JP2020168651A - COATED ARC WELDING ELECTRODE FOR 9% Ni STEEL WELDING - Google Patents

COATED ARC WELDING ELECTRODE FOR 9% Ni STEEL WELDING Download PDF

Info

Publication number
JP2020168651A
JP2020168651A JP2019071947A JP2019071947A JP2020168651A JP 2020168651 A JP2020168651 A JP 2020168651A JP 2019071947 A JP2019071947 A JP 2019071947A JP 2019071947 A JP2019071947 A JP 2019071947A JP 2020168651 A JP2020168651 A JP 2020168651A
Authority
JP
Japan
Prior art keywords
welding
core wire
metal
mass ratio
coating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019071947A
Other languages
Japanese (ja)
Other versions
JP7408295B2 (en
Inventor
寛規 水田
Hironori Mizuta
寛規 水田
飛史 行方
Takashi Namekata
飛史 行方
正明 鳥谷部
Masaaki Toriyabe
正明 鳥谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP2019071947A priority Critical patent/JP7408295B2/en
Publication of JP2020168651A publication Critical patent/JP2020168651A/en
Application granted granted Critical
Publication of JP7408295B2 publication Critical patent/JP7408295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

To provide a coated arc welding electrode for 9% Ni steel welding which has good welding workability in while attitude welding, and is excellent in a strength, a toughness, crack resistance and pore defect resistance of a weld metal.SOLUTION: A coated arc welding electrode for 9% Ni steel welding with a Ni-based alloy, which contains 95% by mass or more of Ni, as a core wire contains, in terms of core mass ratio, 0.1 to 0.3% of Si, 1.5 to 4.0% of Mn, 8 to 12% of Cr, 2.5 to 8.0% of Mo, 0.5 to 2.5% of Nb, 0.05 to 0.30% of Ta, 0.2 to 0.8% of Ti, and 0.5 to 1.7% of W. A coating agent comprises, in the total mass of the coating agent, 3 to 9% of Ni, 6 to 12% of the total of SiO2 conversion values, 11 to 18% of a metal fluoride, 13 to 21% of a metal carbonate, and 1 to 5% of the total of NaO2 conversion value and K2O conversion value.SELECTED DRAWING: None

Description

本発明は、主にLNG貯蔵タンクの建造に用いられる9%Ni鋼用の溶接に使用される被覆アーク溶接棒に関し、全姿勢溶接での溶接作業性が良好で、強度・靭性、耐割れ性及び耐気孔欠陥性に優れる溶接金属が得られる9%Ni鋼溶接用被覆アーク溶接棒に関する。 The present invention relates to a shielded metal arc welding rod used for welding 9% Ni steel mainly used for construction of an LNG storage tank, and has good welding workability in all-position welding, and has good strength, toughness, and crack resistance. The present invention relates to a shielded metal arc welding rod for welding 9% Ni steel, which can obtain a welded metal having excellent pore defect resistance.

LNG貯蔵タンクは、LNGを貯蔵するため、常にタンク内が−196℃になることから、低温靭性の優れたフェライト系合金鋼の9%Ni鋼が多く使用されている。溶接には、極低温において溶接金属の靭性が良好なNi基合金系の溶接材料が多く用いられている。 Since the LNG storage tank stores LNG, the temperature inside the tank is always -196 ° C. Therefore, 9% Ni steel, which is a ferritic alloy steel having excellent low temperature toughness, is often used. For welding, many Ni-based alloy-based welding materials having good toughness of the weld metal at extremely low temperatures are used.

近年、LNG貯蔵タンクの大型化に伴い、溶接金属が高強度・高靭性のものを要求され、従来技術による被覆アーク溶接棒では、要求スペックを十分に満足することができないという問題点があった。 In recent years, with the increase in size of LNG storage tanks, weld metals are required to have high strength and high toughness, and there has been a problem that the shielded metal arc welding rod by the conventional technique cannot sufficiently satisfy the required specifications. ..

例えば、特許文献1には、純Ni心線を用い、被覆剤中のTi、Al、Mg及び金属炭酸塩を規定することにより、溶接金属の機械性能に優れるとともに気孔欠陥の発生が少ない被覆アーク溶接棒が開示されている。しかし、耐気孔欠陥性は良好なものの被覆剤の金属炭酸塩が少ないので、下向溶接作業性は向上しているが、立向上進溶接での溶接作業性が不良になりやすいという問題点があった。 For example, in Patent Document 1, by using pure Ni core wire and defining Ti, Al, Mg and metal carbonate in the coating agent, the coated arc is excellent in mechanical performance of the weld metal and less likely to cause pore defects. Welding rods are disclosed. However, although the pore defect resistance is good, the metal carbonate of the coating material is small, so that the downward welding workability is improved, but there is a problem that the welding workability in the vertical improvement welding tends to be poor. there were.

また、特許文献2には、C、Nb+TaおよびWを添加することにより溶接金属の強度・靭性に優れる被覆アーク溶接棒が開示されている。しかし、C、Nb+TaおよびWを添加することで溶接金属の引張強さは確保できるものの靭性にばらつきが生じやすく、−196℃における衝撃性能が近年の要求スペックを満足しないという問題点があった。 Further, Patent Document 2 discloses a shielded metal arc welding rod having excellent strength and toughness of the weld metal by adding C, Nb + Ta and W. However, although the tensile strength of the weld metal can be secured by adding C, Nb + Ta and W, the toughness tends to vary, and there is a problem that the impact performance at -196 ° C does not satisfy the specifications required in recent years.

特開2016−043395号公報JP-A-2016-0433395 特開2006−272432号公報Japanese Unexamined Patent Publication No. 2006-272432

そこで本発明は、上述した問題点に鑑みて案出されたものであり、全姿勢溶接での溶接作業性、水平すみ肉溶接及び立向上進溶接において溶接作業性が良好で、耐割れ性、耐気孔欠陥性及び機械性能、特に低温での靭性に優れた溶接金属が安定して得られる9%Ni鋼溶接用被覆アーク溶接棒を提供することを目的とする。 Therefore, the present invention has been devised in view of the above-mentioned problems, and has good welding workability in full-position welding, horizontal fillet welding, and vertical lead-up welding, and crack resistance. It is an object of the present invention to provide a shielded metal arc welding rod for welding 9% Ni steel, which can stably obtain a weld metal having excellent pore defect resistance and mechanical performance, particularly toughness at low temperature.

