JP2020168970A - Unmanned survey vehicle - Google Patents

Unmanned survey vehicle Download PDF

Info

Publication number
JP2020168970A
JP2020168970A JP2019071991A JP2019071991A JP2020168970A JP 2020168970 A JP2020168970 A JP 2020168970A JP 2019071991 A JP2019071991 A JP 2019071991A JP 2019071991 A JP2019071991 A JP 2019071991A JP 2020168970 A JP2020168970 A JP 2020168970A
Authority
JP
Japan
Prior art keywords
peripheral surface
outer peripheral
rim
expansion
unmanned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019071991A
Other languages
Japanese (ja)
Other versions
JP7293527B2 (en
Inventor
中島 紳一郎
Shinichiro Nakajima
紳一郎 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019071991A priority Critical patent/JP7293527B2/en
Publication of JP2020168970A publication Critical patent/JP2020168970A/en
Priority to JP2023016352A priority patent/JP7456678B2/en
Application granted granted Critical
Publication of JP7293527B2 publication Critical patent/JP7293527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Tires In General (AREA)
  • Manipulator (AREA)

Abstract

To provide an unmanned survey vehicle improved in off-road traveling performance, while achieving downsizing and weight saving.SOLUTION: Expansion parts 12 are disposed at both ends of a main body part 11. An expansion surface 12a being an outer peripheral surface of the expansion part 12 is formed by a partially spherical surface with a positive curvature. In a vertical direction, the diameter of the expansion surface 12a is formed to be larger than a separation distance of the outer peripheral surface of the main body part 11. A rim part 22 serving as a ground plane of a wheel 20 is disposed by covering the expansion part 12. A rim outer peripheral surface 22a and a rim inner peripheral surface 22b are formed by a curved surface along the expansion surface 12a.SELECTED DRAWING: Figure 5

Description

本発明は、不整地を走行して探査を行う無人探査車に関する。 The present invention relates to an unmanned rover that travels on rough terrain for exploration.

無人探査車が、砂や石等で覆われた不整地を走行して探査を行う場合、不整地は、砂や石等の粒子の集積体であって崩れやすいため、無人探査車の駆動車輪は、不整地に対してスリップを引き起こし易い。駆動車輪がスリップすると、駆動車輪が過剰に回転して不整地の砂や岩を掻き出し、駆動車輪は不整地に埋まっていく。駆動車輪が不整地に埋まっていくに従って、駆動車輪が不整地から受ける走行抵抗が大きくなり、走行に要する駆動エネルギーを余分に消費したり、さらには、その走行抵抗の増加や、接地駆動力の低下によって、それ以上の走行を継続することが困難になる、といった不具合がある。 When an unmanned rover travels on rough terrain covered with sand, stones, etc., the rough terrain is a collection of particles such as sand and stones and easily collapses, so the driving wheels of the unmanned rover Is prone to slip on rough terrain. When the drive wheels slip, the drive wheels rotate excessively, scraping out sand and rocks on rough terrain, and the drive wheels are buried in the rough terrain. As the drive wheels are buried in rough terrain, the running resistance that the driving wheels receive from the rough terrain increases, consuming extra driving energy required for running, increasing the running resistance, and increasing the ground driving force. There is a problem that it becomes difficult to continue running further due to the decrease.

一般に、砂や石で覆われた不整地に対して駆動車輪のスリップを抑制する手段として、駆動車輪の表面に半径方向放射状に複数の凸状の爪を設け、この爪を不整地に食い込ませる事で走破性を増そうとする手段がある。ただし、駆動車輪が一旦スリップをし始めると、この車輪表面の爪が、より多くの砂や石を掻き出すこととなり、駆動車輪は、より深く不整地に埋まっていく、という課題がある。 Generally, as a means of suppressing the slip of the drive wheel on rough terrain covered with sand or stone, a plurality of convex claws are provided radially radially on the surface of the drive wheel, and the claws are made to bite into the rough terrain. There is a way to increase the running performance by doing things. However, once the drive wheels start to slip, the claws on the wheel surface scrape out more sand and stones, and the drive wheels are buried deeper in rough terrain.

従来の無人探査車では、本体部が不整地に接地することを想定しておらず、本体部の形状が不整地に接地した際の滑り抵抗を低減するような形状にはなっていない。そのため、駆動車輪が不整地に埋まって本体部が不整地に接触すると、無人探査車には、不整地から本体部が受ける接触抵抗が急激に加わることとなり、さらなる駆動車輪のスリップを誘発し、駆動車輪は、さらに深く不整地に埋まり、走行不能に至ってしまう、という課題もある。 In the conventional unmanned rover, the main body is not assumed to touch the ground, and the shape of the main body is not shaped to reduce the slip resistance when the main body touches the rough ground. Therefore, when the drive wheels are buried in rough terrain and the main body comes into contact with the rough terrain, the contact resistance received by the main body from the rough terrain is suddenly applied to the unmanned rover, which induces further slippage of the drive wheels. There is also the problem that the drive wheels are buried deeper in rough terrain, leading to inability to travel.

また、無人探査車を、例えば宇宙に運ぶためには、その打ち上げや着陸等にかかる費用が莫大なものとなっており、この費用削減のために、無人探査車の小型軽量化が、重要な課題となっている。 In addition, in order to carry an unmanned rover into space, for example, the cost of launching and landing is enormous, and in order to reduce this cost, it is important to reduce the size and weight of the unmanned rover. It has become a challenge.

特許文献1に記載の無人探査車では、内部に空洞を有するたらい形状の駆動車輪が、本体部(特許文献1では「メインフレーム」)の幅方向の張り出し部を被せるように装着されている。また、特許文献1の図4で示されているように、本体部の下部にも張り出し部が形成されている。 In the unmanned rover described in Patent Document 1, a basin-shaped drive wheel having a cavity inside is mounted so as to cover the overhanging portion in the width direction of the main body portion (“main frame” in Patent Document 1). Further, as shown in FIG. 4 of Patent Document 1, an overhanging portion is also formed in the lower part of the main body portion.

特開2001−48069号公報Japanese Unexamined Patent Publication No. 2001-48069

特許文献1に記載の無人探査車では、本体部の張り出し部は、平面状の板で囲われて形成されている。この無人探査車が、登坂等、走行抵抗が大きくて厳しい走行条件の不整地を走行する場合、駆動車輪はスリップをし始め、駆動車輪は不整地に埋まっていき、胴体の張り出し部が不整地に接触する。胴体の張り出し部が不整地に接触すると、駆動車輪に対して大きな抵抗となって作用し、さらなる駆動車輪のスリップを加速させ、やがて、平面で囲われて形成された張り出し部の表面が不整地に食い込むように接地し、最終的には、無人探査車が走行不能に陥る恐れがある。 In the unmanned rover described in Patent Document 1, the overhanging portion of the main body portion is formed by being surrounded by a flat plate. When this unmanned rover travels on rough terrain with large running resistance and severe driving conditions such as climbing a slope, the drive wheels start to slip, the drive wheels are buried in the rough terrain, and the overhanging part of the fuselage is on rough terrain. Contact. When the overhanging part of the fuselage comes into contact with rough ground, it acts as a large resistance to the driving wheels, further accelerating the slip of the driving wheels, and eventually the surface of the overhanging part formed by being surrounded by a flat surface becomes rough ground. There is a risk that the unmanned rover will eventually become inoperable if it touches the ground so as to bite into it.

また、特許文献1に記載の無人探査車では、本体部の幅方向両端に設けられている張り出し部は、本体部の他の部位よりも上下前後方向に小さく形成されており、この張り出し部の内部の搭載スペースが少なくなっている。また、走行車輪は、本体部の幅方向両端に設けられている張り出し部を被せるようにして配置されているが、この本体部の張り出し部との隙間(活用されていない空間)が大きいため、無人探査車全体の大型化を招いてしまう。また、この走行車輪と張り出し部との隙間に、不整地の砂等が多く侵入し易いため、走行抵抗が増加して、無人探査車の走行性能を低下させる恐れがある。 Further, in the unmanned rover described in Patent Document 1, the overhanging portions provided at both ends in the width direction of the main body portion are formed to be smaller in the vertical and front-back directions than the other portions of the main body portion. The internal mounting space is reduced. Further, the traveling wheels are arranged so as to cover the overhanging portions provided at both ends in the width direction of the main body portion, but since the gap (unutilized space) with the overhanging portion of the main body portion is large, This will lead to an increase in the size of the entire unmanned rover. Further, since a large amount of sand or the like on rough terrain easily invades the gap between the traveling wheel and the overhanging portion, the traveling resistance may increase and the traveling performance of the unmanned rover may be deteriorated.

本発明は、上記課題を解決するため、(1)〜(6)に記載する無人探査車を提供する。 The present invention provides the unmanned rover described in (1) to (6) in order to solve the above problems.

