JP2020165200A - Opening structure for ventilation - Google Patents

Opening structure for ventilation Download PDF

Info

Publication number
JP2020165200A
JP2020165200A JP2019066707A JP2019066707A JP2020165200A JP 2020165200 A JP2020165200 A JP 2020165200A JP 2019066707 A JP2019066707 A JP 2019066707A JP 2019066707 A JP2019066707 A JP 2019066707A JP 2020165200 A JP2020165200 A JP 2020165200A
Authority
JP
Japan
Prior art keywords
resonator
absorbing material
noise
ventilation opening
opening structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019066707A
Other languages
Japanese (ja)
Other versions
JP7344665B2 (en
Inventor
崇 増田
Takashi Masuda
崇 増田
健一 入内島
Kenichi Iriuchijima
健一 入内島
浩樹 古里
Hiroki Furusato
浩樹 古里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Oiles Eco Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Oiles Eco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp, Oiles Eco Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2019066707A priority Critical patent/JP7344665B2/en
Publication of JP2020165200A publication Critical patent/JP2020165200A/en
Application granted granted Critical
Publication of JP7344665B2 publication Critical patent/JP7344665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

To provide an opening structure for ventilation allowing noise in the overall environment including the surroundings to be reduced.SOLUTION: An opening structure 100 for ventilation according to the present invention includes a resonator 10 arranged in an inner wall of an opening part of a building and having an opening part 50 in a slit shape and acoustic material 150 arranged adjacent to the resonator 10, wherein the acoustic material 150 is arranged on a surface flush with the resonator 10 and closer to a sound source side than the resonator 10.SELECTED DRAWING: Figure 2

Description

本発明は、室内における騒音低減と共に、屋外における周辺環境に対する騒音低減にも配慮がなされた換気用開口構造を提供する。 The present invention provides a ventilation opening structure in which consideration is given to noise reduction for the surrounding environment outdoors as well as noise reduction in the room.

これまで発明者は、長尺状スリット共鳴器を用いて建物に設けた換気用開口からの騒音伝搬を低減する方法について、例えば、特許文献1(特開2017−101530号公報)において、建物の換気用開口部からの騒音を低減する騒音低減構造として、前記換気用開口部が設けられている内装壁に、スリット状開口部を有する共鳴器を対向するように対で配することを提案した。
特開2017−101530号公報
So far, the inventor has described a method of reducing noise propagation from a ventilation opening provided in a building by using a long slit resonator, for example, in Patent Document 1 (Japanese Unexamined Patent Publication No. 2017-101530). As a noise reduction structure for reducing noise from the ventilation opening, it was proposed to arrange a pair of resonators having a slit-shaped opening on the interior wall provided with the ventilation opening so as to face each other. ..
JP-A-2017-101530

特許文献1記載の共鳴器を用いた騒音低減法においては、スリットを有する共鳴器(「スリット共鳴器」ともいう)の断面形状によって定まる共鳴周波数に近い周波数において大きな騒音低減効果が得られるが、一方で、騒音低減効果が得られる周波数範囲が狭く、共鳴周波数から離れた周波数では殆ど効果が得られないという課題がある。このような課題は、例えば道路騒音のような幅広い周波数範囲に成分を持つ騒音を低減しようとした場合に特に顕著になる。 In the noise reduction method using the resonator described in Patent Document 1, a large noise reduction effect can be obtained at a frequency close to the resonance frequency determined by the cross-sectional shape of the resonator having a slit (also referred to as "slit resonator"). On the other hand, there is a problem that the frequency range in which the noise reduction effect can be obtained is narrow, and the effect is hardly obtained at a frequency far from the resonance frequency. Such a problem becomes particularly remarkable when trying to reduce noise having a component in a wide frequency range such as road noise.

特許文献1記載の発明では、このような課題を解決するために、図10に関連して、スリット共鳴器と共に吸音材を組み込んだ実施形態を提案している。吸音材としてはグラスウールやポリエステル吸音材等の多孔質性吸音材が用いられることが多いが、一般に多孔質性吸音材は高周波数域で大きな吸音効果を発揮する。 In the invention described in Patent Document 1, in order to solve such a problem, an embodiment in which a sound absorbing material is incorporated together with a slit resonator is proposed in relation to FIG. As the sound absorbing material, a porous sound absorbing material such as glass wool or polyester sound absorbing material is often used, but in general, the porous sound absorbing material exhibits a large sound absorbing effect in a high frequency range.

そこで、スリット共鳴器を共鳴周波数が吸音材の効果の得にくい低周波数になるように設計することで、両者の補完により幅広い周波数帯域に対する騒音低減効果が期待できる。しかしながら、スリット共鳴器と吸音材を併用する場合、それらの位置関係をどのように設定すれば効果的かという指針はこれまでに示されておらず、問題であった。 Therefore, by designing the slit resonator so that the resonance frequency is a low frequency at which the effect of the sound absorbing material is difficult to obtain, a noise reduction effect over a wide frequency band can be expected by complementing both. However, when a slit resonator and a sound absorbing material are used in combination, a guideline on how to set their positional relationship to be effective has not been shown so far, which has been a problem.

この発明は、上記のような課題を解決するものであって、本発明に係る換気用開口構造は、建物の開口部の内壁に設けられ、スリット状開口部を有する共鳴器と、前記共鳴器と隣接するように設けられる吸音材と、を含む換気用開口構造であって、前記吸音材は、前記共鳴器と面一で、前記共鳴器より音源側に配されることを特徴とする。 The present invention solves the above-mentioned problems, and the ventilation opening structure according to the present invention includes a resonator provided on the inner wall of the opening of the building and having a slit-shaped opening, and the resonator. It is a ventilation opening structure including a sound absorbing material provided adjacent to the sound absorbing material, and the sound absorbing material is provided flush with the resonator and is arranged on the sound source side from the resonator.

また、本発明に係る換気用開口構造は、前記共鳴器が、スリット状開口部が対向するように対で配されることを特徴とする。 Further, the ventilation opening structure according to the present invention is characterized in that the resonators are arranged in pairs so that the slit-shaped openings face each other.

また、本発明に係る換気用開口構造は、前記共鳴器を複数隣接させる場合、全ての前記共鳴器より音源側に前記吸音材が配されることを特徴とする。 Further, the ventilation opening structure according to the present invention is characterized in that when a plurality of the resonators are adjacent to each other, the sound absorbing material is arranged on the sound source side of all the resonators.

また、本発明に係る換気用開口構造は、前記共鳴器が、空気層を有することを特徴とする。 Further, the ventilation opening structure according to the present invention is characterized in that the resonator has an air layer.

また、本発明に係る換気用開口構造は、前記共鳴器が、空気層を有さないことを特徴とする。 Further, the ventilation opening structure according to the present invention is characterized in that the resonator does not have an air layer.

本発明に係る換気用開口構造は、吸音材は、共鳴器と面一で、共鳴器より音源側に配されており、このような本発明に係る換気用開口構造によれば、吸音材が共鳴器より受音側に配される場合に比べて、換気用開口構造から再放射される騒音を低減することができ、周辺を含む環境全体の騒音を低減することが可能となる。 In the ventilation opening structure according to the present invention, the sound absorbing material is flush with the resonator and is arranged on the sound source side from the resonator. According to the ventilation opening structure according to the present invention, the sound absorbing material is provided. Compared with the case where it is arranged on the sound receiving side from the resonator, the noise re-radiated from the ventilation opening structure can be reduced, and the noise of the entire environment including the surroundings can be reduced.

