JP2020159585A - Chiller unit - Google Patents

Chiller unit Download PDF

Info

Publication number
JP2020159585A
JP2020159585A JP2019056821A JP2019056821A JP2020159585A JP 2020159585 A JP2020159585 A JP 2020159585A JP 2019056821 A JP2019056821 A JP 2019056821A JP 2019056821 A JP2019056821 A JP 2019056821A JP 2020159585 A JP2020159585 A JP 2020159585A
Authority
JP
Japan
Prior art keywords
water
heat exchanger
water heat
way valve
connection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019056821A
Other languages
Japanese (ja)
Other versions
JP7258618B2 (en
Inventor
正広 寺岡
Masahiro Teraoka
正広 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2019056821A priority Critical patent/JP7258618B2/en
Publication of JP2020159585A publication Critical patent/JP2020159585A/en
Application granted granted Critical
Publication of JP7258618B2 publication Critical patent/JP7258618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

To perform heat exchange efficiently in a heat exchanger, regardless of switching between cooling operation and heating operation in a refrigeration cycle system.SOLUTION: A chiller unit comprises: a first refrigeration cycle system R1 having a first water heat exchanger 9A; a second refrigeration cycle system R2 having a second water heat exchanger 9B; third and fourth refrigeration cycle systems R3 and R4 that share a third water heat exchanger 9C; a water pipe 18 connected to the first to third water heat exchangers 9A to 9C and through which water flows. In the first to third water heat exchangers 9A to 9C, the water pipe 18 is configured so that the flow direction of refrigerant and the flow direction of water are countercurrents facing each other according to switching between cooling operation and heating operation of the first to fourth refrigeration cycle systems R1 to R4.SELECTED DRAWING: Figure 2

Description

本発明は、チラーユニットに関するものである。 The present invention relates to a chiller unit.

チラーユニットは、複数の冷凍サイクルを備え、各冷凍サイクルに接続された水熱交換器において冷媒と水とを熱交換させることによって冷水又は温水を生成する。生成された冷水又は温水は、外部へ導かれて、室内の冷暖房や給湯に用いられる。 The chiller unit includes a plurality of refrigeration cycles, and produces cold water or hot water by exchanging heat between a refrigerant and water in a water heat exchanger connected to each refrigeration cycle. The generated cold water or hot water is guided to the outside and used for indoor heating and cooling and hot water supply.

チラーユニットには、各冷凍サイクルに1台ずつ水熱交換器が設置されるものや、複数系統の冷凍サイクルのうち2系統の冷凍サイクルに1台の水熱交換器が共有されて設置されるものがある。 In the chiller unit, one water heat exchanger is installed in each refrigeration cycle, and one water heat exchanger is shared and installed in two refrigeration cycles out of multiple refrigeration cycles. There is something.

下記の特許文献1には、チラーユニットが、第1水熱交換器を有する第1冷媒サイクル系統と、第2水熱交換器を有する第2冷媒サイクル系統と、第3水熱交換器を共有する第3冷媒サイクル系統及び第4冷媒サイクル系統とを備え、第1水熱交換器と第2水熱交換器が水配管によって並列に接続され、第3水熱交換器が第1及び第2水熱交換器に対して水配管によって直列に接続される構成が開示されている。 In Patent Document 1 below, the chiller unit shares a third water heat exchanger with a first refrigerant cycle system having a first water heat exchanger, a second refrigerant cycle system having a second water heat exchanger, and a third water heat exchanger. A third refrigerant cycle system and a fourth refrigerant cycle system are provided, the first water heat exchanger and the second water heat exchanger are connected in parallel by water pipes, and the third water heat exchanger is the first and second. A configuration is disclosed in which the water heat exchanger is connected in series by a water pipe.

特開2017−106643号公報JP-A-2017-106643

チラーユニットの熱交換器では、冷凍サイクルを循環する冷媒と、水配管を流れる水とが熱交換可能に構成されている。熱交換器では、冷媒の流れ方向と水の流れ方向が同じである並行流よりも、冷媒の流れ方向と水の流れ方向が向かい合う対向流の方が効率良く熱交換を行うことができる。 The heat exchanger of the chiller unit is configured so that the refrigerant circulating in the refrigeration cycle and the water flowing through the water pipe can exchange heat. In a heat exchanger, heat exchange can be performed more efficiently in a countercurrent flow in which the refrigerant flow direction and the water flow direction face each other than in a parallel flow in which the refrigerant flow direction and the water flow direction are the same.

チラーユニットにおける冷凍サイクルは、冷房運転時と暖房運転時とでは冷媒の流れ方向が逆となるため、運転の切り換えに応じて、熱交換器における冷媒の流れ方向と水の流れ方向が、並行流となったり、対向流となったりする。そのため、上記特許文献1の構成では、冷房運転と暖房運転の切り換えに応じて、熱交換器において並行流と対向流が切り換わるため、熱交換効率が変動するという問題がある。 In the refrigeration cycle in the chiller unit, the flow direction of the refrigerant is opposite between the cooling operation and the heating operation, so the flow direction of the refrigerant and the flow direction of water in the heat exchanger are parallel according to the switching of the operation. Or it becomes a countercurrent. Therefore, in the configuration of Patent Document 1, there is a problem that the heat exchange efficiency fluctuates because the parallel flow and the counter flow are switched in the heat exchanger according to the switching between the cooling operation and the heating operation.

本発明は、このような事情に鑑みてなされたものであって、冷凍サイクル系統における冷房運転と暖房運転の切り換えに関わらず、水熱交換器において効率良く熱交換を行うことが可能なチラーユニットを提供することを目的とする。 The present invention has been made in view of such circumstances, and is a chiller unit capable of efficiently exchanging heat in a water heat exchanger regardless of switching between cooling operation and heating operation in a refrigeration cycle system. The purpose is to provide.

上記課題を解決するために、本発明のチラーユニットは以下の手段を採用する。
すなわち、本発明に係るチラーユニットは、第1水熱交換器を有し、冷媒が循環する第1冷凍サイクル系統と、第2水熱交換器を有し、冷媒が循環する第2冷凍サイクル系統と、第3水熱交換器を共有し、冷媒がそれぞれ循環する第3冷凍サイクル系統及び第4冷凍サイクル系統と、前記第1水熱交換器、前記第2水熱交換器及び前記第3水熱交換器に接続され、水が流通する水配管とを備え、前記第1水熱交換器と前記第2水熱交換器が前記水配管によって並列に接続され、前記第3水熱交換器が前記第1水熱交換器及び前記第2水熱交換器に対して前記水配管によって直列に接続され、前記第1水熱交換器と前記第2水熱交換器において、前記第1冷凍サイクル系統及び前記第2冷凍サイクル系統の冷房運転と暖房運転の切り換えに応じて、前記冷媒の流れ方向と前記水の流れ方向が向かい合う対向流となるように、及び/又は、前記第3水熱交換器において、前記第3冷凍サイクル系統及び前記第4冷凍サイクル系統の冷房運転と暖房運転の切り換えに応じて、前記冷媒の流れ方向と前記水の流れ方向が向かい合う対向流となるように、前記水配管が構成されている。
In order to solve the above problems, the chiller unit of the present invention employs the following means.
That is, the chiller unit according to the present invention has a first refrigeration cycle system having a first water heat exchanger and circulating a refrigerant, and a second refrigeration cycle system having a second water heat exchanger and circulating a refrigerant. The third refrigeration cycle system and the fourth refrigeration cycle system, which share the third water heat exchanger and circulate the refrigerant, respectively, and the first water heat exchanger, the second water heat exchanger, and the third water. It is provided with a water pipe connected to a heat exchanger and through which water flows, and the first water heat exchanger and the second water heat exchanger are connected in parallel by the water pipe, and the third water heat exchanger is connected. The first refrigeration cycle system is connected in series to the first water heat exchanger and the second water heat exchanger by the water pipe, and in the first water heat exchanger and the second water heat exchanger. And so that the flow direction of the refrigerant and the flow direction of the water face each other in accordance with the switching between the cooling operation and the heating operation of the second refrigeration cycle system, and / or the third water heat exchanger. In the water pipe so that the flow direction of the refrigerant and the flow direction of the water face each other in accordance with the switching between the cooling operation and the heating operation of the third refrigeration cycle system and the fourth refrigeration cycle system. Is configured.

この構成によれば、第1冷凍サイクル系統と第2冷凍サイクル系統においては、それぞれ第1水熱交換器と第2水熱交換器によって冷媒と水との熱交換が個別に行われ、第3冷凍サイクル系統と第4冷凍サイクル系統においては、第3水熱交換器を共有しながら冷媒と水との熱交換が行われる。 According to this configuration, in the first refrigeration cycle system and the second refrigeration cycle system, heat exchange between the refrigerant and water is individually performed by the first water heat exchanger and the second water heat exchanger, respectively, and the third In the refrigeration cycle system and the fourth refrigeration cycle system, heat exchange between the refrigerant and water is performed while sharing the third water heat exchanger.

第1水熱交換器と第2水熱交換器とが水配管によって並列に接続されているため、第1冷凍サイクル系統と第2冷凍サイクル系統の冷媒を均等に水と熱交換させ、冷媒と水とを効率良く熱交換させることができる。 Since the first water heat exchanger and the second water heat exchanger are connected in parallel by water pipes, the refrigerants of the first refrigeration cycle system and the second refrigeration cycle system are evenly exchanged with water to exchange heat with the refrigerant. It is possible to efficiently exchange heat with water.

また、冷凍サイクル系統の冷房運転と暖房運転の切り換えに応じて、冷凍サイクル系統の冷媒の流れ方向と水配管の流れ方向を常に対向流とすることができる。その結果、各熱交換器において、効率良く熱交換を行うことができる。 Further, the flow direction of the refrigerant in the refrigeration cycle system and the flow direction of the water pipe can always be countercurrent according to the switching between the cooling operation and the heating operation of the refrigeration cycle system. As a result, heat exchange can be efficiently performed in each heat exchanger.

上記発明において、前記第3水熱交換器が前記第1水熱交換器と前記第2水熱交換器の下流側に前記水配管によって接続されてもよい。 In the above invention, the third water heat exchanger may be connected to the first water heat exchanger and the downstream side of the second water heat exchanger by the water pipe.

この構成によれば、水の圧力が高い入口側の方に第1水熱交換器と第2水熱交換器の2基の水熱交換器が設けられる態様となるため、各水熱交換器における水の偏流を抑制して冷媒と水とを効率良く熱交換させることができる。 According to this configuration, two water heat exchangers, a first water heat exchanger and a second water heat exchanger, are provided on the inlet side where the water pressure is high. Therefore, each water heat exchanger is provided. It is possible to efficiently exchange heat between the refrigerant and water by suppressing the drift of water in the water.

上記発明において、前記水配管に設置され、第1接続口、第2接続口、第3接続口及び第4接続口を有する四方弁とを備え、前記第1接続口において前記水配管を流れる前記水が前記四方弁に常に流入し、前記第4接続口において前記第1水熱交換器と前記第2水熱交換器を流通した前記水、又は、前記第3水熱交換器を流通した前記水が前記四方弁から常に流出し、前記第2接続口と前記第1水熱交換器と前記第2水熱交換器の一端側の接続口、又は、前記第3水熱交換器の一端側の接続口とが前記水配管によって接続され、前記第3接続口と前記第1水熱交換器と前記第2水熱交換器の他端側の接続口、又は、前記第3水熱交換器の他端側の接続口とが前記水配管によって接続され、前記四方弁は、前記第1接続口と前記第2接続口が流通可能となり、かつ、前記第3接続口と前記第4接続口が流通可能となる第1モード、又は、前記第1接続口と前記第3接続口が流通可能となり、かつ、前記第2接続口と前記第4接続口が流通可能となる第2モードに切り換え可能である構成を有してもよい。 In the above invention, the four-way valve installed in the water pipe and having a first connection port, a second connection port, a third connection port and a fourth connection port is provided, and the water pipe flows through the first connection port. The water that constantly flows into the four-way valve and flows through the first water heat exchanger and the second water heat exchanger at the fourth connection port, or the water that flows through the third water heat exchanger. Water always flows out from the four-way valve, and the connection port on the one end side of the second connection port, the first water heat exchanger, and the second water heat exchanger, or one end side of the third water heat exchanger. The connection port is connected by the water pipe, and the connection port on the other end side of the third connection port, the first water heat exchanger, and the second water heat exchanger, or the third water heat exchanger. The connection port on the other end side of the above is connected by the water pipe, and the four-way valve allows the first connection port and the second connection port to flow, and the third connection port and the fourth connection port. Switch to the first mode in which the first connection port and the third connection port can be distributed, and the second mode in which the second connection port and the fourth connection port can be distributed. It may have a possible configuration.