(1)本体部と、前記本体部の幅方向両端において同軸上に配置された一対の車輪と、前記車輪の外周面に設けられた複数の爪と、前記本体部の後方に設けられ、地面に接地する接地体と、を備える無人探査車であって、前記本体部の幅方向両端には、膨らみを持つ一対の膨張部が形成され、前記車輪は、前記膨張部を覆って配置されたことを特徴とする、無人探査車。 (1) A main body, a pair of wheels coaxially arranged at both ends in the width direction of the main body, a plurality of claws provided on the outer peripheral surface of the wheels, and a ground surface provided behind the main body. An unmanned rover comprising a grounding body that comes into contact with the ground, and a pair of expanding portions having bulges are formed at both ends in the width direction of the main body portion, and the wheels are arranged so as to cover the expanding portions. An unmanned rover that features this.

(2)前記膨張部の外周面は、正の曲率の曲面で形成され、前記車輪の前記膨張部を覆っている領域の内周面は、前記膨張部の正の曲率の曲面に沿った、負の曲率の曲面で形成され、前記車輪の前記膨張部を覆っている領域の外周面は、前記車輪の前記膨張部を覆っている領域の内周面の前記負の曲率の曲面に沿った、正の曲率の曲面で形成されていることを特徴とする、前記(1)に記載の無人探査車。 (2) The outer peripheral surface of the expansion portion is formed by a curved surface having a positive curvature, and the inner peripheral surface of the region covering the expansion portion of the wheel is along the curved surface of the positive curvature of the expansion portion. The outer peripheral surface of the region covered with the expanded portion of the wheel, which is formed by a curved surface having a negative curvature, is along the curved surface of the negative curvature of the inner peripheral surface of the region covering the expanded portion of the wheel. The unmanned exploration vehicle according to (1) above, characterized in that it is formed of a curved surface having a positive curvature.

(3)前記接地体の外周面は、正の曲率の曲面で形成され、前記接地体の外周面が接地することを特徴とする、前記(1)又は(2)に記載の無人探査車。 (3) The unmanned rover according to (1) or (2) above, wherein the outer peripheral surface of the grounding body is formed of a curved surface having a positive curvature, and the outer peripheral surface of the grounding body is grounded.

(4)前記本体部の外周面、及び、前記接地体は、上下対称に形成されていることを特徴とする、前記(1)から(3)の何れか1つに記載の無人探査車。 (4) The unmanned rover according to any one of (1) to (3) above, wherein the outer peripheral surface of the main body and the ground contact body are formed vertically symmetrically.

(5)前記本体部にカメラが搭載され、前記接地体の径は、前記車輪の径と同一に形成されていることを特徴とする、前記(1)から(4)の何れか1つに記載の無人探査車。 (5) The camera is mounted on the main body, and the diameter of the ground contact body is formed to be the same as the diameter of the wheels, according to any one of (1) to (4). Described unmanned rover.

(6)前記車輪の回転軸に直交する断面において、前記膨張部の外周面は円に形成され、前記膨張部の外周面の径は、前記車輪の内周面の径に対して74パーセント以上に形成されていることを特徴とする、前記(1)から(5)の何れか1つに記載の無人探査車。 (6) In the cross section orthogonal to the rotation axis of the wheel, the outer peripheral surface of the expansion portion is formed in a circle, and the diameter of the outer peripheral surface of the expansion portion is 74% or more of the diameter of the inner peripheral surface of the wheel. The unmanned rover according to any one of (1) to (5) above, characterized in that it is formed in.

本発明の無人探査車によれば、無人探査車の小型化を図りながら、砂や石等で覆われた不整地での走行性能を向上させることが出来る。
特に前記(2)に記載の無人探査車によれば、車輪は、不整地との接触面圧を常に適切に保ち、さらに、車輪の内部に入る不整地の砂や石等の量を抑制するため、不整地での走行性能をさらに向上させることが出来る。
According to the unmanned rover of the present invention, it is possible to improve the running performance on rough terrain covered with sand, stones, etc. while reducing the size of the unmanned rover.
In particular, according to the unmanned rover described in (2) above, the wheels always maintain an appropriate contact surface pressure with rough terrain, and further suppress the amount of sand, stones, etc. on the rough terrain that enters the inside of the wheels. Therefore, the running performance on rough terrain can be further improved.

特に前記(3)に記載の無人探査車によれば、接地体は、不整地との接触面圧を常に適切に保ちつつ、不整地との接触抵抗を抑制するため、不整地での走行性能をさらに向上させることが出来る。 In particular, according to the unmanned rover described in (3) above, the ground contact body suppresses the contact resistance with the rough terrain while always maintaining the contact surface pressure with the rough terrain, so that the traveling performance on the rough terrain is suppressed. Can be further improved.

特に前記(4)に記載の無人探査車によれば、無人探査車が、上下逆さまにひっくり返ったとしても、元に戻すことなく、そのままの姿勢で走行を継続出来るため、不整地での走行性をさらに向上させることが出来る。 In particular, according to the unmanned rover described in (4) above, even if the unmanned rover is turned upside down, it can continue to run in the same posture without being turned back upside down, so that it can continue to run on rough terrain. The runnability can be further improved.

特に前記(5)に記載の無人探査車によれば、無人探査車が、上下逆さまにひっくり返ったとしても、常にカメラが水平に維持されるため、この無人探査車の操作性を向上させることが出来る In particular, according to the unmanned rover described in (5) above, even if the unmanned rover is turned upside down, the camera is always kept horizontal, which improves the operability of the unmanned rover. Can be

特に前記(6)に記載の無人探査車によれば、車輪の不整地への沈み量が抑制され、走行抵抗の増加が抑制されるため、走行性能をさらに向上させることが出来る。 In particular, according to the unmanned rover described in (6) above, the amount of sinking of the wheels on rough terrain is suppressed and the increase in running resistance is suppressed, so that the running performance can be further improved.

本発明の実施の形態に係る無人探査車を示す斜視図である。It is a perspective view which shows the unmanned rover which concerns on embodiment of this invention. 本発明の実施の形態に係る無人探査車を示す側面図である。It is a side view which shows the unmanned rover which concerns on embodiment of this invention. 本発明の実施の形態に係る無人探査車を示す正面図である。It is a front view which shows the unmanned rover which concerns on embodiment of this invention. 本発明の実施の形態に係る無人探査車を示す平面図である。It is a top view which shows the unmanned rover which concerns on embodiment of this invention. 図2のA−A線断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 図3のB−B線断面図である。FIG. 3 is a cross-sectional view taken along the line BB of FIG. (a)は車輪の不整地への沈み量が少ない状態を示し、(b)は車輪の不整地への沈み量が多い状態を示し、(c)は車輪の不整地への沈み量がさらに多くなって本体部が不整地に接触している状態を示す、不整地を含む図5の部分図である。(A) shows a state in which the amount of sinking of the wheel on rough terrain is small, (b) shows a state in which the amount of sinking of the wheel on rough terrain is large, and (c) shows a state in which the amount of sinking of the wheel on rough terrain is further increased. It is the partial view of FIG.

本発明に係る無人探査車の実施の形態について、図1〜6を参照して説明する。尚、以下に説明する実施の形態は、本発明を実施する上での好適な具体例として示すものであり、技術的に好ましい技術的事項を具体的に例示している部分もあるが、本発明の技術的範囲は、この具体的態様に限定されるものではない。 An embodiment of the unmanned rover according to the present invention will be described with reference to FIGS. 1 to 6. It should be noted that the embodiments described below are shown as suitable specific examples for carrying out the present invention, and there are some parts that specifically exemplify technically preferable technical matters. The technical scope of the invention is not limited to this specific aspect.

また、以下の説明に於いて、水平面に対して垂直な鉛直方向を「上下方向」または「高さ方向」というものとする。また、無人探査車1には車輪20が設けられているが、車輪20の回転軸方向を「幅方向」または「左右方向」といい、車輪20の回転軸方向に対して垂直な水平方向を「長さ方向」または「前後方向」というものとする。また、幅方向に於いて、無人探査車1の中心部側(中心に近い側)を「内側」といい、無人探査車1の端部側(中心から遠い側)を「外側」というものとする。 Further, in the following description, the vertical direction perpendicular to the horizontal plane is referred to as "vertical direction" or "height direction". Further, although the unmanned exploration vehicle 1 is provided with wheels 20, the rotation axis direction of the wheels 20 is referred to as "width direction" or "left-right direction", and the horizontal direction perpendicular to the rotation axis direction of the wheels 20 is defined as It shall be referred to as "length direction" or "front-back direction". Further, in the width direction, the central side (closer to the center) of the unmanned rover 1 is referred to as "inside", and the end side (far from the center) of the unmanned rover 1 is referred to as "outside". To do.

また、以下の説明に於いて、一対で設けられている構成要素については、その一方を説明し、他方の説明を省略することがある。 Further, in the following description, one of the components provided as a pair may be described and the other description may be omitted.