本発明の実施形態に係る換気用開口構造100に用いる共鳴器10を説明する図である。It is a figure explaining the resonator 10 used for the ventilation opening structure 100 which concerns on embodiment of this invention. 本発明の実施形態に係る換気用開口構造100を説明する図である。It is a figure explaining the ventilation opening structure 100 which concerns on embodiment of this invention. (A)吸音材150が共鳴器10より音源側に配置された構造(本発明)を示す図であり、(B)吸音材150が共鳴器10より受音側に配置された構造(比較例)を示す図である。(A) It is a figure which shows the structure (the present invention) in which a sound absorbing material 150 is arranged on the sound source side from a resonator 10, and (B) the structure which the sound absorbing material 150 is arranged on a sound receiving side from a resonator 10 (comparative example). ). 2次元境界要素法による解析対象の寸法を示す図である。It is a figure which shows the dimension of the analysis target by the 2D boundary element method. 解析により求めた仮想面2を受音側に通過する音響エネルギを示す図である。It is a figure which shows the acoustic energy which passes through a virtual surface 2 obtained by analysis to a sound receiving side. 解析により求めた吸音材に吸収される騒音のエネルギを示す図である。It is a figure which shows the energy of the noise absorbed by the sound absorbing material obtained by the analysis. 解析により求めた仮想面1を受音側に通過する音響エネルギを示す図である。It is a figure which shows the acoustic energy which passes through a virtual surface 1 obtained by analysis to a sound receiving side. 本発明の他の実施形態に係る換気用開口構造100を説明する図である。It is a figure explaining the ventilation opening structure 100 which concerns on other embodiment of this invention. 本発明の他の実施形態に係る換気用開口構造100を説明する図である。It is a figure explaining the ventilation opening structure 100 which concerns on other embodiment of this invention. 本発明の他の実施形態に係る換気用開口構造100を説明する図である。It is a figure explaining the ventilation opening structure 100 which concerns on other embodiment of this invention. 本発明の他の実施形態に係る換気用開口構造100を説明する図である。It is a figure explaining the ventilation opening structure 100 which concerns on other embodiment of this invention.

以下、本発明の実施の形態を図面を参照しつつ説明する。本発明に係る換気用開口構造100では、図1に示すような背後に密閉された空洞を持つ、スリット構造によって共鳴現象が生じる共鳴器10を利用する。図1(A)はそのような共鳴器10の斜視図である。また、図1(B)は、図1(A)の共鳴器10のスリット状開口部50の長手方向を垂直で切って見た断面図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the ventilation opening structure 100 according to the present invention, a resonator 10 having a cavity sealed behind as shown in FIG. 1 in which a resonance phenomenon is generated by a slit structure is used. FIG. 1A is a perspective view of such a resonator 10. Further, FIG. 1 (B) is a cross-sectional view of the slit-shaped opening 50 of the resonator 10 of FIG. 1 (A) as viewed by cutting it vertically in the longitudinal direction.

図1に示すように、本発明に係る換気用開口構造100に用いる共鳴器10は、基本的に、内側の空間が中空である四角柱状の筐体40から構成されている。共鳴器10を構成する筐体40の一面には、長手状のスリット状開口部50と、このスリット状開口部50の両側に配され、共鳴器10の内側の空間に延在する隔壁部60と、を有することを特徴としている。対向する2つの隔壁部60は同様の寸法を有している。ここで、共鳴現象が生じる共鳴器10の各寸法は図1に示す記号で表す。なお、スリット状開口部50が構成されている筐体40の一面と、隔壁部60の主面とは互いに直交している。 As shown in FIG. 1, the resonator 10 used in the ventilation opening structure 100 according to the present invention is basically composed of a square columnar housing 40 having a hollow inner space. On one surface of the housing 40 constituting the resonator 10, a longitudinal slit-shaped opening 50 and a partition wall portion 60 arranged on both sides of the slit-shaped opening 50 and extending into the space inside the resonator 10 And, it is characterized by having. The two facing partition walls 60 have similar dimensions. Here, each dimension of the resonator 10 in which the resonance phenomenon occurs is represented by a symbol shown in FIG. It should be noted that one surface of the housing 40 having the slit-shaped opening 50 and the main surface of the partition wall 60 are orthogonal to each other.

共鳴器10の各寸法が波長に対して十分に小さい場合、スリット状開口部50における音響インピーダンス比Zは次式(1)で求めることができる。 When each dimension of the resonator 10 is sufficiently small with respect to the wavelength, the acoustic impedance ratio Z in the slit-shaped opening 50 can be obtained by the following equation (1).

Figure 2020165200
Figure 2020165200

ただし、fは騒音の周波数、cは音速、ρは媒質(空気)密度を表す。また、Vnは、スリット状開口部50と隔壁部60とで囲まれた、図1(B)の斜線部以外の空間の体積(対向する隔壁部60の間の空間の体積)で、開口端補正を考慮して次式(2)で計算される。なお、式(2)における[ ]内の第2項が、開口端補正に関連する項である。また、図1(B)で斜線部の空間は、共鳴現象が生じる共鳴器10の空気層に相当する。 However, f is the frequency of noise, c is the speed of sound, and ρ is the medium (air) density. Further, V n is the volume of the space other than the shaded portion of FIG. 1 (B) surrounded by the slit-shaped opening 50 and the partition wall 60 (the volume of the space between the facing partition walls 60). It is calculated by the following equation (2) in consideration of end correction. The second term in [] in the equation (2) is a term related to end correction. Further, the space in the shaded area in FIG. 1B corresponds to the air layer of the resonator 10 in which the resonance phenomenon occurs.

Figure 2020165200
Figure 2020165200

また、Vは共鳴器10の空洞部の体積(空気層の体積)で、次式(3)で計算される。 Further, V is the volume of the cavity of the resonator 10 (volume of the air layer) and is calculated by the following equation (3).

Figure 2020165200
Figure 2020165200

また、Sは、スリット状開口部50(スリット開口)の面積で、次式(4)で計算される。 Further, S is the area of the slit-shaped opening 50 (slit opening) and is calculated by the following equation (4).

Figure 2020165200
Figure 2020165200

式(1)の右辺第1項のrは、共鳴現象が生じる共鳴器10の隔壁部60表面と空気の間に生じる摩擦などの音響抵抗である。隔壁部60を金属など表面が平滑な材料で構成する場合、音響抵抗rは極めて小さな値となり、次式を満足する共鳴周波数fにおいてスリット状開口部50の開口における音響インピーダンス比Zがほぼ0となる。 The first term r on the right side of the equation (1) is an acoustic resistance such as friction generated between the surface of the partition wall 60 of the resonator 10 where the resonance phenomenon occurs and the air. When the partition wall 60 is made of a material having a smooth surface such as metal, the acoustic resistance r becomes an extremely small value, and the acoustic impedance ratio Z at the opening of the slit-shaped opening 50 is almost 0 at the resonance frequency f satisfying the following equation. Become.

Figure 2020165200
Figure 2020165200

このような共鳴現象を生じさせる共鳴器として機能する、2つの共鳴器10を、図2に示すように、換気用開口構造100の上下の内壁105に沿って対向配置すると、上記の周波数fにおいては対向するスリット部が音響的に“ソフト”な状態となり、音源側から伝搬してきた周波数fの騒音は音源側へ反射され受音側に伝搬しない。 As shown in FIG. 2, when two resonators 10 functioning as resonators that cause such a resonance phenomenon are arranged to face each other along the upper and lower inner walls 105 of the ventilation opening structure 100, at the above frequency f, The facing slits are acoustically "soft", and the noise of frequency f propagated from the sound source side is reflected to the sound source side and does not propagate to the sound receiving side.

図2は本発明の実施形態に係る換気用開口構造100を説明する図である。図2は換気用開口構造100を、換気用開口構造100の長手方向(或いは、スリット状開口部50の長手方向)を垂直に切って見た断面図である。換気用開口構造100は内壁105を有しており、内壁105が囲む空間が通気路(通気経路)として機能する。 FIG. 2 is a diagram illustrating a ventilation opening structure 100 according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the ventilation opening structure 100 cut vertically in the longitudinal direction of the ventilation opening structure 100 (or the longitudinal direction of the slit-shaped opening 50). The ventilation opening structure 100 has an inner wall 105, and the space surrounded by the inner wall 105 functions as a ventilation path (ventilation path).