本発明者らは、前記課題を解決するために溶接金属の強度・靭性の向上及び耐割れ性・耐気孔欠陥性の向上、全姿勢溶接での溶接作業性を改善すべく9%Ni鋼溶接用被覆アーク溶接棒の成分組成について種々検討を行った。その結果、溶接金属の目標の機械性能、特に低温での靭性を満足するためにはNiを95質量%以上含むNi基合金を心線とし、Ni、Cr、Mo、Nb、Wのバランスの取れた適正量を添加する必要があることを見出した。 In order to solve the above problems, the present inventors have improved the strength and toughness of the weld metal, the crack resistance and the pore defect resistance, and 9% Ni steel welding in order to improve the welding workability in all-position welding. Various studies were conducted on the component composition of the shielded metal arc welding rod. As a result, in order to satisfy the target mechanical performance of the weld metal, especially the toughness at low temperature, a Ni-based alloy containing 95% by mass or more of Ni is used as the core wire, and Ni, Cr, Mo, Nb and W are balanced. It was found that it was necessary to add an appropriate amount.

また、耐割れ性及び耐気孔欠陥性を向上させるためには、Si、Mnのバランスの取れた適正量を添加する必要があることを見出した。全姿勢溶接での溶接作業性を向上させるためには、SiO2、金属弗化物、金属炭酸塩を適正量添加すると効果的であることを見出した。 Further, it has been found that it is necessary to add an appropriate amount of Si and Mn in a well-balanced manner in order to improve the crack resistance and the pore defect resistance. It has been found that it is effective to add an appropriate amount of SiO 2 , metal fluoride, and metal carbonate in order to improve the welding workability in all-position welding.

本発明は、以上の知見よりなされたもので、その要旨とするところは次の通りである。 The present invention has been made based on the above findings, and the gist thereof is as follows.

第1発明に係る9%Ni鋼溶接用被覆アーク溶接棒において、Niを95質量%以上含むNi基合金を心線とし、前記心線と被覆剤の一方または両方の合計で、下記式に示す心線質量比で、Si:0.1〜0.3%、Mn:1.5〜4.0%、Cr:8〜12%、Mo:2.5〜8.0%、Nb:0.5〜2.5%、Ta:0.05〜0.30%、Ti:0.2〜0.8%、W:0.5〜1.7%を含有し、前記被覆剤は、当該被覆剤全質量に対する質量%で、Ni:3〜9%、Si酸化物のSiO2換算値の合計:6〜12%、金属弗化物:11〜18%、金属炭酸塩:13〜21%、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計:1〜5%を含有し、残部が塗装剤、前記心線中のFe分、被覆剤の鉄合金のFe分及び不可避不純物からなることを特徴とする。
心線質量比=心線中の含有量%+被覆剤中の含有量%×被覆率%/100・・・式
(但し、心線中の含有量%は心線全質量に対する質量%、被覆剤中の含有量%は被覆剤全質量に対する質量%、被覆率は、当該9%Ni鋼溶接用被覆アーク溶接棒全質量に対する前記被覆剤の質量%)
In the 9% Ni steel welding coated arc welding rod according to the first invention, a Ni-based alloy containing 95% by mass or more of Ni is used as a core wire, and the total of one or both of the core wire and the coating agent is shown in the following formula. In terms of core mass ratio, Si: 0.1 to 0.3%, Mn: 1.5 to 4.0%, Cr: 8 to 12%, Mo: 2.5 to 8.0%, Nb: 0. It contains 5 to 2.5%, Ta: 0.05 to 0.30%, Ti: 0.2 to 0.8%, W: 0.5 to 1.7%, and the coating agent is the coating. Ni: 3-9%, total SiO 2 conversion value of Si oxide: 6-12%, metal fluoride: 11-18%, metal carbonate: 13-21%, Na in mass% with respect to the total mass of the agent. Total of Na 2 O conversion value and K 2 O conversion value of compound and K compound: 1 to 5%, the balance is coating agent, Fe content in the core wire, Fe content of iron alloy of coating agent and inevitable It is characterized by being composed of impurities.
Core wire mass ratio = content% in the core wire + content% in the coating agent x coverage rate% / 100 ... (However, the content% in the core wire is mass% with respect to the total mass of the core wire, and the coating The content% in the agent is mass% with respect to the total mass of the coating agent, and the coverage is the mass% of the coating agent with respect to the total mass of the 9% Ni steel welding coated arc welding rod).

本発明の9%Ni鋼溶接用被覆アーク溶接棒によれば、全姿勢溶接での溶接作業性、水平すみ肉溶接及び立向上進溶接において溶接作業性が良好で、耐割れ性、耐気孔欠陥性及び機械性能、特に低温での靭性に優れた溶接金属が安定して得られるなど溶接部の品質向上を図ることができる。 According to the 9% Ni steel welding coated arc welding rod of the present invention, the welding workability in all-position welding, horizontal fillet welding and vertical improvement welding are good, and crack resistance and pore defect resistance are good. It is possible to improve the quality of the welded portion by stably obtaining a welded metal having excellent properties and mechanical performance, particularly toughness at low temperature.

本発明の実施例に用いた溶接試験板を示す図である。It is a figure which shows the welding test plate used in the Example of this invention.