また、以下の説明に於いて「不整地」とは、整地されていない土地であって、例えば、砂、石、岩、泥等で覆われた土地をいい、特に説明がない限りに於いて、水平な地表を成しているものとする。尚、不整地は、例えば、月の土地、火星の土地等、地球外惑星の土地も含まれるものとする。 Further, in the following description, "rough land" refers to land that has not been leveled and is covered with sand, stones, rocks, mud, etc., unless otherwise specified. , It is assumed that the surface of the earth is horizontal. The rough terrain includes, for example, the land of the moon, the land of Mars, and the land of extraterrestrial planets.

図1は、本発明に係る無人探査車1の斜視図であり、無人探査車1の全体が示されている。また、図2は、無人探査車1の側面図であり、図3は、無人探査車1の正面図であり、図4は、無人探査車1の平面図であり、それぞれ無人探査車1の全体が示されている。尚、図3と図5に於いて、図面上方が、無人探査車1の上方にあたり、図4に於いて、図面下方が、無人探査車1の前方にあたる。 FIG. 1 is a perspective view of the unmanned rover 1 according to the present invention, showing the entire unmanned rover 1. Further, FIG. 2 is a side view of the unmanned rover 1, FIG. 3 is a front view of the unmanned rover 1, and FIG. 4 is a plan view of the unmanned rover 1, respectively. The whole is shown. In addition, in FIGS. 3 and 5, the upper part of the drawing corresponds to the upper part of the unmanned rover 1, and in FIG. 4, the lower part of the drawing corresponds to the front of the unmanned rover 1.

図5は、図2のA−A線断面図であり、前から見た断面が示されている。また、図6は、図3のB−B線断面図であり、横から見た断面が示されている。 FIG. 5 is a cross-sectional view taken along the line AA of FIG. 2, showing a cross section viewed from the front. Further, FIG. 6 is a cross-sectional view taken along the line BB of FIG. 3, showing a cross section seen from the side.

本体部10は、薄板状の部材で囲われた容器体として形成されている。本体部10の中央領域には、幅方向に平行に伸びる略円筒状の中央部11が形成され、中央部11の幅方向両端領域には、中央部11よりも大なる径の略球状の一対の膨張部12が形成されている。 The main body 10 is formed as a container body surrounded by a thin plate-shaped member. A substantially cylindrical central portion 11 extending parallel to the width direction is formed in the central region of the main body portion 10, and a pair of substantially spherical shapes having a diameter larger than that of the central portion 11 is formed in both end regions in the width direction of the central portion 11. Expansion portion 12 of the above is formed.

中央部11は、上方に配置される平面状の中央上面11aと、下方に配置される平面状の中央下面11bと、軸線が幅方向に平行で前方に配置される部分円筒面の中央前面11cと、軸線が幅方向に平行で後方に配置される部分円筒面の中央後面11dとで囲われて、その外面が形成されている。 The central portion 11 includes a planar central upper surface 11a arranged above, a planar central lower surface 11b arranged below, and a central front surface 11c of a partial cylindrical surface whose axes are arranged parallel to the width direction and arranged forward. And the central rear surface 11d of the partial cylindrical surface whose axes are parallel to the width direction and arranged rearward, and the outer surface thereof is formed.

中央前面11cと中央後面11dとは、それぞれの部分円筒面の径が同一で、かつ、それぞれの部分円筒面の軸線が同軸に配置されている。また、中央上面11aと中央下面11bとは、互いに平行に形成されている。すなわち、中央上面11aと中央下面11bとは、中央前面11cと中央後面11dとの部分円筒面を延長させて成る一つの円筒面を切り欠いた平行面として形成されている。従って、中央上面11aと中央下面11bとの離隔距離は、中央前面11c中央後面11dとの最大距離(円筒直径)よりも短くなっている。 The central front surface 11c and the central rear surface 11d have the same diameter of each partial cylindrical surface, and the axes of the respective partial cylindrical surfaces are coaxially arranged. Further, the central upper surface 11a and the central lower surface 11b are formed in parallel with each other. That is, the central upper surface 11a and the central lower surface 11b are formed as parallel surfaces obtained by cutting out one cylindrical surface formed by extending the partial cylindrical surfaces of the central front surface 11c and the central rear surface 11d. Therefore, the separation distance between the central upper surface 11a and the central lower surface 11b is shorter than the maximum distance (cylindrical diameter) between the central front surface 11c and the central rear surface 11d.

膨張部12は、正の曲率の部分球面状の膨張面12aと、幅方向に対して垂直向きの平面状の測面12bとで囲われて、その外面が形成されている。すなわち、側面12bは、膨張面12aを延長させて成る球面を鉛直に切り欠いた円板面として形成されている。また、側面12bは、本体部10の幅方向最端部に配置され、膨張面12aの部分球面の球径よりも小さい径の円板面として形成されている。また、膨張面12aと側面12bとの境目の角部は、丸みを帯びて結ばれている。 The expansion portion 12 is surrounded by a partially spherical expansion surface 12a having a positive curvature and a planar measuring surface 12b perpendicular to the width direction, and an outer surface thereof is formed. That is, the side surface 12b is formed as a disk surface obtained by vertically cutting out a spherical surface formed by extending the expansion surface 12a. The side surface 12b is arranged at the end of the main body 10 in the width direction, and is formed as a disk surface having a diameter smaller than the spherical diameter of the partial spherical surface of the expansion surface 12a. Further, the corners of the boundary between the expansion surface 12a and the side surface 12b are connected in a rounded manner.

また、膨張面12aの球直径は、中央上面11aと中央下面11bとの離隔距離よりも大なる直径で形成され、かつ、中央前面11cと中央後面11dとの最大距離(中央前面11cと中央後面11dとで成る仮想円筒の直径)よりも大なる直径で形成されている。 The sphere diameter of the expansion surface 12a is formed to be larger than the separation distance between the central upper surface 11a and the central lower surface 11b, and the maximum distance between the central front surface 11c and the central rear surface 11d (central front surface 11c and central rear surface). It is formed with a diameter larger than the diameter of the virtual cylinder consisting of 11d).

膨張面12aは、その幅方向内側が、中央上面11a、中央下面11b、中央前面11c、中央後面11d、これら4面と接している。また、膨張面12aは、その幅方向外側が側面12bと接している。そのため、膨張面12aは、中央上面11a、中央下面11b、中央前面11c、中央後面11d、これら4面と、側面12bとの間に配置され、その間の中間領域が膨らんで形成されている。すなわち、図5で示されるように、車輪20の軸線を含む断面に於いて、膨張面12aは、一つの円が上下に分割された一対の部分円として形成されている。 The inside of the expansion surface 12a in the width direction is in contact with the central upper surface 11a, the central lower surface 11b, the central front surface 11c, the central rear surface 11d, and these four surfaces. Further, the outer side of the expansion surface 12a in the width direction is in contact with the side surface 12b. Therefore, the expansion surface 12a is arranged between the central upper surface 11a, the central lower surface 11b, the central front surface 11c, the central rear surface 11d, these four surfaces, and the side surface 12b, and the intermediate region between them is formed by bulging. That is, as shown in FIG. 5, in the cross section including the axis of the wheel 20, the expansion surface 12a is formed as a pair of partial circles in which one circle is vertically divided.

図5で示されるように、側面12bには、車輪20を駆動する駆動モーター14を保持するモーター保持13が取り付けられている。駆動モーター14は、膨張部12の内部に配置され、駆動モーター14の回転動力は、減速歯車15を介して減速されて減速軸16に伝達される。減速軸16は、側面12b、及び、モーター保持13を貫通して、側面12bから幅方向外側に突出している。 As shown in FIG. 5, a motor holding 13 for holding a driving motor 14 for driving the wheels 20 is attached to the side surface 12b. The drive motor 14 is arranged inside the expansion unit 12, and the rotational power of the drive motor 14 is decelerated via the reduction gear 15 and transmitted to the reduction shaft 16. The reduction shaft 16 penetrates the side surface 12b and the motor holding 13 and projects outward from the side surface 12b in the width direction.

膨張部12の内部には、駆動モーター14に電力を供給するバッテリー18aを保持するバッテリー保持18が設置されている。また、膨張部12の内部には、駆動モーター14の駆動状態等を制御する制御基板19aを保持する基板保持19が設置されている。そのため、バッテリー18a、及び、制御基板19aは、膨張部12の内部に配置されている。 Inside the expansion unit 12, a battery holding 18 for holding the battery 18a that supplies electric power to the drive motor 14 is installed. Further, inside the expansion unit 12, a substrate holding 19 for holding a control substrate 19a for controlling a driving state of the driving motor 14 and the like is installed. Therefore, the battery 18a and the control board 19a are arranged inside the expansion portion 12.

ここで、モーター保持13、駆動モーター14、減速歯車15、減速軸16、これらのそれぞれは、左右一対で左右対称に設けられており、一対の減速軸16の回転軸は同軸に配置されている。尚、一対の減速軸16の回転軸は、一対の車輪20の回転軸でもあり、以下の説明に於いて、この減速軸16の回転軸を単に「回転軸」というものとする。 Here, the motor holding 13, the drive motor 14, the reduction gear 15, the reduction shaft 16, each of these is provided symmetrically with a pair of left and right, and the rotation axes of the pair of reduction shafts 16 are arranged coaxially. .. The rotation shafts of the pair of reduction shafts 16 are also the rotation shafts of the pair of wheels 20, and in the following description, the rotation shafts of the reduction shafts 16 are simply referred to as "rotation shafts".