本実施形態に係る換気用開口構造100においては、音源側(建物外の屋外側)に騒音源が存在し、騒音源からの騒音が受音側(建物内の室内側)に伝搬されることを例として説明を行う。また、換気用開口構造100自体の長手方向(紙面に対して垂直な方向)は水平方向に設置されることを前提として説明するが、換気用開口構造100の設置方法はこのような例に限られない。 In the ventilation opening structure 100 according to the present embodiment, the noise source exists on the sound source side (outdoor side outside the building), and the noise from the noise source is propagated to the sound receiving side (indoor side inside the building). Will be described as an example. Further, the longitudinal direction (direction perpendicular to the paper surface) of the ventilation opening structure 100 itself will be described on the premise that it is installed in the horizontal direction, but the installation method of the ventilation opening structure 100 is limited to such an example. I can't.

この換気用開口構造100においては、換気用開口構造100を形成する4つの内壁105のうち、上下で対向する2つの内壁105を、音響的に“ソフト”な状態とする。すなわち、図2に示すように、換気用開口構造100内側で、上下の内壁105に対向するように2つの共鳴器10が設けられることで、対向する壁面が音響的に“ソフト”な状態、すなわち、壁面の表面における音響インピーダンス比Zが0となり、音源側から伝搬してきた騒音は音源側へ反射され受音側へ伝搬しないようにする。 In the ventilation opening structure 100, of the four inner walls 105 forming the ventilation opening structure 100, the two inner walls 105 facing each other at the top and bottom are made acoustically "soft". That is, as shown in FIG. 2, two resonators 10 are provided inside the ventilation opening structure 100 so as to face the upper and lower inner walls 105, so that the facing wall surfaces are acoustically "soft". That is, the acoustic impedance ratio Z on the surface of the wall surface becomes 0, and the noise propagated from the sound source side is reflected to the sound source side and does not propagate to the sound receiving side.

なお、本実施形態では、表面における音響インピーダンス比Zが0である対向する2つの壁面が、鉛直方向で対向する例に基づいて説明を行っているが、表面における音響インピーダンス比Zが0である対向する2つの壁面が、水平方向で対向するものであってもよい。 In the present embodiment, the description is based on an example in which two opposing wall surfaces having an acoustic impedance ratio Z on the surface facing each other in the vertical direction, but the acoustic impedance ratio Z on the surface is 0. The two facing wall surfaces may face each other in the horizontal direction.

図2に示すような換気用開口構造100によれば、共鳴器10の共鳴周波数において、対向した共鳴器10のスリット状開口部50における音響インピーダンス比がほぼ0となり、屋外側(上流側)から入射した騒音は屋外側へ反射され室内側(下流側)に伝搬することがない。 According to the ventilation opening structure 100 as shown in FIG. 2, at the resonance frequency of the resonator 10, the acoustic impedance ratio in the slit-shaped opening 50 of the opposed resonator 10 becomes almost 0, and the acoustic impedance ratio is substantially 0 from the outdoor side (upstream side). The incident noise is reflected to the outdoor side and does not propagate to the indoor side (downstream side).

一方で、上式(5)に基づく共鳴周波数fについては騒音低減の効果は期待できるが、当該共鳴周波数から離れた周波数では殆ど効果が得られない。そこで、幅広い周波数範囲に成分を持つ騒音を低減するために、本発明に係る換気用開口構造100では、2つの共鳴器10と共に、グラスウールやポリエステル等の多孔質性の吸音材150を用いるようにしている。本発明では、2つの共鳴器10には低周波数域の騒音低減を担当させ、一方吸音材150に高周波数域の騒音低減を担当させることで、より幅広い周波数帯域に対する騒音低減効果を生じさせるようにしている。 On the other hand, the resonance frequency f based on the above equation (5) can be expected to have a noise reduction effect, but almost no effect can be obtained at a frequency far from the resonance frequency. Therefore, in order to reduce noise having components in a wide frequency range, in the ventilation opening structure 100 according to the present invention, a porous sound absorbing material 150 such as glass wool or polyester is used together with the two resonators 10. ing. In the present invention, the two resonators 10 are in charge of noise reduction in the low frequency range, while the sound absorbing material 150 is in charge of noise reduction in the high frequency range, thereby producing a noise reduction effect in a wider frequency band. I have to.

さらに、本発明に係る換気用開口構造100においては、2つの共鳴器10と、2つの吸音材150とは、それぞれ互いに隣接させて配置する。また、本発明に係る換気用開口構造100においては、表面が段差なく通気経路を構成するように配置される。すなわち、互いに隣接する共鳴器10と吸音材150とは面一で配置される。 Further, in the ventilation opening structure 100 according to the present invention, the two resonators 10 and the two sound absorbing materials 150 are arranged adjacent to each other. Further, in the ventilation opening structure 100 according to the present invention, the surface is arranged so as to form a ventilation path without a step. That is, the resonator 10 and the sound absorbing material 150 adjacent to each other are arranged flush with each other.

また、本発明に係る換気用開口構造100においては、吸音材150は、共鳴器10より音源側に配置するようにする。なお、隣接する複数の共鳴器と、吸音材とを並べて配するような場合には、吸音材はすべての共鳴器より音源側に配置する。 Further, in the ventilation opening structure 100 according to the present invention, the sound absorbing material 150 is arranged on the sound source side of the resonator 10. When a plurality of adjacent resonators and a sound absorbing material are arranged side by side, the sound absorbing material is arranged on the sound source side of all the resonators.

以下では、吸音材150が共鳴器10より音源側に配置されることについて、理論的背景と数値解析により本発明の効果を検証した結果を述べる。
[理論的背景]
図3には、建物外壁の一部分とそこに設けられたスリット状の換気用開口構造100の例を断面図として示しており、図3(A)は吸音材150が共鳴器10より音源側に配置された構造(本発明)を示す図であり、図3(B)は吸音材150が共鳴器10より受音側に配置された構造(比較例)を示す図である。
The following describes the results of verifying the effect of the present invention by theoretical background and numerical analysis regarding the arrangement of the sound absorbing material 150 on the sound source side of the resonator 10.
[Theoretical background]
FIG. 3 shows a part of the outer wall of the building and an example of the slit-shaped ventilation opening structure 100 provided therein as a cross-sectional view. FIG. 3A shows the sound absorbing material 150 on the sound source side of the resonator 10. It is a figure which shows the arranged structure (the present invention), and FIG. 3 (B) is a figure which shows the structure (comparative example) in which the sound absorbing material 150 is arranged on the sound receiving side from the resonator 10.

この換気用開口構造を介して屋外側即ち音源側から、室内側即ち受音側へ伝搬する騒音を低減する目的で、共鳴器10を対向配置する。また、吸音材150は本発明では、上記共鳴器10より音源側に配置することを提案している。 The resonators 10 are arranged opposite to each other for the purpose of reducing noise propagating from the outdoor side, that is, the sound source side, to the indoor side, that is, the sound receiving side through the ventilation opening structure. Further, in the present invention, it is proposed that the sound absorbing material 150 is arranged on the sound source side of the resonator 10.

なお、図3では、吸音材150は共鳴器10と同様に通気経路を挟んで対向配置されているが、必ずしも図示したように対向配置する必要はない。吸音材150を片側のみに配置した場合でもある程度の騒音低減効果は期待できる。 In FIG. 3, the sound absorbing material 150 is arranged to face each other with the ventilation path interposed therebetween as in the resonator 10, but it is not always necessary to arrange the sound absorbing material 150 to face each other as shown in the drawing. Even when the sound absorbing material 150 is arranged on only one side, a certain noise reduction effect can be expected.

