curing, or when the post-cured optical three-dimensional object is irradiated with light by a blue LED to perform post-treatment. , The probe of the optical spectrum analyzer (“AQ-6311” manufactured by Ando Electric Co., Ltd.) is placed at a position corresponding to approximately the intersection of diagonal lines on the upper surface of a square of an optical three-dimensional object (length × width = 20 mm × 45 mm). Attached side by side with the probe of the meter (“HD2302” manufactured by Tsuruga Electric Co., Ltd.), the wavelength range of 100 to 500 nm (at the time of post-curing) or the wavelength range of 340 to 850 nm (after curing) on the surface of the optical three-dimensional model irradiated with light The relative spectral intensity was measured in 5 nm increments over the post-processing) to obtain the relative spectral intensity curve F, and the wavelength range and peak wavelength of the light emitted from each light source were determined from the relative spectral intensity curve F. ..

(3)後硬化に用いた紫外線LEDまたは放電ランプからの発射光における385nm以上の波長の光の合計強度の割合:
上記(2)で求めた相対分光強度曲線Fに基づいて、発射光全体の強度の合計(合計面積)に対する385nm以上の波長の光の強度の合計(合計面積)の割合を求めた。
(3) Ratio of total intensity of light having a wavelength of 385 nm or more in the light emitted from the ultraviolet LED or discharge lamp used for post-curing:
Based on the relative spectral intensity curve F obtained in (2) above, the ratio of the total intensity of light having a wavelength of 385 nm or more (total area) to the total intensity of the entire emitted light (total area) was determined.

(4)後硬化時の紫外線LEDまたは放電ランプによる光学的立体造形物(グリーン光学的立体造形物)への照射強度:
上記(2)において、紫外線LEDまたは放電ランプによりグリーン光学的立体造形物に光を照射して後硬化を行って350〜500nmの波長範囲にわたって相対分光強度曲線Fを求める際に、放射照度計により合計の照射強度(mW/cm2)を測定した。
(4) Intensity of irradiation of an optical three-dimensional object (green optical three-dimensional object) by an ultraviolet LED or a discharge lamp during post-curing:
In (2) above, when the green optical three-dimensional model is irradiated with light by an ultraviolet LED or a discharge lamp and post-cured to obtain a relative spectral intensity curve F over a wavelength range of 350 to 500 nm, an irradiance meter is used. The total irradiation intensity (mW / cm 2 ) was measured.

(5)光学的立体造形物の後硬化前、後硬化後および後処理後の黄色度:
下記の実施例および比較例において光学的立体造形を行って得られた後硬化前の光学的立体造形物(グリーン光学的立体造形物)(縦×横×厚さ=20mm×45mm×10mmの直方体)、それに後硬化用の光を照射して後硬化した光学的立体造形物、後硬化した光学的立体造形物に更に後処理用の光を照射して後処理して得られた光学的立体造形物を、直径60mmの積分球を備えた分光光度計(日立ハイテクノロジーズ社製「U−3900H」)に取り付け、板厚10mmの全光線透過率を測定し、これにより得られた全光線透過率を、当該分光光度計に付属したソフトウェア(UV Solutions)を用いてJIS−K7373に規定された方法で数値計算することによって、補助イルミナントC、視野2度の条件における黄色度を求めた。
(5) Yellowness before post-curing, after post-curing, and after post-treatment of the optically three-dimensional model:
Optical three-dimensional model (green optical three-dimensional model) before curing obtained by performing optical three-dimensional modeling in the following examples and comparative examples (length x width x thickness = 20 mm x 45 mm x 10 mm square body ), The post-cured optical three-dimensional model by irradiating it with post-curing light, and the post-cured optical three-dimensional model obtained by further irradiating the post-curing light with post-treatment. The modeled object was attached to a spectrophotometer (“U-3900H” manufactured by Hitachi High-Technologies Co., Ltd.) equipped with an integrating sphere with a diameter of 60 mm, and the total light transmittance of a plate thickness of 10 mm was measured. The rate was numerically calculated by the method specified in JIS-K7373 using the software (UV Solutions) attached to the spectrophotometer to determine the yellowness under the conditions of auxiliary illumination C and a field of view of 2 degrees.

《実施例1》
(1)後硬化・後処理装置の作製:
(i) 図7に示す後硬化・後処理装置に準じた構造を有し、その際に、取り付け板6aに、以下に記載する紫外線LED2を横方向に6個(6列)の間隔で且つ縦方向に4個の間隔で取り付け、更に当該紫外線LED2の隣り合う横方向の列と列の間に、以下に記載する青色LED7を、各2列ずつ合計10列(2列×5=10列)で且つ縦方向に10個の割合で取り付けて(青色LED7の全個数=10×10=100個)、後硬化・後処理装置を作製した。
(ii) 具体的には、縦×横×高さ=11.5cm×16cm×25cm(内径)の全面が覆われた直方体形のハウジング1内に設けた取付け部材兼調節手段6の取付け板6aに、取付け板6aの中心(対角線の交点)を基準にして、24個のチップ型の紫外線LED2[1個の紫外線LEDの消費電力=68mW、放出される紫外線の波長=350〜395nm、ピーク波長=365nm(単一ピーク)、385nm以上の波長の光の合計強度=1%]を、紫外線LED2と青色LED7を取り付けたときに各列の間隔が同じになるようにして、横方向に6列および縦方向に4個の数で配列させて取り付けた[紫外線LED2の取り付け個数=横6個(横6列)×縦4個=24個]。
次に、青色LED7(1個の青色LEDの消費電力=68mW、放射光の波長範囲=420〜505nm、ピーク波長=455nm、波長400nm以下の光を放射せず)の100個を、紫外線LED2を取り付けた上記の取付け板6aに、紫外線LED2の隣り合う横方向の列と列の間に2列ずつ(合計で2列×5=10列)となるようにし且つ各列で縦方向に10個の割合で取り付けて[青色LED7の取り付け個数=横10個(横10列)×縦10個=100個]、後硬化・後処理装置を作製した。その際に、紫外線LED2と青色LED7の横方向および縦方向の間隔が同じになるようにして取り付けた。紫外線LED2および青色LED7の全体の取付け面積=横×縦=15cm×10cm。
<< Example 1 >>
(1) Preparation of post-curing / post-treatment device:
(I) It has a structure similar to the post-curing / post-treatment apparatus shown in FIG. 7, and at that time, the ultraviolet LEDs 2 described below are mounted on the mounting plate 6a at intervals of 6 (6 rows) in the horizontal direction. A total of 10 rows (2 rows x 5 = 10 rows) of the blue LEDs 7 described below are installed between the adjacent horizontal rows of the ultraviolet LED 2 at intervals of 4 in the vertical direction. ) And 10 pieces were attached in the vertical direction (total number of blue LEDs 7 = 10 × 10 = 100 pieces) to prepare a post-curing / post-treatment device.
(Ii) Specifically, the mounting plate 6a of the mounting member and adjusting means 6 provided in the rectangular parallelepiped housing 1 in which the entire surface of length x width x height = 11.5 cm x 16 cm x 25 cm (inner diameter) is covered. In addition, 24 chip-type ultraviolet LEDs 2 [power consumption of one ultraviolet LED = 68 mW, wavelength of emitted ultraviolet rays = 350 to 395 nm, peak wavelength] with reference to the center of the mounting plate 6a (intersection of diagonal lines). = 365 nm (single peak), total intensity of light with wavelengths of 385 nm or more = 1%], 6 rows in the horizontal direction so that the distance between each row is the same when the ultraviolet LED 2 and blue LED 7 are attached. And, they were arranged and attached in a number of 4 in the vertical direction [the number of ultraviolet LEDs 2 attached = 6 horizontal (6 rows wide) x 4 vertical = 24].
Next, 100 blue LEDs 7 (power consumption of one blue LED = 68 mW, wavelength range of synchrotron radiation = 420 to 505 nm, peak wavelength = 455 nm, do not emit light having a wavelength of 400 nm or less) are used for ultraviolet LED 2. On the above-mentioned mounting plate 6a attached, two rows are formed between the adjacent horizontal rows of the ultraviolet LEDs 2 (total of 2 rows x 5 = 10 rows), and 10 in each row in the vertical direction. [Number of blue LEDs to be attached = 10 in width (10 rows in width) x 10 in length = 100], and a post-curing / post-treatment device was produced. At that time, the ultraviolet LED 2 and the blue LED 7 were attached so that the intervals in the horizontal and vertical directions were the same. The total mounting area of the ultraviolet LED 2 and the blue LED 7 = width x length = 15 cm x 10 cm.