回転軸は、円板状に形成されている側面12bの中心に配置されており、中央上面11a、及び、中央下面11bは、回転軸に対して上下対称に配置されている。すなわち、本体部10は、その外面の形状が、回転軸に対して上下対称に形成されている。 The rotation axis is arranged at the center of the side surface 12b formed in a disk shape, and the central upper surface 11a and the central lower surface 11b are arranged vertically symmetrically with respect to the rotation axis. That is, the shape of the outer surface of the main body 10 is formed vertically symmetrically with respect to the rotation axis.

モーター保持14は、幅方向外側の端部が開口しており、この開口部の内周面に車輪20を回転可能に保持する軸受17が取り付けられている。 The motor holding 14 has an opening on the outer end in the width direction, and a bearing 17 for rotatably holding the wheel 20 is attached to the inner peripheral surface of the opening.

車輪20は、円盤状に形成されたディスク部21と、ディスク部21の径よりも径大な略筒状に形成されたリム部22と、ディスク部21の外周面からリム部22の幅方向外側の端部に向けて放射状に延出している複数の柱状のスポーク部23とで、一体化して構成されている。 The wheels 20 have a disc portion 21 formed in a disk shape, a rim portion 22 formed in a substantially tubular shape having a diameter larger than the diameter of the disc portion 21, and a width direction of the rim portion 22 from the outer peripheral surface of the disc portion 21. It is integrally composed of a plurality of columnar spoke portions 23 extending radially toward the outer end portion.

ディスク部21は、軸受17によって回転可能に支持され、減速軸16と相対回転不能に接合され、減速軸16からの回転動力を受けている。 The disc portion 21 is rotatably supported by a bearing 17, is joined to the reduction shaft 16 so as not to rotate relative to the reduction shaft 16, and receives rotational power from the reduction shaft 16.

リム部22は、リム外周面22a(リム部22の外周面)が正の曲率の部分球面で形成された薄板状の筒体で成る。そのため、リム内周面22b(リム部22の内周面)は、リム外周面22aに沿った負の曲率の部分球面で形成されている。 The rim portion 22 is formed of a thin plate-shaped tubular body in which the outer peripheral surface 22a of the rim portion 22 (the outer peripheral surface of the rim portion 22) is formed by a partial spherical surface having a positive curvature. Therefore, the rim inner peripheral surface 22b (inner peripheral surface of the rim portion 22) is formed of a partial spherical surface having a negative curvature along the rim outer peripheral surface 22a.

リム外周面22aは、幅方向中間領域が膨らんで(正の曲率で)形成されている。すなわち、幅方向に対して垂直な方向(上下方向や前後方向)に於いて、リム外周面22aの幅方向中間領域の径は、リム外周面22aの幅方向内側端部の径よりも大きく、かつ、リム外周面22aの幅方向外側端部の径よりも大きい。 The rim outer peripheral surface 22a is formed by bulging (with a positive curvature) an intermediate region in the width direction. That is, in the direction perpendicular to the width direction (vertical direction or front-rear direction), the diameter of the widthwise intermediate region of the rim outer peripheral surface 22a is larger than the diameter of the inner end portion in the width direction of the rim outer peripheral surface 22a. Moreover, it is larger than the diameter of the outer end portion in the width direction of the outer peripheral surface 22a of the rim.

リム内周面22bは、リム外周面22aの裏側に形成されているため、幅方向中間領域が凹んで(負の曲率で)形成されている。すなわち、幅方向に対して垂直な方向(上下方向や前後方向)に於いて、リム内周面22bの幅方向中間領域の径は、リム内周面22bの幅方向内側端部の径よりも大きく、かつ、リム内周面22bの幅方向外側端部の径よりも大きい。 Since the rim inner peripheral surface 22b is formed on the back side of the rim outer peripheral surface 22a, the intermediate region in the width direction is formed to be recessed (with a negative curvature). That is, in the direction perpendicular to the width direction (vertical direction or front-back direction), the diameter of the widthwise intermediate region of the rim inner peripheral surface 22b is larger than the diameter of the widthwise inner end portion of the rim inner peripheral surface 22b. It is large and larger than the diameter of the outer end in the width direction of the inner peripheral surface of the rim 22b.

図5で示されるように、回転軸を含む断面に於いて、リム外周面22a、及び、リム内周面22bは、それぞれに一つの円が上下に分割された一対の部分円として形成されている。また、リム外周面22a、及び、リム内周面22b、及び、膨張面12a、それぞれの部分球面の中心位置は、同一に配置されている。そのため、リム部22は、膨張面12aを覆って配置されている。換言すると、リム部22の幅方向内側の端部は、膨張面12aの幅方向外側の端部(すなわち側面12b)よりも幅方向内側に配置されている。すなわち、リム部22の幅方向内側の端部から膨張部12の幅方向外側端部に至って、車輪20が本体部10を覆っている。 As shown in FIG. 5, in the cross section including the rotation axis, the rim outer peripheral surface 22a and the rim inner peripheral surface 22b are each formed as a pair of partial circles in which one circle is vertically divided. There is. Further, the center positions of the respective partial spherical surfaces of the rim outer peripheral surface 22a, the rim inner peripheral surface 22b, and the expansion surface 12a are arranged in the same manner. Therefore, the rim portion 22 is arranged so as to cover the expansion surface 12a. In other words, the inner end in the width direction of the rim portion 22 is arranged inward in the width direction with respect to the outer end in the width direction (that is, the side surface 12b) of the expansion surface 12a. That is, the wheel 20 covers the main body 10 from the inner end in the width direction of the rim portion 22 to the outer end in the width direction of the expansion portion 12.

ここで、リム外周面22aの径(球径)は、リム内周面22bの径(球径)よりも大きく形成され、リム内周面22bの径(球径)は、膨張面12aの径(球径)よりも大きく形成されている。 Here, the diameter (sphere diameter) of the rim outer peripheral surface 22a is formed to be larger than the diameter (sphere diameter) of the rim inner peripheral surface 22b, and the diameter (sphere diameter) of the rim inner peripheral surface 22b is the diameter of the expansion surface 12a. It is formed larger than (sphere diameter).

リム内周面22bと、膨張面12aとの間に出来るリム内周隙間25は、リム部22の幅方向内側の端部から膨張部12の幅方向外側端部に至って、一定の離隔距離を保って形成されている。また、リム内周面22bの径(球径)と膨張面12aの径(球径)とは、それぞれの径差を小さく(径比を100%に近く)して形成されている。より具体的には、膨張面12aの径は、リム内周面22bの径(100%)に対して、74%以上に形成されている。また、膨張面12aの径は、リム外周面22aの径(100%)に対して、70%以上に形成されている。 The rim inner peripheral gap 25 formed between the rim inner peripheral surface 22b and the expanding surface 12a reaches a constant separation distance from the inner end in the width direction of the rim portion 22 to the outer end in the width direction of the expanding portion 12. It is formed by keeping it. Further, the diameter (sphere diameter) of the inner peripheral surface 22b of the rim and the diameter (sphere diameter) of the expansion surface 12a are formed with a small diameter difference (diameter ratio is close to 100%). More specifically, the diameter of the expansion surface 12a is formed to be 74% or more with respect to the diameter (100%) of the rim inner peripheral surface 22b. The diameter of the expansion surface 12a is 70% or more of the diameter (100%) of the rim outer peripheral surface 22a.

リム外周面22aからは、薄板状に形成された複数の爪24が、リム外周面22aの半径方向に放射状に伸びて設けられている。爪24の幅方向寸法は、リム外周面22aの幅方向寸法よりも長く形成されている。また、爪24の外周面である爪外周面24aは、リム外周面22aに沿った正の曲率の曲面で形成されている。すなわち、図5で示されるように、回転軸を含む断面に於いて、爪外周面24aは部分円であり、リム外周面22aの部分円と中心位置が同一に配置されている。 From the rim outer peripheral surface 22a, a plurality of claws 24 formed in a thin plate shape are provided so as to extend radially in the radial direction of the rim outer peripheral surface 22a. The width direction dimension of the claw 24 is formed longer than the width direction dimension of the rim outer peripheral surface 22a. Further, the claw outer peripheral surface 24a, which is the outer peripheral surface of the claw 24, is formed of a curved surface having a positive curvature along the rim outer peripheral surface 22a. That is, as shown in FIG. 5, in the cross section including the rotation axis, the claw outer peripheral surface 24a is a partial circle, and the center position is the same as the partial circle of the rim outer peripheral surface 22a.

