JP2020170628A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2020170628A
JP2020170628A JP2019071137A JP2019071137A JP2020170628A JP 2020170628 A JP2020170628 A JP 2020170628A JP 2019071137 A JP2019071137 A JP 2019071137A JP 2019071137 A JP2019071137 A JP 2019071137A JP 2020170628 A JP2020170628 A JP 2020170628A
Authority
JP
Japan
Prior art keywords
fuel cell
braking torque
power
regenerative
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019071137A
Other languages
English (en)
Inventor
淳一 大浦
Junichi Oura
淳一 大浦
良一 難波
Ryoichi Nanba
良一 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019071137A priority Critical patent/JP2020170628A/ja
Publication of JP2020170628A publication Critical patent/JP2020170628A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】燃料電池システムにおいて、制動力がより安定できる技術を提供する。【解決手段】燃料電池システムの掃気処理実行部は、燃料電池車両の制動を行っている期間において、推定した発電出力から算出した回生制動トルクの変化速度が、摩擦ブレーキを用いた制動トルクである摩擦制動トルクの変化速度よりも遅くなるように、コンプレッサの動作を制御してカソードへの酸化ガスの供給流量を変化させる。【選択図】図6

Description

本発明は、燃料電池システムの技術に関する。
従来、回生制動トルクと摩擦制動トルクとを協調作動させてドライバーからの要求制動力を実現する技術が知られている(特許文献1)。従来の技術では、ブレーキペダルの踏み増し操作に伴う制動トルク変動を許容範囲内にするために、回生制動トルク制限値を補正している。
特開2015−105075号公報
ここで、燃料電池を動力源とする燃料電池車両において、回生制動トルクと摩擦制動トルクとを協調作動している期間において、ドライバーの操作によらない燃料電池の突発的な発電、すなわち掃気処理による発電が生じる場合がある。燃料電池が発電した場合、蓄電装置によって発電電力を回収するために、蓄電できる回生電力量が減少して回生制動トルクが低下する場合がある。この場合において、制動力をより安定させる技術が望まれている。
本発明は、以下の形態として実現することが可能である。
本発明の一形態によれば、燃料電池車両に搭載される燃料電池システムが提供される。この燃料電池システムは、回生動作が可能であり、前記燃料電池車両を駆動する駆動モータと、カソードとアノードとを有し、前記駆動モータに電力を供給可能な燃料電池と、前記カソードに酸化ガスを送り込むコンプレッサと、前記燃料電池車両を制動する摩擦ブレーキと、前記駆動モータに電力を供給することと、前記燃料電池が発電した発電電力および前記回生動作によって発生した回生電力を予め定めた上限値以下の範囲で蓄電することが可能な蓄電装置と、前記コンプレッサの動作を制御して前記カソードへの前記酸化ガスの供給流量を制御する制御装置と、を備え、前記燃料電池システムは、前記燃料電池車両の制動を行っている期間において、前記燃料電池の発電出力が増加するに従い、前記駆動モータの前記回生動作によって生じる回生制動トルクを減少させるように構成され、前記制御装置は、前記カソードへの前記酸化ガスの供給流量に対する前記燃料電池の発電出力を推定する発電出力推定部と、前記燃料電池内に滞留する滞留水の量を推定する滞留水推定部と、推定した前記滞留水の量が、予め定めた閾値を超えた場合に、前記コンプレッサによって前記酸化ガスを前記カソードに供給することによって前記滞留水を前記燃料電池外へ排出させる掃気処理を実行する掃気処理実行部と、前記燃料電池の電圧が、予め定めた上限電圧に到達した場合に、前記燃料電池を発電させることで前記電圧を前記上限電圧以下に維持する電圧維持部と、を備え、前記掃気処理実行部は、前記期間において、推定した前記発電出力から算出した前記回生制動トルクの変化速度が、前記摩擦ブレーキを用いた制動トルクである摩擦制動トルクの変化速度よりも遅くなるように、前記コンプレッサの動作を制御して前記カソードへの前記酸化ガスの供給流量を変化させる。この形態によれば、燃料電池の発電に伴う回生制動トルクの変化速度が、摩擦制動トルクの変化速度よりも遅くなるように、酸化ガスの供給流量を変化させることで、回生制動トルクの変化量を摩擦制動トルクで補うことができる。これにより、制動力がより安定できる。