(2)グリーン光学的立体造形物の製造:
(i) 3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレート(株式会社ダイセル製「Cel−2021P」)5.5質量部、水素化ビスフェノールAジグリシジルエーテル(新日本理化学株式会社製「HBE−100」)60質量部、3−エチル−3−ヒドロキシメチルキセタン(東亞合成株式会社製「OXT101」)7.5質量部、ビス(3−エチル−3−オキセタニルメチル)エーテル(東亞合成株式会社製「OXT221」)12.5質量部、ジペンタエリスリトールペンタアクリレート(新中村化学工業株式会社製「A−9550W」)13質量部、ラウリルアクリレート(新中村化学工業株式会社製「NKエステル−LA」)10質量部、ビスフェノールAジグリシジルエーテルのアクリル酸2モル付加物(昭和電工株式会社製「VR−77」)3質量部、ポリテトラメチレングリコールジアクリレート(数平均分子量650)(新中村化学工業株式会社製「A−PTMG−65」)1.5質量部、ポリテトラメチレンエーテルグリコール(保土谷化学株式会社製「PTG−850SN」、数平均分子量801〜890)1.5質量部、サンアプロ株式会社製「CT−1PC」[前記の一般式(III)で表される非アンチモン系の芳香族スルホニウム化合物(III)の1種からなるカチオン重合開始剤溶液]1.5質量部、サンアプロ株式会社製「CT−1P」[前記の一般式(III)で表される非アンチモン系の芳香族スルホニウム化合物(III)の1種からなるカチオン重合開始剤溶液]1.5質量部および1−ヒドロキシ−シクロヘキシルフェニルケトン(BASF社製「イルガキュア−184」、ラジカル重合開始剤)2.5質量部をよく混合して光学的立体造形用樹脂組成物を調製した。この光学的立体造形用樹脂組成物の粘度を上記した方法で測定したところ、232mPa・sであった。
(ii) 上記の(i)で調製した光硬化性樹脂組成物を用いて、超高速光造形システム(ナブテスコ株式会社製「SOLIFORM500B」)を使用して、スペクトラフィジックス社製「半導体励起固体レーザーBL6型」(出力1000mW;波長355nm)を表面に対して垂直に照射して、照射エネルギー100mJ/cm2の条件下に、スライスピッチ(積層厚み)0.10mm、1層当たりの平均造形時間2分で光学的立体造形を行って、光学的立体造形物(グリーン光学的立体造形物)(縦×横×厚さ=20mm×45mm×10mmの直方体)を製造した。
これにより得られたグリーン光学的立体造形物の黄色度を上記した方法で測定したところ、黄色度は5.8であった。
(2) Manufacture of green optical three-dimensional objects:
(I) 3,4-Epoxycyclohexylmethyl-3', 4'-epoxycyclohexanecarboxylate ("Cel-2021P" manufactured by Daicel Co., Ltd.) 5.5 parts by mass, bisphenol hydride A diglycidyl ether (New Nippon Rikagaku Co., Ltd.) 60 parts by mass of "HBE-100" manufactured by the company, 7.5 parts by mass of 3-ethyl-3-hydroxymethylxetane ("OXT101" manufactured by Toa Synthetic Co., Ltd.), bis (3-ethyl-3-oxetanylmethyl) ether ("OXT221" manufactured by Toa Synthetic Co., Ltd.) 12.5 parts by mass, dipentaerythritol pentaacrylate ("A-9550W" manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) 13 parts by mass, lauryl acrylate ("New Nakamura Chemical Industry Co., Ltd." NK ester-LA ") 10 parts by mass, 2 mol addition of bisphenol A diglycidyl ether acrylic acid ("VR-77" manufactured by Showa Denko Co., Ltd.) 3 parts by mass, polytetramethylene glycol diacrylate (number average molecular weight 650) ("A-PTMG-65" manufactured by Shin-Nakamura Chemical Co., Ltd.) 1.5 parts by mass, polytetramethylene ether glycol ("PTG-850SN" manufactured by Hodoya Chemical Co., Ltd., number average molecular weight 801-890) 1.5 By mass, "CT-1PC" manufactured by San-Apro Co., Ltd. [Cationic polymerization initiator solution consisting of one of the non-antimonic aromatic sulfonium compounds (III) represented by the above general formula (III)] 1.5 mass Part, "CT-1P" manufactured by San-Apro Co., Ltd. [A cationic polymerization initiator solution consisting of one of the non-antimony aromatic sulfonium compounds (III) represented by the above general formula (III)] 1.5 parts by mass And 2.5 parts by mass of 1-hydroxy-cyclohexylphenylketone (“Irgacure-184” manufactured by BASF, radical polymerization initiator) were well mixed to prepare a resin composition for optical three-dimensional modeling. When the viscosity of this resin composition for optical three-dimensional modeling was measured by the above method, it was 232 mPa · s.
(Ii) Using the photocurable resin composition prepared in (i) above, using an ultra-high-speed stereolithography system (“SOLIFORM500B” manufactured by Nabtesco Co., Ltd.), “Semiconductor-excited solid-state laser BL6” manufactured by Spectraphysics Co., Ltd. A mold (output 1000 mW; wavelength 355 nm) is irradiated perpendicularly to the surface, and under the condition of irradiation energy 100 mJ / cm 2 , the slice pitch (stacking thickness) is 0.10 mm, and the average molding time per layer is 2 minutes. An optical three-dimensional model (green optical three-dimensional model) (length x width x thickness = 20 mm x 45 mm x 10 mm square body) was manufactured.
When the yellowness of the green optically three-dimensional model thus obtained was measured by the above method, the yellowness was 5.8.

(3)光学的立体造形物の後硬化:
(i) 上記(2)の(ii)で得られたグリーン光学的立体造形物を、上記(1)で作製した後硬化・後処理装置の底面の中央に置いた後、グリーン光学的立体造形物の上面と取付け板6aに取り付けたチップ型紫外線LEDの先端との間の距離が4cmになるまで、取付け部材兼調節部材6のリンク機構6cによって取付け板6aを下降させ、その状態で、制御装置によって紫外線LED2に通電して(通電時間10分)、グリーン光学的立体造形物に紫外線LED2から紫外線を10分間照射した。
この後硬化処理時の光学的立体造形物の表面における紫外線の照射強度は1.7mW/cm2で、10分間の積算照射エネルギーは1.0J/cm2であり、後硬化後の光学的立体造形物は、ベタツキがなく、硬化が十分に行われていた。
(ii) 上記(i)で得られた後硬化後の光学的立体造形物の黄色度を上記した方法で測定したところ、下記の表1に示すように、黄色度は6.0であった。
(3) Post-curing of optical three-dimensional model:
(I) The green optical three-dimensional model obtained in (ii) of (2) above is placed in the center of the bottom surface of the post-curing / post-treatment device produced in (1) above, and then the green optical three-dimensional model is formed. The mounting plate 6a is lowered by the link mechanism 6c of the mounting member / adjusting member 6 until the distance between the upper surface of the object and the tip of the chip-type ultraviolet LED mounted on the mounting plate 6a is 4 cm, and in that state, control is performed. The ultraviolet LED 2 was energized by the device (energization time: 10 minutes), and the green optical three-dimensional object was irradiated with ultraviolet rays from the ultraviolet LED 2 for 10 minutes.
The irradiation intensity of ultraviolet rays on the surface of the optical three-dimensional object during the post-curing treatment is 1.7 mW / cm 2 , and the integrated irradiation energy for 10 minutes is 1.0 J / cm 2. The modeled object was not sticky and was sufficiently cured.
(Ii) When the yellowness of the optically three-dimensional model obtained in (i) above and after curing was measured by the above method, the yellowness was 6.0 as shown in Table 1 below. ..