本発明は、心線及び被覆剤の各成分それぞれの単独の効果及び共存による相乗効果によりなし得たものであるが、以下にそれぞれの各成分の添加理由および分量の限定理由を述べる。なお以下に述べる各成分量の%とは心線質量比のことをいい、心線と被覆剤の一方または両方の含有量の質量%に対し次式で計算される。但し、同式中の心線含有量は心線全質量に対する割合を意味し、被覆剤中の配合比とは被覆剤全質量に対する割合を意味する。さらに被覆率とは溶接棒全質量に対して被覆剤の占める割合を意味する。
心線質量比=心線中の含有量%+被覆剤中の含有量%×被覆率%/100・・・式
The present invention has been achieved by the independent effect of each component of the core wire and the coating agent and the synergistic effect due to coexistence. The reason for adding each component and the reason for limiting the amount of each component will be described below. The% of each component amount described below refers to the mass ratio of the core wire, and is calculated by the following formula with respect to the mass% of the content of one or both of the core wire and the coating agent. However, the core wire content in the same formula means the ratio to the total mass of the core wire, and the compounding ratio in the coating agent means the ratio to the total mass of the coating agent. Further, the coverage means the ratio of the coating agent to the total mass of the welding rod.
Core wire mass ratio = content% in core wire + content% in coating agent x coverage rate% / 100 ...

[心線質量比でSi:0.1〜0.3%]
Siは、溶着金属中の耐気孔欠陥性を向上させるために添加する。心線質量比でSiが0.1%未満では、その効果が十分に得られず、気孔欠陥が発生しやすい。一方、心線質量比でSiが0.3%を超えると、割れが発生しやすくなる。従って、心線質量比でSiは0.1〜0.3%とする。なお、Siは、心線、金属Si、Fe−Si、Fe−Si−Mn等から添加できる。
[Si: 0.1 to 0.3% by core mass ratio]
Si is added to improve the pore defect resistance in the weld metal. If Si is less than 0.1% by mass ratio of the core wire, the effect cannot be sufficiently obtained and pore defects are likely to occur. On the other hand, if Si exceeds 0.3% in terms of core mass ratio, cracks are likely to occur. Therefore, Si is 0.1 to 0.3% in terms of core mass ratio. In addition, Si can be added from core wire, metal Si, Fe-Si, Fe-Si-Mn and the like.

[心線質量比でMn:1.5〜4.0%]
Mnは、溶接金属の耐割れ性を向上させるために添加する。心線質量比でMnが1.5%未満であると、割れが発生しやすくなる。一方、心線質量比でMnが4.0%を超えると、溶接金属の靱性が低下する。従って、心線質量比でMnは1.5〜4.0%とする。なお、Mnは、心線、金属Mn、Fe−Mn、Fe−Si−Mn等から添加できる。
[Mn: 1.5 to 4.0% by core mass ratio]
Mn is added to improve the crack resistance of the weld metal. If Mn is less than 1.5% in terms of core mass ratio, cracks are likely to occur. On the other hand, when Mn exceeds 4.0% in terms of core mass ratio, the toughness of the weld metal decreases. Therefore, Mn is set to 1.5 to 4.0% in terms of core mass ratio. Mn can be added from a core wire, a metal Mn, Fe-Mn, Fe-Si-Mn, or the like.

[心線質量比でCr:8〜12%]
Crは、溶接金属の引張強さを向上させる目的で添加する。心線質量比でCrが8%未満では、溶接金属の引張強さが低下する。一方、心線質量比でCrが12%を超えると溶接金属の靱性が低下する。従って、心線質量比でCrは8〜12%とする。なお、Crは、心線、金属Cr、Fe−Cr等の合金粉末から添加できる。
[Cr: 8-12% by core mass ratio]
Cr is added for the purpose of improving the tensile strength of the weld metal. If Cr is less than 8% in terms of core mass ratio, the tensile strength of the weld metal decreases. On the other hand, if Cr exceeds 12% in terms of core mass ratio, the toughness of the weld metal decreases. Therefore, Cr is set to 8 to 12% in terms of core mass ratio. Cr can be added from alloy powders such as core wire, metal Cr, and Fe—Cr.

[心線質量比でMo:2.5〜8.0%]
Moは、溶接金属の引張強さを向上させる目的で添加する。心線質量比でMoが2.5%未満では、溶接金属の引張強さが低下する。一方、心線質量比でMoが8.0%を超えると、溶接金属の靱性が低下する。従って、心線質量比でMoは2.5〜8.0%とする。なお、Moは、心線、金属Mo、Fe−Mo等から添加できる。
[Mo: 2.5 to 8.0% by core mass ratio]
Mo is added for the purpose of improving the tensile strength of the weld metal. If Mo is less than 2.5% in terms of core mass ratio, the tensile strength of the weld metal decreases. On the other hand, when Mo exceeds 8.0% in terms of core mass ratio, the toughness of the weld metal decreases. Therefore, Mo is 2.5 to 8.0% in terms of core mass ratio. Mo can be added from a core wire, metal Mo, Fe-Mo, or the like.

[心線質量比でNb:0.5〜2.5%]
Nbは溶接金属の引張強さを向上させる目的で添加する。心線質量比でNbが0.5%未満では、溶接金属の引張強さが低下する。一方、心線質量比でNbが2.5%を超えると、溶接金属の靱性が低下する。従って、心線質量比でNbは0.5〜2.5%とする。なお、Nbは、心線、Fe−Nb等の合金粉から添加できる。
[Nb: 0.5 to 2.5% by core mass ratio]
Nb is added for the purpose of improving the tensile strength of the weld metal. When Nb is less than 0.5% in terms of core mass ratio, the tensile strength of the weld metal decreases. On the other hand, when Nb exceeds 2.5% in terms of core mass ratio, the toughness of the weld metal decreases. Therefore, Nb is set to 0.5 to 2.5% in terms of core mass ratio. Nb can be added from an alloy powder such as a core wire or Fe-Nb.

[心線質量比でTa:0.05〜0.30%]
Taは、溶接金属の引張強さを向上させる目的で添加する。心線質量比でTaが0.05%未満では、溶接金属の引張強さが低下する。一方、心線質量比でTaが0.30%を超えると、溶接金属の靱性が低下する。従って、心線質量比でTaは0.05〜0.30%とする。なお、Taは、心線、金属Ta、Nb−Ta等から添加できる。
[Ta: 0.05 to 0.30% by core mass ratio]
Ta is added for the purpose of improving the tensile strength of the weld metal. When Ta is less than 0.05% in terms of core mass ratio, the tensile strength of the weld metal decreases. On the other hand, when Ta exceeds 0.30% in terms of core mass ratio, the toughness of the weld metal decreases. Therefore, Ta is set to 0.05 to 0.30% in terms of core mass ratio. In addition, Ta can be added from a core wire, metal Ta, Nb-Ta and the like.