この構成によれば、四方弁が第1モードに切り換えられているとき、第1接続口において水配管を流れる水が流入し、第1接続口から第2接続口へ水が流れた後、第2接続口から水熱交換器へ水が供給される。また、第1モードでは、水熱交換器を流れた水が第3接続口から流入し、第3接続口から第4接続口へ水が流れた後、第4接続口から水が外部へ流出する。また、四方弁が第2モードに切り換えられているとき、第1接続口において水配管を流れる水が流入し、第1接続口から第3接続口へ水が流れた後、第3接続口から水熱交換器へ水が供給される。また、第2モードでは、水熱交換器を流れた水が第2接続口から流入し、第2接続口から第4接続口へ水が流れた後、第4接続口から水が外部へ流出する。 According to this configuration, when the four-way valve is switched to the first mode, the water flowing through the water pipe flows in at the first connection port, and after the water flows from the first connection port to the second connection port, the first 2 Water is supplied to the water heat exchanger from the connection port. Further, in the first mode, the water flowing through the water heat exchanger flows in from the third connection port, the water flows from the third connection port to the fourth connection port, and then the water flows out from the fourth connection port to the outside. To do. Further, when the four-way valve is switched to the second mode, water flowing through the water pipe flows in at the first connection port, water flows from the first connection port to the third connection port, and then from the third connection port. Water is supplied to the water heat exchanger. Further, in the second mode, the water flowing through the water heat exchanger flows in from the second connection port, the water flows from the second connection port to the fourth connection port, and then the water flows out from the fourth connection port to the outside. To do.

よって、四方弁を切り換えることによって、熱交換器に接続された水配管の流れ方向を変更することが可能である。したがって、冷凍サイクル系統の冷房運転と暖房運転の切り換えに応じて、四方弁を切り換えることで、冷凍サイクル系統の冷媒の流れ方向と水配管の流れ方向を常に対向流とすることができる。また、四方弁の切り換えに関わらず、水配管には常に水が流れており、水が流れない系統が存在しない。したがって、熱交換器に接続された水配管の流れ方向を変更する場合において、水の流れ方向を迅速に切り換え可能とし、また、不具合を生じにくくすることができる。 Therefore, it is possible to change the flow direction of the water pipe connected to the heat exchanger by switching the four-way valve. Therefore, by switching the four-way valve according to the switching between the cooling operation and the heating operation of the refrigeration cycle system, the flow direction of the refrigerant in the refrigeration cycle system and the flow direction of the water pipe can always be countercurrent. In addition, regardless of the switching of the four-way valve, water always flows in the water pipe, and there is no system in which water does not flow. Therefore, when changing the flow direction of the water pipe connected to the heat exchanger, the water flow direction can be quickly switched, and problems can be less likely to occur.

また、四方弁の設置個数は一つであり、三方弁を設置する場合の設置個数に比べて低減されるため、部品点数を減らすことができる。また、三方弁を設置する場合、複数の三方弁が動作する必要があるのに対して、一つの四方弁が動作すればよいため、動作ミスによる切り換えの不具合が生じにくい。 Further, since the number of installed four-way valves is one, which is smaller than the number of installed three-way valves, the number of parts can be reduced. Further, when a three-way valve is installed, a plurality of three-way valves need to operate, whereas one four-way valve only needs to operate, so that a switching problem due to an operation error is unlikely to occur.

上記発明において、前記四方弁は、ユニット本体の内部に設置されてもよい。 In the above invention, the four-way valve may be installed inside the unit body.

この構成によれば、ユニット本体の内部に四方弁が設置されていることから、チリングユニットを外部の水配管と接続するだけで、冷凍サイクル系統の冷媒の流れ方向と水配管の流れ方向を常に対向流とすることが可能な系統を構成することができる。 According to this configuration, since the four-way valve is installed inside the unit body, the flow direction of the refrigerant in the refrigeration cycle system and the flow direction of the water pipe can always be changed simply by connecting the chilling unit to the external water pipe. A system that can be countercurrent can be configured.

上記発明において、前記四方弁は、ユニット本体の外部に設置され、前記ユニット本体の内部に設置された前記水配管と接続されてもよい。 In the above invention, the four-way valve may be installed outside the unit body and connected to the water pipe installed inside the unit body.

上記発明において、前記水配管において、前記第1水熱交換器及び前記第2水熱交換器と前記第3水熱交換器の間に設置された第1三方弁と、一端が前記第1水熱交換器と前記第2水熱交換器の上流側の前記水配管と接続され、他端が前記第1三方弁と接続された第1分岐管と、前記水配管において、前記第1水熱交換器及び前記第2水熱交換器と、前記第3水熱交換器の間において、前記第1三方弁よりも前記第3水熱交換器側に設置された第2三方弁と、一端が前記第2三方弁と接続され、他端が前記第3水熱交換器の下流側の前記水配管と接続された第2分岐管と、前記水配管と前記第1分岐管の接続部分と、前記第1水熱交換器及び前記第2水熱交換器の間に設置された第3三方弁と、前記第3水熱交換器と、前記水配管の前記第2分岐管の接続部分の間に設置された第4三方弁と、一端が前記第3三方弁と接続され、他端が前記第4三方弁と接続された第3分岐管とを備えてもよい。 In the above invention, in the water pipe, a first three-way valve installed between the first water heat exchanger and the second water heat exchanger and the third water heat exchanger, and one end of the first water. In the first branch pipe connected to the heat exchanger and the water pipe on the upstream side of the second water heat exchanger and the other end connected to the first three-way valve, and the first water heat in the water pipe. Between the exchanger, the second water heat exchanger, and the third water heat exchanger, one end is a second three-way valve installed on the third water heat exchanger side of the first three-way valve. A second branch pipe connected to the second three-way valve and the other end connected to the water pipe on the downstream side of the third water heat exchanger, and a connecting portion between the water pipe and the first branch pipe. Between the third three-way valve installed between the first water heat exchanger and the second water heat exchanger, the third water heat exchanger, and the connection portion of the second branch pipe of the water pipe. A fourth three-way valve installed in the above and a third branch pipe having one end connected to the third three-way valve and the other end connected to the fourth three-way valve may be provided.

この構成によれば、熱交換器において水配管を流れる水を第1の方向に流す場合、第1三方弁の第1分岐管側を閉鎖し、第2三方弁の第2分岐管側を閉鎖し、第3三方弁の第3分岐管側を閉鎖し、第4三方弁の第3分岐管側を閉鎖する。また、第1三方弁の第3水熱交換器側を開放し、第2三方弁の第1水熱交換器及び第2水熱交換器側を開放し、第3三方弁の第1水熱交換器及び第2水熱交換器側を開放し、第4三方弁の第3水熱交換器側を開放する。これにより、水配管を流れる水が、第3三方弁を介して、第1水熱交換器と第2水熱交換器に供給されて、その後、合流する。次に、水は、第1三方弁及び第2三方弁を介して、第3水熱交換器に供給される。そして、第3水熱交換器から第4四方弁を介して、外部へ流出する。 According to this configuration, when the water flowing through the water pipe in the heat exchanger flows in the first direction, the first branch pipe side of the first three-way valve is closed and the second branch pipe side of the second three-way valve is closed. Then, the third branch pipe side of the third three-way valve is closed, and the third branch pipe side of the fourth three-way valve is closed. Further, the third water heat exchanger side of the first three-way valve is opened, the first water heat exchanger and the second water heat exchanger side of the second three-way valve are opened, and the first water heat of the third three-way valve is opened. The exchanger and the second water heat exchanger side are opened, and the third water heat exchanger side of the fourth three-way valve is opened. As a result, the water flowing through the water pipe is supplied to the first water heat exchanger and the second water heat exchanger via the third three-way valve, and then merges. The water is then supplied to the third water heat exchanger via the first three-way valve and the second three-way valve. Then, it flows out from the third water heat exchanger to the outside through the fourth four-way valve.

熱交換器において水配管を流れる水を第1の方向とは反対の第2の方向に流す場合、第1三方弁の第1分岐管側を開放し、第2三方弁の第2分岐管側を開放し、第3三方弁の第3分岐管側を開放し、第4三方弁の第3分岐管側を開放する。また、第1三方弁の第3水熱交換器側を閉鎖し、第2三方弁の第1水熱交換器及び第2水熱交換器側を閉鎖し、第3三方弁の第1水熱交換器及び第2水熱交換器側を閉鎖し、第4三方弁の第3水熱交換器側を閉鎖する。 When the water flowing through the water pipe in the heat exchanger flows in the second direction opposite to the first direction, the first branch pipe side of the first three-way valve is opened and the second branch pipe side of the second three-way valve is opened. Is opened, the third branch pipe side of the third three-way valve is opened, and the third branch pipe side of the fourth three-way valve is opened. In addition, the third water heat exchanger side of the first three-way valve is closed, the first water heat exchanger and the second water heat exchanger side of the second three-way valve are closed, and the first water heat of the third three-way valve is closed. The exchanger and the second water heat exchanger side are closed, and the third water heat exchanger side of the fourth three-way valve is closed.

これにより、水配管を流れる水が、第1分岐管及び第1三方弁を介して、第1水熱交換器と第2水熱交換器に供給されて、その後、合流する。次に、水は、第3三方弁、第3分岐管及び第4三方弁を介して、第3水熱交換器に供給される。そして、第3水熱交換器から第3四方弁及び第2分岐管を介して、外部へ流出する。 As a result, the water flowing through the water pipe is supplied to the first water heat exchanger and the second water heat exchanger via the first branch pipe and the first three-way valve, and then merges. The water is then supplied to the third water heat exchanger via the third three-way valve, the third branch pipe and the fourth three-way valve. Then, it flows out from the third water heat exchanger to the outside through the third four-way valve and the second branch pipe.

よって、三方弁を切り換えることによって、熱交換器に接続された水配管の流れ方向を変更することが可能である。したがって、冷凍サイクル系統の冷房運転と暖房運転の切り換えに応じて、三方弁を切り換えることで、冷凍サイクル系統の冷媒の流れ方向と水配管の流れ方向を常に対向流とすることができる。 Therefore, it is possible to change the flow direction of the water pipe connected to the heat exchanger by switching the three-way valve. Therefore, by switching the three-way valve according to the switching between the cooling operation and the heating operation of the refrigeration cycle system, the flow direction of the refrigerant in the refrigeration cycle system and the flow direction of the water pipe can always be countercurrent.

この構成によれば、ユニット本体の外部に四方弁が設置されていることから、四方弁をユニット本体の内部に設置された水配管と接続されることによって、冷凍サイクル系統の冷媒の流れ方向と水配管の流れ方向を常に対向流とすることが可能な系統を構成することができる。ユニット本体の内部には、四方弁が設置されていないことから、ユニット本体は、水配管の流れ方向が切り換え不要な構成にも適用できる。 According to this configuration, since the four-way valve is installed outside the unit body, by connecting the four-way valve to the water pipe installed inside the unit body, the flow direction of the refrigerant in the refrigeration cycle system can be determined. It is possible to construct a system in which the flow direction of the water pipe can always be countercurrent. Since the four-way valve is not installed inside the unit body, the unit body can be applied to a configuration in which the flow direction of the water pipe does not need to be switched.

上記発明において、前記第1冷凍サイクル系統、前記第2冷凍サイクル系統、又は、前記第3冷凍サイクル系統において、前記第1水熱交換器、前記第2水熱交換器、又は、前記第3水熱交換器の接続口よりも上流側又は下流側に設置され、前記第1冷凍サイクル系統、前記第2冷凍サイクル系統、又は、前記第3冷凍サイクル系統を流れる前記冷媒の温度を検出する温度検出部と、前記温度検出部によって検出された温度に基づいて、前記四方弁、又は、前記第1三方弁、前記第2三方弁、前記第3三方弁及び前記第4三方弁を切り換える制御部とを備えてもよい。 In the above invention, in the first refrigeration cycle system, the second refrigeration cycle system, or the third refrigeration cycle system, the first water heat exchanger, the second water heat exchanger, or the third water. Temperature detection installed on the upstream side or downstream side of the connection port of the heat exchanger to detect the temperature of the refrigerant flowing through the first refrigeration cycle system, the second refrigeration cycle system, or the third refrigeration cycle system. And a control unit that switches between the four-way valve, the first three-way valve, the second three-way valve, the third three-way valve, and the fourth three-way valve based on the temperature detected by the temperature detection unit. May be provided.

この構成によれば、冷凍サイクル系統において、水熱交換器の接続口よりも上流側又は下流側に設置された温度検出部によって、冷凍サイクル系統を流れる冷媒の温度が検出され、検出された温度に基づいて、四方弁が切り換えられる。冷凍サイクル系統の冷房運転と暖房運転の切り換えに応じて、水熱交換器の接続口よりも上流側又は下流側を流れる冷媒の温度が変更される。これにより、検出された冷媒の温度に応じて、四方弁が自動的に切り換えられて、冷凍サイクル系統の冷媒の流れ方向と水配管の流れ方向を常に対向流とすることができる。なお、第1三方弁、第2三方弁、第3三方弁及び第4三方弁が設けられる構成についても同様である。 According to this configuration, in the refrigeration cycle system, the temperature of the refrigerant flowing through the refrigeration cycle system is detected by the temperature detection unit installed on the upstream side or the downstream side of the connection port of the water heat exchanger, and the detected temperature. Based on, the four-way valve is switched. The temperature of the refrigerant flowing upstream or downstream of the connection port of the water heat exchanger is changed according to the switching between the cooling operation and the heating operation of the refrigeration cycle system. As a result, the four-way valve is automatically switched according to the detected temperature of the refrigerant, and the flow direction of the refrigerant in the refrigeration cycle system and the flow direction of the water pipe can always be countercurrent. The same applies to the configuration in which the first three-way valve, the second three-way valve, the third three-way valve, and the fourth three-way valve are provided.