(4)光学的立体造形物の後処理:
上記(3)で後硬化した光学的立体造形物を、後硬化・後処理装置装置内にそのまま静置した状態で、取付け板6aに取り付けた青色LED7に5時間通電して、光学的立体造形物に青色LED7から可視光を5時間にわたって照射して後処理を行った。この後処理時の光学的立体造形物の表面への青色LED7からの青色光の照射強度は20.4W/m2であり、5時間にわたっての青色光の積算照射エネルギーは367kJ/m2であった。
これにより得られた後処理後の光学的立体造形物の黄色度を上記した方法で測定したところ、下記の表1に示すように、4.0であった。
(4) Post-treatment of optical three-dimensional objects:
The optical three-dimensional model that was post-cured in (3) above was left standing in the post-curing / post-processing device as it was, and the blue LED 7 attached to the mounting plate 6a was energized for 5 hours for optical three-dimensional modeling. The object was post-treated by irradiating the object with visible light from the blue LED 7 for 5 hours. The irradiation intensity of blue light from the blue LED 7 to the surface of the optical three-dimensional model during this post-treatment is 20.4 W / m 2 , and the integrated irradiation energy of blue light over 5 hours is 367 kJ / m 2. It was.
When the yellowness of the optical three-dimensional model after the post-treatment obtained by this was measured by the above method, it was 4.0 as shown in Table 1 below.

《実施例2》
(1)後硬化・後処理装置の作製:
実施例1の(1)において、チップ型の紫外線LED2として別のチップ型紫外線LED[1個の紫外線LEDの消費電力=150mW、放出される紫外線の波長=250〜325nm、ピーク波長=275nm(単一ピーク)、385nm以上の波長の光の合計強度=0%、光出力=11.5mW]を用いた以外は、実施例1の(1)と同様にして、本発明の後硬化・後処理装置を作製した。
(2)グリーン光学的立体造形物の製造:
実施例1の(2)の(i)で用いたのと同じ材料を使用し、実施例1の(2)の(ii)と同じ光造形工程を行って、光学的立体造形物(グリーン光学的立体造形物)(縦×横×厚さ=20mm×45mm×10mmの直方体)を製造した。
(3)光学的立体造形物の後硬化:
(i) 上記(2)で得られたグリーン光学的立体造形物を、上記(1)で作製した後硬化・後処理装置の底面の中央に置いた後、グリーン光学的立体造形物の上面と取付け板6aに取り付けたチップ型紫外線LEDの先端との間の距離が4cmになるまで、取付け部材兼調節部材6のリンク機構6cによって取付け板6aを下降させ、その状態で、グリーン光学的立体造形物に紫外線LEDから紫外線を5分間照射した。
この後硬化時の光学的立体造形物の表面での紫外線の照射強度は0.5mW/cm2であり、5分間にわたっての紫外線の積算照射エネルギーは0.15J/cm2であり、後硬化後の光学的立体造形物は、ベタツキがなく、硬化が十分に行われていた。
(ii) 上記(i)で得られた後硬化後の光学的立体造形物の黄色度を上記した方法で測定したところ、下記の表1に示すように、黄色度は3.5であった。
(4)光学的立体造形物の後処理:
上記(3)で得られた後硬化後の光学的立体造形物を、後硬化・後処理装置内にそのまま静置した状態で、実施例1の(4)と同様にして、青色LED7により光学的立体造形物の上方から青色光を延べ5時間にわたって照射した。
この後処理時の光学的立体造形物の表面での青色光の照射強度は20.4W/m2であり、5時間にわたっての青色光の積算照射エネルギーは367kJ/m2であった。
これにより得られた後処理後の光学的立体造形物の黄色度を上記し他方法で測定したところ、下記の表1に示すように、黄色度は3.8であった。
<< Example 2 >>
(1) Preparation of post-curing / post-treatment device:
In (1) of Example 1, another chip-type ultraviolet LED as the chip-type ultraviolet LED2 [power consumption of one ultraviolet LED = 150 mW, wavelength of emitted ultraviolet rays = 250 to 325 nm, peak wavelength = 275 nm (single). (One peak), the total intensity of light having a wavelength of 385 nm or more = 0%, light output = 11.5 mW], and the post-curing / post-treatment of the present invention is the same as in (1) of Example 1. The device was made.
(2) Manufacture of green optical three-dimensional objects:
Using the same material used in (i) of (2) of Example 1, the same stereolithography process as (ii) of (2) of Example 1 was performed to obtain an optically three-dimensional object (green optics). A three-dimensional model) (length x width x thickness = 20 mm x 45 mm x 10 mm rectangular parallelepiped) was manufactured.
(3) Post-curing of optical three-dimensional model:
(I) The green optical three-dimensional model obtained in (2) above is placed in the center of the bottom surface of the post-curing / post-treatment device produced in (1) above, and then the top surface of the green optical three-dimensional model The mounting plate 6a is lowered by the link mechanism 6c of the mounting member / adjusting member 6 until the distance between the tip of the chip-type ultraviolet LED mounted on the mounting plate 6a is 4 cm, and in that state, green optical three-dimensional modeling is performed. The object was irradiated with ultraviolet rays from an ultraviolet LED for 5 minutes.
Irradiation intensity of ultraviolet light on the surface of the stereolithography material upon curing subsequent is 0.5 mW / cm 2, total irradiation energy of ultraviolet rays over 5 minutes is 0.15 J / cm 2, after post-curing The optical three-dimensional model of No. 1 was not sticky and was sufficiently cured.
(Ii) When the yellowness of the optically three-dimensional model obtained in (i) above and after curing was measured by the above method, the yellowness was 3.5 as shown in Table 1 below. ..
(4) Post-treatment of optical three-dimensional objects:
In the same manner as in (4) of Example 1, the optical three-dimensional model after post-curing obtained in (3) above is optically left in the post-curing / post-treatment apparatus by the blue LED 7. Blue light was irradiated from above the three-dimensional object for a total of 5 hours.
The irradiation intensity of blue light on the surface of the optically three-dimensional model during this post-treatment was 20.4 W / m 2 , and the integrated irradiation energy of blue light over 5 hours was 367 kJ / m 2 .
When the yellowness of the optically three-dimensional model obtained by this was measured by the above-mentioned other method, the yellowness was 3.8 as shown in Table 1 below.