[心線質量比でTi:0.2〜0.8%]
Tiは、合金に含まれる過剰な酸素を除去させる目的で添加し、溶接金属の引張強さ及び靱性を安定させる目的で添加する。心線質量比でTiが0.2%未満では、その効果は十分に得られず、気孔欠陥が発生しやすくなる。一方、心線質量比でTaが0.8%を超えると、溶接金属中に金属酸化物として多量に分布し、強度及び靱性が低下する。従って、心線質量比でTiは0.2〜0.8%とする。なお、Tiは、心線、金属Ti、Fe−Ti等から添加できる。
[Ti: 0.2-0.8% by core mass ratio]
Ti is added for the purpose of removing excess oxygen contained in the alloy, and is added for the purpose of stabilizing the tensile strength and toughness of the weld metal. If Ti is less than 0.2% by mass ratio of the core wire, the effect is not sufficiently obtained and pore defects are likely to occur. On the other hand, when Ta exceeds 0.8% in terms of core mass ratio, a large amount of metal oxide is distributed in the weld metal, and the strength and toughness are lowered. Therefore, Ti is set to 0.2 to 0.8% in terms of core mass ratio. Ti can be added from a core wire, metal Ti, Fe-Ti, or the like.

[心線質量比でW:0.5〜1.7%]
Wは、溶接金属の靱性を低下させずに引張強さを改善する目的で添加する。心線質量比でWが0.5%未満であると、溶接金属の安定した強度及び靭性が得られない場合がある。一方、心線質量比でWが1.7%を超えると、溶接金属の強度が高くなりすぎ、靭性が低下する。従って、心線質量比でWは0.5〜1.7%とする。なお、Wは、心線、金属W、WC等から添加できる。
[W: 0.5 to 1.7% by core mass ratio]
W is added for the purpose of improving the tensile strength without lowering the toughness of the weld metal. If W is less than 0.5% in terms of core mass ratio, stable strength and toughness of the weld metal may not be obtained. On the other hand, when W exceeds 1.7% in terms of core mass ratio, the strength of the weld metal becomes too high and the toughness decreases. Therefore, W is 0.5 to 1.7% in terms of core mass ratio. W can be added from a core wire, metal W, WC, or the like.

被覆剤中に含有する成分組成は、被覆剤全質量に対する質量%で、以下の通りに含有する。 The component composition contained in the coating agent is mass% with respect to the total mass of the coating agent, and is contained as follows.

[Ni:3〜9%]
Niは、溶接金属を構成する主元素であり、安定したオーステナイト組織を形成させ溶接金属の強度及び極低温での靱性を確保する目的で添加する。Niが3%未満であると、その効果が得られず溶接金属の低温靱性が低下する。一方、Niが9%を超えると、溶接金属中のNi量が過剰に多くなり、強度及び靱性が低下する。従って、Niは3〜9%とする。なお、Niは、金属Ni、Fe−Ni、Ni−Mg等の合金粉末から添加できる。
[Ni: 3-9%]
Ni is a main element constituting the weld metal, and is added for the purpose of forming a stable austenite structure and ensuring the strength of the weld metal and the toughness at extremely low temperatures. If Ni is less than 3%, the effect cannot be obtained and the low temperature toughness of the weld metal is lowered. On the other hand, when Ni exceeds 9%, the amount of Ni in the weld metal becomes excessively large, and the strength and toughness decrease. Therefore, Ni is set to 3 to 9%. Ni can be added from alloy powders such as metallic Ni, Fe-Ni, and Ni-Mg.

[Si酸化物のSiO2換算値の合計:6〜12%]
Si酸化物は、スラグ剥離性を向上させる目的で添加する。Si酸化物のSiO2換算値の合計が6%未満では、アークが不安定になり、スラグ剥離性が不良となる。一方、Si酸化物のSiO2換算値の合計が12%を超えると、溶融スラグの融点が過剰に下がるため、立向姿勢溶接でメタル垂れが発生しやすく、ビード形状が不良となる。従って、Si酸化物は6〜12%とする。なお、Si酸化物は、珪砂、長石、水ガラス等から添加できる。
[Total SiO 2 conversion value of Si oxide: 6 to 12%]
Si oxide is added for the purpose of improving slag exfoliation property. If the total SiO 2 conversion value of the Si oxide is less than 6%, the arc becomes unstable and the slag peeling property becomes poor. On the other hand, when the total SiO 2 conversion value of the Si oxide exceeds 12%, the melting point of the molten slag is excessively lowered, so that metal sagging is likely to occur in the vertical posture welding, and the bead shape becomes poor. Therefore, the Si oxide is 6 to 12%. The Si oxide can be added from silica sand, feldspar, water glass and the like.

[金属弗化物:11〜18%]
金属弗化物は、アークの吹付け及びスラグの粘性、流動性を適正にし、溶接作業性を向上させる目的で添加する。金属弗化物が11%未満では、その効果が得られずスラグ剥離性及びビード形状が不良となる。一方、金属弗化物が18%以上を超えると、アークが不安定になりスパッタ発生量が多く、ビード形状も不良となる。さらに立向上進溶接でメタル垂れが発生しやすくなる。従って、金属弗化物は11〜18%とする。なお、金属弗化物は、蛍石、弗化バリウム、弗化マグネシウム、弗化アルミニウム等から添加できる。
[Metal fluoride: 11-18%]
The metal fluoride is added for the purpose of spraying the arc, optimizing the viscosity and fluidity of the slag, and improving the welding workability. If the amount of the metal fluoride is less than 11%, the effect cannot be obtained and the slag peelability and the bead shape are poor. On the other hand, if the amount of the metal fluoride exceeds 18%, the arc becomes unstable, the amount of spatter generated is large, and the bead shape becomes poor. Furthermore, metal sagging is likely to occur in vertical welding. Therefore, the metal fluoride content is 11-18%. The metal fluoride can be added from fluorite, barium fluoride, magnesium fluoride, aluminum fluoride and the like.