本発明は、種々の形態で実現することが可能であり、上記の燃料電池システムの他に、例えば、燃料電池システムを搭載する燃料電池車両、燃料電池システムの制御方法、その制御方法を実現するコンピュータプログラム、そのコンピュータプログラムを記録した一時的でない記録媒体等の形態で実現することができる。
実施形態における燃料電池車両の概略構成を示す説明図。 制御装置の機能ブロック図。 回生協調制動時の制動トルクの変化を模式的に説明するための図。 蓄電装置の充電量について説明するための図。 回生協調制動時の制動トルクの変化を模式的に示す参考図。 制御装置が協調制動期間に実行する処理のフローチャート。 本実施形態におけるブレーキ踏込量、酸化ガス供給流量および制動トルクのタイミングチャートの一例。 参考例のタイミングチャート。
A.実施形態:
図1は、実施形態における燃料電池車両20の概略構成を示す説明図である。燃料電池車両20は、燃料電池システム30と、前輪FWと、後輪RWとを備える。燃料電池システム30は、燃料電池100と、蓄電装置421と、駆動モータ40と、摩擦ブレーキ50と、アクセルペダル70と、ブレーキペダル72と、車速検出部60と、制御装置80と、を備えている。
燃料電池車両20は、アクセルペダル70やブレーキペダル72の操作に応じて駆動または制動される。本実施形態の駆動モータ40は、回生動作が可能であり、燃料電池車両20を駆動する。つまり、駆動モータ40は、燃料電池車両20を駆動する力行モードと、燃料電池車両20を制動する回生モードとで動作可能である。力行モード時の駆動モータ40は、燃料電池システム30から電力の供給を受けて、前輪FWと後輪RWとの少なくとも一方を回転させることによって燃料電池車両20を駆動する。回生モード時の駆動モータ40は、燃料電池車両20の運動エネルギを電力に変換することによって燃料電池車両20を制動する。回生モード時の駆動モータ40による制動のことを、回生ブレーキとも呼ぶ。本実施形態の燃料電池車両20は、回生ブレーキと摩擦ブレーキ50とを併用した回生協調ブレーキによって制動される。摩擦ブレーキによる制動トルクのことを摩擦制動トルクとも呼び、回生ブレーキによる制動トルクのことを回生制動トルクとも呼び、回生協調ブレーキによる制動トルクのことを回生協調制動トルクとも呼ぶ。
本実施形態の燃料電池システム30は、燃料電池100に加え、水素給排系200と、空気給排系300と、電力供給系400とを備えている。本実施形態の燃料電池100は、固体高分子形の燃料電池である。燃料電池100は、電気化学反応によって起電力を発生させる。燃料電池100は、アノードとカソードとを有する。燃料電池100の反応ガスには、燃料ガスとして水素ガスが用いられ、酸化ガスとして空気が用いられる。燃料電池100は、複数の単セルが積層したスタック構造を有し、それぞれの単セル同士は直列に接続されている。それぞれの単セルは、電解質膜の両面に電極触媒層を有する膜電極接合体と、膜電極接合体を挟持する一対のセパレータとを備えている。アノード側における膜電極接合体とセパレータとの間には、水素ガスが流通可能なアノード流路が形成されている。カソード側における膜電極接合体とセパレータとの間には、空気が流通可能なカソード流路が形成されている。燃料電池100は、駆動モータ40に電力を供給可能である。
水素給排系200は、水素供給部210と、水素循環部220と、水素排出部230とを備えている。水素供給部210は、水素タンク211と、水素供給流路212と、主止弁213と、減圧弁214と、インジェクタ215とを備えている。水素タンク211は、燃料電池100に供給するための水素ガスを高圧の状態で貯蔵している。水素供給流路212は、水素タンク211と燃料電池100のアノード流路とを接続する流路である。水素供給流路212には、上流側から順に、主止弁213と、減圧弁214とが設けられている。主止弁213が開弁されることによって、水素タンク211に貯蔵された高圧の水素ガスが、水素供給流路212へと流れる。高圧の水素ガスは、減圧弁214によって所定の圧力まで減圧された後、燃料電池100の発電要求に応じてインジェクタ215から燃料電池100へと供給される。