《比較例1》
(1)後硬化・後処理装置の作製:
実施例1の(1)において、チップ型の紫外線LED2として、別のチップ型紫外線LED[1個の紫外線LEDの消費電力=20mW、放出される紫外線の波長=365〜420nm、ピーク波長=385nm(単一ピーク)、385nm以上の波長の光の合計強度=55%]を用いた以外は、実施例1の(1)と同様にして、後硬化・後処理装置を作製した。
(2)グリーン光学的立体造形物の製造:
実施例1の(2)の(i)で用いたのと同じ材料を使用し、実施例1の(2)の(ii)と同じ光造形工程を行って、光学的立体造形物(グリーン光学的立体造形物)(縦×横×厚さ=20mm×45mm×10mmの直方体)を製造した。
(3)光学的立体造形物の後硬化:
(i) 上記(2)で得られたグリーン光学的立体造形物を、上記(1)で作製した後硬化・後処理装置の底面の中央に置いた後、グリーン光学的立体造形物の上面と取付け板6aに取り付けたチップ型紫外線LEDの先端との間の距離が4cmになるまで、取付け部材兼調節部材6のリンク機構6cによって取付け板6aを下降させ、その状態で、光学的立体造形物の表面のベタツキがなくなるまで、グリーン光学的立体造形物に紫外線LEDから紫外線を30分間照射した。この比較例1では、10分間の紫外線照射では後硬化が十分に行われず光学的立体造形物の表面のベタツキがあり、30分間の照射によってやっとベタツキのない状態(後硬化が完了した状態)になった。
この後硬化装置時の光学的立体造形物の表面での385nm未満の紫外線の照射強度は1.0mW/cm2であり、30分間にわたっての385nm未満の紫外線の積算照射エネルギーは1.8J/cm2であった。
(ii) 上記(i)で得られた後硬化後の光学的立体造形物の黄色度を上記した方法で測定したところ、下記の表1に示すように、黄色度は8.3であった。
なお、この比較例1では、後硬化後の後処理は行わなかった。
<< Comparative Example 1 >>
(1) Preparation of post-curing / post-treatment device:
In (1) of Example 1, as the chip-type ultraviolet LED2, another chip-type ultraviolet LED [power consumption of one ultraviolet LED = 20 mW, wavelength of emitted ultraviolet rays = 365 to 420 nm, peak wavelength = 385 nm ( A post-curing / post-treatment apparatus was produced in the same manner as in (1) of Example 1 except that (single peak)), total intensity of light having a wavelength of 385 nm or more = 55%] was used.
(2) Manufacture of green optical three-dimensional objects:
Using the same material used in (i) of (2) of Example 1, the same stereolithography process as (ii) of (2) of Example 1 was performed to obtain an optically three-dimensional object (green optics). A three-dimensional model) (length x width x thickness = 20 mm x 45 mm x 10 mm rectangular parallelepiped) was manufactured.
(3) Post-curing of optical three-dimensional model:
(I) The green optical three-dimensional model obtained in (2) above is placed in the center of the bottom surface of the post-curing / post-treatment device produced in (1) above, and then with the upper surface of the green optical three-dimensional model. The mounting plate 6a is lowered by the link mechanism 6c of the mounting member / adjusting member 6 until the distance between the tip of the chip-type ultraviolet LED mounted on the mounting plate 6a is 4 cm, and in that state, the optical three-dimensional object is formed. The green optical three-dimensional object was irradiated with ultraviolet rays from an ultraviolet LED for 30 minutes until the surface of the three-dimensional object was no longer sticky. In this Comparative Example 1, post-curing was not sufficiently performed by irradiation with ultraviolet rays for 10 minutes, and the surface of the optically three-dimensional model was sticky, and after irradiation for 30 minutes, the state was finally non-sticky (the state in which post-curing was completed). became.
After this, the irradiation intensity of ultraviolet rays of less than 385 nm on the surface of the optically three-dimensional object in the curing device is 1.0 mW / cm 2 , and the integrated irradiation energy of ultraviolet rays of less than 385 nm over 30 minutes is 1.8 J / cm. It was 2 .
(Ii) When the yellowness of the optically three-dimensional model obtained in (i) above and after curing was measured by the above method, the yellowness was 8.3 as shown in Table 1 below. ..
In Comparative Example 1, no post-treatment after post-curing was performed.

《比較例2》
(1)後硬化装置の作製:
実施例1の(1)において、チップ型の紫外線LED2として、別のチップ型紫外線LED[1個の紫外線LEDの消費電力=20mW、放出される紫外線の波長=380〜440nm、ピーク波長=405nm(単一ピーク)、385nm以上の波長の光の合計強度=98%]を用いた以外は、実施例1の(1)と同様にして、後硬化装置を作製した(紫外線LEDの全体の取付け面積=10cm×15cm)。
(2)グリーン光学的立体造形物の製造:
実施例1の(2)の(i)で用いたのと同じ材料を使用し、実施例1の(2)の(ii)と同じ光造形工程を行って、光学的立体造形物(グリーン光学的立体造形物)(縦×横×厚さ=20mm×45mm×10mmの直方体)を製造した。
(3)光学的立体造形物の後硬化:
(i) 上記(2)で得られたグリーン光学的立体造形物を、上記(1)で作製した後硬化・後処理装置の底面の中央に置いた後、グリーン光学的立体造形物の上面と取付け板6aに取り付けたチップ型紫外線LEDの先端との間の距離が4cmになるまで、取付け部材兼調節部材6のリンク機構6cによって取付け板6aを下降させ、その状態で、光学的立体造形物の表面のベタツキがなくなるまで、グリーン光学的立体造形物に紫外線LEDから紫外線を40分間照射した。なお、この比較例1では、10分間の紫外線照射では後硬化が十分に行われず光学的立体造形物の表面のベタツキがあり、120分間の照射によってやっとベタツキのない状態(後硬化が完了した状態)になった。
この後硬化装置時の光学的立体造形物の表面における385nm未満の紫外線の照射強度は0.1mW/cm2であり、120分間にわたっての385nm未満の紫外線の積算照射エネルギーは0.14J/cm2であった。
(ii) 上記(i)で得られた後硬化後の光学的立体造形物の全光線透過率および黄色度を上記した方法で測定したところ、下記の表1に示すように黄色度は14.2であった。
なお、この比較例2では、後硬化後の後処理は行わなかった。
<< Comparative Example 2 >>
(1) Preparation of post-curing device:
In (1) of Example 1, as the chip-type ultraviolet LED2, another chip-type ultraviolet LED [power consumption of one ultraviolet LED = 20 mW, wavelength of emitted ultraviolet rays = 380 to 440 nm, peak wavelength = 405 nm ( A post-curing device was produced in the same manner as in (1) of Example 1 except that (single peak), total intensity of light having a wavelength of 385 nm or more = 98%] (the entire mounting area of the ultraviolet LED). = 10 cm x 15 cm).
(2) Manufacture of green optical three-dimensional objects:
Using the same material used in (i) of (2) of Example 1, the same stereolithography process as (ii) of (2) of Example 1 was performed to obtain an optically three-dimensional object (green optics). A three-dimensional model) (length x width x thickness = 20 mm x 45 mm x 10 mm rectangular parallelepiped) was manufactured.
(3) Post-curing of optical three-dimensional model:
(I) The green optical three-dimensional model obtained in (2) above is placed in the center of the bottom surface of the post-curing / post-treatment device produced in (1) above, and then with the upper surface of the green optical three-dimensional model. The mounting plate 6a is lowered by the link mechanism 6c of the mounting member / adjusting member 6 until the distance between the tip of the chip-type ultraviolet LED mounted on the mounting plate 6a is 4 cm, and in that state, the optical three-dimensional object is formed. The green optical three-dimensional object was irradiated with ultraviolet rays from an ultraviolet LED for 40 minutes until the surface of the three-dimensional object was no longer sticky. In Comparative Example 1, post-curing was not sufficiently performed by irradiation with ultraviolet rays for 10 minutes, and the surface of the optically three-dimensional model was sticky, and after 120 minutes of irradiation, there was no stickiness (post-curing was completed). )Became.
After this, the irradiation intensity of ultraviolet rays of less than 385 nm on the surface of the optically three-dimensional object in the curing device is 0.1 mW / cm 2 , and the integrated irradiation energy of ultraviolet rays of less than 385 nm over 120 minutes is 0.14 J / cm 2. Met.
(Ii) When the total light transmittance and the yellowness of the post-cured optical three-dimensional model obtained in (i) above were measured by the above method, the yellowness was 14. as shown in Table 1 below. It was 2.
In Comparative Example 2, no post-treatment after post-curing was performed.