上記発明において、前記第1冷凍サイクル系統、前記第2冷凍サイクル系統、又は、前記第3冷凍サイクル系統に設置され、前記第1冷凍サイクル系統、前記第2冷凍サイクル系統、又は、前記第3冷凍サイクル系統を流れる前記冷媒の圧力を検出する圧力検出部と、前記制御部は、前記圧力検出部によって検出された圧力に基づいて、前記四方弁、又は、前記第1三方弁、前記第2三方弁、前記第3三方弁及び前記第4三方弁の切り換えの成否を判断してもよい。 In the above invention, the first refrigeration cycle system, the second refrigeration cycle system, or the third refrigeration cycle system is installed, and the first refrigeration cycle system, the second refrigeration cycle system, or the third refrigeration system is installed. The pressure detection unit that detects the pressure of the refrigerant flowing through the cycle system and the control unit are the four-way valve, the first three-way valve, or the second three-way valve based on the pressure detected by the pressure detection unit. The success or failure of switching between the valve, the third three-way valve and the fourth three-way valve may be determined.

この構成によれば、冷凍サイクル系統に設置された圧力検出部によって、冷凍サイクル系統を流れる冷媒の圧力が検出され、検出された圧力に基づいて、四方弁の切り換えの成否が判断される。したがって、冷媒の温度が検出されることによって、四方弁が正しく切り換えられているか否かを判断できる。なお、第1三方弁、第2三方弁、第3三方弁及び第4三方弁が設けられる構成についても同様である。 According to this configuration, the pressure detection unit installed in the refrigeration cycle system detects the pressure of the refrigerant flowing through the refrigeration cycle system, and the success or failure of the four-way valve switching is determined based on the detected pressure. Therefore, by detecting the temperature of the refrigerant, it can be determined whether or not the four-way valve is correctly switched. The same applies to the configuration in which the first three-way valve, the second three-way valve, the third three-way valve, and the fourth three-way valve are provided.

本発明によれば、冷凍サイクル系統における冷房運転と暖房運転の切り換えに関わらず、水熱交換器において効率良く熱交換を行うことできる。 According to the present invention, heat exchange can be efficiently performed in the water heat exchanger regardless of the switching between the cooling operation and the heating operation in the refrigeration cycle system.

本発明の第1実施形態に係るチラーユニットの概略構成を示す回路図である。It is a circuit diagram which shows the schematic structure of the chiller unit which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るチラーユニットの水配管の構成を示す概略図であり、四方弁が第1モードに切り換えられた状態を示す。It is the schematic which shows the structure of the water pipe of the chiller unit which concerns on 1st Embodiment of this invention, and shows the state which the four-way valve is switched to the 1st mode. 本発明の第1実施形態に係るチラーユニットの水配管の構成を示す概略図であり、四方弁が第2モードに切り換えられた状態を示す。It is the schematic which shows the structure of the water pipe of the chiller unit which concerns on 1st Embodiment of this invention, and shows the state which the four-way valve is switched to the 2nd mode. 本発明の第2実施形態に係るチラーユニットの水配管の構成を示す概略図であり、第1〜第3水熱交換器において、水が第1の方向に流れる場合を示す。It is the schematic which shows the structure of the water pipe of the chiller unit which concerns on 2nd Embodiment of this invention, and shows the case where water flows in the 1st direction in the 1st to 3rd water heat exchangers. 本発明の第2実施形態に係るチラーユニットの水配管の構成を示す概略図であり、第1〜第3水熱交換器において、水が第2の方向に流れる場合を示す。It is a schematic diagram which shows the structure of the water pipe of the chiller unit which concerns on 2nd Embodiment of this invention, and shows the case where water flows in the 2nd direction in the 1st to 3rd water heat exchangers.

以下に、本発明に係る実施形態について、図面を参照して説明する。
[第1実施形態]
以下、本発明の第1実施形態に係るチラーユニット1について説明する。図1は、本発明の第1実施形態に係るチラーユニット1の概略構成を示す回路図である。
このチラーユニット1は、4つの冷凍サイクル系統、すなわち、第1〜第4冷凍サイクル系統R1,R2,R3,R4(以下「R1〜R4」と示す。)と、水系統部3とが図示しない筐体の内部に収容された構成となっている。なお、本実施形態に係る水配管18の構成は、図2及び図3で示しており、図1では、水配管18の構成を簡略化して示している。
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
[First Embodiment]
Hereinafter, the chiller unit 1 according to the first embodiment of the present invention will be described. FIG. 1 is a circuit diagram showing a schematic configuration of a chiller unit 1 according to a first embodiment of the present invention.
In this chiller unit 1, four refrigeration cycle systems, that is, first to fourth refrigeration cycle systems R1, R2, R3, R4 (hereinafter referred to as "R1 to R4") and a water system unit 3 are not shown. It is configured to be housed inside the housing. The configuration of the water pipe 18 according to the present embodiment is shown in FIGS. 2 and 3, and FIG. 1 shows the configuration of the water pipe 18 in a simplified manner.

第1〜第4冷凍サイクル系統R1〜R4は、それぞれ、圧縮機5と、オイルセパレータ6と、逆止弁7と、四方弁8と、水熱交換器9(第1〜第3水熱交換器9A,9B,9C(以下「9A〜9C」と示す。))と、レシーバ10と、電子膨張弁11と、空冷熱交換器12と、気液分離器13とを備えている。空冷熱交換器12には冷却ファン12aが設けられている。 The first to fourth refrigeration cycle systems R1 to R4 include a compressor 5, an oil separator 6, a check valve 7, a four-way valve 8, and a water heat exchanger 9 (first to third water heat exchanges, respectively). It includes vessels 9A, 9B, 9C (hereinafter referred to as "9A-9C")), a receiver 10, an electronic expansion valve 11, an air-cooled heat exchanger 12, and a gas-liquid separator 13. The air-cooled heat exchanger 12 is provided with a cooling fan 12a.

圧縮機5は、ガス冷媒を吸入し、吸入したガス冷媒を圧縮して吐出する。オイルセパレータ6は、圧縮機5から吐出された圧縮冷媒中のオイルを分離して圧縮機5に還流させる。逆止弁7は、圧縮冷媒の逆流を防止する。 The compressor 5 sucks in the gas refrigerant, compresses the sucked gas refrigerant, and discharges the gas refrigerant. The oil separator 6 separates the oil in the compressed refrigerant discharged from the compressor 5 and returns it to the compressor 5. The check valve 7 prevents the backflow of the compressed refrigerant.

四方弁8は、圧縮機5から吐出された圧縮冷媒を水熱交換器9に送る暖房運転モードと、空冷熱交換器12に送る冷房運転モードとの2つのポジションが選択される弁である。図1では、四方弁8が暖房運転モードのポジションとなっている。 The four-way valve 8 is a valve in which two positions are selected: a heating operation mode in which the compressed refrigerant discharged from the compressor 5 is sent to the water heat exchanger 9, and a cooling operation mode in which the compressed refrigerant is sent to the air cooling heat exchanger 12. In FIG. 1, the four-way valve 8 is in the heating operation mode position.

水熱交換器9は、暖房運転モードにおいて圧縮冷媒を凝縮させて凝縮器として機能し、冷房運転モードにおいて凝縮冷媒を気化させる蒸発器として機能する熱交換器である。そして、その凝縮熱又は気化熱により、後述するように水系統部3を流れる水を加熱又は冷却して暖房用の温水、給湯用の温水若しくは熱水、又は冷房用の冷水を生成する。 The water heat exchanger 9 is a heat exchanger that functions as a condenser by condensing the compressed refrigerant in the heating operation mode and as an evaporator that vaporizes the condensed refrigerant in the cooling operation mode. Then, the heat of condensation or the heat of vaporization heats or cools the water flowing through the water system portion 3 as described later to generate hot water for heating, hot water or hot water for hot water supply, or cold water for cooling.

第1冷凍サイクル系統R1は、第1水熱交換器9Aを有し、第2冷凍サイクル系統R2は、第2水熱交換器9Bを有する。また、第3冷凍サイクル系統R3と第4冷凍サイクル系統R4は、第3水熱交換器9Cを共有する。すなわち、第3水熱交換器9Cは、2層構造となっており、第3冷凍サイクル系統R3の冷媒と第4冷凍サイクル系統R4の冷媒とが混合しないで通過するようになっている。 The first refrigeration cycle system R1 has a first water heat exchanger 9A, and the second refrigeration cycle system R2 has a second water heat exchanger 9B. Further, the third refrigeration cycle system R3 and the fourth refrigeration cycle system R4 share the third water heat exchanger 9C. That is, the third water heat exchanger 9C has a two-layer structure, and the refrigerant of the third refrigeration cycle system R3 and the refrigerant of the fourth refrigeration cycle system R4 pass through without being mixed.

チラーユニット1は、第1水熱交換器9Aと第2水熱交換器9Bが水配管18によって並列に接続され、第3水熱交換器9Cが第1,第2水熱交換器9A,9Bに対して水配管18によって直列に接続される。 In the chiller unit 1, the first water heat exchanger 9A and the second water heat exchanger 9B are connected in parallel by the water pipe 18, and the third water heat exchanger 9C is connected to the first and second water heat exchangers 9A and 9B. Is connected in series by a water pipe 18.

第1水熱交換器9A及び第2水熱交換器9Bのそれぞれの容量は、第3水熱交換器9Cの容量よりも小さく、例えば第3水熱交換器9Cの半分程度に設定されている。これにより、第1水熱交換器9Aと第2水熱交換器9Bとを互いに離間させて配置することができる。このため、チラーユニット1(図示しない筐体)の内部における第1水熱交換器9Aと第2水熱交換器9Bの配置レイアウトの自由度を高めることができる。また、第1水熱交換器9Aと第2水熱交換器9Bと他の機材との相対設置間隔を大きくして清掃、検査、調整、交換等のメンテナンス作業性を向上させることができる。 The capacity of each of the first water heat exchanger 9A and the second water heat exchanger 9B is smaller than the capacity of the third water heat exchanger 9C, and is set to, for example, about half that of the third water heat exchanger 9C. .. As a result, the first water heat exchanger 9A and the second water heat exchanger 9B can be arranged apart from each other. Therefore, it is possible to increase the degree of freedom in the layout of the first water heat exchanger 9A and the second water heat exchanger 9B inside the chiller unit 1 (a housing (not shown)). Further, the relative installation interval between the first water heat exchanger 9A and the second water heat exchanger 9B and other equipment can be increased to improve maintenance workability such as cleaning, inspection, adjustment, and replacement.

レシーバ10は、凝縮した液冷媒を所定量貯留するタンクである。電子膨張弁11は、凝縮冷媒の圧力を低下させて気化を促進させる。空冷熱交換器12は、冷却ファン12aによって外気が供給される。空冷熱交換器12は、暖房運転モードにおいて凝縮冷媒を気化させる蒸発器として機能し、冷房運転モードにおいて圧縮冷媒を凝縮させる凝縮器として機能する熱交換器である。気液分離器13は、圧縮機5に吸入される前の冷媒を気液分離してガス冷媒のみを圧縮機5に吸入させる。 The receiver 10 is a tank that stores a predetermined amount of condensed liquid refrigerant. The electronic expansion valve 11 reduces the pressure of the condensed refrigerant to promote vaporization. The air-cooled heat exchanger 12 is supplied with outside air by a cooling fan 12a. The air-cooled heat exchanger 12 is a heat exchanger that functions as an evaporator that vaporizes the condensed refrigerant in the heating operation mode and functions as a condenser that condenses the compressed refrigerant in the cooling operation mode. The gas-liquid separator 13 separates the refrigerant before being sucked into the compressor 5 into gas-liquid and causes the compressor 5 to suck only the gas refrigerant.

水系統部3は、水入口部15と、水ポンプ16と、水出口部17と、水配管18とを具備して構成されている。水入口部15から延びる水配管18には、水ポンプ16が設置される。 The water system portion 3 includes a water inlet portion 15, a water pump 16, a water outlet portion 17, and a water pipe 18. A water pump 16 is installed in the water pipe 18 extending from the water inlet portion 15.