水素循環部220は、水素循環流路221と、水素循環ポンプ222とを備えている。水素循環流路221は、燃料電池100のアノード流路と、水素供給流路212におけるインジェクタ215よりも下流側とを接続する流路である。水素循環流路221には、水素循環ポンプ222が設けられている。燃料電池100から排出されたアノードオフガスに含まれる未消費の水素ガスは、循環ポンプによって、水素供給流路212に循環する。尚、アノードオフガスには、未消費の水素ガスの他に、燃料電池100の発電に伴う生成水や窒素ガスが含まれる。このため、水素循環流路221における燃料電池100と循環ポンプとの間に設けられた図示しない気液分離器によって、未消費の水素ガスと、生成水や窒素ガスとが分離される。
水素排出部230は、水素排出流路231と、排気排水弁232とを備えている。水素排出流路231は、水素循環流路221における燃料電池100と水素循環ポンプ222との間と、後述する空気排出流路321とを接続する流路である。水素排出流路231には、排気排水弁232が設けられている。排気排水弁232が開弁されることによって、アノードオフガスが、空気排出流路321を介して大気へと排出される。
空気給排系300は、空気供給部310と、空気排出部320とを備えている。空気供給部310は、空気導入流路311と、エアフローメータ312と、コンプレッサ313と、分流弁314と、空気供給流路315と、空気バイパス流路316とを備えている。空気導入流路311は、大気に連通する流路であり、分流弁314によって空気供給流路315と空気バイパス流路316とに接続されている。空気導入流路311には、上流側から順に、エアフローメータ312と、コンプレッサ313と、分流弁314とが設けられている。エアフローメータ312は、空気導入流路311に導入された空気の流量を検出するセンサである。コンプレッサ313は、空気導入流路311へと空気を導入して、導入した空気を燃料電池100へと送り込むための圧縮機である。本実施形態のコンプレッサ313は、ターボコンプレッサである。コンプレッサ313は、ターボ式圧縮機に限られず、容積式圧縮機であってもよい。分流弁314は、空気供給流へと流れる空気の流量と、空気バイパス流路316へと流れる空気の流量とを、開度に応じて調節可能である。空気供給流路315は、分流弁314と燃料電池100のカソード流路とを接続する流路である。空気バイパス流路316は、分流弁314と後述する空気排出流路321とを接続する流路である。尚、空気バイパス流路316は、空気排出流路321に接続されずに、大気に連通してもよい。
空気排出部320は、空気排出流路321と、調圧弁322とを備えている。空気排出流路321は、燃料電池100のカソード流路に接続された、大気に連通する流路である。空気排出流路321には、調圧弁322が設けられている。調圧弁322の開度が調節されることによって、燃料電池100のカソード流路内の空気の圧力や、コンプレッサ313によって吐出される空気の流量が調節される。空気排出流路321における調圧弁322よりも下流側には、上流側から順に、上述した空気バイパス流路316と、水素排出流路231とが接続されている。燃料電池100のカソードから排出されたカソードオフガスは、空気バイパス流路316から流入した空気や、水素排出流路231から流入したアノードオフガスとともに、空気排出流路321を流れて、大気へと排出される。
燃料電池システム30は、さらに、燃料電池100の温度を調節するための図示しない冷媒循環系を備えている。冷媒循環系は、燃料電池100を冷却した冷媒が、冷媒を放熱させるラジエータを経由して、燃料電池100に循環するように構成されている。
電力供給系400は、昇圧コンバータ411と、インバータ412と、蓄電装置421と、昇降圧コンバータ422と、第1配線431と、第2配線432とを備えている。燃料電池100と、昇圧コンバータ411と、インバータ412とが第1配線431によってこの順に電気的に接続されている。蓄電装置421と、昇降圧コンバータ422と、第1配線431における昇圧コンバータ411とインバータ412との間とが第2配線432によってこの順に電気的に接続されている。燃料電池100によって発電された直流電力は、昇圧コンバータ411によって昇圧された後に、インバータ412によって三相交流電力に変換されて、駆動モータ40に供給される。蓄電装置421によって蓄電された直流電力は、昇降圧コンバータ422によって昇圧された後に、インバータ412によって三相交流電力に変換されて、駆動モータ40に供給される。昇降圧コンバータ422は、蓄電装置421に蓄電された電力を昇圧可能なだけでなく、燃料電池100によって発電された電力や、回生モード時の駆動モータ40によって発電された電力を降圧可能に構成されている。インバータ412は、直流電力から交流電力に変換可能に構成されているだけでなく、交流電力から直流電力に変換可能に構成されている。