《参考例1》
(1)後硬化装置の作製:
実施例1の(1)において、チップ型の紫外線LEDの代わりに、メタルハライドランプ(ウシオライテジング社製「GL−30201BF」、放出される光の波長=360〜780nm、ピーク波長=365nm、405nm、420nm、435nm、545nm、580nm、640nm)を用いて、後硬化・後処理装置を作製した。
(2)グリーン光学的立体造形物の製造:
実施例1の(2)の(i)で用いたのと同じ材料を使用し、実施例1の(2)の(ii)と同じ光造形工程を行って、光学的立体造形物(グリーン光学的立体造形物)(縦×横×厚さ=20mm×45mm×10mmの直方体)を製造した。
(3)光学的立体造形物の後硬化:
(i) 上記(2)で得られたグリーン光学的立体造形物を、上記(1)で作製した後硬化・後処理装置の底面の中央に置いた。グリーン光学的立体造形物の上面と取付け板6aに取り付けたメタルハライドランプとの間の距離は50cmであった。その状態で、光学的立体造形物の表面のベタツキがなくなるまで、グリーン光学的立体造形物にメタルハライドランプから光を8分間照射したところ、ベタツキのない状態(後硬化が完了した状態)になった。
この後硬化処理時の光学的立体造形物の表面での光の照射強度は2.3mW/cm2であり、8分間にわたっての光の積算照射エネルギーは1.1J/cm2であった。
(ii) 上記(i)で得られた後硬化後の光学的立体造形物の黄色度を上記した方法で測定したところ、下記の表1に示すように、黄色度は5.7であった。
(4)光学的立体造形物の後処理:
上記(3)で得られた後硬化後の光学的立体造形物を、実施例1で作製した後硬化・後処理装置内に移し、静置した状態で、実施例1の(4)と同様にして、青色LED7により光学的立体造形物の上方から青色光を延べ5時間にわたって照射した。この後処理時の光学的立体造形物の表面への青色LED7からの青色光の照射強度は20.4W/m2であり、5時間にわたっての青色光の積算照射エネルギーは367kJ/m2であった。
これにより得られた後処理後の光学的立体造形物の黄色度を上記し他方法で測定したところ、下記の表1に示すように、黄色度は4.3であった。
<< Reference example 1 >>
(1) Preparation of post-curing device:
In (1) of Example 1, instead of the chip-type ultraviolet LED, a metal halide lamp (“GL-30201BF” manufactured by Ushio Litezing Co., Ltd., wavelength of emitted light = 360 to 780 nm, peak wavelength = 365 nm, 405 nm, A post-curing / post-treatment apparatus was produced using (420 nm, 435 nm, 545 nm, 580 nm, 640 nm).
(2) Manufacture of green optical three-dimensional objects:
Using the same material used in (i) of (2) of Example 1, the same stereolithography process as (ii) of (2) of Example 1 was performed to obtain an optically three-dimensional object (green optics). A three-dimensional model) (length x width x thickness = 20 mm x 45 mm x 10 mm rectangular parallelepiped) was manufactured.
(3) Post-curing of optical three-dimensional model:
(I) The green optical three-dimensional model obtained in (2) above was placed in the center of the bottom surface of the post-curing / post-treatment device prepared in (1) above. The distance between the upper surface of the green optical three-dimensional object and the metal halide lamp mounted on the mounting plate 6a was 50 cm. In that state, when the green optical three-dimensional object was irradiated with light from a metal halide lamp for 8 minutes until the surface of the optical three-dimensional object disappeared, it became a non-stick state (post-curing completed state). ..
After this, the irradiation intensity of light on the surface of the optically three-dimensional object during the curing treatment was 2.3 mW / cm 2 , and the integrated irradiation energy of light over 8 minutes was 1.1 J / cm 2 .
(Ii) When the yellowness of the optically three-dimensional model obtained in (i) above and after curing was measured by the above method, the yellowness was 5.7 as shown in Table 1 below. ..
(4) Post-treatment of optical three-dimensional objects:
The post-cured optical three-dimensional model obtained in (3) above was transferred to the post-curing / post-treatment apparatus produced in Example 1 and allowed to stand in the same manner as in (4) of Example 1. Then, the blue LED 7 irradiated blue light from above the optically three-dimensional object for a total of 5 hours. The irradiation intensity of blue light from the blue LED 7 to the surface of the optical three-dimensional model during this post-treatment is 20.4 W / m 2 , and the integrated irradiation energy of blue light over 5 hours is 367 kJ / m 2. It was.
When the yellowness of the optically three-dimensional model obtained by this was measured by the above-mentioned other method, the yellowness was 4.3 as shown in Table 1 below.

上記の表1の結果にみるように、実施例1および実施例2では、385nm以上の波長の光の合計強度が紫外線LED(A)から発射される光の全強度に基づいて10%以下である光[紫外線(a)]を発射する紫外線LED(A)を備えた後硬化装置を用いて光学的立体造形物の後硬化を行ったことにより、短い時間で後硬化が可能であり、しかも後硬化して得られる光学的立体造形物の黄色度が小さく、後硬化時の黄変を抑制することができる。
そして、実施例1および実施例2では、後硬化後に、青色LEDにより青色光を照射する後処理を更に行ったことにより、黄色度の一層小さい光学的立体造形物が得られた。
As seen in the results of Table 1 above, in Example 1 and Example 2, the total intensity of light having a wavelength of 385 nm or more is 10% or less based on the total intensity of light emitted from the ultraviolet LED (A). By performing post-curing of the optical three-dimensional model using a post-curing device equipped with an ultraviolet LED (A) that emits a certain light [ultraviolet rays (a)], post-curing is possible in a short time, and moreover. The yellowness of the optical three-dimensional model obtained by post-curing is small, and yellowing during post-curing can be suppressed.
Then, in Examples 1 and 2, after the post-curing, the post-treatment of irradiating the blue light with the blue LED was further performed, so that an optically three-dimensional model having a smaller yellowness was obtained.

それに対して、比較例1および比較例2では、385nm以上の波長の光の合計強度が紫外線LEDから発射される光の全強度に基づいて10%を超す光を発射する紫外線LEDを備えた後硬化装置を用いて光学的立体造形物の後硬化を行ったことにより、実施例1および実施例2に比べて長い後硬化時間を要し、しかも後硬化して得られた光学的立体造形物の黄色度が高く、後硬化時に光学的立体造形物の黄変が大きい。
また、放電ランプを備えた後硬化装置を用いた参考例1(従来技術)による場合は、後硬化時の光学的立体造形物の黄変は小さいが、紫外線LEDを用いている実施例1および実施例2と異なり、安定器の併設が必要であり、しかも消費電力が大きく、多量の熱を発生するため耐熱・耐火設計を行う必要がある。
On the other hand, in Comparative Example 1 and Comparative Example 2, after providing the ultraviolet LED that emits light having a total intensity of light having a wavelength of 385 nm or more exceeding 10% based on the total intensity of the light emitted from the ultraviolet LED. By performing post-curing of the optical three-dimensional model using a curing device, a longer post-curing time is required as compared with Examples 1 and 2, and the optical three-dimensional model obtained by post-curing is obtained. The yellowness of the LED is high, and the yellowing of the optical three-dimensional model is large during post-curing.
Further, in the case of Reference Example 1 (conventional technique) using a post-curing device equipped with a discharge lamp, yellowing of the optically three-dimensional object at the time of post-curing is small, but Example 1 using an ultraviolet LED and Unlike the second embodiment, it is necessary to install a ballast, and since it consumes a large amount of heat and generates a large amount of heat, it is necessary to design heat and fire resistance.

《実施例3》
(1)後硬化・後処理装置の作製:
図7に示す後硬化・後処理装置に準じた構造を有する後硬化・後処理装置を作製した。
具体的には、縦×横×高さ=40cm×40m×40cm(内径)の全面が覆われた直方体形のハウジング1内に設けた取付け部材兼調節手段6の取付け板6aに、取付け板6aの中心(対角線の交点)を基準にして、9個のパワー型の紫外線LED2[ナイトライド・セミコンダクター株式会社製「NS365L−3SLG」;1個の紫外線LEDの消費電力=3700mW、放出される紫外線の波長=350〜395nm、ピーク波長=365nm(単一ピーク)、385nm以上の波長の光の合計強度=1%]と、16個のパワー型の青色LED7[日亜化学工業株式会社製「NCSB219BT−V1」;1個の青色LEDの消費電力=4.95W、放出される光の波長=430〜510nm、ピーク波長=468nm(単一ピーク)]を、図2に準じた方式で、等間隔で交互に配列させて取り付けて[隣り合う紫外線LED2の列と列の間および両端の紫外線LED2の列の両外側に各1列の青色LED7を等間隔で配置:紫外線LED=縦3個×横3個(横3列)=9個、青色LED=縦4個×横4個(横4列)=16個]、本発明の後硬化・後処理装置を作製した(紫外線LEDと青色LEDの全体の取付け面積=38cm×38cm)。
<< Example 3 >>
(1) Preparation of post-curing / post-treatment device:
A post-curing / post-treatment device having a structure similar to that shown in FIG. 7 was produced.
Specifically, the mounting plate 6a is attached to the mounting plate 6a of the mounting member / adjusting means 6 provided in the rectangular housing 1 whose entire surface is covered in length × width × height = 40 cm × 40 m × 40 cm (inner diameter). Nine power-type UV LEDs 2 [“NS365L-3SLG” manufactured by Nitride Semiconductor Co., Ltd .; power consumption of one UV LED = 3700 mW, of emitted UV rays) based on the center (intersection of diagonal lines) Wavelength = 350 to 395 nm, peak wavelength = 365 nm (single peak), total intensity of light with a wavelength of 385 nm or more = 1%] and 16 power type blue LEDs 7 [NCSB219BT-manufactured by Nikka Kagaku Kogyo Co., Ltd. V1 ”; power consumption of one blue LED = 4.95 W, wavelength of emitted light = 430 to 510 nm, peak wavelength = 468 nm (single peak)] at equal intervals according to the method shown in FIG. Attached by arranging them alternately [One row of blue LEDs 7 is arranged at equal intervals between the rows of adjacent UV LEDs 2 and on both outer sides of the rows of UV LEDs 2 at both ends: UV LEDs = 3 vertical x 3 horizontal (3 horizontal rows) = 9 pieces, blue LED = 4 vertical pieces x 4 horizontal pieces (4 horizontal rows) = 16 pieces], and the post-curing / post-treatment device of the present invention was produced (ultraviolet LED and blue LED as a whole). Mounting area = 38 cm x 38 cm).