[金属炭酸塩:13〜21%]
金属炭酸塩は、金属弗化物同様にアークの吹付け及びスラグの粘性、流動性を適正にし、溶接作業性を向上させる目的で添加する。金属炭酸塩が13%未満では、その効果が得られずアークが不安定となり、ビード形状が不良となる。一方、金属炭酸塩が21%を超えると、アークが不安定で、スパッタ発生量が多くなり、スラグ剥離性及びビード形状が不良となる。さらに立向上進溶接でメタル垂れが発生しやすくなる。従って、金属炭酸塩は13〜21%とする。なお、金属炭酸塩は、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、炭酸マンガン、炭酸リチウム等から添加できる。
[Metal carbonate: 13-21%]
Like the metal fluoride, the metal carbonate is added for the purpose of spraying the arc, optimizing the viscosity and fluidity of the slag, and improving the welding workability. If the amount of metal carbonate is less than 13%, the effect cannot be obtained, the arc becomes unstable, and the bead shape becomes poor. On the other hand, if the amount of metal carbonate exceeds 21%, the arc is unstable, the amount of spatter generated increases, and the slag peelability and bead shape become poor. Furthermore, metal sagging is likely to occur in vertical welding. Therefore, the metal carbonate is set to 13 to 21%. The metal carbonate can be added from calcium carbonate, magnesium carbonate, barium carbonate, manganese carbonate, lithium carbonate and the like.

[Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計:1〜5%]
Na化合物及びK化合物は、アーク安定性を改善する目的で添加する。Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が1%未満では、アークが不安定になりビード形状が不良となる。一方、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が5%を超えると、アークが不安定で、スパッタ発生量が多くなる。また、再アーク性が低下する。従って、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計は1〜5%とする。なお、Na化合物及びK化合物は、水ガラス中の珪酸ソーダ、珪酸カリウム、長石等から添加できる。
[Total of Na 2 O conversion value and K 2 O conversion value of Na compound and K compound: 1 to 5%]
Na compound and K compound are added for the purpose of improving arc stability. If the total of the Na 2 O conversion value and the K 2 O conversion value of the Na compound and the K compound is less than 1%, the arc becomes unstable and the bead shape becomes poor. On the other hand, when the total of the Na 2 O conversion value and the K 2 O conversion value of the Na compound and the K compound exceeds 5%, the arc is unstable and the amount of spatter generated increases. In addition, the re-arcability is reduced. Therefore, the total of the Na 2 O conversion value and the K 2 O conversion value of the Na compound and the K compound is 1 to 5%. The Na compound and the K compound can be added from sodium silicate, potassium silicate, feldspar and the like in water glass.

以上、本発明の9%Ni鋼溶接用被覆アーク溶接棒の構成要件の限定理由を述べたが、残部は塗装剤、心線中のFe分、被覆剤の鉄合金のFe分及び不可避不純物である。また、不可避不純物であるC、P及びSは靭性及び耐割れ性からできるだけ低いことが好ましく、Cは0.05以下が好ましい。 The reasons for limiting the constituent requirements of the 9% Ni steel welding coated arc welding rod of the present invention have been described above, but the rest is the coating agent, Fe content in the core wire, Fe content of the iron alloy of the coating agent, and unavoidable impurities. is there. Further, the unavoidable impurities C, P and S are preferably as low as possible from the viewpoint of toughness and crack resistance, and C is preferably 0.05 or less.

被覆アーク溶接棒の製造方法は、心線と配合・混合した被覆剤を準備してから被覆剤に固着剤(珪素カリ及び珪酸ソーダの水溶液)を添加しながら湿式混合を行い、心線周囲に被覆剤を塗装し、さらに塗装後150〜450℃で約1〜3時間の乾燥・焼成を行うことにより製造することができる。 The method for manufacturing a shielded metal arc welding rod is to prepare a coating agent that is mixed and mixed with the core wire, and then perform wet mixing while adding a fixing agent (an aqueous solution of silicon potassium and sodium silicate) to the coating agent to surround the core wire. It can be produced by coating a coating agent and then drying and firing at 150 to 450 ° C. for about 1 to 3 hours after coating.

本発明の効果を実施例により具体的に説明する。 The effects of the present invention will be specifically described with reference to Examples.

表1に示す直径4.0mm、長さ350mmのNiを95質量%以上含むNi基合金を心線に、表2及び表3に示す被覆剤を被覆率45〜50%で塗装後、乾燥した9%Ni鋼溶接用被覆アーク溶接棒を試作した。 A Ni-based alloy containing 95% by mass or more of Ni having a diameter of 4.0 mm and a length of 350 mm shown in Table 1 was applied to the core wire, and the coating agents shown in Tables 2 and 3 were coated with a coverage ratio of 45 to 50% and then dried. A shielded metal arc welding rod for 9% Ni steel welding was prototyped.

Figure 2020168651
Figure 2020168651

Figure 2020168651
Figure 2020168651

Figure 2020168651
Figure 2020168651

これら試作溶接棒を使用し、溶接作業性、溶接欠陥、溶接金属の機械的性能について調査した。 Using these prototype welding rods, welding workability, welding defects, and mechanical performance of weld metal were investigated.

溶接作業性の評価は、板厚9mm、幅100mmの長さ450mmのJIS G 3114 SM490をT字に組んだ試験体を用い、表4に示す溶接条件で、水平すみ肉溶接及び立向上進溶接を行いアーク安定性、スラグ剥離性、ビード形状、スパッタ発生量及びメタル垂れの有無を目視確認で調査した。 Welding workability was evaluated by using a test piece of JIS G 3114 SM490 with a plate thickness of 9 mm, a width of 100 mm and a length of 450 mm assembled in a T shape, and under the welding conditions shown in Table 4, horizontal fillet welding and vertical lead welding. The arc stability, slag peelability, bead shape, spatter generation amount, and presence or absence of metal sagging were visually confirmed.