蓄電装置421は、燃料電池100が発電した発電電力と、回生モード時の駆動モータ40の回生動作によって発生した回生電力と、を蓄電することが可能である。発電電力と回生電力とを合計した電力が、コンプレッサ313と水素循環ポンプ222とを含む燃料電池システム30の補機等によって消費される電力を上回る場合、上回った量の電力は、蓄電装置421に蓄電される。蓄電装置421は、予め定めた上限値以下の蓄電量の範囲で蓄電される。蓄電装置421に蓄電された電力は、駆動モータ40や、燃料電池システム30の補機に供給可能である。蓄電装置421として、例えば、リチウムイオン電池やニッケル水素電池等を用いることができる。尚、蓄電装置421は、二次電池ではなく、キャパシタであってもよい。
摩擦ブレーキ50は、燃料電池車両20の運動エネルギを摩擦による熱エネルギに変換することによって、燃料電池車両20を制動するための減速装置である。本実施形態の摩擦ブレーキ50は、アクチュエータによって駆動する油圧式ディスクブレーキである。燃料電池車両20は、摩擦ブレーキ50のマスタシリンダ圧力であるブレーキ油圧を検出する液圧センサ52を有する。尚、摩擦ブレーキ50は、アクチュエータによって駆動するドラムブレーキであってもよい。
車速検出部60は、燃料電池車両20の車速を検出する。本実施形態の車速検出部60は、車輪速センサによって得られた燃料電池車両20の各車輪の回転速度を用いて車速を検出する。尚、車速検出部60は、加速度センサによって得られた燃料電池車両20の加速度を用いて車速を検出してもよいし、GNSS(Global Navigation Satellite System)によって得られた位置情報を用いて車速を検出してもよい。
制御装置80は、燃料電池車両20の動作を制御する。制御装置80は、例えば、コンプレッサ313の動作を制御してカソードへの酸化ガスの供給流量を制御する。
図2は、制御装置80の機能ブロック図である。制御装置80は、CPU81と、記憶部89と、各部品が接続されるインターフェース回路と、を備えたコンピュータとして構成されている。記憶部89は、ROMやROMなどによって構成され、燃料電池車両20を制御するための各種プログラムや、各種データが記憶されている。記憶部89には、例えば、回生制動トルクマップ(図示せず)が記憶されている。回生制動トルクマップは、回生協調制動時における、燃料電池100の発電出力と、車速によって定まる駆動モータ40の回転数とによって定まる回生制動トルクを規定するマップである。CPU81は、記憶部89に記憶された各種プログラムを実行することにより、発電出力推定部82と、滞留水推定部83と、掃気処理実行部84と、電圧維持部86と、動力制御部87として機能する。
発電出力推定部82は、燃料電池100のカソードへの酸化ガスの供給流量に対する燃料電池100の発電出力[kW]を推定する。発電出力推定部82は、例えば、記憶部89に記憶された、酸化ガスの供給流量と発電出力の関係を示したマップを用いて、発電出力を推定する。なお、他の実施形態では、発電出力推定部82は、燃料電池100の電圧を検出する電圧センサ(図示せず)と、燃料電池100の電流を検出する電流センサ(図示せず)とを用いて燃料電池100の発電出力として推定してもよい。
滞留水推定部83は、燃料電池100内に滞留する滞留水の量を推定する。具体的には、滞留水推定部83は、単位時間当たりの滞留水の増加量を推定し、推定した単位時間当たりの滞留水の増加量を推定し、初期値に対して推定した単位時間当たりの滞留水の増加量を積算することによって滞留水の量を推定する。初期値は、例えば、ゼロに設定されている。また、滞留水推定部83は、後述する掃気処理が完了した時点で、滞留水の量を初期値に戻す。
滞留水推定部83は、単位時間当たりに燃料電池100の発電に伴って生じる生成水の量と、単位時間当たりに燃料電池100からカソードオフガスとともに排出される水分の量との差を、単位時間当たりの滞留水の増加量として推定する。単位時間当たりに燃料電池100の発電に伴って生じる生成水の量は、燃料電池100から出力される電流と、水の分子量などを用いて算出できる。単位時間当たりに燃料電池100からカソードオフガスとともに排出される水分の量は、燃料電池100内の温度における飽和水蒸気量と、燃料電池100内に供給される空気の流量などを用いて算出できる。なお、燃料電池100から出力される電流は、電流センサを用いて測定できる。燃料電池100内の温度として、燃料電池100の冷媒出口近傍における冷媒の温度を用いることができる。燃料電池100の冷媒出口近傍における冷媒の温度は、温度センサを用いて測定できる。