尚、爪24は、爪24を不整地に食い込ませることで走破性を増そうとする目的で設けられており、技術名称として「グローサ」と呼ばれている。 The claw 24 is provided for the purpose of increasing the running performance by letting the claw 24 bite into an uneven terrain, and is called "grosser" as a technical name.

中央部11の中央前面11cには、カメラ40を保持するカメラ保持穴11eが設けられている。カメラ40は、カメラ保持穴11eに保持されて、中央部11の内部に回転軸に対して上下対称位置に配置されている。 A camera holding hole 11e for holding the camera 40 is provided in the central front surface 11c of the central portion 11. The camera 40 is held in the camera holding hole 11e and is arranged inside the central portion 11 at a position vertically symmetrical with respect to the rotation axis.

無人探査車1は、カメラ40による撮影情報を利用して、自動で、または、遠隔操作によって走行を行う。そのため、無人探査車1は、カメラ40が向いている方向が前進方向(通常走行の方向)となる。換言すれば、前後方向に見て、中央部11の中心からカメラ保持穴11eに向かう方向が、前進方向となる。 The unmanned rover 1 travels automatically or by remote control using the information taken by the camera 40. Therefore, in the unmanned rover 1, the direction in which the camera 40 is facing is the forward direction (normal traveling direction). In other words, when viewed in the front-rear direction, the direction from the center of the central portion 11 toward the camera holding hole 11e is the forward direction.

中央部11の中央後面11dからは、棒状に形成されて後方に延出する複数の脚31が設けられている。 From the central rear surface 11d of the central portion 11, a plurality of legs 31 formed in a rod shape and extending rearward are provided.

複数の脚31の後方先端には、接地体34を保持する接地体保持33が固定されている。接地体34は、略皿状に形成され、接地体保持33に取り付けられ、無人探査車1の最後方に配置されている。 A grounding body holding 33 for holding the grounding body 34 is fixed to the rear tips of the plurality of legs 31. The grounding body 34 is formed in a substantially dish shape, is attached to the grounding body holding 33, and is arranged at the rearmost part of the unmanned rover 1.

接地体34は、接地体外周面34a(接地体34の外周面)が正の曲率の部分球面で形成された薄板状に形成されている。そのため、接地体内周面34b(接地体34の内周面)は、接地体外周面34aに沿った負の曲率の部分球面に形成されている。 The grounding body 34 is formed in a thin plate shape in which the outer peripheral surface 34a of the grounding body 34 (the outer peripheral surface of the grounding body 34) is formed by a partial spherical surface having a positive curvature. Therefore, the peripheral surface 34b inside the grounding body (inner peripheral surface of the grounding body 34) is formed as a partial spherical surface having a negative curvature along the outer peripheral surface 34a of the grounding body.

接地体外周面34aは、その中央領域が膨らんで(正の曲率で)形成されている。また、接地体内周面34bは、接地体外周面34aの裏側に形成されているため、その中央領域が凹んで(負の曲率で)形成されている。 The outer peripheral surface 34a of the ground contact body is formed with its central region bulging (with a positive curvature). Further, since the peripheral surface 34b inside the ground contact body is formed on the back side of the outer peripheral surface 34a of the ground contact body, the central region thereof is formed to be recessed (with a negative curvature).

また、接地体34は、接地体外周面34aが不整地G(不整地Gは、図7に示す。)に接地する向きに配置され、上下対称に一対で設けられている。すなわち、一対の接地体34の一方の接地体34は、その接地体外周面34aが下向きに配置されて不整地Gに接地し、他方の接地体34は、接地体外周面34aが上向きに配置されている。 Further, the grounding body 34 is arranged so that the outer peripheral surface 34a of the grounding body is in contact with the rough ground G (the rough ground G is shown in FIG. 7), and is provided in pairs vertically symmetrically. That is, one of the grounding bodies 34 of the pair of grounding bodies 34 has the grounding body outer peripheral surface 34a arranged downward and grounded on the rough ground G, and the other grounding body 34 has the grounding body outer peripheral surface 34a arranged upward. Has been done.

また、上下方向に延びる棒状に形成された補助脚32が、補助脚32の両端を一対の接地体保持33で固定されて設けられ、上下一対に設けられた接地体34同士を繋いで保持している。 Further, the auxiliary legs 32 formed in a rod shape extending in the vertical direction are provided by fixing both ends of the auxiliary legs 32 with a pair of grounding bodies holding 33, and the grounding bodies 34 provided in the upper and lower pairs are connected and held. ing.

上下一対に設けられた接地体34の、部分球面で成る一対の接地体外周面34aと、部分球面で成る一対の接地体内周面34bとの、それぞれの中心位置は同一に配置されている。また、一対の接地体外周面34aを延長すると、一つの球面となり、一対の接地体内周面34bを延長した場合にも、一つの球面となる位置に配置されている。 The center positions of the pair of ground contact body outer peripheral surfaces 34a made of partial spherical surfaces and the pair of ground contact body peripheral surfaces 34b made of partial spherical surfaces of the ground contact bodies 34 provided in the upper and lower pairs are arranged in the same manner. Further, when the pair of ground contact body outer peripheral surfaces 34a are extended, they become one spherical surface, and when the pair of ground contact body peripheral surfaces 34b are extended, they are arranged at positions which become one spherical surface.

さらに、接地体外周面34aの径(球径)は、リム外周面22aの径(球径)と同一に形成されている。 Further, the diameter (sphere diameter) of the ground contact body outer peripheral surface 34a is formed to be the same as the diameter (sphere diameter) of the rim outer peripheral surface 22a.

次に、図7を参照して、無人探査車1の走行性能に関する特徴を説明する。図7は、車輪20の接地面として機能するリム部22が不整地Gに接地している状態を示しており、(a)はリム部22の不整地Gへの沈み量が少ない状態を示し、(b)はリム部22の不整地Gへの沈み量が多い状態を示し、(c)はリム部22の不整地Gへの沈み量が極めて多くなって膨張面12aが不整地Gの地表面Gaに接触している状態を示す、不整地Gを含む図5(図2のA−A線断面図)の部分図である。 Next, with reference to FIG. 7, the characteristics related to the traveling performance of the unmanned rover 1 will be described. FIG. 7 shows a state in which the rim portion 22 functioning as a ground contact surface of the wheel 20 is in contact with the rough terrain G, and FIG. 7A shows a state in which the amount of sinking of the rim portion 22 into the rough terrain G is small. , (B) show a state in which the amount of sinking of the rim portion 22 into the rough terrain G is large, and (c) shows a state in which the amount of sinking of the rim portion 22 into the rough terrain G is extremely large and the expansion surface 12a is the rough terrain G. It is a partial view of FIG. 5 (cross-sectional view taken along the line AA of FIG. 2) including the rough terrain G showing the state of being in contact with the ground surface Ga.

ここで、不整地Gは、整地されていない土地であって、例えば、砂、石、岩、泥等が堆積して成る堆積層Gbで成り、その表面は、水平に広がる地表面Gaとして成る。 Here, the rough terrain G is a land that is not leveled, and is composed of a sedimentary layer Gb formed by depositing sand, stones, rocks, mud, etc., and its surface is formed as a horizontally spreading ground surface Ga. ..

ここで、図7は、図5と同様に、回転軸を含む鉛直方向の断面線の断面図である。前述したように、リム外周面22aは、正の曲率の部分球面状に形成され、リム外周面22aの上下方向下側の領域が不整地Gに接地している。そのため、リム外周面22aは、リム部22の不整地Gへの沈み量に応じて、接地幅を変化させながら、不整地Gに接地する。より具体的には、リム外周面22aが堆積層Gbの中に沈んでいる領域の弧に対応する弦の長さが、リム外周面22aの接地幅Wとなり、リム部22の沈み量が多くなる程、リム部22の接地幅Wが広くなる。 Here, FIG. 7 is a cross-sectional view of a cross-sectional line in the vertical direction including the rotation axis, as in FIG. As described above, the rim outer peripheral surface 22a is formed in a partially spherical shape having a positive curvature, and the region on the lower side in the vertical direction of the rim outer peripheral surface 22a is in contact with the rough terrain G. Therefore, the rim outer peripheral surface 22a touches the rough terrain G while changing the ground contact width according to the amount of sinking of the rim portion 22 into the rough terrain G. More specifically, the length of the chord corresponding to the arc of the region where the rim outer peripheral surface 22a is submerged in the sedimentary layer Gb is the ground contact width W of the rim outer peripheral surface 22a, and the amount of subsidence of the rim portion 22 is large. Indeed, the ground contact width W of the rim portion 22 becomes wider.

リム部22の接地幅Wが広くなる程、リム外周面22aの接地面積が広くなり、リム外周面22aの接地面圧が低くなる。リム外周面22aの面圧が低くなると、リム部22の不整地Gへの沈み量が抑制される。 The wider the ground contact width W of the rim portion 22, the wider the ground contact area of the rim outer peripheral surface 22a, and the lower the ground contact surface pressure of the rim outer peripheral surface 22a. When the surface pressure of the rim outer peripheral surface 22a becomes low, the amount of sinking of the rim portion 22 into the rough terrain G is suppressed.