次に、図2及び図3を参照して、本実施形態に係る水配管18の構成について説明する。
水配管18は、例えば、水配管18a〜18dによって構成される。水配管18には、四方弁20が一つ設置される。四方弁20は、第1接続口21、第2接続口22、第3接続口23及び第4接続口24を有する。
Next, the configuration of the water pipe 18 according to the present embodiment will be described with reference to FIGS. 2 and 3.
The water pipe 18 is composed of, for example, water pipes 18a to 18d. One four-way valve 20 is installed in the water pipe 18. The four-way valve 20 has a first connection port 21, a second connection port 22, a third connection port 23, and a fourth connection port 24.

四方弁20は、第1モード又は第2モードに切り換え可能である構成を有する。第1モードでは、図2に示すように、第1接続口21と第2接続口22が流通可能となり、かつ、第3接続口23と第4接続口24が流通可能となる。第2モードでは、図3に示すように、第1接続口21と第3接続口23が流通可能となり、かつ、第2接続口22と第4接続口24が流通可能となる。 The four-way valve 20 has a configuration that can be switched to the first mode or the second mode. In the first mode, as shown in FIG. 2, the first connection port 21 and the second connection port 22 can be distributed, and the third connection port 23 and the fourth connection port 24 can be distributed. In the second mode, as shown in FIG. 3, the first connection port 21 and the third connection port 23 can be distributed, and the second connection port 22 and the fourth connection port 24 can be distributed.

第1,第2水熱交換器9A,9B側において、水配管18aは、四方弁20の第1接続口21と接続され、第1接続口21では、供給元から送られた水配管18aを流れる水が四方弁20に常に流入する。第3水熱交換器9C側において、四方弁20の第1接続口21は、第1,第2水熱交換器9A,9B側の水配管18dと接続され、第1接続口21では、第1,第2水熱交換器9A,9B側から送られた水配管18dを流れる水が四方弁20に常に流入する。 On the first and second water heat exchangers 9A and 9B sides, the water pipe 18a is connected to the first connection port 21 of the four-way valve 20, and at the first connection port 21, the water pipe 18a sent from the supply source is connected. The flowing water always flows into the four-way valve 20. On the third water heat exchanger 9C side, the first connection port 21 of the four-way valve 20 is connected to the water pipes 18d on the first and second water heat exchangers 9A and 9B sides, and at the first connection port 21, the first connection port 21 is connected. The water flowing through the water pipes 18d sent from the first and second water heat exchangers 9A and 9B sides always flows into the four-way valve 20.

水配管18dは、四方弁20の第4接続口24と接続され、第4接続口24では、第1,第2水熱交換器9A,9B又は第3水熱交換器9Cを流通した水が四方弁20から常に流出して、供給先へ送られる。 The water pipe 18d is connected to the fourth connection port 24 of the four-way valve 20, and at the fourth connection port 24, the water flowing through the first and second water heat exchangers 9A and 9B or the third water heat exchanger 9C flows. It always flows out of the four-way valve 20 and is sent to the supply destination.

水配管18bは、一端が四方弁20の第2接続口22と接続され、他端が第1,第2水熱交換器9A,9Bの一端側の接続口、又は、第3水熱交換器9Cの一端側の接続口と接続される。第1,第2水熱交換器9A,9B側において、水配管18bは、途中で、第1,第2水熱交換器9A,9B側とに分かれて設けられている。 One end of the water pipe 18b is connected to the second connection port 22 of the four-way valve 20, and the other end is the connection port on one end side of the first and second water heat exchangers 9A and 9B, or the third water heat exchanger. It is connected to the connection port on one end side of 9C. On the first and second water heat exchangers 9A and 9B sides, the water pipe 18b is provided separately on the first and second water heat exchangers 9A and 9B sides on the way.

四方弁20が第1接続口21と第2接続口22が流通可能な第1モードであるとき、水配管18bでは、四方弁20の第2接続口22から第1,第2水熱交換器9A,9B又は第3水熱交換器9Cへ水が送られる。四方弁20が第2接続口22と第4接続口24が流通可能な第2モードであるとき、水配管18bでは、第1,第2水熱交換器9A,9B又は第3水熱交換器9Cから四方弁20の第2接続口22へ水が送られる。 When the four-way valve 20 is in the first mode in which the first connection port 21 and the second connection port 22 can flow, in the water pipe 18b, the first and second water heat exchangers from the second connection port 22 of the four-way valve 20 Water is sent to 9A, 9B or the third water heat exchanger 9C. When the four-way valve 20 is in the second mode in which the second connection port 22 and the fourth connection port 24 can flow, in the water pipe 18b, the first and second water heat exchangers 9A, 9B or the third water heat exchanger Water is sent from 9C to the second connection port 22 of the four-way valve 20.

水配管18cは、一端が第3接続口23と接続され、他端が第1,第2水熱交換器9A,9Bの他端側の接続口、又は、第3水熱交換器9Cの他端側の接続口と接続される。第1,第2水熱交換器9A,9B側において、水配管18cは、途中で、第1,第2水熱交換器9A,9B側とに分かれて設けられている。 One end of the water pipe 18c is connected to the third connection port 23, and the other end is the connection port on the other end side of the first and second water heat exchangers 9A and 9B, or another of the third water heat exchanger 9C. It is connected to the connection port on the end side. On the first and second water heat exchangers 9A and 9B sides, the water pipe 18c is provided separately on the first and second water heat exchangers 9A and 9B sides on the way.

四方弁20が第3接続口23と第4接続口24が流通可能な第1モードであるとき、水配管18cでは、第1,第2水熱交換器9A,9B又は第3水熱交換器9Cから四方弁20の第3接続口23へ水が送られる。四方弁20が第1接続口21と第3接続口23が流通可能な第2モードであるとき、水配管18cでは、四方弁20の第3接続口23から第1,第2水熱交換器9A,9B又は第3水熱交換器9Cへ水が送られる。 When the four-way valve 20 is in the first mode in which the third connection port 23 and the fourth connection port 24 can flow, in the water pipe 18c, the first and second water heat exchangers 9A, 9B or the third water heat exchanger Water is sent from 9C to the third connection port 23 of the four-way valve 20. When the four-way valve 20 is in the second mode in which the first connection port 21 and the third connection port 23 can flow, in the water pipe 18c, the first and second water heat exchangers from the third connection port 23 of the four-way valve 20 Water is sent to 9A, 9B or the third water heat exchanger 9C.

四方弁20が第1モードに切り換えられているとき、第1接続口21において水配管18aを流れる水が流入し、第1接続口21から第2接続口22へ水が流れた後、第2接続口22から第1,第2水熱交換器9A,9B又は第3水熱交換器9Cへ水が供給される。また、第1モードでは、第1,第2水熱交換器9A,9B又は第3水熱交換器9Cを流れた水が第3接続口23から流入し、第3接続口23から第4接続口24へ水が流れた後、第4接続口24から水が水配管18dを介して供給先へ流出する。 When the four-way valve 20 is switched to the first mode, water flowing through the water pipe 18a flows in at the first connection port 21, water flows from the first connection port 21 to the second connection port 22, and then the second Water is supplied from the connection port 22 to the first and second water heat exchangers 9A and 9B or the third water heat exchanger 9C. Further, in the first mode, the water flowing through the first and second water heat exchangers 9A and 9B or the third water heat exchanger 9C flows in from the third connection port 23, and is connected from the third connection port 23 to the fourth connection. After the water flows to the port 24, the water flows out from the fourth connection port 24 to the supply destination via the water pipe 18d.

四方弁20が第2モードに切り換えられているとき、第1接続口21において水配管18aを流れる水が流入し、第1接続口21から第3接続口23へ水が流れた後、第3接続口23から第1,第2水熱交換器9A,9B又は第3水熱交換器9Cへ水が供給される。また、第2モードでは、第1,第2水熱交換器9A,9B又は第3水熱交換器9Cを流れた水が第2接続口22から流入し、第2接続口22から第4接続口24へ水が流れた後、第4接続口24から水が水配管18dを介して供給先へ流出する。 When the four-way valve 20 is switched to the second mode, water flowing through the water pipe 18a flows in at the first connection port 21, water flows from the first connection port 21 to the third connection port 23, and then the third Water is supplied from the connection port 23 to the first and second water heat exchangers 9A and 9B or the third water heat exchanger 9C. Further, in the second mode, the water flowing through the first and second water heat exchangers 9A and 9B or the third water heat exchanger 9C flows in from the second connection port 22, and the second connection port 22 to the fourth connection. After the water flows to the port 24, the water flows out from the fourth connection port 24 to the supply destination via the water pipe 18d.

四方弁20を切り換えることによって、第1,第2水熱交換器9A,9B又は第3水熱交換器9Cに接続された水配管18の水の流れ方向を変更することが可能である。したがって、第1〜第4冷凍サイクル系統R1〜R4の冷房運転と暖房運転の切り換えに応じて、四方弁20を切り換えることで、第1〜第4冷凍サイクル系統R1〜R4の冷媒の流れ方向と水配管18の水の流れ方向を常に対向流とすることができる。また、四方弁20の切り換えに関わらず、水配管18には常に水が流れており、水が流れない系統が存在しない。したがって、第1,第2水熱交換器9A,9B又は第3水熱交換器9Cに接続された水配管18の水の流れ方向を変更する場合において、水の流れ方向を迅速に切り換え可能とし、また、不具合を生じにくくすることができる。 By switching the four-way valve 20, it is possible to change the water flow direction of the water pipe 18 connected to the first and second water heat exchangers 9A and 9B or the third water heat exchanger 9C. Therefore, by switching the four-way valve 20 according to the switching between the cooling operation and the heating operation of the first to fourth refrigeration cycle systems R1 to R4, the flow direction of the refrigerant in the first to fourth refrigeration cycle systems R1 to R4 can be determined. The water flow direction of the water pipe 18 can always be countercurrent. Further, regardless of the switching of the four-way valve 20, water always flows in the water pipe 18, and there is no system in which water does not flow. Therefore, when changing the water flow direction of the water pipe 18 connected to the first and second water heat exchangers 9A and 9B or the third water heat exchanger 9C, the water flow direction can be quickly switched. In addition, it is possible to prevent problems from occurring.

また、第1,第2水熱交換器9A,9B又は第3水熱交換器9Cに対して、四方弁20の設置個数は一つずつであり、三方弁を設置する場合の設置個数に比べて低減されるため、部品点数を減らすことができる。また、三方弁を設置する場合、複数の三方弁が動作する必要があるのに対して、一つの四方弁20が動作すればよいため、動作ミスによる切り換えの不具合が生じにくい。 Further, the number of four-way valves 20 installed is one for each of the first and second water heat exchangers 9A and 9B or the third water heat exchanger 9C, which is compared with the number of installed three-way valves. Therefore, the number of parts can be reduced. Further, when a three-way valve is installed, a plurality of three-way valves need to operate, whereas one four-way valve 20 only needs to operate, so that a switching problem due to an operation error is unlikely to occur.

四方弁20は、チラーユニット1のユニット本体(筐体)の内部に設置される。この場合、ユニット本体の内部に四方弁20が設置されていることから、水入口部15と水出口部17をそれぞれ外部の水配管と接続する。これにより、チラーユニット1を外部の水配管と接続するだけで、第1〜第4冷凍サイクル系統R1〜R4の冷媒の流れ方向と水配管18の水の流れ方向を常に対向流とすることが可能な系統を構成することができる。 The four-way valve 20 is installed inside the unit body (housing) of the chiller unit 1. In this case, since the four-way valve 20 is installed inside the unit body, the water inlet portion 15 and the water outlet portion 17 are connected to the external water pipes, respectively. As a result, simply by connecting the chiller unit 1 to the external water pipe, the flow direction of the refrigerant in the first to fourth refrigeration cycle systems R1 to R4 and the water flow direction in the water pipe 18 can always be countercurrent. A possible system can be constructed.

本実施形態において、四方弁20は、ユニット本体の内部に設置される場合に限定されず、四方弁20は、チラーユニット1のユニット本体(筐体)の外部に設置されてもよい。この場合、ユニット本体には、一端が外部の水配管と接続可能とされ、他端が第1,第2水熱交換器9A,9B又は第3水熱交換器9Cと接続された水配管18b、及び、一端が第1,第2水熱交換器9A,9B又は第3水熱交換器9Cと接続され、他端が外部の水配管と接続可能とされた水配管18cが設置されている。四方弁20は、これらのユニット本体の内部に設置された水配管18b,18cと接続され、かつ、上述した構成を有する水配管18a,18dを設置することによって、本実施形態に係るチラーユニット1が構成される。これにより、第1〜第4冷凍サイクル系統R1〜R4の冷媒の流れ方向と水配管18の水の流れ方向を常に対向流とすることが可能な系統を構成することができる。ユニット本体の内部には、四方弁20が設置されていないことから、ユニット本体は、水配管18の水の流れ方向が切り換え不要な構成にも適用できる。 In the present embodiment, the four-way valve 20 is not limited to the case where it is installed inside the unit main body, and the four-way valve 20 may be installed outside the unit main body (housing) of the chiller unit 1. In this case, one end of the unit body is connectable to an external water pipe, and the other end is a water pipe 18b connected to the first and second water heat exchangers 9A and 9B or the third water heat exchanger 9C. A water pipe 18c is installed, one end of which is connected to the first and second water heat exchangers 9A and 9B or the third water heat exchanger 9C, and the other end of which is connectable to an external water pipe. .. The four-way valve 20 is connected to the water pipes 18b and 18c installed inside the main body of these units, and by installing the water pipes 18a and 18d having the above-described configuration, the chiller unit 1 according to the present embodiment is installed. Is configured. As a result, it is possible to configure a system in which the flow direction of the refrigerant in the first to fourth refrigeration cycle systems R1 to R4 and the flow direction of water in the water pipe 18 can always be countercurrent. Since the four-way valve 20 is not installed inside the unit body, the unit body can be applied to a configuration in which the water flow direction of the water pipe 18 does not need to be switched.