ここで、音源側から通気路に入射し、受音側へ伝搬、或いは音源側へ再放射される騒音のエネルギについて考える。なお、以下では一般に知られている、騒音の周波数と通気経路長に応じて通気路を伝搬する騒音のエネルギが変化する効果については特に記述しない。 Here, consider the energy of noise that enters the ventilation path from the sound source side, propagates to the sound receiving side, or is re-radiated to the sound source side. In the following, the generally known effect of changing the energy of noise propagating in the ventilation path according to the noise frequency and the ventilation path length will not be described in particular.

音源側から通気路へ入射する騒音のエネルギをEi、通気路を介して受音側へ伝搬する騒音のエネルギをEtとする。また、通気路から入射して音源側へ再放射する騒音のエネルギをErとする。 The energy of the noise coming from the source side to the air passage E i, the energy of the noise propagating to the sound receiving side through the air passage and E t. Further, let Er be the energy of noise that is incident from the ventilation path and re-radiated to the sound source side.

吸音材を配置しない場合、通気路へ入射する騒音のエネルギEiと受音側へ伝搬する騒音のエネルギEtの関係を以下の(7)式で表すことができる。
t=τ×Ei ・・・(7)
上式(7)では、τは共鳴器10を配置した部分を音源側から受音側へ騒音が伝搬する割合、即ち騒音伝達率を示す(0≦τ≦1)。共鳴器10の共鳴周波数付近ではτが極めて小さくなり、受音側へ伝搬する騒音のエネルギが大幅に低減される。また、スリット共鳴器が配置された部分で騒音が反射して再度音源側へ伝搬する割合は(1−τ)であることから、通気路の音源側から再放射する騒音のエネルギErは下式(8)の通りである。
r=(1−τ)×Ei ・・・(8)
図3(A)に示すように、吸音材150を共鳴器10の音源側に配置した場合、騒音が吸音材150を配置した部分を伝搬する際に吸音材150に吸収されるエネルギはα×Eiと表すことができる。ここで、αは吸音材150を配置した部分を騒音が伝搬する際に吸音材にエネルギが吸収される割合を示す(0≦α≦1)。言い換えれば、吸音材150を配置した部分を吸音材150に吸収されずに伝搬するエネルギの割合は(1−α)である。
When the sound absorbing material is not arranged, the relationship between the energy E i of the noise incident on the ventilation path and the energy E t of the noise propagating to the sound receiving side can be expressed by the following equation (7).
Et = τ × E i ... (7)
In the above equation (7), τ indicates the rate at which noise propagates from the sound source side to the sound receiving side in the portion where the resonator 10 is arranged, that is, the noise transmission rate (0 ≦ τ ≦ 1). In the vicinity of the resonance frequency of the resonator 10, τ becomes extremely small, and the energy of noise propagating to the sound receiving side is significantly reduced. Further, since the ratio of noise reflected at the portion where the slit resonator is arranged and propagated to the sound source side again is (1-τ), the energy Er of the noise re-radiated from the sound source side of the ventilation path is calculated by the following equation. It is as in (8).
Er = (1-τ) × E i ... (8)
As shown in FIG. 3A, when the sound absorbing material 150 is arranged on the sound source side of the resonator 10, the energy absorbed by the sound absorbing material 150 when the noise propagates through the portion where the sound absorbing material 150 is arranged is α ×. It can be expressed as E i . Here, α indicates the rate at which energy is absorbed by the sound absorbing material when noise propagates through the portion where the sound absorbing material 150 is arranged (0 ≦ α ≦ 1). In other words, the ratio of energy propagating without being absorbed by the sound absorbing material 150 in the portion where the sound absorbing material 150 is arranged is (1-α).

この場合、吸音材150と共鳴器10が配置された部分を通過して受音側に伝搬する騒音のエネルギは、下式(9)となる。
t=(1−α)τ×Ei ・・・(9)
更に、共鳴器10が配置された部分で反射して音源側から再放射する騒音のエネルギは、
r=(1−α)2(1−τ)×Ei ・・・(10)
である。
In this case, the energy of the noise that passes through the portion where the sound absorbing material 150 and the resonator 10 are arranged and propagates to the sound receiving side is given by the following equation (9).
Et = (1-α) τ × E i ... (9)
Further, the energy of the noise reflected at the portion where the resonator 10 is arranged and re-radiated from the sound source side is
Er = (1-α) 2 (1-τ) × E i ... (10)
Is.

ここで、(1−α)2は、吸音材150が配置された部分を通気路の音源側から共鳴器10が配置された部分に向けて騒音が伝搬する際と、その後共鳴器10が配置された部分で騒音が反射して吸音材150が配置された部分を音源側へ伝搬する際の、2度にわたり吸音材150にエネルギが吸収されていることを表す。 Here, in (1-α) 2 , when noise propagates from the sound source side of the air passage toward the portion where the resonator 10 is arranged, and after that, the resonator 10 is arranged. It indicates that the energy is absorbed by the sound absorbing material 150 twice when the noise is reflected at the portion where the noise is generated and propagates to the sound source side at the portion where the sound absorbing material 150 is arranged.

吸音材150に吸収される騒音のエネルギをEaとすると、エネルギ保存則より以下の関係式(11)が成り立ち、
i=Et+Er+Ea・・・(11)
(9)及び(10)式を代入すると下式(12)のように整理される。
a={α+(1−α)(1−τ)α}Ei・・・(12)
上式(12)の{ }内の第1項は吸音材150が配置された部分を通気路の音源側から共鳴器10が配置された部分に向けて騒音が伝搬する際に吸音材に吸収すされるエネルギを意味し、第2項はその後共鳴器10が配置された部分で騒音が反射して吸音材150が配置された部分を音源側へ伝搬する際に吸音材150に吸収されるエネルギを意味する。
Assuming that the energy of noise absorbed by the sound absorbing material 150 is E a , the following relational expression (11) holds from the law of conservation of energy.
E i = Et + Er + E a ... (11)
Substituting the equations (9) and (10), the equations (12) below are arranged.
E a = {α + (1-α) (1-τ) α} E i ... (12)
The first term in {} of the above equation (12) is that the portion where the sound absorbing material 150 is arranged is absorbed by the sound absorbing material when the noise propagates from the sound source side of the air passage toward the portion where the resonator 10 is arranged. The second term means the energy to be squeezed, and the second term is the energy absorbed by the sound absorbing material 150 when the noise is reflected at the portion where the resonator 10 is arranged and propagates to the sound source side at the portion where the sound absorbing material 150 is arranged. Means.

一方で、図3(B)に示すようにて吸音材150を共鳴器10の受音側に配置した場合、共鳴器10と吸音材150が配置された部分を通過して受音側に伝搬する騒音のエネルギは、
t=τ(1−α)×Ei ・・・(13)
である。また、共鳴器10が配置された部分で反射して音源側から再放射する騒音のエネルギは、
r=(1−τ)×Ei ・・・(14)
である。
On the other hand, when the sound absorbing material 150 is arranged on the sound receiving side of the resonator 10 as shown in FIG. 3 (B), it passes through the portion where the resonator 10 and the sound absorbing material 150 are arranged and propagates to the sound receiving side. The energy of the noise that makes
Et = τ (1-α) × E i ... (13)
Is. Further, the energy of noise that is reflected at the portion where the resonator 10 is arranged and re-radiated from the sound source side is
Er = (1-τ) × E i ... (14)
Is.