ここで、「沈み量」とは、リム部22が堆積層Gbの中に沈んでも形状変化の影響を受けない領域の地表面Gaから、堆積層Gbの中に沈んでいるリム外周面22aの最も下方の点までの垂直距離、をいうものとする。 Here, the “sinking amount” refers to the outer peripheral surface 22a of the rim submerged in the sedimentary layer Gb from the ground surface Ga in the region where the rim portion 22 is submerged in the sedimentary layer Gb but is not affected by the shape change. It means the vertical distance to the lowest point.

図7(a)は、リム部22の不整地Gへの沈み量が少ない状態を示している。より具体的には、沈み量は、リム外周面22aの直径(球の直径)に対して1.5%程度であり、接地幅W(W)は、リム外周面22aの幅に対して40%程度であり、例えば、通常の走行状態である。 FIG. 7A shows a state in which the amount of sinking of the rim portion 22 into the rough terrain G is small. More specifically, the amount of sinking is about 1.5% with respect to the diameter of the rim outer peripheral surface 22a (the diameter of the sphere), and the ground contact width W (W 1 ) is with respect to the width of the rim outer peripheral surface 22a. It is about 40%, and is, for example, a normal running state.

リム部22の不整地Gへの沈み量が少なく、リム外周面22aの不整地Gへの接地幅Wが少ない程、リム外周面22aが不整地Gから受ける抵抗が少なく、無人探査車1の走行抵抗を少なく抑えられる。 The smaller the amount of sinking of the rim portion 22 into the rough terrain G and the smaller the contact width W of the rim outer peripheral surface 22a with respect to the rough terrain G, the less resistance the rim outer peripheral surface 22a receives from the rough terrain G, and the unmanned rover 1 Running resistance can be suppressed to a low level.

図7(b)は、リム部22の不整地Gへの沈み量が多い状態を示している。より具体的には、沈み量は、リム外周面22aの直径(球の直径)に対して4%程度であり、接地幅W(W)は、リム外周面22aの幅に対して80%程度であり、例えば、想定範囲内の角度の登坂を走行している状態である。 FIG. 7B shows a state in which the amount of sinking of the rim portion 22 into the rough terrain G is large. More specifically, the amount of sinking is about 4% with respect to the diameter of the rim outer peripheral surface 22a (the diameter of the sphere), and the ground contact width W (W 2 ) is 80% with respect to the width of the rim outer peripheral surface 22a. For example, it is a state of traveling uphill at an angle within the assumed range.

リム部22の不整地Gへの沈み量が多くなるに連れて、リム外周面22aの接地幅Wが広くなると、リム外周面22aの不整地Gとの接地面積が増加し、リム外周面22aの不整地Gとの接地面圧が低下するため、リム部22の不整地Gへのさらなる沈み量の増加を抑制させる。 As the amount of sinking of the rim portion 22 into the rough ground G increases, the ground contact width W of the rim outer peripheral surface 22a increases, the ground contact area of the rim outer peripheral surface 22a with the rough ground G increases, and the rim outer peripheral surface 22a Since the contact patch pressure with the rough ground G is reduced, the increase in the amount of sinking of the rim portion 22 into the rough ground G is suppressed.

図7(c)は、リム部22の不整地Gへの沈み量が極めて多く、膨張面12aが地表面Gaに接触している状態を示している。より具体的には、沈み量は、リム外周面22aの直径(球の直径)に対して8%程度であり、接地幅W(W)は、リム外周面22aの幅に対して100%に達し、例えば、想定よりも大きい角度の登坂を走行している状態である。この状態では、リム外周面22aの幅方向内側の端部が堆積層Gb中に沈んでいるため、堆積層Gbの一部が、リム内周隙間25に入り込んでいる。 FIG. 7C shows a state in which the amount of sinking of the rim portion 22 into the rough terrain G is extremely large, and the expansion surface 12a is in contact with the ground surface Ga. More specifically, the amount of sinking is about 8% with respect to the diameter of the rim outer peripheral surface 22a (the diameter of the sphere), and the ground contact width W (W 3 ) is 100% with respect to the width of the rim outer peripheral surface 22a. It has reached, for example, and is traveling on a slope at an angle larger than expected. In this state, since the inner end of the outer peripheral surface 22a of the rim in the width direction is sunk in the sedimentary layer Gb, a part of the sedimentary layer Gb has entered the rim inner peripheral gap 25.

地表面Gaが膨張面12aに接触すると、無人探査車1が不整地Gから受ける接地面圧は、膨張面12aの接地部にも分散されるため、これ以上のリム部22の不整地Gへの沈み量の増加を抑制させる。 When the ground surface Ga comes into contact with the expansion surface 12a, the ground contact surface pressure received by the unmanned rover 1 from the rough terrain G is also dispersed to the ground contact portion of the expansion surface 12a, so that the rim portion 22 further reaches the rough terrain G. Suppresses the increase in the amount of sinking.

また、膨張面12aが地表面Gaに接触しても、膨張面12aの地表面Gaとの接触領域は、球面状で滑らかな形状であるため、膨張面12aが地表面Gaから受ける接触抵抗は少なく、無人探査車1の進行方向に対する走行抵抗の増加も少ない状態を保つ。 Further, even if the expansion surface 12a comes into contact with the ground surface Ga, the contact region of the expansion surface 12a with the ground surface Ga is spherical and has a smooth shape, so that the contact resistance that the expansion surface 12a receives from the ground surface Ga is high. The increase in running resistance with respect to the traveling direction of the unmanned rover 1 is also small.

また、リム内隙間25に入り込んだ堆積層Gbは、リム部22が回転を継続していると、リム内周面22bとの接触抵抗によって連れ回され、膨張面12aよりも上方にあるリム内隙間25に持ち上げられる。膨張面12aよりも上方にあるリム内隙間25にまで持ち上げられた堆積層Gbは、重力によって、膨張面12aに落ちる。膨張面12aは正の曲率の球面状に形成されているため、膨張面12aに落とされた堆積層Gbは、膨張面12aの幅方向外側と幅方向内側とに分散される。膨張面12aに落とされた堆積層Gbのうち、膨張面12aの幅方向内側に分散された堆積層Gbは、中央部11の中央上面11a、中央前面11c、中央後面11dに移送され、その後、中央部11の下方の不整地Gに落とされる。 Further, the deposited layer Gb that has entered the rim inner gap 25 is carried around by the contact resistance with the rim inner peripheral surface 22b when the rim portion 22 continues to rotate, and is inside the rim above the expansion surface 12a. It is lifted to the gap 25. The sedimentary layer Gb lifted up to the rim inner gap 25 above the expansion surface 12a falls on the expansion surface 12a due to gravity. Since the expansion surface 12a is formed in a spherical shape having a positive curvature, the deposited layer Gb dropped on the expansion surface 12a is dispersed on the outside in the width direction and the inside in the width direction of the expansion surface 12a. Of the deposited layers Gb dropped on the expanded surface 12a, the deposited layers Gb dispersed inward in the width direction of the expanded surface 12a are transferred to the central upper surface 11a, the central front surface 11c, and the central rear surface 11d of the central portion 11, and then transferred to the central rear surface 11d. It is dropped on the rough terrain G below the central portion 11.

(実施の形態の作用及び効果)
以上説明した本実施の形態によれば、一対のリム部22の間に配置されている中央部11の上下方向に於ける最大寸法は、リム部22の内部に配置されている膨張部12の上下方向に於ける最大寸法よりも小さいため、不整地Gから中央部11までの距離が長くなり、地表面Gaから凸状の障害物があっても、この障害物との接触を最小限に抑えるため、無人探査車1の走行性能が向上する。また、上下方向に狭い空間を走行する場合には、無人探査車1の上方から下向きに凸状の障害物があったとしても、同様の作用によって、無人探査車1の走行性能が向上する。
(Actions and effects of embodiments)
According to the present embodiment described above, the maximum dimension of the central portion 11 arranged between the pair of rim portions 22 in the vertical direction is the expansion portion 12 arranged inside the rim portion 22. Since it is smaller than the maximum dimension in the vertical direction, the distance from the rough terrain G to the central portion 11 becomes long, and even if there is a convex obstacle from the ground surface Ga, the contact with this obstacle is minimized. In order to suppress it, the running performance of the unmanned exploration vehicle 1 is improved. Further, when traveling in a narrow space in the vertical direction, even if there is a convex obstacle downward from above the unmanned rover 1, the traveling performance of the unmanned rover 1 is improved by the same action.

また、リム内周隙間25の上下方向に於ける空間寸法は、リム内周面22bの直径(100%)に対して小さく(13%以下)形成されており、リム内周隙間25に入り込む堆積層Gbの侵入量が抑制されるため、想定以上に厳しい条件の不整地であっても、無人探査車1の走行を可能にさせる。 Further, the spatial dimension of the rim inner peripheral gap 25 in the vertical direction is formed to be smaller (13% or less) with respect to the diameter (100%) of the rim inner peripheral surface 22b, and is deposited in the rim inner peripheral gap 25. Since the intrusion amount of the layer Gb is suppressed, the unmanned exploration vehicle 1 can travel even on rough terrain under more severe conditions than expected.