掃気処理実行部84は、滞留水推定部83が推定した滞留水の量が、予め定めた閾値を超えた場合に、掃気処理を実行する。掃気処理は、燃料電池車両20からの要求電力に拘わらず、コンプレッサ313によって予め定めた目標流量の酸化ガスをカソードに供給することによって燃料電池100内の滞留水を燃料電池100外へ排出させる処理である。なお、掃気処理の実行中において、燃料電池100のアノードへは、予め定めた流量のアノードガスが供給されている。
電圧維持部86は、燃料電池100の電圧が予め定めた上限電圧に到達した場合に、燃料電池100から引く電流を調整して燃料電池100を発電させることで、燃料電池100の電圧を上限電圧以下に維持する。具体的には、電圧維持部86は、図示しない燃料電池100の電圧センサの検出値が上限電圧に到達した場合に、昇圧コンバータ411を制御して、燃料電池100から電流を引くことで燃料電池100を発電させて、電圧を上限電圧以下に維持する。燃料電池100の電圧が予め定めた上限電圧以下に維持されることで、燃料電池100が劣化することを抑制できる。燃料電池100の劣化は、燃料電池100が有する白金などの触媒が溶出することで生じ得る。動力制御部87は、摩擦制動トルクと回生制動トルクとの割合を制御する。
図3は、回生協調制動時の制動トルクの変化を模式的に説明するための図である。横軸は、回生協調ブレーキによる制動を開始してから燃料電池車両20が停車するまでの時間を表している。縦軸は、回生協調制動トルクを表している。一般に、駆動モータ40が回生電力を発生させるための駆動輪からのトルクが、十分に得られない低速度域では、回生制動トルクは低下する。そのため、本実施形態の制御装置80は、安定した回生協調制動トルクを確保するために、燃料電池車両20が低速になるにつれて、回生制動トルクの割合を減少させる。
図4は、蓄電装置421の充電量について説明するための図である。蓄電装置421は、予め定めた上限値Cu以下の範囲で蓄電できるように制御装置80によって制御される。回生協調ブレーキが実行されている協調制動期間において、燃料電池100の発電が停止されている場合には、より多くの回生電力を蓄電装置421に蓄電できる。一方で、協調制動期間において、掃気処理が実行され、電圧を上限電圧以下に維持するために燃料電池100を発電させた場合、燃料電池車両20の走行のために必要な電力以上の発電電力が発生する場合がある。このため、余剰分の発電電力を蓄電装置421で蓄電するために、蓄電できる回生電力が減少する。
図5は、回生協調制動時の制動トルクの変化を模式的に示す参考図である。図5では、回生制動トルクが発生した状態で掃気処理が実行された場合における、回生協調制動トルクの変化を表している。掃気処理が実行されると、蓄電装置421において回生電力の蓄電量が減少する(図4)。これにより、蓄電装置421の充電量が上限値Cuに達した場合、回生電力の蓄電または消費先がなくなって、駆動モータ40からの電流が流れなくなる。そのため、燃料電池システム30において、燃料電池100の発電出力が増加するに伴って、駆動モータ40が駆動輪の回転を制動するための磁力が低下して、回生制動トルクが低下する。回生制動トルクが低下した場合、摩擦ブレーキ50の摩擦制動トルクを上げて、ドライバーが意図する制動トルクを補うように制御される。
本実施形態の掃気処理実行部84は、掃気処理によって低下した回生制動トルクを摩擦ブレーキ50による摩擦制動トルクで補えるように、摩擦ブレーキ50の応答性に合わせて掃気処理における酸化ガスの供給流量を変化させる。詳細には、掃気処理実行部84は、協調制動期間において、掃気処理における推定した発電出力から算出した駆動モータ40の回生制動トルクの変化速度が、摩擦ブレーキ50を用いた摩擦制動トルクの変化速度よりも遅くなるように、コンプレッサ313の動作を制御してカソードへの酸化ガスの供給流量を変化させる。
本実施形態において、摩擦ブレーキ50の応答性は、ブレーキ油圧の高低によって変化する。つまり、ブレーキ油圧が高い場合は摩擦ブレーキ50の応答性が早く、ブレーキ油圧が低い場合は摩擦ブレーキ50の応答性が低い。