(2)グリーン光学的立体造形物の製造:
(i) 3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレート(株式会社ダイセル製「Cel−2021P」)40質量部、、エトキシ化ビスフェノールAジグリシジルエーテル(新日本理化学株式会社製「BPO−20E」)20質量部、3−エチル−3−ヒドロキシメチルキセタン(東亞合成株式会社製「OXT101」)10質量部、、トリシクロデカンジメタノールジアクリレート(新中村化学工業株式会社製「A−DCP」)13質量部、エトキシ化ビスフェノールAジアクリレート(新中村化学工業株式会社製「A−BPE−4」)10質量部、エトキシ化ペンタエリスリトールテトラアクリレート(新中村化学工業株式会社製「ATM−4P」)10質量部、サンアプロ株式会社製「CPI−200K」[前記の一般式(III)で表される非アンチモン系の芳香族スルホニウム化合物(III)の1種からなるカチオン重合開始剤溶液]4質量部および1−ヒドロキシ−シクロヘキシルフェニルケトン(BASF社製「イルガキュア−184」、ラジカル重合開始剤)1.5質量部をよく混合して光学的立体造形用樹脂組成物を調製した。この光学的立体造形用樹脂組成物の粘度を上記した方法で測定したところ、380mPa・sであった。
(ii) 上記の(i)で調製した光硬化性樹脂組成物を用いて、超高速光造形システム(ナブテスコ株式会社製「SOLIFORM500B」)を使用して、スペクトラフィジックス社製「半導体励起固体レーザーBL6型」(出力1000mW;波長355nm)を表面に対して垂直に照射して、照射エネルギー100mJ/cm2の条件下に、スライスピッチ(積層厚み)0.10mm、1層当たりの平均造形時間2分で光学的立体造形を行って、光学的立体造形物(グリーン光学的立体造形物)(縦×横×厚さ=20mm×45mm×10mmの直方体)を製造した。
これにより得られたグリーン光学的立体造形物の黄色度を上記した方法で測定したところ、黄色度は11.2であった。
(2) Manufacture of green optical three-dimensional objects:
(I) 40 parts by mass of 3,4-epoxycyclohexylmethyl-3', 4'-epoxycyclohexanecarboxylate ("Cel-2021P" manufactured by Daicel Co., Ltd.), ethoxylated bisphenol A diglycidyl ether (Shin Nihon Rikagaku Co., Ltd.) 20 parts by mass of "BPO-20E"), 10 parts by mass of 3-ethyl-3-hydroxymethylxetane ("OXT101" manufactured by Toa Synthetic Co., Ltd.), Tricyclodecanedimethanol diacrylate (Shin-Nakamura Chemical Industry Co., Ltd.) 13 parts by mass of "A-DCP" manufactured by ethoxylated bisphenol A diacrylate ("A-BPE-4" manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), 10 parts by mass of pentaerythritol tetraacrylate ethoxylated (New Nakamura Chemical Industry Co., Ltd.) "ATM-4P" manufactured by 10 parts by mass, "CPI-200K" manufactured by San Apro Co., Ltd. [Conic polymerization consisting of one of the non-antimonic aromatic sulfonium compounds (III) represented by the above general formula (III). Initiator Solution] Prepare a resin composition for optical three-dimensional modeling by mixing 4 parts by mass and 1.5 parts by mass of 1-hydroxy-cyclohexylphenylketone (BASF "Irgacure-184", radical polymerization initiator) well. did. The viscosity of the resin composition for optical three-dimensional modeling was measured by the above method and found to be 380 mPa · s.
(Ii) Using the photocurable resin composition prepared in (i) above, using an ultra-high-speed stereolithography system (“SOLIFORM500B” manufactured by Nabtesco Co., Ltd.), “Semiconductor-excited solid-state laser BL6” manufactured by Spectraphysics Co., Ltd. A mold (output 1000 mW; wavelength 355 nm) is irradiated perpendicularly to the surface, and under the condition of irradiation energy 100 mJ / cm 2 , the slice pitch (stacking thickness) is 0.10 mm, and the average molding time per layer is 2 minutes. An optical three-dimensional model (green optical three-dimensional model) (length x width x thickness = 20 mm x 45 mm x 10 mm square body) was manufactured.
When the yellowness of the green optically three-dimensional model thus obtained was measured by the above method, the yellowness was 11.2.

(3)光学的立体造形物の後硬化および後処理:
(i) 上記(2)の(ii)で得られたグリーン光学的立体造形物を、上記(1)で作製した後硬化・後処理装置の底面の中央に置いた後、グリーン光学的立体造形物の上面と取付け板3aに取り付けたチップ型紫外線LED2および青色LED7の先端との間の距離が10cmになるまで、取付け部材兼調節部材3のリンク機構3cによって取付け板3aを下降させ、その状態で、取付け板3aに取り付けた紫外線LED2に通電して、グリーン光学的立体造形物に紫外線LED2により紫外線を10分間照射した。
この後硬化時の光学的立体造形物の表面での紫外線の照射強度は1.8mW/cm2、積算照射エネルギーは1.1J/cm2であり、後硬化後の光学的立体造形物は、ベタツキがなく、硬化が十分に行われていた。
これにより得られた後硬化後の光学的立体造形物の黄色度を上記した方法で測定したところ、黄色度は13.1であった。
(ii) 次いで、紫外線LED2への通電を停止し、青色LED7に通電して、青色LED7により波長430〜510nmの青色光を5時間照射して後処理を行った。
この後処理時における光学的立体造形物への青色光の照射強度は70W/m2であり、5時間にわたっての青色光の積算照射エネルギーは1260kJ/m2であった。
これにより得られた後処理後の光学的立体造形物について上記した方法で黄色度を測定したところ7.4であり、後処理によって光学的立体造形物の黄色度がより低下した。
(3) Post-curing and post-treatment of the optical three-dimensional model:
(I) The green optical three-dimensional model obtained in (ii) of (2) above is placed in the center of the bottom surface of the post-curing / post-treatment device produced in (1) above, and then the green optical three-dimensional model is formed. The mounting plate 3a is lowered by the link mechanism 3c of the mounting member / adjusting member 3 until the distance between the upper surface of the object and the tips of the chip-type ultraviolet LED 2 and the blue LED 7 mounted on the mounting plate 3a is 10 cm. Then, the ultraviolet LED 2 attached to the mounting plate 3a was energized, and the green optical three-dimensional object was irradiated with ultraviolet rays by the ultraviolet LED 2 for 10 minutes.
The irradiation intensity of ultraviolet rays on the surface of the optical three-dimensional model during post-curing is 1.8 mW / cm 2 , and the integrated irradiation energy is 1.1 J / cm 2 , and the optical three-dimensional model after post-curing is It was not sticky and was sufficiently cured.
When the yellowness of the optically three-dimensional model obtained by this after curing was measured by the above method, the yellowness was 13.1.
(Ii) Next, the energization of the ultraviolet LED 2 was stopped, the blue LED 7 was energized, and the blue LED 7 was irradiated with blue light having a wavelength of 430 to 510 nm for 5 hours to perform post-treatment.
Irradiation intensity of the blue light to the optical three-dimensional object in the post-processing time is 70 W / m 2, the total irradiation energy of the blue light for 5 hours was 1260kJ / m 2.
The yellowness of the post-treated optical three-dimensional model thus obtained was measured by the above method and found to be 7.4, and the post-treatment further reduced the yellowness of the optical three-dimensional model.