また、膨張面12aの径(球径)は、リム外周面22aの直径(100%)に対して大きく(70%以上)形成されており、リム内周隙間25に入り込む堆積層Gbが膨張面12aに接触したとしても、リム部22の沈み量は少なく抑えられるため、想定以上に厳しい条件の不整地であっても、無人探査車1の走行を可能にさせる。 Further, the diameter (sphere diameter) of the expansion surface 12a is formed to be larger (70% or more) than the diameter (100%) of the rim outer peripheral surface 22a, and the deposited layer Gb entering the rim inner peripheral gap 25 is an expansion surface. Even if it comes into contact with 12a, the amount of sinking of the rim portion 22 can be suppressed to a small extent, so that the unmanned exploration vehicle 1 can travel even on rough terrain under harsher conditions than expected.

また、膨張面12aは、正の曲率の滑らかな面で形成されており、リム内周隙間25に入り込む堆積層Gbが膨張面12aに接触したとしても、この接触抵抗の増加が抑制されるため、無人探査車1の走行性能が向上する。 Further, the expansion surface 12a is formed of a smooth surface having a positive curvature, and even if the deposited layer Gb entering the rim inner peripheral gap 25 comes into contact with the expansion surface 12a, this increase in contact resistance is suppressed. , The running performance of the unmanned rover 1 is improved.

また、リム内周隙間25に侵入した堆積層Gbは、車輪20の回転に連られて膨張面12aの上方に運ばれ、その後、重力によって、膨張面12aに落ち、その一部は、膨張面12aから中央部11に移送される。すなわち、車輪20の回転を継続(無人探査車1の走行を継続)することで、リム内隙間25に侵入した堆積層Gbを排出させるため、無人探査車1の走行性能が向上する。 Further, the deposited layer Gb that has entered the rim inner peripheral gap 25 is carried above the expansion surface 12a by being linked to the rotation of the wheel 20, and then falls to the expansion surface 12a by gravity, and a part of the accumulated layer Gb is moved to the expansion surface 12a. It is transferred from 12a to the central portion 11. That is, by continuing the rotation of the wheels 20 (continuing the running of the unmanned rover 1), the sedimentary layer Gb that has invaded the gap 25 in the rim is discharged, so that the running performance of the unmanned rover 1 is improved.

膨張部12は、中央部11よりも膨張してリム部22の内部に配置されているため、膨張部の内部の搭載スペースが増加すると共に、搭載スペースの無駄が省かれ、無人探査車1全体の幅方向寸法を短く出来るため、無人探査車1の小型軽量化が図られる。 Since the expansion portion 12 expands more than the central portion 11 and is arranged inside the rim portion 22, the mounting space inside the expansion portion is increased, the waste of the mounting space is eliminated, and the entire unmanned rover 1 is used. Since the width direction dimension of the unmanned rover 1 can be shortened, the size and weight of the unmanned rover 1 can be reduced.

無人探査車1が走行する時、接地体外周面34aは不整地Gに対して滑りを生じることになるが、不整地Gに接地している接地体外周面34aは、下方を向いて、下方に凸状(正の曲率)の球面で形成されており、接地体外周面34aが接地面から受ける抵抗を抑制するため、無人探査車1の走行性能が向上する。尚、無人探査車1が旋回する時は、接地体外周面34aは、横滑り(幅方向の滑り)を生じるが、その場合でも、前述同様の作用によって、接地体外周面34aが接地面から受ける抵抗を抑制する。 When the unmanned rover 1 travels, the ground contact body outer peripheral surface 34a will slip with respect to the rough ground G, but the ground contact body outer peripheral surface 34a grounded on the rough ground G faces downward and downwards. It is formed of a convex (positive curvature) spherical surface, and suppresses the resistance that the outer peripheral surface 34a of the ground contact body receives from the ground contact surface, so that the running performance of the unmanned rover 1 is improved. When the unmanned rover 1 turns, the ground contact patch outer peripheral surface 34a causes skidding (slip in the width direction), but even in that case, the ground contact body outer peripheral surface 34a receives from the ground contact surface by the same action as described above. Suppress resistance.

無人探査車1は、上下対称な形状に構成されているため、無人探査車1が上下逆さまにひっくり返ったとしても、元の姿勢に戻す必要が無く、そのままの状態で無人探査車1の走行を継続することが出来る。 Since the unmanned rover 1 is configured to have a vertically symmetrical shape, even if the unmanned rover 1 is turned upside down, it is not necessary to return it to its original posture, and the unmanned rover 1 remains as it is. You can continue running.

上下に一対の接地体外周面34aは、それぞれの接地体外周面34aを延長すると一つの球になる配置になっており、接地体外周面34aの径(球径)は、リム外周面22aの径(球径)と同一に形成されているため、接地体34は、車輪20と同等の走行性能を有することが可能となる。また、無人探査車1が上下逆さまにひっくり返ったとしても、本体部11が常に水平に保たれ、カメラ40の撮影向きも常に水平に保たれる。 The pair of upper and lower grounding body outer peripheral surfaces 34a are arranged to form one sphere when each grounding body outer peripheral surface 34a is extended, and the diameter (sphere diameter) of the grounding body outer peripheral surface 34a is the rim outer peripheral surface 22a. Since it is formed to have the same diameter (sphere diameter), the ground contact body 34 can have the same running performance as the wheel 20. Further, even if the unmanned rover 1 is turned upside down, the main body 11 is always kept horizontal, and the shooting direction of the camera 40 is always kept horizontal.

(付記)
尚、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
(Additional note)
The present invention is not limited to the above embodiment, and can be appropriately modified without departing from the spirit.

膨張面12aの形状については、例えば、楕円体の表面や角に丸を設けた円柱の表面等、滑らかな正の曲率の曲面であれば、部分球面状に限らない。同様に、リム外周面22aや接地体外周面34aの形状についても、例えば、楕円体の表面や角に丸を設けた円柱の表面等、滑らかな正の曲率の曲面であれば、部分球面状に限らない。また、膨張面12aの形状は、例えば、部分的に平面部を設けても良い。 The shape of the expansion surface 12a is not limited to a partially spherical shape as long as it is a curved surface having a smooth positive curvature, such as the surface of an ellipsoid or the surface of a cylinder having rounded corners. Similarly, the shape of the outer peripheral surface of the rim 22a and the outer peripheral surface of the ground contact body 34a is also partially spherical if it is a curved surface having a smooth positive curvature, such as the surface of an ellipsoid or the surface of a cylinder with rounded corners. Not limited to. Further, the shape of the expansion surface 12a may be partially provided with a flat surface, for example.

中央部11の表面形状については、例えば、切り欠きを有さない円柱の表面等、その上下方向の最大寸法が、膨張面12aの上下方向の寸法よりも小さければ良い。 Regarding the surface shape of the central portion 11, for example, the maximum dimension in the vertical direction thereof, such as the surface of a cylinder having no notch, may be smaller than the vertical dimension of the expansion surface 12a.

爪24の形状については、例えば、リム外周面22aに幅方向に延びる長穴を設けて、その壁面を爪24としても良い。 Regarding the shape of the claw 24, for example, an elongated hole extending in the width direction may be provided on the outer peripheral surface 22a of the rim, and the wall surface thereof may be the claw 24.

1…無人探査車、10…本体部、11…中央部、11a…中央上面、11b…中央下面、11c…中央前面、11d…中央後面、11e…カメラ保持穴、12…膨張部、12a…膨張面、12b…側面、13…モーター保持、14…駆動モーター、15…減速歯車、16…減速軸、17…軸受、18…バッテリー保持、18a…バッテリー、19…基板保持、19a…制御基板、20…車輪、21…ディスク部、22…リム部、22a…リム外周面、22b…リム内周面、23…スポーク部、24…爪、24a…爪外周面、25…リム内周隙間、31…脚、32…補助脚、33…接地体保持、34…接地体、34a…接地体外周面、34b…接地体内周面、40…カメラ 1 ... unmanned exploration vehicle, 10 ... main body, 11 ... central, 11a ... central upper surface, 11b ... central lower surface, 11c ... central front surface, 11d ... central rear surface, 11e ... camera holding hole, 12 ... expansion part, 12a ... expansion Surface, 12b ... Side, 13 ... Motor holding, 14 ... Drive motor, 15 ... Reduction gear, 16 ... Reduction shaft, 17 ... Bearing, 18 ... Battery holding, 18a ... Battery, 19 ... Board holding, 19a ... Control board, 20 ... Wheel, 21 ... Disc part, 22 ... Rim part, 22a ... Rim outer peripheral surface, 22b ... Rim inner peripheral surface, 23 ... Spoke part, 24 ... Claw, 24a ... Claw outer peripheral surface, 25 ... Rim inner peripheral gap, 31 ... Leg, 32 ... Auxiliary leg, 33 ... Ground body holding, 34 ... Ground body, 34a ... Ground body outer peripheral surface, 34b ... Ground body peripheral surface, 40 ... Camera