Figure 2020168651
Figure 2020168651

溶接金属の機械的性能の評価は、板厚19mmのJIS G 3127 SL9N590に規定される鋼板を用い、AWS A5.11 ENiCrMo−6に準じて溶接金属試験を行い、溶接欠陥の有無をX線透過試験調査した後、引張試験、衝撃試験調査及び耐割れ性調査を行った。 For the evaluation of the mechanical performance of the weld metal, a weld metal test is performed according to AWS A5.11 ENICrMo-6 using a steel plate specified in JIS G 3127 SL9N590 with a plate thickness of 19 mm, and the presence or absence of welding defects is transmitted by X-ray. After the test investigation, a tensile test, an impact test investigation and a crack resistance investigation were carried out.

引張試験の評価は、引張強さが690MPa以上を良好とした。また、靭性の評価は、試験温度−196℃で繰り返し3回シャルピー衝撃試験を行い、吸収エネルギーの平均値が70J以上を良好とした。 In the evaluation of the tensile test, a tensile strength of 690 MPa or more was considered to be good. The toughness was evaluated by repeating the Charpy impact test three times at a test temperature of -196 ° C., and the average value of absorbed energy was 70 J or more.

X線透過試験は、スラグ巻き込み、ブローホール、溶け込み不良が認められた場合、その欠陥の種類を表記し、継手溶接長500mmにおいて上記欠陥が認められない場合は無欠陥とした。 In the X-ray transmission test, when slag entrainment, blow hole, and poor penetration were found, the type of the defect was indicated, and when the above defect was not found at the joint welding length of 500 mm, it was regarded as no defect.

耐割れ性調査は、図1に示すように、板厚26mm、40°の開口角を有する9%Ni鋼に深さ18mmの溝2を形成し、ストロングバックにより拘束を行い、表4に示す溶接条件にて鋼板を横向姿勢で500mm溶接して溝2に試験ビード1を形成し、ビード表面から約1mmずつ3回研削して浸透探傷試験を行い、割れの有無を判定した。 In the crack resistance investigation, as shown in FIG. 1, a groove 2 having a depth of 18 mm was formed in 9% Ni steel having a plate thickness of 26 mm and an opening angle of 40 °, restrained by a strong back, and shown in Table 4. Under the welding conditions, the steel plate was welded 500 mm in a horizontal position to form a test bead 1 in the groove 2, and the bead surface was ground about 1 mm three times to perform a penetrant inspection test to determine the presence or absence of cracks.

Figure 2020168651
Figure 2020168651

Figure 2020168651
Figure 2020168651

表5及び表6中、溶接棒No.1〜No.15が本発明例、溶接棒No.16〜No.31は比較例である。 In Tables 5 and 6, the welding rod No. 1-No. 15 is an example of the present invention, welding rod No. 16-No. 31 is a comparative example.

本発明例である溶接棒No.1〜No.15は、心線質量比においてSi、Mn、Cr、Mo、Nb、Ta、Ti及びWが適正で、被覆剤は、Ni、Si酸化物のSiO2換算値の合計、金属弗化物、金属炭酸塩、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が適正であるので、アーク安定性が良好で、スパッタ発生量が少なく、スラグ剥離性に優れ、ビード形状が良好で、全姿勢溶接の溶接作業性、水平すみ肉溶接及び立向上進溶接において良好な溶接作業性が得られた。また、溶接欠陥が無く、溶接金属の引張強さ及び吸収エネルギーも良好で極めて満足な結果であった。 Welding rod No. which is an example of the present invention. 1-No. In No. 15, Si, Mn, Cr, Mo, Nb, Ta, Ti and W are appropriate in terms of core wire mass ratio, and the coating agent is the total of SiO 2 conversion values of Ni and Si oxides, metal fluoride and metal carbon dioxide. Since the sum of the Na 2 O conversion value and the K 2 O conversion value of the salt, Na compound and K compound is appropriate, the arc stability is good, the amount of spatter generated is small, the slag peelability is excellent, and the bead shape is good. As a result, good welding workability was obtained in all-position welding, horizontal fillet welding, and vertical lead-up welding. In addition, there were no welding defects, and the tensile strength and absorbed energy of the weld metal were also good, resulting in extremely satisfactory results.

比較例中溶接棒No.16は、心線質量比でSiが少ないので、ブローホールが発生した。また、心線質量比でMnが少ないので、割れが発生した。 Welding rod No. in the comparative example. In No. 16, since Si was small in the core wire mass ratio, blow holes were generated. Further, since Mn was small in the core wire mass ratio, cracks occurred.

溶接棒No.17は、心線質量比でSiが多いので、割れが発生した。また、心線質量比でMnが多いので、溶接金属の吸収エネルギーが低かった。 Welding rod No. In No. 17, since the core wire mass ratio was high in Si, cracks occurred. Further, since Mn was large in the core wire mass ratio, the absorbed energy of the weld metal was low.

溶接棒No.18は、心線質量比でCrが少ないので、溶接金属の引張強さが低かった。また、Si酸化物のSiO2換算値の合計が少ないので、アークが不安定になり、スラグ剥離性が不良であった。 Welding rod No. In No. 18, since Cr was small in the core wire mass ratio, the tensile strength of the weld metal was low. Further, since the total value of Si oxides converted to SiO 2 is small, the arc becomes unstable and the slag peeling property is poor.

溶接棒No.19は、心線質量比でCrが多いので、溶接金属の吸収エネルギーが低かった。また、Si酸化物のSiO2換算値の合計が多いので、立向上進溶接においてメタル垂れが発生し、ビード形状が不良であった。 Welding rod No. In No. 19, since the core wire mass ratio had a large amount of Cr, the absorbed energy of the weld metal was low. In addition, since the total value of Si oxide in terms of SiO 2 is large, metal sagging occurs in the vertical welding, and the bead shape is poor.

溶接棒No.20は、心線質量比でMoが少ないので、溶接金属の引張強さが低かった。また、金属弗化物が少ないので、スラグ剥離及びビード形状が不良となった。さらにブローホールが発生した。 Welding rod No. In No. 20, since Mo was small in the core wire mass ratio, the tensile strength of the weld metal was low. In addition, since the amount of metal fluoride was small, the slag peeling and the bead shape were poor. Further blow holes occurred.