この場合、吸音材150に吸収される騒音のエネルギEaはエネルギ保存則より、下式(15)の通りとなる。
a=τα×Ei ・・・(15)
以上より、吸音材150を共鳴器10の音源側に配置した場合と、受音側に配置した場合を比較する。
In this case, the energy E a of the noise absorbed by the sound absorbing material 150 is as shown in the following equation (15) according to the energy conservation law.
E a = τα × E i ... (15)
From the above, the case where the sound absorbing material 150 is arranged on the sound source side of the resonator 10 and the case where the sound absorbing material 150 is arranged on the sound receiving side are compared.

まず、(9)式と(13)式を比較とすると、吸音材150に配置位置に関わらず、通気路を受音側に伝搬する騒音のエネルギは変わらない。即ち、吸音材150に配置位置が異なっても建物に設けた換気用通気路からの騒音伝搬を低減するという本来の性能は損なわれない。 First, comparing the equations (9) and (13), the energy of the noise propagating through the ventilation path to the sound receiving side does not change regardless of the arrangement position of the sound absorbing material 150. That is, even if the sound absorbing material 150 is arranged at a different position, the original performance of reducing noise propagation from the ventilation ventilation passage provided in the building is not impaired.

次に、(12)式の右辺から(15)式の右辺を減算すると(2−α)(1−τ)α×Eiであり、0≦τ≦1及び0≦α≦1の条件より正の値となる。これは、吸音材150を共鳴器10の音源側に配置したほうが吸音材に吸収される騒音のエネルギが大きい、即ち吸音材150を共鳴器10と併用した場合により効果的に騒音のエネルギを吸収できることを示す。 Next, when the right side of the equation (15) is subtracted from the right side of the equation (12), it is (2-α) (1-τ) α × E i, which is obtained from the conditions of 0 ≦ τ ≦ 1 and 0 ≦ α ≦ 1. It will be a positive value. This is because the noise energy absorbed by the sound absorbing material is larger when the sound absorbing material 150 is arranged on the sound source side of the resonator 10, that is, the noise energy is absorbed more effectively when the sound absorbing material 150 is used in combination with the resonator 10. Show that you can.

更に、(10)式と(14)式を比較すると、(10)式におけるErは、(14)式におけるErより明らかに小さい。このことより、吸音材150を共鳴器10の音源側に配置したほうが、通気路から再放射される騒音のエネルギが小さいことが明らかである。これは、当該建物とその周辺を含む環境全体として騒音を低減することが可能であることを意味する。 Furthermore, comparing Eqs. (10) and (14), Er in Eq. (10) is clearly smaller than E r in Eq. (14). From this, it is clear that the energy of the noise re-radiated from the air passage is smaller when the sound absorbing material 150 is arranged on the sound source side of the resonator 10. This means that it is possible to reduce noise in the entire environment including the building and its surroundings.

当該建物の周辺に同程度以上の高さの他の建物がある場合、通気路から再放射された騒音は、周辺建物の外壁面で反射したのち、再び当該建物の外壁及び通気路に入射する。周辺を含む環境全体の騒音を低減することは、屋外から当該建物の室内に伝搬する騒音を低減する観点でも有効である。
[数値解析]
解析には2次元境界要素法を用いた。
If there are other buildings of the same height or higher around the building, the noise re-radiated from the ventilation path is reflected by the outer wall surface of the surrounding building and then re-enters the outer wall and ventilation path of the building. .. Reducing the noise of the entire environment including the surroundings is also effective from the viewpoint of reducing the noise propagating from the outside to the interior of the building.
[Numerical analysis]
The two-dimensional boundary element method was used for the analysis.

図4に示すように、解析対象は、厚さ300mmの無限大壁面に設けられた幅100mmの換気用開口構造を想定した。2次元解析のため、図中奥行き方向には図に示す断面が無限に続く構造を想定する。 As shown in FIG. 4, the analysis target assumed a ventilation opening structure having a width of 100 mm provided on an infinite wall surface having a thickness of 300 mm. For two-dimensional analysis, it is assumed that the cross section shown in the figure continues infinitely in the depth direction in the figure.

図4(A)には吸音材を共鳴器の音源側に配置した場合、図4(B)には吸音材を共鳴器の受音側に配置した場合の計算モデルを示す。共鳴器の各部寸法は、共鳴周波数が630Hz付近となるように設定されている。また、吸音材は密度32kg/m3、厚さ50mmのグラスウール相当の吸音性能を持つと想定した。 FIG. 4A shows a calculation model when the sound absorbing material is arranged on the sound source side of the resonator, and FIG. 4B shows a calculation model when the sound absorbing material is arranged on the sound receiving side of the resonator. The dimensions of each part of the resonator are set so that the resonance frequency is around 630 Hz. Further, it is assumed that the sound absorbing material has a sound absorbing performance equivalent to that of glass wool having a density of 32 kg / m 3 and a thickness of 50 mm.

屋外側、即ち音源側から平面音波を入射し、図4中に破線で示した仮想面1及び2を屋内側即ち受音側方向に通過する音響エネルギを解析により求めた。 The acoustic energy of incident plane sound waves from the outdoor side, that is, the sound source side, and passing through the virtual surfaces 1 and 2 shown by the broken lines in FIG. 4 in the indoor side, that is, the sound receiving side was obtained by analysis.

解析は1/27オクターブ毎の純音について行い、得られた仮想面を受音側方向に通過する音響エネルギを1/3オクターブバンド中心周波数を中心とした9つずつエネルギ平均することで、1/3オクターブバンドにおける解析結果とした。 The analysis is performed for pure tones every 1/27 octave, and the acoustic energy passing through the obtained virtual surface in the sound receiving side is averaged by 9 each centering on the 1/3 octave band center frequency, so that 1 / The analysis results were taken in the 3-octave band.

図5には、仮想面2を受音側に通過する音響エネルギ、即ち上記におけるEtの計算結果を示す。吸音材をスリット共鳴器の音源側に配置した場合と受音側に配置した場合で計算結果に違いはなく、上記で述べたように、吸音材の配置位置に関わらず、通気路を受音側に伝搬する騒音のエネルギは変わらないことが確認できる。 5 shows a calculation result of E t in the acoustic energy, i.e., the passing through the virtual surface 2 to the sound receiving side. There is no difference in the calculation results when the sound absorbing material is placed on the sound source side of the slit resonator and when it is placed on the sound receiving side. As described above, the sound receiving path receives sound regardless of the position of the sound absorbing material. It can be confirmed that the energy of the noise propagating to the side does not change.

図6には、仮想面1を受音側に通過する音響エネルギから仮想面2を受音側に通過する音響エネルギ減算した結果、即ち上記における吸音材に吸収される騒音のエネルギEaの計算結果を示す。共鳴器の共鳴周波数を含む帯域とその周辺の帯域において、吸音材を共鳴器の音源側に配置した場合、受音側に配置した場合と比較して吸音材に吸収される騒音のエネルギが大きく、上記で述べたようにより効果的に騒音のエネルギを吸収できることが確認できる。 FIG. 6 shows the result of subtracting the acoustic energy passing through the virtual surface 2 to the sound receiving side from the acoustic energy passing through the virtual surface 1 to the sound receiving side, that is, the calculation of the noise energy E a absorbed by the sound absorbing material in the above. The result is shown. When the sound absorbing material is placed on the sound source side of the resonator in the band including the resonance frequency of the resonator and the band around it, the energy of noise absorbed by the sound absorbing material is larger than that when the sound absorbing material is placed on the sound receiving side. , It can be confirmed that the energy of noise can be absorbed more effectively as described above.

図7には、仮想面1を受音側に通過する音響エネルギ、即ち上記におけるEi−Erの計算結果を示す。 FIG. 7 shows the calculation result of the acoustic energy passing through the virtual surface 1 to the sound receiving side, that is, E i − E r described above.