図6は、制御装置80が協調制動期間に実行する処理のフローチャートである。制御装置80は、掃気処理要求があるか否かを判定する(ステップS10)。具体的には、掃気処理実行部84は、滞留水推定部83が推定した滞留水の量が、予め定めた閾値を超えた場合には掃気処理要求があると判定する。一方で、掃気処理実行部84は、滞留水推定部83が推定した滞留水の量が、予め定めた閾値以下の場合には掃気処理要求がないと判定し、繰り返しステップS10の判定を実行する。
ステップS10において「Yes」の判定が成された場合、掃気処理実行部84は、摩擦ブレーキ50が準備状態か否かを判定する(ステップS12)。具体的には、掃気処理実行部84は、液圧センサ52の検出圧が予め定めた基準圧以上か否かを判定する。ステップS12において、検出圧が基準圧以上である場合には摩擦ブレーキ50の応答性が早いと判定できる。
ステップS12で「Yes」の判定が成された場合には、掃気処理実行部84は、掃気処理における目標流量に到達するまでの、カソードへ供給する酸化ガスの供給流量の上昇速度を第1値に設定する(ステップS14)。一方で、ステップS14で「No」の判定が成された場合には、掃気処理実行部84は、掃気処理における目標流量に到達するまでの、カソードへ供給する酸化ガスの供給流量の上昇速度を第2値に設定する(ステップS16)。第2値は、第1値よりも小さい値である。第1値および第2値は、協調制動期間において、掃気処理における推定した発電出力から算出した駆動モータ40の回生制動トルクの変化速度が、摩擦ブレーキ50を用いた摩擦制動トルクの変化速度よりも遅くなるという条件を満たす範囲で設定されている。
ステップS14またはステップS16において、上昇速度を設定した後に、掃気処理実行部84は、設定した上昇速度となるようにコンプレッサ313の回転数を制御して、掃気処理を実行する(ステップS18)。掃気処理は、例えば、カソードに供給されたカソードガスの総量が予め定めた値に到達したときに終了する。
図7は、本実施形態におけるブレーキ踏込量、酸化ガス供給流量および制動トルクのタイミングチャートの一例である。ブレーキペダル72が踏み込まれると、踏込量に応じて目標となる制動トルク、すなわちドライバーが意図する制動トルクが定まる。時刻t0においてブレーキペダル72の踏み込みが開始されると、動力制御部87は回生協調ブレーキによって目標となる制動トルクを生じさせる。
掃気処理要求があり、協調制動期間における時刻t1に掃気処理を開始する場合において、掃気処理実行部84は、図6に示すステップS14またはステップS16で設定した酸化ガスの供給流量の上昇速度となるように、コンプレッサ313の動作を制御する。これにより、目標となる酸化ガス流量に到達するまでの、供給流量の上昇速度は第1値または第2値となる。図7において、点線で示すラインL1は上昇速度が第1値のときの上昇速度を示すラインであり、ラインL2は上昇速度が第2値のときの上昇速度を示すラインである。図7に示すタイミングチャートでは、時刻t2において掃気処理が停止する。なお、本実施形態では、掃気処理実行部84は、掃気処理を停止する場合において、制動トルクが目標となる制動トルクを大幅に越えないように、酸化ガスの供給流量の下降速度を調整している。
図8は、参考例のタイミングチャートである。図8では、掃気処理が開始された時刻t1以降において、目標とする酸化ガスの供給流量に至までの供給流量の上昇速度が実施形態に比べて速い場合のタイミングチャートである。掃気処理が開示されると、燃料電池100の発電出力が急激に上昇することで、蓄電装置421の蓄電量が急激に上昇する。これにより、回生電力の蓄電または消費先がなくなり、回生制動トルクが急激に低下する。また、掃気処理を停止する際に、酸化ガスの供給流量の低下速度を急激にした場合、回生制動トルクが急激に増加する。
一方で、上記実施形態によれば、掃気処理実行部84は、燃料電池100の発電に伴う回生制動トルクの変化速度が、摩擦制動トルクの変化速度よりも遅くなるように、酸化ガスの供給流量を変化させている(図6のステップS14またはステップS16)。これにより、回生制動トルクの変化量を摩擦制動トルクで補うことができるので、制動力がより安定できる。これにより、燃料電池車両20のドライバビリティが低下することを抑制できる。
また上記実施形態によれば、摩擦ブレーキ50が準備状態であり、摩擦ブレーキ50の応答性が比較的早い状態の場合には、酸化ガスの供給流量の上昇速度を第2値よりも高い第1値に設定している(図6のステップS14)。これにより、掃気処理の時間を短縮できるので、コンプレッサ313の駆動時間を短縮できる。よって、コンプレッサ313の消費電力を低減できる。またこれにより、燃料電池100内の滞留水の滞留時間を短縮できるので、燃料電池100の耐久性が低下することを抑制できる。