本実施形態に係るチラーユニット1は、図1に示すように、温度検出部31と、圧力検出部32と、制御部33を備えてもよい。 As shown in FIG. 1, the chiller unit 1 according to the present embodiment may include a temperature detection unit 31, a pressure detection unit 32, and a control unit 33.

温度検出部31は、第1〜第4冷凍サイクル系統R1〜R4において、第1〜第3水熱交換器9A〜9Cの接続口よりも上流側及び/又は下流側に設置され、第1〜第4冷凍サイクル系統R1〜R4を流れる冷媒の温度を検出する。 The temperature detection unit 31 is installed on the upstream side and / or downstream side of the connection ports of the first to third water heat exchangers 9A to 9C in the first to fourth refrigeration cycle systems R1 to R4, and the first to third water heat exchangers 31 The temperature of the refrigerant flowing through the fourth refrigeration cycle system R1 to R4 is detected.

圧力検出部32は、第1〜第4冷凍サイクル系統R1〜R4において、圧縮機5の吸い込み側及び吐き出し側にそれぞれ設置され、第1〜第4冷凍サイクル系統R1〜R4を流れる冷媒の圧力を検出する。 The pressure detection unit 32 is installed on the suction side and the discharge side of the compressor 5 in the first to fourth refrigeration cycle systems R1 to R4, respectively, and measures the pressure of the refrigerant flowing through the first to fourth refrigeration cycle systems R1 to R4. To detect.

制御部33は、温度検出部31によって検出された温度に基づいて、四方弁20を切り換える。第1〜第3水熱交換器9A〜9Cに流入する冷媒、又は、第1〜第3水熱交換器9A〜9Cから流出する冷媒の温度に基づいて、第1〜第4冷凍サイクル系統R1〜R4が冷房運転であるか又は暖房運転であるかを判断する。 The control unit 33 switches the four-way valve 20 based on the temperature detected by the temperature detection unit 31. First to fourth refrigeration cycle system R1 based on the temperature of the refrigerant flowing into the first to third water heat exchangers 9A to 9C or the refrigerant flowing out from the first to third water heat exchangers 9A to 9C. It is determined whether ~ R4 is a cooling operation or a heating operation.

冷房運転時、第1〜第3水熱交換器9A〜9Cは、蒸発器として機能することから、検出された温度が所定の閾値よりも低い場合、冷房運転であると判断でき、四方弁20を冷房運転に対応したモードに切り換える。暖房運転時、第1〜第3水熱交換器9A〜9Cは、凝縮器として機能することから、検出された温度が所定の閾値よりも高い場合、暖房運転であると判断でき、四方弁20を暖房運転に対応したモードに切り換える。これにより、冷房運転と暖房運転の双方において、第1〜第3水熱交換器9A〜9Cでは、第1〜第4冷凍サイクル系統R1〜R4の冷媒の流れ方向と水配管18の水の流れ方向が対向流とされる。 Since the first to third water heat exchangers 9A to 9C function as evaporators during the cooling operation, if the detected temperature is lower than a predetermined threshold value, it can be determined that the cooling operation is performed, and the four-way valve 20 To switch to the mode corresponding to the cooling operation. Since the first to third water heat exchangers 9A to 9C function as condensers during the heating operation, if the detected temperature is higher than a predetermined threshold, it can be determined that the heating operation is performed, and the four-way valve 20 To switch to the mode corresponding to the heating operation. As a result, in both the cooling operation and the heating operation, in the first to third water heat exchangers 9A to 9C, the flow direction of the refrigerant in the first to fourth refrigeration cycle systems R1 to R4 and the flow of water in the water pipe 18 The direction is countercurrent.

また、制御部33は、圧力検出部32によって検出された圧力に基づいて、四方弁20の切り換えの成否を判断する。四方弁20が正しく切り換わっていない場合、第1〜第3水熱交換器9A〜9Cでは、第1〜第4冷凍サイクル系統R1〜R4の冷媒の流れ方向と水配管18の水の流れ方向が並行流となるため、第1〜第3水熱交換器9A〜9Cにおける熱交換効率が低下する。したがって、例えば、圧力検出部32が圧縮機5に吸い込まれる冷媒の圧力と圧縮機5から吐出される冷媒の圧力を検出し、圧力差が所定の閾値よりも低下したとき、四方弁20が正しく切り換わっていないと判断する。他方、圧力差が所定の閾値を超えていれば、四方弁20が正しく切り換わっていると判断する。 Further, the control unit 33 determines the success or failure of switching the four-way valve 20 based on the pressure detected by the pressure detection unit 32. When the four-way valve 20 is not switched correctly, in the first to third water heat exchangers 9A to 9C, the flow direction of the refrigerant in the first to fourth refrigeration cycle systems R1 to R4 and the flow direction of water in the water pipe 18. Is a parallel flow, so that the heat exchange efficiency in the first to third water heat exchangers 9A to 9C is lowered. Therefore, for example, when the pressure detection unit 32 detects the pressure of the refrigerant sucked into the compressor 5 and the pressure of the refrigerant discharged from the compressor 5, and the pressure difference becomes lower than a predetermined threshold value, the four-way valve 20 is correctly used. Judge that it has not been switched. On the other hand, if the pressure difference exceeds a predetermined threshold value, it is determined that the four-way valve 20 is properly switched.

制御部33は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等である。 The control unit 33 is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like. As an example, a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions are realized. The program is installed in a ROM or other storage medium in advance, is provided in a state of being stored in a computer-readable storage medium, or is distributed via a wired or wireless communication means. Etc. may be applied. Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.

本実施形態によれば、第1〜第4冷凍サイクル系統R1〜R4において、第1〜第3水熱交換器9A〜9Cの接続口よりも上流側又は下流側に設置された温度検出部31によって、第1〜第4冷凍サイクル系統R1〜R4を流れる冷媒の温度が検出され、検出された温度に基づいて、四方弁20が切り換えられる。第1〜第4冷凍サイクル系統R1〜R4の冷房運転と暖房運転の切り換えに応じて、第1〜第3水熱交換器9A〜9Cの接続口よりも上流側や下流側を流れる冷媒の温度が変更される。したがって、検出された冷媒の温度に応じて、四方弁20が自動的に切り換えられることによって、第1〜第4冷凍サイクル系統R1〜R4の冷媒の流れ方向と水配管18の水の流れ方向を常に対向流とすることができる。 According to the present embodiment, in the first to fourth refrigeration cycle systems R1 to R4, the temperature detection unit 31 installed on the upstream side or the downstream side of the connection ports of the first to third water heat exchangers 9A to 9C. The temperature of the refrigerant flowing through the first to fourth refrigeration cycle systems R1 to R4 is detected, and the four-way valve 20 is switched based on the detected temperature. The temperature of the refrigerant flowing upstream or downstream of the connection ports of the first to third water heat exchangers 9A to 9C according to the switching between the cooling operation and the heating operation of the first to fourth refrigeration cycle systems R1 to R4. Is changed. Therefore, the four-way valve 20 is automatically switched according to the detected temperature of the refrigerant, so that the flow direction of the refrigerant in the first to fourth refrigeration cycle systems R1 to R4 and the flow direction of water in the water pipe 18 can be changed. It can always be countercurrent.

また、第1〜第4冷凍サイクル系統R1〜R4に設置された圧力検出部32によって、第1〜第4冷凍サイクル系統R1〜R4を流れる冷媒の圧力が検出され、検出された圧力に基づいて、四方弁20の切り換えの成否が判断される。したがって、四方弁20が自動的に切り換えられた場合において、四方弁20が正しく切り換えられているか否かを判断できる。 Further, the pressure detection units 32 installed in the first to fourth refrigeration cycle systems R1 to R4 detect the pressure of the refrigerant flowing through the first to fourth refrigeration cycle systems R1 to R4, and based on the detected pressure. , The success or failure of switching the four-way valve 20 is determined. Therefore, when the four-way valve 20 is automatically switched, it can be determined whether or not the four-way valve 20 is correctly switched.

以上のように構成されたチラーユニット1は、以下のように作動する。以下では、暖房運転時において、四方弁20が図2に示す第1モードに切り替わり、冷房運転時において、四方弁20が図3に示す第2モードに切り替わる例について説明する。 The chiller unit 1 configured as described above operates as follows. In the following, an example will be described in which the four-way valve 20 switches to the first mode shown in FIG. 2 during the heating operation, and the four-way valve 20 switches to the second mode shown in FIG. 3 during the cooling operation.

まず、暖房運転時における動作について説明する。
暖房運転時には、第1〜第4冷凍サイクル系統R1〜R4の四方弁8が、図1に示す暖房運転モードのポジションになる。
First, the operation during the heating operation will be described.
During the heating operation, the four-way valves 8 of the first to fourth refrigeration cycle systems R1 to R4 are in the position of the heating operation mode shown in FIG.

そして、少なくとも1つの圧縮機5が作動する。圧縮機5により圧縮された高温高圧の圧縮冷媒は、オイルセパレータ6にてオイル分が分離され、四方弁8を経て第1〜第3水熱交換器9A〜9Cのいずれか、又は、全てに流れる。このとき、圧縮冷媒は、水系統部3の水配管18を流れる水と熱交換される。また、温度検出部31によって温度が検出されて、四方弁20が第1モードに切り替わる。 Then, at least one compressor 5 is activated. The high-temperature and high-pressure compressed refrigerant compressed by the compressor 5 is separated by an oil separator 6 and passed through a four-way valve 8 to any one or all of the first to third water heat exchangers 9A to 9C. It flows. At this time, the compressed refrigerant exchanges heat with the water flowing through the water pipe 18 of the water system unit 3. Further, the temperature is detected by the temperature detection unit 31, and the four-way valve 20 switches to the first mode.

すなわち、第1冷凍サイクル系統R1の圧縮機5により圧縮された圧縮冷媒は第1水熱交換器9Aに流れて水配管18を流れる水と熱交換され、第2冷凍サイクル系統R2の圧縮機5により圧縮された圧縮冷媒は第2水熱交換器9Bに流れて水配管18を流れる水と熱交換される。また、第3冷凍サイクル系統R3と第4冷凍サイクル系統R4の圧縮機5により圧縮された圧縮冷媒は第3水熱交換器9Cに流れて水配管18を流れる水と熱交換される。 That is, the compressed refrigerant compressed by the compressor 5 of the first refrigeration cycle system R1 flows to the first water heat exchanger 9A and exchanges heat with the water flowing through the water pipe 18, and the compressor 5 of the second refrigeration cycle system R2 The compressed refrigerant compressed by the above flows into the second water heat exchanger 9B and exchanges heat with the water flowing through the water pipe 18. Further, the compressed refrigerant compressed by the compressor 5 of the third refrigeration cycle system R3 and the fourth refrigeration cycle system R4 flows to the third water heat exchanger 9C and exchanges heat with the water flowing through the water pipe 18.

つまり、第1冷凍サイクル系統R1と第2冷凍サイクル系統R2においては、それぞれ第1水熱交換器9Aと第2水熱交換器9Bとによって冷媒と水との熱交換が個別に行われ、第3冷凍サイクル系統R3と第4冷凍サイクル系統R4においては、第3水熱交換器9Cを共有しながら冷媒と水との熱交換が行われる。このように第1〜第3水熱交換器9A〜9Cにて高温な圧縮冷媒と熱交換した水は温水又は熱水となり、水出口部17から所定の暖房箇所又は給湯箇所に供給される。 That is, in the first refrigeration cycle system R1 and the second refrigeration cycle system R2, heat exchange between the refrigerant and water is individually performed by the first water heat exchanger 9A and the second water heat exchanger 9B, respectively. In the 3 refrigeration cycle system R3 and the 4th refrigeration cycle system R4, heat exchange between the refrigerant and water is performed while sharing the 3rd water heat exchanger 9C. The water that has been heat-exchanged with the high-temperature compressed refrigerant in the first to third water heat exchangers 9A to 9C becomes hot water or hot water, and is supplied from the water outlet portion 17 to a predetermined heating location or hot water supply location.