共鳴器の共鳴周波数を含む帯域とその周辺の帯域において、吸音材を共鳴器の音源側に配置した場合、受音側に配置した場合と比較して仮想面1を受音側に通過する音響エネルギが大きい。ここで、二つの解析において、音源位置等の条件は同一であるため、通気路に入射するエネルギEiは同じである。つまりこれらの解析結果から、吸音材をスリット共鳴器の音源側に配置した場合、受音側に配置した場合と比較して通気路の音源側から再放射するエネルギErが小さいことが確認できる。 In the band including the resonance frequency of the resonator and the band around it, when the sound absorbing material is arranged on the sound source side of the resonator, the sound passing through the virtual surface 1 on the sound receiving side is compared with the case where it is arranged on the sound receiving side. The energy is high. Here, in the two analyzes, since the conditions such as the sound source position are the same, the energy E i incident on the air passage is the same. In other words, from these analysis results, it can be confirmed that when the sound absorbing material is placed on the sound source side of the slit resonator, the energy Er re-radiated from the sound source side of the ventilation path is smaller than when it is placed on the sound receiving side. ..

本発明に係る換気用開口構造100は、吸音材150は、共鳴器10と面一で、共鳴器10より音源側に配されており、このような本発明に係る換気用開口構造100によれば、吸音材150が共鳴器10より受音側に配される場合に比べて、換気用開口構造100から再放射される騒音を低減することができ、周辺を含む環境全体の騒音を低減することが可能となる。 In the ventilation opening structure 100 according to the present invention, the sound absorbing material 150 is flush with the resonator 10 and arranged on the sound source side from the resonator 10, and the ventilation opening structure 100 according to the present invention. For example, as compared with the case where the sound absorbing material 150 is arranged on the sound receiving side from the resonator 10, the noise re-radiated from the ventilation opening structure 100 can be reduced, and the noise of the entire environment including the surroundings can be reduced. It becomes possible.

次に本発明の他の実施形態について説明する。図8は本発明の他の実施形態に係る換気用開口構造100を説明する図である。図8は、他の実施形態に換気用開口構造100を、換気用開口構造100の長手方向(或いは、スリット状開口部50の長手方向)を垂直に切って見た断面図である。 Next, other embodiments of the present invention will be described. FIG. 8 is a diagram illustrating a ventilation opening structure 100 according to another embodiment of the present invention. FIG. 8 is a cross-sectional view of the ventilation opening structure 100 cut vertically in the longitudinal direction (or the longitudinal direction of the slit-shaped opening 50) of the ventilation opening structure 100 in another embodiment.

他の実施形態に換気用開口構造100においては、これまで説明してきた共鳴器10にさらに仕切り板部材35を設け、共鳴器10内の空間を2つに分割した構造を有している。このような仕切り板部材35は、隔壁部60としても機能する。図8のように仕切り板部材35を設けることで、1つの共鳴器の中に、空間A及び空間Bを有する2つのスリット共鳴器を構成することができる。 なお、空間Aや空間Bなどの「空間」については、図面中にアンダーバーが付されている。 In another embodiment, the ventilation opening structure 100 has a structure in which a partition plate member 35 is further provided in the resonator 10 described above, and the space inside the resonator 10 is divided into two. Such a partition plate member 35 also functions as a partition wall portion 60. By providing the partition plate member 35 as shown in FIG. 8, two slit resonators having space A and space B can be configured in one resonator. An underscore is added in the drawing for "space" such as space A and space B.

それぞれの空間に基づく共鳴器はそれぞれの共鳴周波数f1、f2においてスリット部50の音響インピーダンス比Zがほぼ0となり、図8に図示するようにこれらを、換気用開口部100の壁面に対向配置することで複数の周波数に対して騒音低減効果を発揮する。そして、本実施形態においては、さらに吸音材150が、共鳴器10と面一で、かつ、共鳴器10より音源側に配される構成となっている。 In the resonators based on the respective spaces, the acoustic impedance ratio Z of the slit portion 50 becomes almost 0 at the respective resonance frequencies f 1 and f 2 , and these are opposed to the wall surface of the ventilation opening 100 as shown in FIG. By arranging it, the noise reduction effect is exhibited for multiple frequencies. Further, in the present embodiment, the sound absorbing material 150 is further arranged flush with the resonator 10 and arranged on the sound source side of the resonator 10.

このような他の実施形態に係る騒音低減構造1は、仕切り板部材35の位置を適宜代えることで、同じ寸法の共鳴器1を用いても様々な共鳴周波数を持つ共鳴器10が構成可能である。また、本実施形態によっても、換気用開口構造100から再放射される騒音を低減することができ、周辺を含む環境全体の騒音を低減することが可能となる、という効果を享受することができる。 In the noise reduction structure 1 according to the other embodiment, the resonator 10 having various resonance frequencies can be configured even if the resonator 1 having the same dimensions is used by appropriately changing the position of the partition plate member 35. is there. Further, also in this embodiment, it is possible to reduce the noise re-radiated from the ventilation opening structure 100, and it is possible to enjoy the effect that the noise of the entire environment including the surroundings can be reduced. ..

次に本発明の他の実施形態について説明する。図9は本発明の他の実施形態に係る換気用開口構造100を説明する図である。図9は換気用開口構造100の長手方向(或いは、スリット状開口部50の長手方向)を垂直に切って見た断面図である。 Next, other embodiments of the present invention will be described. FIG. 9 is a diagram illustrating a ventilation opening structure 100 according to another embodiment of the present invention. FIG. 9 is a cross-sectional view of the ventilation opening structure 100 cut vertically (or the longitudinal direction of the slit-shaped opening 50).

図9の他の実施形態に係る換気用開口構造100においては、共鳴器10は空間A及び空間Cからなる2つの共鳴器が、間隔at離れた2枚の仕切り板部材35で隔てられた構成となっている。この場合、2つの共鳴器の間のスリットは、背後に空気層を持たないスリット状開口部50となる。仕切り板部材35は、この場合、隔壁部60としても機能する。 In ventilation opening structure 100 according to another embodiment of FIG. 9, the resonator 10 is two resonators consisting of the space A and the space C is separated by the partition plate member 35 of the two spaced intervals a t It is composed. In this case, the slit between the two resonators is a slit-shaped opening 50 having no air layer behind. In this case, the partition plate member 35 also functions as a partition wall portion 60.

このような共鳴器10を換気用開口構造100の内壁に沿って対向配置した場合、換気用開口構造100の断面寸法及び仕切り板部材35の間隔atが半波長以下となる周波数に対して、背後に空気層を持たないスリット状開口部50は音響管(空間B)として機能する。 For such a case where the resonator 10 is disposed opposite along the inner wall of the ventilation opening structure 100, a frequency interval a t the cross-sectional dimensions and the partition plate member 35 of the ventilation opening structure 100 is equal to or less than a half wavelength, The slit-shaped opening 50 having no air layer behind functions as an acoustic tube (space B).

このとき、外殻部材20の寸法Dが音響管の管長に相当し、波長の1/4がDと等しくなる周波数ft及びその奇数倍の周波数において、音響管のスリット状開口部50の音響インピーダンス比Zが0となり騒音低減効果を発揮する。 In this case, the dimension D of the outer shell member 20 corresponds to the pipe length of the acoustic tube, in the frequency f t and its odd multiples of a frequency 1/4 is equal to D of wavelength, acoustic slit opening 50 of the acoustic tube The impedance ratio Z becomes 0, and the noise reduction effect is exhibited.

一般に、上記のようなftはスリット共鳴器(空間A及び空間C)の共鳴周波数f1あるいはf2より高い周波数となるため、図9のようにスリット共鳴器と音響管を組み合わせた構造の共鳴器10による騒音低減構造1は、幅広い周波数に対して騒音低減効果を発揮することができる。空間A及び空間Cを形成するにあたっては、スリット共鳴器(空間A及び空間C)における隔壁部60の長さla、lcを異ならせるようにしている。 In general, f t as described above for a frequency higher than the resonance frequency f 1 or f 2 slit resonators (space A and the space C), the structure combining a slit resonator and the acoustic pipe as shown in FIG. 9 The noise reduction structure 1 by the resonator 10 can exert a noise reduction effect over a wide range of frequencies. In forming the space A and the space C, the lengths l a and l c of the partition wall portion 60 in the slit resonator (space A and space C) are made different.