ハウジング内に385nm以上の波長の光の合計強度が紫外線LEDから発射される光の全強度に基づいて10%以下である光[紫外線(a)]を発射する紫外線LED(A)を備える本発明の後硬化装置または後硬化・後処理装置を使用して光学的立体造形物(グリーン光学的立体造形物)に紫外線(a)を照射して後硬化を行うと、短い後硬化時間で、後硬化時の光学的立体造形物の黄変を防止または抑制しながら、色調、外観に優れると共に、ベタつきがなく、強度などの力学的特性に優れる、後硬化した光学的立体造形物を生産性よく円滑に製造することができ、また本発明の後硬化・後処理装置を使用してグリーン光学的立体造形物の後硬化とその後の後処理を行うことによって、黄変などの変色の一層低減した光学的立体造形物を短縮された時間で円滑に製造することができ、しかも紫外線の発射光源として紫外線LED(A)を用いた本発明の後硬化装置および後硬化・後処理装置は、放電ランプを光源として用いた従来の後硬化装置に比べて、安定器などの機器が不要で且つ熱の発生が小さくて放熱、耐熱、耐火などの熱対策を省略または最小限にすることができるため、後硬化装置の簡素化、消費電力の大幅な低減を図ることができるので、光学的立体造形物の後硬化装置および後硬化・後処理装置として有用である。 The present invention comprises an ultraviolet LED (A) that emits light [ultraviolet (a)] in which the total intensity of light having a wavelength of 385 nm or more is 10% or less based on the total intensity of light emitted from the ultraviolet LED. When the optical three-dimensional model (green optical three-dimensional model) is irradiated with ultraviolet rays (a) using a post-curing device or a post-curing / post-treatment device to perform post-curing, the post-curing time is short. Highly productive post-cured optical three-dimensional model that has excellent color tone and appearance, is not sticky, and has excellent mechanical properties such as strength while preventing or suppressing yellowing of the optically three-dimensional model during curing. It can be manufactured smoothly, and discoloration such as yellowing is further reduced by performing post-curing and subsequent post-treatment of the green optical three-dimensional model using the post-curing / post-treatment device of the present invention. The post-curing device and the post-curing / post-treatment device of the present invention, which can smoothly manufacture an optically three-dimensional object in a shortened time and use an ultraviolet LED (A) as an ultraviolet emitting light source, are discharge lamps. Compared to the conventional post-curing device that uses UV as a light source, it does not require equipment such as a stabilizer and generates less heat, so heat measures such as heat dissipation, heat resistance, and fire resistance can be omitted or minimized. Since the post-curing device can be simplified and the power consumption can be significantly reduced, it is useful as a post-curing device and a post-curing / post-treatment device for an optically three-dimensional object.

1 ハウジング
2 紫外線LED
3 取付け部材
4 光学的立体造形物
5 網
6 取付け部材兼調節手段
7 青色LED
1 housing 2 UV LED
3 Mounting member 4 Optical three-dimensional model 5 Net 6 Mounting member and adjustment means 7 Blue LED

Claims (13)

光硬化性樹脂組成物を用いて光造形を行って製造した光学的立体造形物の後硬化装置であって;
光学的立体造形物を収容するためのハウジング;および、
ハウジングに収容した光学的立体造形物に紫外線を照射して後硬化するための紫外線LEDを備え;
前記紫外線LEDが、当該紫外線LEDから発射される光の全強度に基づいて、385nm以上の波長の光の合計強度が10%以下である光を発射する紫外線LED(A)である;
ことを特徴とする光学的立体造形物の後硬化装置。
It is a post-curing device for an optically three-dimensional model manufactured by performing stereolithography using a photocurable resin composition;
Housing for accommodating optical three-dimensional objects; and
Equipped with an ultraviolet LED for irradiating the optical three-dimensional object housed in the housing with ultraviolet rays and then curing it;
The ultraviolet LED is an ultraviolet LED (A) that emits light having a total intensity of 10% or less of light having a wavelength of 385 nm or more based on the total intensity of the light emitted from the ultraviolet LED;
A post-curing device for an optically three-dimensional object.
紫外線LED(A)から発射される光のピーク波長が370nm以下である、請求項1に記載の光学的立体造形物の後硬化装置。 The post-curing device for an optically three-dimensional object according to claim 1, wherein the peak wavelength of the light emitted from the ultraviolet LED (A) is 370 nm or less. 紫外線LED(A)から発射される光が、385nm以上の波長の光を含まない光である、請求項1または2に記載の光学的立体造形物の後硬化装置。 The post-curing apparatus for an optical three-dimensional object according to claim 1 or 2, wherein the light emitted from the ultraviolet LED (A) is light that does not contain light having a wavelength of 385 nm or more. ハウジング内に、紫外線LED(A)を1個または2個以上を備える、請求項1〜3のいずれか1項に記載の光学的立体造形物の後硬化装置。 The post-curing device for an optically three-dimensional object according to any one of claims 1 to 3, further comprising one or two or more ultraviolet LEDs (A) in a housing. 紫外線LED(A)と光学的立体造形物との距離、紫外線LED(A)から発射される紫外線の照射方向および光学的立体造形物への紫外線の照射位置のいずれか1つまたは2つ以上を調節するための調節手段(Sa)を有する、請求項1〜4のいずれか1項に記載の光学的立体造形物の後硬化装置。 One or more of the distance between the ultraviolet LED (A) and the optical three-dimensional object, the irradiation direction of the ultraviolet rays emitted from the ultraviolet LED (A), and the irradiation position of the ultraviolet rays on the optical three-dimensional object. The post-curing device for an optically three-dimensional object according to any one of claims 1 to 4, which has an adjusting means (Sa) for adjusting. 調節手段(Sa)が、ハウジング内での紫外線LED(A)の移動、回転、前進・後退、揺動、紫外線LED(A)からの紫外線の発射角度の変更および紫外線LED(A)への光学的立体造形物の前進・後退のいずれか1つまたは2つ以上を司る手段である、請求項1〜5のいずれか1項に記載の光学的立体造形物の後硬化装置。 The adjusting means (Sa) moves, rotates, advances / retracts, swings the ultraviolet LED (A) in the housing, changes the emission angle of the ultraviolet from the ultraviolet LED (A), and optics to the ultraviolet LED (A). The post-curing device for an optical three-dimensional model according to any one of claims 1 to 5, which is a means for controlling any one or two or more of the forward and backward movements of the three-dimensional model. ハウジングが直方体形状を有している請求項1〜6のいずれか1項に記載の光学的立体造形物の後硬化装置。 The post-curing device for an optically three-dimensional object according to any one of claims 1 to 6, wherein the housing has a rectangular parallelepiped shape. 請求項1〜7のいずれか1項の後硬化装置のハウジング内に、紫外線LED(A)と共に、430〜500nmの範囲内の波長の光を含み且つ400nm以下の波長の光を含まない光を発射する光照射手段(B)を更に設置し、紫外線LED(A)と光照射手段(B)への通電を制御する制御手段(C)を有することを特徴とする光学的立体造形物の後硬化・後処理装置。 In the housing of the post-curing apparatus according to any one of claims 1 to 7, light having a wavelength in the range of 430 to 500 nm and not having a wavelength of 400 nm or less is emitted together with the ultraviolet LED (A). After an optically three-dimensional object characterized in that a light irradiation means (B) to be emitted is further installed, and a control means (C) for controlling energization of an ultraviolet LED (A) and a light irradiation means (B) is provided. Curing and post-treatment equipment. 光照射手段(B)が、青色LEDである請求項8に記載の光学的立体造形物の後硬化・後処理装置。 The post-curing / post-treatment apparatus for an optically three-dimensional object according to claim 8, wherein the light irradiation means (B) is a blue LED. 紫外線LED(A)と光照射手段(B)への通電を制御する制御手段(C)が;
紫外線LED(A)に通電して紫外線LED(A)から所定時間にわたって光を発射させた後に紫外線LED(A)への通電を停止し、次いで光照射手段(B)に通電して光照射手段(B)から所定時間にわたって光を発射させる制御手段(C−1)であるか;または、
紫外線LED(A)への通電と光照射手段(B)への通電を並行して行う制御手段(C−2)である;
請求項8または9に記載の光学的立体造形物の後硬化・後処理装置。
The control means (C) that controls the energization of the ultraviolet LED (A) and the light irradiation means (B);
After energizing the ultraviolet LED (A) and emitting light from the ultraviolet LED (A) for a predetermined time, the energization of the ultraviolet LED (A) is stopped, and then the light irradiating means (B) is energized and the light irradiating means. Is it a control means (C-1) that emits light from (B) for a predetermined time; or
It is a control means (C-2) that energizes the ultraviolet LED (A) and the light irradiation means (B) in parallel;
The post-curing / post-treatment apparatus for an optically three-dimensional object according to claim 8 or 9.
光学的立体造形物と光照射手段(B)との距離および光学的立体造形物に対する光照射手段(B)から発射される光の照射角度のいずれか一方または両方を調節するための調節手段(Sb)を有する、請求項8〜10のいずれかに記載の光学的立体造形物の後硬化・後処理装置。 Adjusting means for adjusting one or both of the distance between the optical three-dimensional object and the light irradiation means (B) and the irradiation angle of the light emitted from the light irradiation means (B) on the optical three-dimensional object ( The post-curing / post-treatment apparatus for an optically three-dimensional object according to any one of claims 8 to 10 having Sb). 請求項1〜7のいずれか1項に記載の後硬化装置のハウジング内または請求項8〜11のいずれか1項に記載の後硬化・後硬化装置のハウジング内に、光硬化性樹脂組成物を用いて光造形を行って製造した光学的立体造形物を収容した後、当該光学的立体造形物に、紫外線LED(A)から、385nm以上の波長の光の合計強度が紫外線LED(A)から発射される光の全強度に基づいて10%以下である光を照射して光学的立体造形物を後硬化することを特徴とする光学的立体造形物の後硬化方法。 The photocurable resin composition in the housing of the post-curing device according to any one of claims 1 to 7 or in the housing of the post-curing / post-curing device according to any one of claims 8 to 11. After accommodating the optical three-dimensional model produced by performing optical modeling using the above, the total intensity of light having a wavelength of 385 nm or more from the ultraviolet LED (A) is the ultraviolet LED (A) in the optical three-dimensional model. A method for post-curing an optical three-dimensional object, which comprises irradiating light of 10% or less based on the total intensity of light emitted from the optical three-dimensional object to post-cure the optical three-dimensional object. 請求項8〜11のいずれか1項の後硬化・後硬化装置のハウジング内に、光硬化性樹脂組成物を用いて光造形を行って製造した光学的立体造形物を収容した後に、
当該光学的立体造形物に、紫外線LED(A)から、385nm以上の波長の光の合計強度が紫外線LED(A)から発射される光の全強度に基づいて10%以下である光を照射して後硬化し、次いで光照射手段(B)により430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光を照射するか;或いは、
紫外線LED(A)から、385nm以上の波長の光の合計強度が紫外線LED(A)から発射される光の全強度に基づいて10%以下である光を照射して後硬化するのと並行して光照射手段(B)により430〜500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光を照射する;
ことを特徴とする光学的立体造形物の後硬化・後処理方法。
After accommodating the optically three-dimensional model produced by stereolithography using the photocurable resin composition in the housing of the post-curing / post-curing device according to any one of claims 8 to 11.
The optically three-dimensional object is irradiated with light having a total intensity of light having a wavelength of 385 nm or more of 10% or less based on the total intensity of light emitted from the ultraviolet LED (A) from the ultraviolet LED (A). Then, the light irradiation means (B) is used to irradiate light having a wavelength in the range of 430 to 500 nm and not having a wavelength of 400 nm or less;
In parallel with irradiating the ultraviolet LED (A) with light having a total intensity of light having a wavelength of 385 nm or more of 10% or less based on the total intensity of the light emitted from the ultraviolet LED (A) and then curing the light. The light irradiation means (B) irradiates light having a wavelength in the range of 430 to 500 nm and not containing light having a wavelength of 400 nm or less;
A post-curing / post-treatment method for an optically three-dimensional object.
JP2019076410A 2019-04-12 2019-04-12 Post-curing unit of optical solid shaped article and post-curing method Pending JP2020172082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019076410A JP2020172082A (en) 2019-04-12 2019-04-12 Post-curing unit of optical solid shaped article and post-curing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019076410A JP2020172082A (en) 2019-04-12 2019-04-12 Post-curing unit of optical solid shaped article and post-curing method