四方弁20が第1モードに切り替わることにより、第1接続口21において水配管18aを流れる水が流入し、第1接続口21から第2接続口22へ水が流れた後、第1,第2水熱交換器9A,9Bへ水が供給される。また、第1モードでは、第1水熱交換器9Aと第2水熱交換器9Bに並列に水が流れ、第1,第2水熱交換器9A,9Bを流れた水が第3接続口23から流入し、第3接続口23から第4接続口24へ水が流れた後、第4接続口24から水が水配管18dを介して第3水熱交換器9Cへ流出する。そして、第1,第2水熱交換器9A,9Bでは、第1,第2冷凍サイクル系統R1,R2の冷媒の流れ方向と水配管18の水の流れ方向が対向流となる。 When the four-way valve 20 is switched to the first mode, water flowing through the water pipe 18a flows in at the first connection port 21, water flows from the first connection port 21 to the second connection port 22, and then the first and first connections are made. 2 Water is supplied to the water heat exchangers 9A and 9B. Further, in the first mode, water flows in parallel to the first water heat exchanger 9A and the second water heat exchanger 9B, and the water flowing through the first and second water heat exchangers 9A and 9B flows through the third connection port. After flowing in from 23 and flowing water from the third connection port 23 to the fourth connection port 24, water flows out from the fourth connection port 24 to the third water heat exchanger 9C via the water pipe 18d. In the first and second water heat exchangers 9A and 9B, the flow direction of the refrigerant in the first and second refrigeration cycle systems R1 and R2 and the flow direction of water in the water pipe 18 are countercurrent.

第3水熱交換器9Cでは、四方弁20が第1モードに切り替わることにより、第1接続口21において、第1,第2水熱交換器9A,9Bからの水が流入し、第1接続口21から第2接続口22へ水が流れた後、第2接続口22から第3水熱交換器9Cへ水が供給される。また、第1モードでは、第3水熱交換器9Cを流れた水が第3接続口23から流入し、第3接続口23から第4接続口24へ水が流れた後、第4接続口24から水が水配管18dを介して外部へ流出する。そして、第3水熱交換器9Cでは、第3,第4冷凍サイクル系統R3,R4の冷媒の流れ方向と水配管18の水の流れ方向が対向流となる。 In the third water heat exchanger 9C, when the four-way valve 20 is switched to the first mode, water from the first and second water heat exchangers 9A and 9B flows in at the first connection port 21, and the first connection is made. After water flows from the port 21 to the second connection port 22, water is supplied from the second connection port 22 to the third water heat exchanger 9C. Further, in the first mode, the water flowing through the third water heat exchanger 9C flows in from the third connection port 23, and after the water flows from the third connection port 23 to the fourth connection port 24, the fourth connection port Water flows out from 24 through the water pipe 18d. Then, in the third water heat exchanger 9C, the flow direction of the refrigerant in the third and fourth refrigeration cycle systems R3 and R4 and the flow direction of the water in the water pipe 18 are countercurrent.

また、第1〜第3水熱交換器9A〜9Cで水と熱交換した圧縮冷媒は凝縮して液化し、レシーバ10を経て電子膨張弁11を通過し、ここで圧力を低下されて空冷熱交換器12に流れ、空気と熱交換することにより気化してガス冷媒となり、四方弁8と気液分離器13と経て再び圧縮機5に吸入される。 Further, the compressed refrigerant that has exchanged heat with water in the first to third water heat exchangers 9A to 9C is condensed and liquefied, passed through the electronic expansion valve 11 via the receiver 10, and the pressure is reduced here to provide air-cooled heat. It flows through the exchanger 12 and vaporizes by exchanging heat with air to become a gas refrigerant, which is sucked into the compressor 5 again via the four-way valve 8 and the gas-liquid separator 13.

次に、冷房運転時における動作について説明する。
冷房運転時には、第1〜第4冷凍サイクル系統R1〜R4の四方弁8が図1に示す方向から変更されて冷房運転モードのポジションになる。したがって、圧縮機5により圧縮された高温高圧の圧縮冷媒は四方弁8を経て空冷熱交換器12に流れ、冷却ファン12aによって外気が供給されることにより空気と熱交換して凝縮して液化する。生成された凝縮冷媒は、レシーバ10を経て第1〜第3水熱交換器9A〜9Cのいずれか、又は、全てに流れる。このとき、凝縮冷媒は、水系統部3の水配管18を流れる水と熱交換して気化する。また、温度検出部31によって温度が検出されて、四方弁20が第2モードに切り替わる。
Next, the operation during the cooling operation will be described.
During the cooling operation, the four-way valves 8 of the first to fourth refrigeration cycle systems R1 to R4 are changed from the direction shown in FIG. 1 to be in the cooling operation mode position. Therefore, the high-temperature and high-pressure compressed refrigerant compressed by the compressor 5 flows through the four-way valve 8 to the air-cooled heat exchanger 12, and the outside air is supplied by the cooling fan 12a to exchange heat with the air to condense and liquefy. .. The generated condensed refrigerant flows through the receiver 10 to any or all of the first to third water heat exchangers 9A to 9C. At this time, the condensed refrigerant exchanges heat with the water flowing through the water pipe 18 of the water system unit 3 and vaporizes. Further, the temperature is detected by the temperature detection unit 31, and the four-way valve 20 switches to the second mode.

このように、第1〜第3水熱交換器9A〜9Cにて低温な冷媒と熱交換した水は冷水となり、水出口部17から所定の冷房箇所に供給される。 In this way, the water that has been heat-exchanged with the low-temperature refrigerant in the first to third water heat exchangers 9A to 9C becomes cold water and is supplied from the water outlet portion 17 to a predetermined cooling location.

四方弁20が第2モードに切り替わることにより、第1接続口21において水配管18aを流れる水が流入し、第1接続口21から第3接続口23へ水が流れた後、第3接続口23から第1,第2水熱交換器9A,9Bへ水が供給される。また、第2モードでは、第1水熱交換器9Aと第2水熱交換器9Bに並列に水が流れ、第1,第2水熱交換器9A,9Bを流れた水が第2接続口22から流入し、第2接続口22から第4接続口24へ水が流れた後、第4接続口24から水が水配管18dを介して第3水熱交換器9Cへ流出する。そして、第1,第2水熱交換器9A,9Bでは、第1,第2冷凍サイクル系統R1,R2の冷媒の流れ方向と水配管18の水の流れ方向が対向流となる。 When the four-way valve 20 is switched to the second mode, water flowing through the water pipe 18a flows in at the first connection port 21, water flows from the first connection port 21 to the third connection port 23, and then the third connection port 23. Water is supplied from 23 to the first and second water heat exchangers 9A and 9B. Further, in the second mode, water flows in parallel to the first water heat exchanger 9A and the second water heat exchanger 9B, and the water flowing through the first and second water heat exchangers 9A and 9B is the second connection port. After flowing in from 22 and flowing water from the second connection port 22 to the fourth connection port 24, water flows out from the fourth connection port 24 to the third water heat exchanger 9C via the water pipe 18d. In the first and second water heat exchangers 9A and 9B, the flow direction of the refrigerant in the first and second refrigeration cycle systems R1 and R2 and the flow direction of water in the water pipe 18 are countercurrent.

第3水熱交換器9Cでは、四方弁20が第2モードに切り替わることにより、第1接続口21において第1,第2水熱交換器9A,9Bからの水が流入し、第1接続口21から第3接続口23へ水が流れた後、第3接続口23から第3水熱交換器9Cへ水が供給される。また、第2モードでは、第3水熱交換器9Cを流れた水が第2接続口22から流入し、第2接続口22から第4接続口24へ水が流れた後、第4接続口24から水が水配管18dを介して外部へ流出する。そして、第3水熱交換器9Cでは、第3冷凍サイクル系統R3の冷媒の流れ方向と水配管18の水の流れ方向が対向流となる。 In the third water heat exchanger 9C, when the four-way valve 20 is switched to the second mode, water from the first and second water heat exchangers 9A and 9B flows into the first connection port 21, and the first connection port After water flows from 21 to the third connection port 23, water is supplied from the third connection port 23 to the third water heat exchanger 9C. Further, in the second mode, the water flowing through the third water heat exchanger 9C flows in from the second connection port 22, and after the water flows from the second connection port 22 to the fourth connection port 24, the fourth connection port Water flows out from 24 through the water pipe 18d. Then, in the third water heat exchanger 9C, the flow direction of the refrigerant in the third refrigeration cycle system R3 and the flow direction of the water in the water pipe 18 are countercurrent.

また、第1〜第3水熱交換器9A〜9Cで水と熱交換して気化したガス冷媒は、四方弁8と気液分離器13と経て再び圧縮機5に吸入される。 Further, the gas refrigerant vaporized by heat exchange with water in the first to third water heat exchangers 9A to 9C is sucked into the compressor 5 again through the four-way valve 8 and the gas-liquid separator 13.

以上説明したように、本実施形態に係るチラーユニット1は、第1水熱交換器9Aを有する第1冷凍サイクル系統R1と、第2水熱交換器9Bを有する第2冷凍サイクル系統R2と、第3水熱交換器9Cを共有する第3冷凍サイクル系統R3及び第4冷凍サイクル系統R4とを備えている。そして、第1水熱交換器9Aと第2水熱交換器9Bは水系統部3の水配管18により並列に接続され、第3水熱交換器9Cは第1水熱交換器9A及び第2水熱交換器9Bに対して水配管18により直列に接続されている。 As described above, the chiller unit 1 according to the present embodiment includes a first refrigeration cycle system R1 having a first water heat exchanger 9A, a second refrigeration cycle system R2 having a second water heat exchanger 9B, and the like. It includes a third refrigeration cycle system R3 and a fourth refrigeration cycle system R4 that share the third water heat exchanger 9C. The first water heat exchanger 9A and the second water heat exchanger 9B are connected in parallel by the water pipe 18 of the water system unit 3, and the third water heat exchanger 9C is the first water heat exchanger 9A and the second. It is connected in series to the water heat exchanger 9B by a water pipe 18.

このように、第1水熱交換器9Aと第2水熱交換器9Bとが水配管18によって並列に接続されているため、第1水熱交換器9Aと第2水熱交換器9Bとにおいて第1冷凍サイクル系統R1と第2冷凍サイクル系統R2の冷媒を均等に水と熱交換させ、冷媒と水とを効率良く熱交換させることができる。 In this way, since the first water heat exchanger 9A and the second water heat exchanger 9B are connected in parallel by the water pipe 18, the first water heat exchanger 9A and the second water heat exchanger 9B The refrigerants of the first refrigeration cycle system R1 and the second refrigeration cycle system R2 can be evenly exchanged with water, and the refrigerant and water can be efficiently exchanged with each other.

さらに、第1〜第3水熱交換器9A〜9Cで熱交換される水は、第1水熱交換器9A及び第2水熱交換器9B側から流入し、第3水熱交換器9C側から流出する構成となっている。本構成とすれば、水の圧力が高い水入口部15側(水ポンプ16側)の方に第1水熱交換器9Aと第2水熱交換器9Bの2基の水熱交換器9が設けられる態様となるため、第1,第2水熱交換器9A,9Bにおける水の偏流を抑制して冷媒と水とを効率良く熱交換させることができる。 Further, the water exchanged by the first to third water heat exchangers 9A to 9C flows in from the first water heat exchanger 9A and the second water heat exchanger 9B side, and flows into the third water heat exchanger 9C side. It is configured to flow out from. In this configuration, two water heat exchangers 9 of the first water heat exchanger 9A and the second water heat exchanger 9B are located on the water inlet 15 side (water pump 16 side) where the water pressure is high. Since the mode is provided, it is possible to suppress the drift of water in the first and second water heat exchangers 9A and 9B and efficiently exchange heat between the refrigerant and water.

チラーユニット1は、低負荷運転時には、第1〜第4冷凍サイクル系統R1〜R4の全てを稼働させなくてもよい。このとき、チラーユニット1は、第3冷凍サイクル系統R3又は第4冷凍サイクル系統R4を優先的に稼働させるとよい。 The chiller unit 1 does not have to operate all of the first to fourth refrigeration cycle systems R1 to R4 during low load operation. At this time, the chiller unit 1 may preferentially operate the third refrigeration cycle system R3 or the fourth refrigeration cycle system R4.

例えば、第1冷凍サイクル系統R1と第2冷凍サイクル系統R2の一方のみを稼働させた場合には、水の流れに対して並列に設けられた第1水熱交換器9Aと第2水熱交換器9Bの一方においてのみ熱交換が行われる。このため、他方の水熱交換器においては水が冷媒と熱交換されることなく通過し、一方の水熱交換器において熱交換された水と混合されてしまい、熱交換効率が低下してしまう。 For example, when only one of the first refrigeration cycle system R1 and the second refrigeration cycle system R2 is operated, the first water heat exchanger 9A and the second water heat exchange provided in parallel with the water flow are exchanged. Heat exchange is performed only in one of the vessels 9B. Therefore, in the other water heat exchanger, water passes through without being heat-exchanged with the refrigerant, and is mixed with the heat-exchanged water in one water heat exchanger, resulting in a decrease in heat exchange efficiency. ..