さらに、本実施形態においては、吸音材150が、共鳴器10と面一で、かつ、共鳴器10より音源側に配される構成となっている。 Further, in the present embodiment, the sound absorbing material 150 is flush with the resonator 10 and is arranged on the sound source side of the resonator 10.

このような他の実施形態に係る騒音低減構造1は、音響管(空間B)を含む共鳴器10と、吸音材150とからなる構成で、幅広い周波数の騒音を低減することが可能となると共に、換気用開口構造100から再放射される騒音を低減することができ、周辺を含む環境全体の騒音を低減することが可能となる、という効果を享受することができる。 The noise reduction structure 1 according to the other embodiment has a configuration of a resonator 10 including an acoustic tube (space B) and a sound absorbing material 150, and can reduce noise of a wide range of frequencies. It is possible to reduce the noise re-radiated from the ventilation opening structure 100, and to enjoy the effect that the noise of the entire environment including the surroundings can be reduced.

次に本発明の他の実施形態について説明する。これまで説明してきた実施形態においては、同じ寸法の共鳴器1を、互いのスリット部50が対向するようにして配置していた。これに対して、本実施形態においては、共鳴器1を換気用開口構造100における通気路の一方側にのみ設けるようにしたものである。図10はこのような換気用開口構造100を示す図であり、図10(A)は共鳴器10を「片側配置」した場合、また、図10(B)は共鳴器10を「片側並列配置」した場合をそれぞれ示している。吸音材150は、共鳴器10と面一で、かつ、いずれの共鳴器10よりも音源側に配される構成となっている。 Next, other embodiments of the present invention will be described. In the embodiments described so far, the resonators 1 having the same dimensions are arranged so that the slit portions 50 face each other. On the other hand, in the present embodiment, the resonator 1 is provided only on one side of the ventilation path in the ventilation opening structure 100. 10A and 10B are views showing such a ventilation opening structure 100. FIG. 10A shows the resonator 10 “one-sided arrangement”, and FIG. 10B shows the resonator 10 “one-sided parallel arrangement”. Each case is shown. The sound absorbing material 150 is flush with the resonator 10 and is arranged closer to the sound source than any of the resonators 10.

このような「片側配置」や「片側並列配置」などの配置方法にも十分な騒音低減効果を期待することができることを数値解析によって確認している。レイアウトなどの都合上、「片側配置」や「片側並列配置」しか採用し得ない場合には、このような配置を適宜採用することもできる。 Numerical analysis has confirmed that a sufficient noise reduction effect can be expected even with such arrangement methods such as "one-sided arrangement" and "one-sided parallel arrangement". If only "one-sided arrangement" or "one-sided parallel arrangement" can be adopted due to layout or the like, such an arrangement can be appropriately adopted.

さらに、本実施形態においても、吸音材150は、いずれの共鳴器10よりも音源側に配されており、換気用開口構造100から再放射される騒音を低減することができ、周辺を含む環境全体の騒音を低減することが可能となる、という効果を享受することができる。 Further, also in the present embodiment, the sound absorbing material 150 is arranged closer to the sound source than any of the resonators 10, and the noise re-radiated from the ventilation opening structure 100 can be reduced, and the environment including the surroundings can be reduced. It is possible to enjoy the effect that the overall noise can be reduced.

次に、本発明の他の実施形態について説明する。図11は本発明の他の実施形態に係る騒音低減構造1に用いる共鳴器10を説明する図である。図11(A)はこれまで説明してきた実施形態に係る換気用開口構造100に用いる共鳴器10を示しており、図11(B)は本実施形態に係る騒音低減構造1に用いる共鳴器10を示している。本実施形態態に係る換気用開口構造100では、図11(B)で示す共鳴器10が換気用開口構造100に配されることを特徴としている。その他の構成は、これまで説明した実施形態と相違することはないので、説明を省略する。 Next, other embodiments of the present invention will be described. FIG. 11 is a diagram illustrating a resonator 10 used in the noise reduction structure 1 according to another embodiment of the present invention. FIG. 11A shows the resonator 10 used in the ventilation opening structure 100 according to the embodiment described so far, and FIG. 11B shows the resonator 10 used in the noise reduction structure 1 according to the present embodiment. Is shown. The ventilation opening structure 100 according to the present embodiment is characterized in that the resonator 10 shown in FIG. 11B is arranged in the ventilation opening structure 100. Since other configurations are not different from the embodiments described so far, the description thereof will be omitted.

図11(A)に示すように、これまで説明してきた実施形態に係る換気用開口構造100の共鳴器10は、スリット部50の両側に配され隔壁部60が設けられ、これらの隔壁部60は奥行き方向にlの長さを有するものであった。 As shown in FIG. 11A, the resonator 10 of the ventilation opening structure 100 according to the embodiment described so far is arranged on both sides of the slit portion 50 and is provided with partition walls 60, and these partition walls 60 are provided. Had a length of l in the depth direction.

これに対して、図11(B)に示す本実施形態に換気用開口構造100の共鳴器10は、スリット部50の両側の隔壁部60が省かれた構造を有している。隔壁部60が省かれているが、この代わりに、少なくともスリット部50が含まれる共鳴器10の前面の板厚がlの厚さを有するものとなっている。 On the other hand, in the present embodiment shown in FIG. 11B, the resonator 10 of the ventilation opening structure 100 has a structure in which the partition walls 60 on both sides of the slit portion 50 are omitted. The partition wall portion 60 is omitted, but instead, the plate thickness on the front surface of the resonator 10 including at least the slit portion 50 has a thickness of l.

前記板厚lにより、本実施形態で用いる共鳴器10においても、第1の実施形態で説明したVnが生じることとなる。これにより、隔壁部60が省かれた共鳴器10が用いられる本実施形態に係る換気用開口構造100によっても、これまで説明した換気用開口構造100と同様の効果を享受することが可能となる。 Due to the plate thickness l, V n described in the first embodiment is generated also in the resonator 10 used in the present embodiment. As a result, the ventilation opening structure 100 according to the present embodiment in which the resonator 10 in which the partition wall portion 60 is omitted can also enjoy the same effect as the ventilation opening structure 100 described above. ..

以上、本発明に係る換気用開口構造は、吸音材は、共鳴器と面一で、共鳴器より音源側に配されており、このような本発明に係る換気用開口構造によれば、吸音材が共鳴器より受音側に配される場合に比べて、換気用開口構造から再放射される騒音を低減することができ、周辺を含む環境全体の騒音を低減することが可能となる。 As described above, in the ventilation opening structure according to the present invention, the sound absorbing material is flush with the resonator and is arranged on the sound source side from the resonator. According to the ventilation opening structure according to the present invention, the sound absorbing material absorbs sound. Compared with the case where the material is arranged on the sound receiving side from the resonator, the noise re-radiated from the ventilation opening structure can be reduced, and the noise of the entire environment including the surroundings can be reduced.

また、本発明に係る換気用開口構造によれば、吸音材と共鳴器を隣接して配置することで、騒音低減装置を小型化することができる。吸音材を配置するスペースと共鳴器を一体化して騒音低減部を構成することなども可能となる。 Further, according to the ventilation opening structure according to the present invention, the noise reduction device can be miniaturized by arranging the sound absorbing material and the resonator adjacent to each other. It is also possible to integrate the space for arranging the sound absorbing material and the resonator to form a noise reduction unit.