B.他の実施形態:
B−1.他の実施形態1:
上記実施形態では、燃料電池100の発電に伴う回生制動トルクの変化速度が、摩擦制動トルクの変化速度よりも遅くなるように、掃気処理実行部84は酸化ガスの供給流量の上昇速度を第1値または第2値に設定した。しかしながら、掃気処理実行部84は上記実施形態に限定されるものではない。例えば掃気処理実行部84は、燃料電池100の発電に伴う回生制動トルクの変化速度が、摩擦制動トルクの変化速度よりも遅くなるように、摩擦ブレーキ50のブレーキ油圧の値に応じて酸化ガスの供給流量の上昇速度を変化させてもよい。具体的には、掃気処理実行部84はブレーキ油圧が高くなるほど、酸化ガスの供給流量の上昇速度を高い値に設定してもよい。
なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明をわかりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の変形態様の構成に置き換えることが可能であり、また、ある実施形態の構成に他の変形態様の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、実施形態と変形態様と変形例とを組み合わせてもよい。
20…燃料電池車両、30…燃料電池システム、40…駆動モータ、50…摩擦ブレーキ、52…液圧センサ、60…車速検出部、70…アクセルペダル、72…ブレーキペダル、80…制御装置、81…CPU、82…発電出力推定部、83…滞留水推定部、84…掃気処理実行部、86…電圧維持部、87…動力制御部、89…記憶部、100…燃料電池、200…水素給排系、210…水素供給部、211…水素タンク、212…水素供給流路、213…主止弁、214…減圧弁、215…インジェクタ、220…水素循環部、221…水素循環流路、222…水素循環ポンプ、230…水素排出部、231…水素排出流路、232…排気排水弁、300…空気給排系、310…空気供給部、311…空気導入流路、312…エアフローメータ、313…コンプレッサ、314…分流弁、315…空気供給流路、316…空気バイパス流路、320…空気排出部、321…空気排出流路、322…調圧弁、400…電力供給系、411…昇圧コンバータ、412…インバータ、421…蓄電装置、422…昇降圧コンバータ、431…第1配線、432…第2配線、Cu…上限値、FW…前輪、RW…後輪

Claims (1)

  1. 燃料電池車両に搭載される燃料電池システムであって、
    回生動作が可能であり、前記燃料電池車両を駆動する駆動モータと、
    カソードとアノードとを有し、前記駆動モータに電力を供給可能な燃料電池と、
    前記カソードに酸化ガスを送り込むコンプレッサと、
    前記燃料電池車両を制動する摩擦ブレーキと、
    前記駆動モータに電力を供給することと、前記燃料電池が発電した発電電力および前記回生動作によって発生した回生電力を予め定めた上限値以下の範囲で蓄電することが可能な蓄電装置と、
    前記コンプレッサの動作を制御して前記カソードへの前記酸化ガスの供給流量を制御する制御装置と、を備え、
    前記燃料電池システムは、前記燃料電池車両の制動を行っている期間において、前記燃料電池の発電出力が増加するに従い、前記駆動モータの前記回生動作によって生じる回生制動トルクを減少させるように構成され、
    前記制御装置は、
    前記カソードへの前記酸化ガスの供給流量に対する前記燃料電池の発電出力を推定する発電出力推定部と、
    前記燃料電池内に滞留する滞留水の量を推定する滞留水推定部と、
    推定した前記滞留水の量が、予め定めた閾値を超えた場合に、前記コンプレッサによって前記酸化ガスを前記カソードに供給することによって前記滞留水を前記燃料電池外へ排出させる掃気処理を実行する掃気処理実行部と、
    前記燃料電池の電圧が、予め定めた上限電圧に到達した場合に、前記燃料電池を発電させることで前記電圧を前記上限電圧以下に維持する電圧維持部と、を備え、
    前記掃気処理実行部は、前記期間において、推定した前記発電出力から算出した前記回生制動トルクの変化速度が、前記摩擦ブレーキを用いた制動トルクである摩擦制動トルクの変化速度よりも遅くなるように、前記コンプレッサの動作を制御して前記カソードへの前記酸化ガスの供給流量を変化させる、燃料電池システム。