これに対し、第3冷凍サイクル系統R3又は第4冷凍サイクル系統R4を優先的に稼働させる構成とすれば、水の流れに対して直列に設けられた第3水熱交換器9Cにおいてのみ冷媒と水との熱交換が行われ、このように熱交換された水に熱交換されない水が混合されることがない。このため、冷媒と水とを効率良く熱交換させることができる。 On the other hand, if the third refrigeration cycle system R3 or the fourth refrigeration cycle system R4 is preferentially operated, the refrigerant can be used only in the third water heat exchanger 9C provided in series with the flow of water. Heat exchange with water is performed, and water that is not heat exchanged is not mixed with water that has been heat exchanged in this way. Therefore, it is possible to efficiently exchange heat between the refrigerant and water.

なお、図示しないが、水配管18に開閉弁や流量調整弁等の弁装置を設けることにより、第1水熱交換器9Aと第2水熱交換器9Bに選択的に水を流せるようにしてもよい。 Although not shown, a valve device such as an on-off valve or a flow rate adjusting valve is provided in the water pipe 18 so that water can be selectively flowed to the first water heat exchanger 9A and the second water heat exchanger 9B. May be good.

以上説明したように、本実施形態に係るチラーユニット1によれば、冷媒と水とを効率良く熱交換させるとともに、チラーユニット1の内部における水熱交換器9の配置レイアウトの自由度を高め、併せて水熱交換器9の周りのメンテナンス性を向上させることができる。 As described above, according to the chiller unit 1 according to the present embodiment, the refrigerant and water are efficiently exchanged with heat, and the degree of freedom in the layout of the water heat exchanger 9 inside the chiller unit 1 is increased. At the same time, the maintainability around the water heat exchanger 9 can be improved.

上述した実施形態では、四方弁20と水配管18が、第1水熱交換器9A及び第2水熱交換器9Bに1組、第3水熱交換器9Cに1組設置される。 In the above-described embodiment, the four-way valve 20 and the water pipe 18 are installed in one set in the first water heat exchanger 9A and the second water heat exchanger 9B, and one set in the third water heat exchanger 9C.

各四方弁20を切り換えることによって、第1,第2水熱交換器9A,9Bに接続された水配管18の水の流れ方向と、第3水熱交換器9Cに接続された水配管18の水の流れ方向を変更することが可能である。したがって、第1〜第4冷凍サイクル系統R1〜R4の冷房運転と暖房運転の切り換えに応じて、各四方弁20を切り換えることで、第1〜第4冷凍サイクル系統R1〜R4の冷媒の流れ方向と水配管18の水の流れ方向を常に対向流とすることができる。また、図2及び図3に示すように、第1,第2水熱交換器9A,9Bの組と、第3水熱交換器9Cが直列に配置されている場合において、第1,第2水熱交換器9A,9Bの組のほうが第3水熱交換器9Cよりも常に先に水が流れる構成とすることができる。 By switching each of the four-way valves 20, the water flow direction of the water pipe 18 connected to the first and second water heat exchangers 9A and 9B and the water pipe 18 connected to the third water heat exchanger 9C It is possible to change the direction of water flow. Therefore, by switching each of the four-way valves 20 according to the switching between the cooling operation and the heating operation of the first to fourth refrigeration cycle systems R1 to R4, the flow direction of the refrigerant in the first to fourth refrigeration cycle systems R1 to R4 And the water flow direction of the water pipe 18 can always be countercurrent. Further, as shown in FIGS. 2 and 3, when the set of the first and second water heat exchangers 9A and 9B and the third water heat exchanger 9C are arranged in series, the first and second water heat exchangers 9A and 9C are arranged in series. The set of the water heat exchangers 9A and 9B can be configured so that the water always flows before the third water heat exchanger 9C.

[第2実施形態]
次に、図4及び図5を参照して、本発明の第2実施形態に係るチラーユニット1について説明する。なお、チラーユニット1における第1〜第4冷凍サイクル系統R1〜R4の構成は上述した実施形態と同一である。その他、上述した実施形態と重複する構成及び作用効果については説明を省略する。
[Second Embodiment]
Next, the chiller unit 1 according to the second embodiment of the present invention will be described with reference to FIGS. 4 and 5. The configuration of the first to fourth refrigeration cycle systems R1 to R4 in the chiller unit 1 is the same as that of the above-described embodiment. In addition, the description of the configuration and the action and effect overlapping with the above-described embodiment will be omitted.

上述した第1実施形態では、四方弁20が設置され、四方弁20を切り換えることによって、第1〜第4冷凍サイクル系統R1〜R4の冷房運転と暖房運転の切り換えに応じて、冷媒の流れ方向と水の流れ方向が向かい合う対向流となるように水配管18が構成されている例について説明したが、本発明はこの例に限定されない。 In the first embodiment described above, the four-way valve 20 is installed, and by switching the four-way valve 20, the flow direction of the refrigerant is changed according to the switching between the cooling operation and the heating operation of the first to fourth refrigeration cycle systems R1 to R4. Although the example in which the water pipe 18 is configured so that the flow directions of the water and the water flow directions are opposite to each other, the present invention is not limited to this example.

チラーユニット1は、第1水熱交換器9Aと第2水熱交換器9Bが水配管18によって並列に接続され、第3水熱交換器9Cが第1,第2水熱交換器9A,9Bに対して水配管18によって直列に接続される。 In the chiller unit 1, the first water heat exchanger 9A and the second water heat exchanger 9B are connected in parallel by the water pipe 18, and the third water heat exchanger 9C is connected to the first and second water heat exchangers 9A and 9B. Is connected in series by a water pipe 18.

本実施形態では、第1〜第4三方弁41〜44と、第1〜第4三方弁41〜44から分岐した第1〜第3分岐管19a〜19cとが設置され、第1〜第4三方弁41〜44を切り替えることによって、第1〜第4冷凍サイクル系統R1〜R4の冷房運転と暖房運転の切り換えに応じて、冷媒の流れ方向と水の流れ方向が向かい合う対向流となるように水系統部3の水配管18が構成されている。 In the present embodiment, the first to fourth three-way valves 41 to 44 and the first to third branch pipes 19a to 19c branched from the first to fourth three-way valves 41 to 44 are installed, and the first to fourth branch pipes 19a to 19c are installed. By switching the three-way valves 41 to 44, the flow direction of the refrigerant and the flow direction of water are opposed to each other according to the switching between the cooling operation and the heating operation of the first to fourth refrigeration cycle systems R1 to R4. The water pipe 18 of the water system portion 3 is configured.

第1三方弁41は、水配管18において、第1,第2水熱交換器9A,9Bと第3水熱交換器9Cの間に設置される。第2三方弁42は、水配管18において、第1,第2水熱交換器9A,9Bと第3水熱交換器9Cの間において、第1三方弁41よりも第3水熱交換器9C側に設置される。第3三方弁43は、水配管18と第1分岐管19aの接続部分と、第1,第2水熱交換器9A,9Bの間に設置される。第4三方弁44は、第3水熱交換器9Cと水配管18の第2分岐管19bの接続部分の間に設置される。 The first three-way valve 41 is installed between the first and second water heat exchangers 9A and 9B and the third water heat exchanger 9C in the water pipe 18. The second three-way valve 42 is located between the first and second water heat exchangers 9A and 9B and the third water heat exchanger 9C in the water pipe 18, and the third water heat exchanger 9C is more than the first three-way valve 41. Installed on the side. The third three-way valve 43 is installed between the connection portion between the water pipe 18 and the first branch pipe 19a and the first and second water heat exchangers 9A and 9B. The fourth three-way valve 44 is installed between the third water heat exchanger 9C and the connection portion of the second branch pipe 19b of the water pipe 18.

第1分岐管19aは、一端が第1,第2水熱交換器9A,9Bの上流側の水配管18と接続され、他端が第1三方弁41と接続される。第2分岐管19bは、一端が第2三方弁42と接続され、他端が第3水熱交換器9Cの下流側の水配管18と接続される。第3分岐管19cは、一端が第3三方弁43と接続され、他端が第4三方弁44と接続される。 One end of the first branch pipe 19a is connected to the water pipe 18 on the upstream side of the first and second water heat exchangers 9A and 9B, and the other end is connected to the first three-way valve 41. One end of the second branch pipe 19b is connected to the second three-way valve 42, and the other end is connected to the water pipe 18 on the downstream side of the third water heat exchanger 9C. One end of the third branch pipe 19c is connected to the third three-way valve 43, and the other end is connected to the fourth three-way valve 44.

第1〜第3水熱交換器9A〜9Cにおいて水配管18を流れる水を第1の方向に流す場合、図4に示すように、第1三方弁41の第1分岐管19a側を閉鎖し、第2三方弁42の第2分岐管19b側を閉鎖し、第3三方弁43の第3分岐管19c側を閉鎖し、第4三方弁44の第3分岐管19c側を閉鎖する。また、第1三方弁41の第3水熱交換器9C側を開放し、第2三方弁42の第1,第2水熱交換器9A,9B側を開放し、第3三方弁43の第1,第2水熱交換器9A,9B側を開放し、第4三方弁44の第3水熱交換器9C側を開放する。これにより、水配管18を流れる水が、第3三方弁43を介して、第1,第2水熱交換器9A,9Bに供給されて、その後、合流する。次に、水は、第1三方弁41及び第2三方弁42を介して、第3水熱交換器9Cに供給される。そして、第3水熱交換器9Cから第4三方弁44を介して、外部へ流出する。 When the water flowing through the water pipe 18 flows in the first direction in the first to third water heat exchangers 9A to 9C, the first branch pipe 19a side of the first three-way valve 41 is closed as shown in FIG. , The second branch pipe 19b side of the second three-way valve 42 is closed, the third branch pipe 19c side of the third three-way valve 43 is closed, and the third branch pipe 19c side of the fourth three-way valve 44 is closed. Further, the third water heat exchanger 9C side of the first three-way valve 41 is opened, the first and second water heat exchangers 9A and 9B sides of the second three-way valve 42 are opened, and the third three-way valve 43 is the first. 1. The second water heat exchangers 9A and 9B sides are opened, and the third water heat exchanger 9C side of the fourth three-way valve 44 is opened. As a result, the water flowing through the water pipe 18 is supplied to the first and second water heat exchangers 9A and 9B via the third three-way valve 43, and then merges. Next, water is supplied to the third water heat exchanger 9C via the first three-way valve 41 and the second three-way valve 42. Then, the water flows out from the third water heat exchanger 9C to the outside via the fourth three-way valve 44.

第1〜第3水熱交換器9A〜9Cにおいて水配管18を流れる水を第1の方向とは反対の第2の方向に流す場合、第1三方弁41の第1分岐管19a側を開放し、第2三方弁42の第2分岐管19b側を開放し、第3三方弁43の第3分岐管19c側を開放し、第4三方弁44の第3分岐管19c側を開放する。また、第1三方弁41の第3水熱交換器9C側を閉鎖し、第2三方弁42の第1,第2水熱交換器9A,9B側を閉鎖し、第3三方弁43の第1,第2水熱交換器9A,9B側を閉鎖し、第4三方弁44の第3水熱交換器9C側を閉鎖する。 When the water flowing through the water pipe 18 flows in the second direction opposite to the first direction in the first to third water heat exchangers 9A to 9C, the first branch pipe 19a side of the first three-way valve 41 is opened. Then, the second branch pipe 19b side of the second three-way valve 42 is opened, the third branch pipe 19c side of the third three-way valve 43 is opened, and the third branch pipe 19c side of the fourth three-way valve 44 is opened. Further, the third water heat exchanger 9C side of the first three-way valve 41 is closed, the first and second water heat exchangers 9A and 9B sides of the second three-way valve 42 are closed, and the third three-way valve 43 is closed. 1. Close the 2nd water heat exchanger 9A and 9B sides, and close the 3rd water heat exchanger 9C side of the 4th three-way valve 44.

これにより、水配管18を流れる水が、第1分岐管19a及び第1三方弁41を介して、第1,第2水熱交換器9A,9Bに供給されて、その後、合流する。次に、水は、第3三方弁43、第3分岐管19c及び第4三方弁44を介して、第3水熱交換器9Cに供給される。そして、第3水熱交換器9Cから第3三方弁43及び第2分岐管19bを介して、外部へ流出する。 As a result, the water flowing through the water pipe 18 is supplied to the first and second water heat exchangers 9A and 9B via the first branch pipe 19a and the first three-way valve 41, and then merges. Next, water is supplied to the third water heat exchanger 9C via the third three-way valve 43, the third branch pipe 19c, and the fourth three-way valve 44. Then, it flows out from the third water heat exchanger 9C via the third three-way valve 43 and the second branch pipe 19b.