Publications (1)

Publication Number Publication Date
JP2020172082A true JP2020172082A (en) 2020-10-22

Family

ID=72829746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019076410A Pending JP2020172082A (en) 2019-04-12 2019-04-12 Post-curing unit of optical solid shaped article and post-curing method

Country Status (1)

Country Link
JP (1) JP2020172082A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000820A (en) * 2013-08-19 2014-01-09 Cmet Inc Optical three-dimensionally shaped article having low yellowness index
JP2014008765A (en) * 2012-07-03 2014-01-20 Cmet Inc Processing unit of optical solid shaped article
JP2017119770A (en) * 2015-12-28 2017-07-06 株式会社リコー Active energy ray-curable composition, active energy ray-curable ink, composition storage container, two-dimensional or three-dimensional image forming method and device, structure, and molded product
WO2018095837A1 (en) * 2016-11-23 2018-05-31 Atheneum Optical Sciences, Llc Three-dimensional printing of optical devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008765A (en) * 2012-07-03 2014-01-20 Cmet Inc Processing unit of optical solid shaped article
JP2014000820A (en) * 2013-08-19 2014-01-09 Cmet Inc Optical three-dimensionally shaped article having low yellowness index
JP2017119770A (en) * 2015-12-28 2017-07-06 株式会社リコー Active energy ray-curable composition, active energy ray-curable ink, composition storage container, two-dimensional or three-dimensional image forming method and device, structure, and molded product
WO2018095837A1 (en) * 2016-11-23 2018-05-31 Atheneum Optical Sciences, Llc Three-dimensional printing of optical devices
JP2020501953A (en) * 2016-11-23 2020-01-23 アセニアム・オプティカル・サイエンシーズ・リミテッド・ライアビリティ・カンパニーAtheneum Optical Sciences, LLC 3D printing of optical devices

Similar Documents

Publication Publication Date Title
JP5970265B2 (en) Processing device for optical three-dimensional objects
KR101995185B1 (en) Liquid radiation curable resins for additive fabrication comprising a triaryl sulfonium borate cationic photoinitiator
EP1939234B1 (en) Resin composition for optical three-dimensional molded object
CN108027558A (en) For addition process manufacture liquid, mix can ultraviolet/visible light radiation curable resin composition
JP5266131B2 (en) Optical three-dimensional resin composition
JP2008100351A (en) Three-dimensional shaped article having smoothed shaped edge surface
JP4906334B2 (en) Photocurable resin composition
JP5393239B2 (en) Processing method for optical three-dimensional object
Dreyer et al. Application of LEDs for UV-curing
JP2007161953A (en) Photocurable resin composition
JP2009084619A (en) Photo-curable composition for micro-optical shape-forming, metal shaped article, and manufacturing method therefor
JP5738367B2 (en) Optical three-dimensional model with low yellowness
JP2020172083A (en) Post-curing method of optical solid shaped article and post-curing/post-processing method
JP2013151703A (en) Resin composition for three-dimensional shaping
JP2020172082A (en) Post-curing unit of optical solid shaped article and post-curing method
JP2022546933A (en) Liquid hybrid UV/VIS radiation curable resin composition for additive manufacturing
EP3408708B1 (en) A photocurable resin composition for stereolithographic manufacturing, three-dimensional articles produced with said composition and a relative manufacturing method
JP2009203306A (en) Resin composition for optical three-dimensional shaping
JP6161961B2 (en) Curable resin composition and three-dimensional model
JP5302022B2 (en) Optical three-dimensional resin composition
KR102141650B1 (en) Resin tank for liquid-based three-dimensional printer
JP6877017B2 (en) Optical three-dimensional modeling method
JP2008063514A (en) Resin composition for optical stereolithography

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190520

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230801