JP2019071137A 2019-04-03 2019-04-03 燃料電池システム Pending JP2020170628A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019071137A JP2020170628A (ja) 2019-04-03 2019-04-03 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019071137A JP2020170628A (ja) 2019-04-03 2019-04-03 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2020170628A true JP2020170628A (ja) 2020-10-15

Family

ID=72747169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019071137A Pending JP2020170628A (ja) 2019-04-03 2019-04-03 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2020170628A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4155112A4 (en) * 2020-11-10 2024-01-17 Great Wall Motor Company Limited METHOD AND APPARATUS FOR OBTAINING FREEWHEEL TORQUE, STORAGE MEDIUM AND COMPUTER PROGRAM
CN117954656A (zh) * 2024-02-01 2024-04-30 佛山市清极能源科技有限公司 一种燃料电池***尾排氢浓度控制方法及***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4155112A4 (en) * 2020-11-10 2024-01-17 Great Wall Motor Company Limited METHOD AND APPARATUS FOR OBTAINING FREEWHEEL TORQUE, STORAGE MEDIUM AND COMPUTER PROGRAM
CN117954656A (zh) * 2024-02-01 2024-04-30 佛山市清极能源科技有限公司 一种燃料电池***尾排氢浓度控制方法及***

Similar Documents

Publication Publication Date Title
EP1207578B1 (en) Fuel cell power supply unit
JP5622693B2 (ja) 燃料電池車両
JP5474898B2 (ja) 燃料電池車両
US8795861B2 (en) Fuel cell system and vehicle equipped with the same
JP5920525B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
US9070917B2 (en) Method of controlling fuel cell system
US20090105895A1 (en) Fuel Cell Vehicle
JP2002118981A (ja) 燃料電池を有する直流電源
CN102991368B (zh) 燃料电池车辆
JP2007005038A (ja) 燃料電池システム及び移動体
CN102405150A (zh) 燃料电池***
CA2836555A1 (en) Fuel cell system with idle-stop control
CN111791712B (zh) 燃料电池车辆
JP2020170628A (ja) 燃料電池システム
JP5825839B2 (ja) 燃料電池車両
CN112744127A (zh) 车辆***、车辆控制方法及存储介质
JP2020178400A (ja) 燃料電池車両および燃料電池車両の制御方法
JP7127600B2 (ja) 燃料電池車両および燃料電池車両の制御方法
JP2007244036A (ja) 車両制御装置
JP2020178402A (ja) 燃料電池車両
JP2020174028A (ja) 燃料電池車両
JP7168371B2 (ja) 燃料電池車両の制御装置
JP2020178401A (ja) 燃料電池車両
JP2020174506A (ja) 燃料電池車両
JP5675509B2 (ja) 燃料電池システム及び該システム搭載車両