また、本発明に係る換気用開口構造によれば、小型化・一体化した換気用開口構造は、製造コストを低く抑えることができると共に、通気経路への取り付けを容易にし、施工コストを低く抑えることができる。 Further, according to the ventilation opening structure according to the present invention, the miniaturized and integrated ventilation opening structure can keep the manufacturing cost low, facilitate the attachment to the ventilation path, and keep the construction cost low. be able to.

また、本発明に係る換気用開口構造によれば、吸音材と共鳴器を表面が段差なく通気経路を構成するように配置することで、空気のスムーズな流れを実現し、段差で乱流等が生じて換気性能が低下することを防ぐことができる。 Further, according to the ventilation opening structure according to the present invention, by arranging the sound absorbing material and the resonator so that the surface forms a ventilation path without a step, a smooth flow of air is realized, and turbulence or the like occurs at the step. Can be prevented from causing a decrease in ventilation performance.

本発明に係る換気用開口構造によれば、吸音材を共鳴器より音源側に配置することで、より効果的に吸音材により騒音のエネルギを吸収することができる。 According to the ventilation opening structure according to the present invention, by arranging the sound absorbing material on the sound source side of the resonator, the noise energy can be absorbed more effectively by the sound absorbing material.

また、本発明に係る換気用開口構造によれば、共鳴器を配置した部分で反射し通気開口から屋外へ再放射される騒音を低減し、当該建物とその周辺を含む環境全体として騒音を低減することができる。 Further, according to the ventilation opening structure according to the present invention, the noise reflected at the portion where the resonator is arranged and re-radiated to the outside from the ventilation opening is reduced, and the noise of the entire environment including the building and its surroundings is reduced. can do.

上記の各効果を、建物に設けた換気用通気開口からの騒音伝搬を低減するという本来の性能を損なうことなく実現できる。 Each of the above effects can be realized without impairing the original performance of reducing noise propagation from the ventilation ventilation opening provided in the building.

10・・・共鳴器
35・・・仕切り板部材
40・・・筐体
50・・・スリット状開口部
60・・・隔壁部
100・・・換気用開口構造
105・・・内壁
110・・・内装壁
120・・・外装壁
150・・・吸音材
10 ... Resonator 35 ... Partition plate member 40 ... Housing 50 ... Slit-shaped opening 60 ... Partition 100 ... Ventilation opening structure 105 ... Inner wall 110 ... Interior wall 120 ... Exterior wall 150 ... Sound absorbing material

Claims (5)

建物の開口部の内壁に設けられ、スリット状開口部を有する共鳴器と、
前記共鳴器と隣接するように設けられる吸音材と、を含む換気用開口構造であって、
前記吸音材は、前記共鳴器と面一で、前記共鳴器より音源側に配されることを特徴とする換気用開口構造。
A resonator provided on the inner wall of the opening of the building and having a slit-shaped opening,
A ventilation opening structure including a sound absorbing material provided adjacent to the resonator.
The ventilation opening structure is characterized in that the sound absorbing material is flush with the resonator and is arranged on the sound source side of the resonator.
前記共鳴器が、スリット状開口部が対向するように対で配されることを特徴とする請求項1に記載の換気用開口構造。 The ventilation opening structure according to claim 1, wherein the resonators are arranged in pairs so that the slit-shaped openings face each other. 前記共鳴器を複数隣接させる場合、全ての前記共鳴器より音源側に前記吸音材が配されることを特徴とする請求項1又は請求項2に記載の換気用開口構造。 The ventilation opening structure according to claim 1 or 2, wherein when a plurality of the resonators are adjacent to each other, the sound absorbing material is arranged on the sound source side of all the resonators. 前記共鳴器が、空気層を有することを特徴とする請求項1乃至請求項3のいずれか1項に記載の換気用開口構造。 The ventilation opening structure according to any one of claims 1 to 3, wherein the resonator has an air layer. 前記共鳴器が、空気層を有さないことを特徴とする請求項1乃至請求項3のいずれか1項に記載の換気用開口構造。 The ventilation opening structure according to any one of claims 1 to 3, wherein the resonator does not have an air layer.
JP2019066707A 2019-03-29 2019-03-29 Ventilation opening structure Active JP7344665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019066707A JP7344665B2 (en) 2019-03-29 2019-03-29 Ventilation opening structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019066707A JP7344665B2 (en) 2019-03-29 2019-03-29 Ventilation opening structure

Publications (2)

Publication Number Publication Date
JP2020165200A true JP2020165200A (en) 2020-10-08
JP7344665B2 JP7344665B2 (en) 2023-09-14

Family

ID=72714382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019066707A Active JP7344665B2 (en) 2019-03-29 2019-03-29 Ventilation opening structure

Country Status (1)

Country Link
JP (1) JP7344665B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112634852A (en) * 2020-12-22 2021-04-09 中国科学院声学研究所 Multi-stage high-order resonance composite muffler for controlling pipeline noise

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086570A (en) * 1994-06-17 1996-01-12 Nok Megurasutikku Kk Sound absorbing material
JPH08260589A (en) * 1995-03-27 1996-10-08 Tokai Rubber Ind Ltd Sound absorbing member
JPH11152838A (en) * 1997-11-18 1999-06-08 Bridgestone Corp Soundproof ceiling
JP2006118472A (en) * 2004-10-25 2006-05-11 Taikisha Ltd Silencer
JP2017101530A (en) * 2015-11-24 2017-06-08 清水建設株式会社 Noise reduction structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453748B2 (en) 2019-03-29 2024-03-21 清水建設株式会社 Louvers, double skin, noise reduction structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086570A (en) * 1994-06-17 1996-01-12 Nok Megurasutikku Kk Sound absorbing material
JPH08260589A (en) * 1995-03-27 1996-10-08 Tokai Rubber Ind Ltd Sound absorbing member
JPH11152838A (en) * 1997-11-18 1999-06-08 Bridgestone Corp Soundproof ceiling
JP2006118472A (en) * 2004-10-25 2006-05-11 Taikisha Ltd Silencer
JP2017101530A (en) * 2015-11-24 2017-06-08 清水建設株式会社 Noise reduction structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112634852A (en) * 2020-12-22 2021-04-09 中国科学院声学研究所 Multi-stage high-order resonance composite muffler for controlling pipeline noise

Also Published As

Publication number Publication date
JP7344665B2 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
JP7042579B2 (en) Sound insulation louver
JP6936904B2 (en) Sound insulation louver
JP6782911B2 (en) Noise reduction structure
EP2402936B1 (en) Acoustic structure
JP2010007278A (en) Broad-band sound absorption structure and sound absorbing material
JP7453748B2 (en) Louvers, double skin, noise reduction structure
JP6914004B2 (en) Noise reduction device
JP2020165200A (en) Opening structure for ventilation
JP2018506738A (en) Panel for noise suppression
JP2002356934A (en) Sound insulation structure using double board
JP7286497B2 (en) How to set sound insulation louvers
JP6936568B2 (en) Double skin structure
JP7107731B2 (en) Design method of noise reduction structure
US10280614B2 (en) Sound absorbing structure and acoustic room
JP7244679B2 (en) double skin structure
JP6832494B2 (en) Sound insulation door structure
JP7349884B2 (en) How to manufacture a resonator
JP6752654B2 (en) A sound deadening member and a sound deadening structure using this sound deadening member
JP2022104586A (en) Double skin structure
JP2018124020A (en) Opening for ventilation
JP6420211B2 (en) Soundproof room
RU2225484C1 (en) Sound-absorbing structure
JPH0260944B2 (en)
JP2012145776A (en) Acoustic property improving structure
CN117711366A (en) Dual-mode broadband ventilation sound insulation barrier and design method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R150 Certificate of patent or registration of utility model

Ref document number: 7344665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150