Claims (6)

本体部と、前記本体部の幅方向両端において同軸上に配置された一対の車輪と、前記車輪の外周面に設けられた複数の爪と、前記本体部の後方に設けられ、地面に接地する接地体と、を備える無人探査車であって、前記本体部の幅方向両端には、膨らみを持つ一対の膨張部が形成され、前記車輪は、前記膨張部を覆って配置されたことを特徴とする、無人探査車。 A main body, a pair of wheels coaxially arranged at both ends in the width direction of the main body, a plurality of claws provided on the outer peripheral surface of the wheels, and a plurality of claws provided behind the main body to touch the ground. An unmanned rover including a grounding body, characterized in that a pair of expanding portions having bulges are formed at both ends in the width direction of the main body portion, and the wheels are arranged so as to cover the expanding portions. An unmanned rover. 前記膨張部の外周面は、正の曲率の曲面で形成され、前記車輪の前記膨張部を覆っている領域の内周面は、前記膨張部の正の曲率の曲面に沿った、負の曲率の曲面で形成され、前記車輪の前記膨張部を覆っている領域の外周面は、前記車輪の前記膨張部を覆っている領域の内周面の前記負の曲率の曲面に沿った、正の曲率の曲面で形成されていることを特徴とする、請求項1に記載の無人探査車。 The outer peripheral surface of the expansion portion is formed by a curved surface having a positive curvature, and the inner peripheral surface of the region covering the expansion portion of the wheel has a negative curvature along the curved surface of the positive curvature of the expansion portion. The outer peripheral surface of the region covering the expansion portion of the wheel is formed by the curved surface of the wheel, and the outer peripheral surface of the region covering the expansion portion of the wheel is positive along the curved surface of the negative curvature of the inner peripheral surface of the region covering the expansion portion of the wheel. The unmanned exploration vehicle according to claim 1, wherein the unmanned exploration vehicle is formed of a curved surface of curvature. 前記接地体の外周面は、正の曲率の曲面で形成され、前記接地体の外周面が接地することを特徴とする、請求項1又は2に記載の無人探査車。 The unmanned rover according to claim 1 or 2, wherein the outer peripheral surface of the grounded body is formed of a curved surface having a positive curvature, and the outer peripheral surface of the grounded body is grounded. 前記本体部の外周面、及び、前記接地体は、上下対称に形成されていることを特徴とする、請求項1から3の何れか1項に記載の無人探査車。 The unmanned rover according to any one of claims 1 to 3, wherein the outer peripheral surface of the main body portion and the ground contact body are formed vertically symmetrically. 前記本体部にカメラが搭載され、前記接地体の径は、前記車輪の径と同一に形成されていることを特徴とする、請求項1から4の何れか1項に記載の無人探査車。 The unmanned rover according to any one of claims 1 to 4, wherein a camera is mounted on the main body portion, and the diameter of the ground contact body is formed to be the same as the diameter of the wheel. 前記車輪の回転軸に直交する断面において、前記膨張部の外周面は円に形成され、前記膨張部の外周面の径は、前記車輪の内周面の径に対して74パーセント以上に形成されていることを特徴とする、請求項1から5の何れか1項に記載の無人探査車。 In the cross section orthogonal to the rotation axis of the wheel, the outer peripheral surface of the expansion portion is formed in a circle, and the diameter of the outer peripheral surface of the expansion portion is formed to be 74% or more of the diameter of the inner peripheral surface of the wheel. The unmanned rover according to any one of claims 1 to 5, wherein the rover is characterized by the above.
JP2019071991A 2019-04-04 2019-04-04 unmanned rover Active JP7293527B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019071991A JP7293527B2 (en) 2019-04-04 2019-04-04 unmanned rover
JP2023016352A JP7456678B2 (en) 2019-04-04 2023-02-06 unmanned rover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019071991A JP7293527B2 (en) 2019-04-04 2019-04-04 unmanned rover

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023016352A Division JP7456678B2 (en) 2019-04-04 2023-02-06 unmanned rover

Publications (2)

Publication Number Publication Date
JP2020168970A true JP2020168970A (en) 2020-10-15
JP7293527B2 JP7293527B2 (en) 2023-06-20

Family

ID=72747162

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019071991A Active JP7293527B2 (en) 2019-04-04 2019-04-04 unmanned rover
JP2023016352A Active JP7456678B2 (en) 2019-04-04 2023-02-06 unmanned rover

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023016352A Active JP7456678B2 (en) 2019-04-04 2023-02-06 unmanned rover

Country Status (1)

Country Link
JP (2) JP7293527B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2599081A (en) * 2020-09-11 2022-03-30 Crover Ltd Device for moving through a granular medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1137966B (en) * 1958-02-05 1962-10-11 Ruediger Maria Graf Von Schlit Fuel tank for single-axle, two-wheeled vehicles
JP2007046566A (en) * 2005-08-11 2007-02-22 Ishigaki Co Ltd Drainage pump having driving tire
US20120273284A1 (en) * 2011-04-28 2012-11-01 Nesnas Issa A D Robotic two-wheeled vehicle
US20130062134A1 (en) * 2011-09-09 2013-03-14 Aaron PARNESS Terrain traversing device having a wheel with microhooks
WO2013059519A1 (en) * 2011-10-18 2013-04-25 Reconrobotics, Inc. Throwable surveillance robot

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19539238A1 (en) 1995-10-21 1997-04-24 Ecotex Gmbh Vertrieb Von Recyc Walking machine for moving foundation body
JP4369548B2 (en) 1999-02-22 2009-11-25 株式会社ブリヂストン Rubber wheel
CN202180936U (en) 2011-06-17 2012-04-04 重庆大学 Bionic lunar rover
CN105346731A (en) 2015-10-22 2016-02-24 哈尔滨工业大学 Active and auxiliary rocker engaging and disengaging mechanism of active suspension type mars rover
JP2017114187A (en) 2015-12-22 2017-06-29 株式会社D Art Tire structure body
WO2018029841A1 (en) 2016-08-10 2018-02-15 株式会社ispace Probe system, probe method, and probe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1137966B (en) * 1958-02-05 1962-10-11 Ruediger Maria Graf Von Schlit Fuel tank for single-axle, two-wheeled vehicles
JP2007046566A (en) * 2005-08-11 2007-02-22 Ishigaki Co Ltd Drainage pump having driving tire
US20120273284A1 (en) * 2011-04-28 2012-11-01 Nesnas Issa A D Robotic two-wheeled vehicle
US20130062134A1 (en) * 2011-09-09 2013-03-14 Aaron PARNESS Terrain traversing device having a wheel with microhooks
WO2013059519A1 (en) * 2011-10-18 2013-04-25 Reconrobotics, Inc. Throwable surveillance robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2599081A (en) * 2020-09-11 2022-03-30 Crover Ltd Device for moving through a granular medium
GB2599081B (en) * 2020-09-11 2022-12-28 Crover Ltd Device for moving through a granular medium

Also Published As

Publication number Publication date
JP7293527B2 (en) 2023-06-20
JP2023041971A (en) 2023-03-24
JP7456678B2 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
US3001601A (en) Vehicle with tiltable wheels
US4009761A (en) Skid steer vehicle
CN105035204A (en) Wheel-leg combined type intelligent mobile robot
CN106005094B (en) A kind of multi-functional full landform special purpose vehicle
JP7456678B2 (en) unmanned rover
TW200824932A (en) Amphibious vehicle
JPH09501630A (en) System to be applied to universal ground vehicles with traction means attached to articulated arms
RU2542827C1 (en) Land rover (versions)
JP2018094998A (en) Wheel structure and vehicle
JP5236810B2 (en) Dump truck
KR20140027681A (en) Amphibious personnel carrier running on land and water surfaces
CA2891411A1 (en) Wheel assembly and vehicle incorporating same
CN103693143B (en) There is the battery-driven car of shock absorbing apparatus
JP7115404B2 (en) unmanned rover
JPH10309901A (en) Off-road moving mechanism and designing method thereof
US20070132305A1 (en) Mudskipper wheels, tires and vehicles
WO2012069786A1 (en) Tracked or wheeled vehicle with skid
JP3212703U (en) Onshore / water / submersible propulsor
US10035550B2 (en) Track system
CN113639946B (en) Method for determining mechanism bumping and vibrating conditions during movement of patrol device
US8366128B2 (en) Heavy vehicle tire to draw machinery
RU124657U1 (en) ALL-TERRAIN VEHICLE
JP2020189555A (en) Motorcycle tire for travelling off road
JP5653767B2 (en) Armored car
WO2022074839A1 (en) Unmanned rover

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190504

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220901

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R150 Certificate of patent or registration of utility model

Ref document number: 7293527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150