溶接棒No.21は、心線質量比でMoが多いので、溶接金属の吸収エネルギーが低かった。また、金属弗化物が多いので、アークが不安定で、スパッタ発生量が多くなった。さらに、ビード形状が不良となり、立向上進溶接においてメタル垂れが発生した。 Welding rod No. In No. 21, since the core wire mass ratio had a large amount of Mo, the absorbed energy of the weld metal was low. In addition, since there are many metal fluorides, the arc is unstable and the amount of spatter generated is large. Further, the bead shape became defective, and metal sagging occurred in the vertical welding.

溶接棒No.22は、心線質量比でNbが少ないので、溶接金属の引張強さが低かった。また、金属炭酸塩が少ないので、アークが不安定となり、ビード形状が不良であった。 Welding rod No. In No. 22, the tensile strength of the weld metal was low because Nb was small in terms of the core mass ratio. In addition, since the amount of metal carbonate was small, the arc became unstable and the bead shape was poor.

溶接棒No.23は、心線質量比でNbが多いので、溶接金属の吸収エネルギーが低かった。また、金属炭酸塩が多いので、アークが不安定で、スパッタ発生量が多かった。さらにスラグ剥離及びビード形状が不良となり、立向上進溶接においてメタル垂れが発生した。 Welding rod No. In No. 23, since the core wire mass ratio had a large amount of Nb, the absorbed energy of the weld metal was low. In addition, since the amount of metal carbonate was large, the arc was unstable and the amount of spatter generated was large. Furthermore, the slag peeling and the bead shape became defective, and metal sagging occurred in the vertical welding.

溶接棒No.24は、心線質量比でTaが少ないので、溶接金属の引張強さが低くなった。また、Na化合物及びK化合物のNa換算値及びK換算値の合計が少ないので、アークが不安定で、ビード形状が不良であった。 Welding rod No. In No. 24, the tensile strength of the weld metal was low because Ta was small in terms of the core mass ratio. Further, since the total of the Na conversion value and the K conversion value of the Na compound and the K compound was small, the arc was unstable and the bead shape was poor.

溶接棒No.25は、心線質量比でTaが多いので、溶接金属の吸収エネルギーが低かった。また、Na化合物及びK化合物のNa換算値及びK換算値の合計が多いので、アークが不安定で、スパッタ発生量が多かった。 Welding rod No. In No. 25, since the core wire mass ratio had a large amount of Ta, the absorbed energy of the weld metal was low. Further, since the total of the Na conversion value and the K conversion value of the Na compound and the K compound was large, the arc was unstable and the amount of sputtering generated was large.

溶接棒No.26は、心線質量比でTiが少ないので、溶接金属の引張強さ及び吸収エネルギーが低く、ブローホールが発生した。 Welding rod No. In No. 26, since Ti was small in the core wire mass ratio, the tensile strength and absorbed energy of the weld metal were low, and blow holes were generated.

溶接棒No.27は、心線質量比でTiが多いので、溶接金属の引張強さ及び吸収エネルギーが低かった。 Welding rod No. In No. 27, since the core wire mass ratio was high in Ti, the tensile strength and absorbed energy of the weld metal were low.

溶接棒No.28は、心線質量比でWが少ないので、溶接金属の引張強さ及び吸収エネルギーを改善する効果は得られなかった。 Welding rod No. Since W was small in the core wire mass ratio of No. 28, the effect of improving the tensile strength and absorbed energy of the weld metal could not be obtained.

溶接棒No.29は、心線質量比でWが多いので、溶接金属の引張強さが高くなりすぎ、吸収エネルギーが低かった。 Welding rod No. In No. 29, since the core wire mass ratio had a large amount of W, the tensile strength of the weld metal was too high and the absorbed energy was low.

溶接棒No.30は、心線質量比でNiが少ないので、溶接金属の吸収エネルギーが低かった。 Welding rod No. No. 30 had a low core wire mass ratio and a small amount of Ni, so that the absorbed energy of the weld metal was low.

溶接棒No.31は、心線質量比でNiが多いので、溶接金属の引張強さ及び靱性が低かった。 Welding rod No. In No. 31, since the core wire mass ratio was high in Ni, the tensile strength and toughness of the weld metal were low.

1 試験ビード
2 溝
1 test bead 2 groove

Claims (1)

Niを95質量%以上含むNi基合金を心線とした、9%Ni鋼溶接用被覆アーク溶接棒において、前記心線と被覆剤の一方または両方の合計で、下記式に示す心線質量比で、
Si:0.1〜0.3%、
Mn:1.5〜4.0%、
Cr:8〜12%、
Mo:2.5〜8.0%、
Nb:0.5〜2.5%、
Ta:0.05〜0.30%、
Ti:0.2〜0.8%、
W :0.5〜1.7%を含有し、
前記被覆剤は、当該被覆剤全質量に対する質量%で、
Ni:3〜9%、
Si酸化物のSiO2換算値の合計:6〜12%、
金属弗化物:11〜18%、
金属炭酸塩:13〜21%、
Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計:1〜5%を含有し、
残部が塗装剤、前記心線中のFe分、前記被覆剤の鉄合金のFe分及び不可避不純物からなることを特徴とする9%Ni鋼溶接用被覆アーク溶接棒。

心線質量比=心線中の含有量%+被覆剤中の含有量%×被覆率%/100・・・式
(但し、心線中の含有量%は心線全質量に対する質量%、被覆剤中の含有量%は被覆剤全質量に対する質量%、被覆率は、当該9%Ni鋼溶接用被覆アーク溶接棒全質量に対する前記被覆剤の質量%)
In a 9% Ni steel welding coated arc welding rod using a Ni-based alloy containing 95% by mass or more of Ni as a core wire, the total of one or both of the core wire and the coating agent is the core wire mass ratio shown in the following formula. so,
Si: 0.1 to 0.3%,
Mn: 1.5 to 4.0%,
Cr: 8-12%,
Mo: 2.5-8.0%,
Nb: 0.5-2.5%,
Ta: 0.05 to 0.30%,
Ti: 0.2-0.8%,
W: Contains 0.5 to 1.7%,
The coating agent is a mass% based on the total mass of the coating agent.
Ni: 3-9%,
Total SiO 2 conversion value of Si oxide: 6-12%,
Metal fluoride: 11-18%,
Metal carbonate: 13-21%,
Total of Na 2 O conversion value and K 2 O conversion value of Na compound and K compound: 1 to 5% is contained.
A shielded metal arc welding rod for 9% Ni steel welding, wherein the balance is composed of a coating agent, Fe content in the core wire, Fe content of an iron alloy of the coating agent, and unavoidable impurities.

Core wire mass ratio = content% in the core wire + content% in the coating agent x coverage rate% / 100 ... (However, the content% in the core wire is mass% with respect to the total mass of the core wire, and the coating The content% in the agent is mass% with respect to the total mass of the coating agent, and the coverage is the mass% of the coating agent with respect to the total mass of the 9% Ni steel welding coated arc welding rod).
JP2019071947A 2019-04-04 2019-04-04 Covered arc welding rod for 9% Ni steel welding Active JP7408295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019071947A JP7408295B2 (en) 2019-04-04 2019-04-04 Covered arc welding rod for 9% Ni steel welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019071947A JP7408295B2 (en) 2019-04-04 2019-04-04 Covered arc welding rod for 9% Ni steel welding

Publications (2)

Publication Number Publication Date
JP2020168651A true JP2020168651A (en) 2020-10-15
JP7408295B2 JP7408295B2 (en) 2024-01-05

Family

ID=72745568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019071947A Active JP7408295B2 (en) 2019-04-04 2019-04-04 Covered arc welding rod for 9% Ni steel welding

Country Status (1)

Country Link
JP (1) JP7408295B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021126674A (en) * 2020-02-13 2021-09-02 日鉄溶接工業株式会社 COATED ELECTRODE FOR 9% Ni STEEL WELDING
WO2023184787A1 (en) * 2022-04-01 2023-10-05 南京钢铁股份有限公司 Flux-cored gas shielded welding wire for 9% ni steel used for storage tanks, and preparation method and use method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337555A (en) * 1976-09-21 1978-04-06 Nippon Steel Corp Electrode covered with niicr base material
JPS57159295A (en) * 1981-03-28 1982-10-01 Nippon Steel Corp Covered electrode for steel of very low temperature
JPS589794A (en) * 1981-07-10 1983-01-20 Nippon Steel Corp Covered electrode for ultra-low temperature steel
JPS62197297A (en) * 1986-02-25 1987-08-31 Nippon Steel Corp Ni-mo-coated electrode for all position welding
JPS63199094A (en) * 1987-02-16 1988-08-17 Nippon Steel Corp Arc welding electrode coated on wire for extremely low temperature steel
JPH10235493A (en) * 1997-02-26 1998-09-08 Nippon Steel Weld Prod & Eng Co Ltd Coated ni base alloy coated electrode for ultra low temperature steel
JP2006272432A (en) * 2005-03-30 2006-10-12 Nippon Steel & Sumikin Welding Co Ltd Coated arc welding electrode for 9% ni steel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337555A (en) * 1976-09-21 1978-04-06 Nippon Steel Corp Electrode covered with niicr base material
JPS57159295A (en) * 1981-03-28 1982-10-01 Nippon Steel Corp Covered electrode for steel of very low temperature
JPS589794A (en) * 1981-07-10 1983-01-20 Nippon Steel Corp Covered electrode for ultra-low temperature steel
JPS62197297A (en) * 1986-02-25 1987-08-31 Nippon Steel Corp Ni-mo-coated electrode for all position welding
JPS63199094A (en) * 1987-02-16 1988-08-17 Nippon Steel Corp Arc welding electrode coated on wire for extremely low temperature steel
JPH10235493A (en) * 1997-02-26 1998-09-08 Nippon Steel Weld Prod & Eng Co Ltd Coated ni base alloy coated electrode for ultra low temperature steel
JP2006272432A (en) * 2005-03-30 2006-10-12 Nippon Steel & Sumikin Welding Co Ltd Coated arc welding electrode for 9% ni steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021126674A (en) * 2020-02-13 2021-09-02 日鉄溶接工業株式会社 COATED ELECTRODE FOR 9% Ni STEEL WELDING
JP7383513B2 (en) 2020-02-13 2023-11-20 日鉄溶接工業株式会社 Covered arc welding rod for 9% Ni steel welding
WO2023184787A1 (en) * 2022-04-01 2023-10-05 南京钢铁股份有限公司 Flux-cored gas shielded welding wire for 9% ni steel used for storage tanks, and preparation method and use method therefor

Also Published As

Publication number Publication date
JP7408295B2 (en) 2024-01-05

Similar Documents

Publication Publication Date Title
JP5179073B2 (en) Flux-cored wire for gas shielded arc welding
JP6437327B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6786427B2 (en) Flux-filled wire for gas shielded arc welding
JP5890280B2 (en) Low hydrogen coated arc welding rod
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP2006272432A (en) Coated arc welding electrode for 9% ni steel
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP2012121051A (en) Flux-cored wire for gas shielded arc welding
JP2009248137A (en) Flux cored wire for gas-shielded arc welding
JP2013158777A (en) Flux-cored wire for gas shield arc welding
JP6437419B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP2016203253A (en) Low hydrogen type coated arc welding rod
JP6669613B2 (en) Flux-cored wire for gas shielded arc welding
JP6017406B2 (en) Stainless steel flux cored wire for self shielded arc welding
JP2018130762A (en) Flux-cored wire for welding duplex stainless steel
JP4838100B2 (en) Flux-cored wire for horizontal corner gas shielded arc welding for weathering steel
JP2020168651A (en) COATED ARC WELDING ELECTRODE FOR 9% Ni STEEL WELDING
JP5662086B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP6599807B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP2010064087A (en) Flux cored wire for gas-shielded arc welding
JP6061712B2 (en) Low hydrogen coated arc welding rod
JP6786431B2 (en) Carbon-based flux-cored wire for carbon dioxide shield arc welding
JP2021126674A (en) COATED ELECTRODE FOR 9% Ni STEEL WELDING
JP2020131234A (en) Stainless steel flux-cored wire for self-shielded arc-welding
JP2020189302A (en) Arc welding rod coated with low hydrogen-based coating agent for crude oil tank steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231220

R150 Certificate of patent or registration of utility model

Ref document number: 7408295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150