以上のように構成されたチラーユニット1は、以下のように作動する。以下では、暖房運転時において、図4に示すように、第1〜第3水熱交換器9A〜9Cでは水が第1の方向に流れるように第1〜第4三方弁41〜44が切り替わり、冷房運転時において、図5に示すように、第1〜第3水熱交換器9A〜9Cでは水が第2の方向に流れるように第1〜第4三方弁41〜44が切り替わる例について説明する。 The chiller unit 1 configured as described above operates as follows. In the following, as shown in FIG. 4, during the heating operation, the first to fourth three-way valves 41 to 44 are switched so that water flows in the first direction in the first to third water heat exchangers 9A to 9C. As shown in FIG. 5, in the first to third water heat exchangers 9A to 9C, the first to fourth three-way valves 41 to 44 are switched so that water flows in the second direction during the cooling operation. explain.

まず、暖房運転時における動作について説明する。
暖房運転時には、第1〜第4冷凍サイクル系統R1〜R4の四方弁8が、図1に示す暖房運転モードのポジションになる。そして、少なくとも1つの圧縮機5が作動する。圧縮機5により圧縮された高温高圧の圧縮冷媒は、オイルセパレータ6にてオイル分が分離され、四方弁8を経て第1〜第3水熱交換器9A〜9Cのいずれか、又は、全てに流れる。このとき、圧縮冷媒は、水系統部3の水配管18を流れる水と熱交換される。
First, the operation during the heating operation will be described.
During the heating operation, the four-way valves 8 of the first to fourth refrigeration cycle systems R1 to R4 are in the position of the heating operation mode shown in FIG. Then, at least one compressor 5 is activated. The high-temperature and high-pressure compressed refrigerant compressed by the compressor 5 is separated by an oil separator 6 and passed through a four-way valve 8 to any one or all of the first to third water heat exchangers 9A to 9C. It flows. At this time, the compressed refrigerant exchanges heat with the water flowing through the water pipe 18 of the water system unit 3.

すなわち、第1冷凍サイクル系統R1の圧縮機5により圧縮された圧縮冷媒は第1水熱交換器9Aに流れて水配管18を流れる水と熱交換され、第2冷凍サイクル系統R2の圧縮機5により圧縮された圧縮冷媒は第2水熱交換器9Bに流れて水配管18を流れる水と熱交換される。また、第3冷凍サイクル系統R3と第4冷凍サイクル系統R4の圧縮機5により圧縮された圧縮冷媒は第3水熱交換器9Cに流れて水配管18を流れる水と熱交換される。 That is, the compressed refrigerant compressed by the compressor 5 of the first refrigeration cycle system R1 flows to the first water heat exchanger 9A and exchanges heat with the water flowing through the water pipe 18, and the compressor 5 of the second refrigeration cycle system R2 The compressed refrigerant compressed by the above flows into the second water heat exchanger 9B and exchanges heat with the water flowing through the water pipe 18. Further, the compressed refrigerant compressed by the compressor 5 of the third refrigeration cycle system R3 and the fourth refrigeration cycle system R4 flows to the third water heat exchanger 9C and exchanges heat with the water flowing through the water pipe 18.

つまり、第1冷凍サイクル系統R1と第2冷凍サイクル系統R2においては、それぞれ第1水熱交換器9Aと第2水熱交換器9Bとによって冷媒と水との熱交換が個別に行われ、第3冷凍サイクル系統R3と第4冷凍サイクル系統R4においては、第3水熱交換器9Cを共有しながら冷媒と水との熱交換が行われる。このように第1〜第3水熱交換器9A〜9Cにて高温な圧縮冷媒と熱交換した水は温水又は熱水となり、水出口部17から所定の暖房箇所又は給湯箇所に供給される。 That is, in the first refrigeration cycle system R1 and the second refrigeration cycle system R2, heat exchange between the refrigerant and water is individually performed by the first water heat exchanger 9A and the second water heat exchanger 9B, respectively. In the 3 refrigeration cycle system R3 and the 4th refrigeration cycle system R4, heat exchange between the refrigerant and water is performed while sharing the 3rd water heat exchanger 9C. The water that has been heat-exchanged with the high-temperature compressed refrigerant in the first to third water heat exchangers 9A to 9C becomes hot water or hot water, and is supplied from the water outlet portion 17 to a predetermined heating location or hot water supply location.

また、第1三方弁41の第1分岐管19a側を閉鎖し、第2三方弁42の第2分岐管19b側を閉鎖し、第3三方弁43の第3分岐管19c側を閉鎖し、第4三方弁44の第3分岐管19c側を閉鎖する。さらに、第1三方弁41の第3水熱交換器9C側を開放し、第2三方弁42の第1,第2水熱交換器9A,9B側を開放し、第3三方弁43の第1,第2水熱交換器9A,9B側を開放し、第4三方弁44の第3水熱交換器9C側を開放する。これにより、水配管18を流れる水が、第3三方弁43を介して、第1,第2水熱交換器9A,9Bに供給されて、その後、合流する。次に、水は、第1三方弁41及び第2三方弁42を介して、第3水熱交換器9Cに供給される。そして、第3水熱交換器9Cから第4三方弁44を介して、外部へ流出する。そして、第1〜第3水熱交換器9A〜9Cでは、第1〜第4冷凍サイクル系統R1〜R4の冷媒の流れ方向と水配管18の水の流れ方向が対向流となる。 Further, the first branch pipe 19a side of the first three-way valve 41 is closed, the second branch pipe 19b side of the second three-way valve 42 is closed, and the third branch pipe 19c side of the third three-way valve 43 is closed. The third branch pipe 19c side of the fourth three-way valve 44 is closed. Further, the third water heat exchanger 9C side of the first three-way valve 41 is opened, the first and second water heat exchangers 9A and 9B sides of the second three-way valve 42 are opened, and the third three-way valve 43 is the first. 1. The second water heat exchangers 9A and 9B sides are opened, and the third water heat exchanger 9C side of the fourth three-way valve 44 is opened. As a result, the water flowing through the water pipe 18 is supplied to the first and second water heat exchangers 9A and 9B via the third three-way valve 43, and then merges. Next, water is supplied to the third water heat exchanger 9C via the first three-way valve 41 and the second three-way valve 42. Then, the water flows out from the third water heat exchanger 9C to the outside via the fourth three-way valve 44. In the first to third water heat exchangers 9A to 9C, the flow direction of the refrigerant in the first to fourth refrigeration cycle systems R1 to R4 and the flow direction of water in the water pipe 18 are countercurrent.

また、第1〜第3水熱交換器9A〜9Cで水と熱交換した圧縮冷媒は凝縮して液化し、レシーバ10を経て電子膨張弁11を通過し、ここで圧力を低下されて空冷熱交換器12に流れ、空気と熱交換することにより気化してガス冷媒となり、四方弁8と気液分離器13と経て再び圧縮機5に吸入される。 Further, the compressed refrigerant that has exchanged heat with water in the first to third water heat exchangers 9A to 9C is condensed and liquefied, passed through the electronic expansion valve 11 via the receiver 10, and the pressure is reduced here to provide air-cooled heat. It flows through the exchanger 12 and vaporizes by exchanging heat with air to become a gas refrigerant, which is sucked into the compressor 5 again via the four-way valve 8 and the gas-liquid separator 13.

次に、冷房運転時における動作について説明する。
冷房運転時には、第1〜第4冷凍サイクル系統R1〜R4の四方弁8が図1に示す方向から変更されて冷房運転モードのポジションになる。したがって、圧縮機5により圧縮された高温高圧の圧縮冷媒は四方弁8を経て空冷熱交換器12に流れ、冷却ファン12aによって外気が供給されることにより空気と熱交換して凝縮して液化する。生成された凝縮冷媒は、レシーバ10を経て第1〜第3水熱交換器9A〜9Cのいずれか、又は、全てに流れる。このとき、凝縮冷媒は、水系統部3の水配管18を流れる水と熱交換して気化する。
Next, the operation during the cooling operation will be described.
During the cooling operation, the four-way valves 8 of the first to fourth refrigeration cycle systems R1 to R4 are changed from the direction shown in FIG. 1 to be in the cooling operation mode position. Therefore, the high-temperature and high-pressure compressed refrigerant compressed by the compressor 5 flows through the four-way valve 8 to the air-cooled heat exchanger 12, and the outside air is supplied by the cooling fan 12a to exchange heat with the air to condense and liquefy. .. The generated condensed refrigerant flows through the receiver 10 to any or all of the first to third water heat exchangers 9A to 9C. At this time, the condensed refrigerant exchanges heat with the water flowing through the water pipe 18 of the water system unit 3 and vaporizes.

このように、第1〜第3水熱交換器9A〜9Cにて低温な冷媒と熱交換した水は冷水となり、水出口部17から所定の冷房箇所に供給される。 In this way, the water that has been heat-exchanged with the low-temperature refrigerant in the first to third water heat exchangers 9A to 9C becomes cold water and is supplied from the water outlet portion 17 to a predetermined cooling location.

また、第1三方弁41の第1分岐管19a側を開放し、第2三方弁42の第2分岐管19b側を開放し、第3三方弁43の第3分岐管19c側を開放し、第4三方弁44の第3分岐管19c側を開放する。さらに、第1三方弁41の第3水熱交換器9C側を閉鎖し、第2三方弁42の第1,第2水熱交換器9A,9B側を閉鎖し、第3三方弁43の第1,第2水熱交換器9A,9B側を閉鎖し、第4三方弁44の第3水熱交換器9C側を閉鎖する。 Further, the first branch pipe 19a side of the first three-way valve 41 is opened, the second branch pipe 19b side of the second three-way valve 42 is opened, and the third branch pipe 19c side of the third three-way valve 43 is opened. The third branch pipe 19c side of the fourth three-way valve 44 is opened. Further, the third water heat exchanger 9C side of the first three-way valve 41 is closed, the first and second water heat exchangers 9A and 9B sides of the second three-way valve 42 are closed, and the third three-way valve 43 is closed. 1. Close the 2nd water heat exchanger 9A and 9B sides, and close the 3rd water heat exchanger 9C side of the 4th three-way valve 44.

これにより、水配管18を流れる水が、第1分岐管19a及び第1三方弁41を介して、第1,第2水熱交換器9A,9Bに供給されて、その後、合流する。次に、水は、第3三方弁43、第3分岐管19c及び第4三方弁44を介して、第3水熱交換器9Cに供給される。そして、第3水熱交換器9Cから第3四方弁及び第2分岐管19bを介して、外部へ流出する。そして、第1〜第3水熱交換器9A〜9Cでは、第1〜第4冷凍サイクル系統R1〜R4の冷媒の流れ方向と水配管18の水の流れ方向が対向流となる。 As a result, the water flowing through the water pipe 18 is supplied to the first and second water heat exchangers 9A and 9B via the first branch pipe 19a and the first three-way valve 41, and then merges. Next, water is supplied to the third water heat exchanger 9C via the third three-way valve 43, the third branch pipe 19c, and the fourth three-way valve 44. Then, it flows out from the third water heat exchanger 9C through the third four-way valve and the second branch pipe 19b. In the first to third water heat exchangers 9A to 9C, the flow direction of the refrigerant in the first to fourth refrigeration cycle systems R1 to R4 and the flow direction of water in the water pipe 18 are countercurrent.

また、第1〜第3水熱交換器9A〜9Cで水と熱交換して気化したガス冷媒は、四方弁8と気液分離器13と経て再び圧縮機5に吸入される。 Further, the gas refrigerant vaporized by heat exchange with water in the first to third water heat exchangers 9A to 9C is sucked into the compressor 5 again through the four-way valve 8 and the gas-liquid separator 13.

第1〜第4三方弁41〜44を切り換えることによって、第1,第2水熱交換器9A,9Bに接続された水配管18の水の流れ方向と、第3水熱交換器9Cに接続された水配管18の水の流れ方向を変更することが可能である。したがって、第1〜第4冷凍サイクル系統R1〜R4の冷房運転と暖房運転の切り換えに応じて、第1〜第4三方弁41〜44を切り換えることで、第1〜第4冷凍サイクル系統R1〜R4の冷媒の流れ方向と水配管18の水の流れ方向を常に対向流とすることができる。また、図4及び図5に示すように、第1,第2水熱交換器9A,9Bの組と、第3水熱交換器9Cが直列に配置されている場合において、第1,第2水熱交換器9A,9Bの組のほうが第3水熱交換器9Cよりも常に先に水が流れる構成とすることができる。 By switching the first to fourth three-way valves 41 to 44, the water flow direction of the water pipe 18 connected to the first and second water heat exchangers 9A and 9B and the connection to the third water heat exchanger 9C. It is possible to change the water flow direction of the water pipe 18. Therefore, by switching the first to fourth three-way valves 41 to 44 according to the switching between the cooling operation and the heating operation of the first to fourth refrigeration cycle systems R1 to R4, the first to fourth refrigeration cycle systems R1 to 4 The flow direction of the refrigerant of R4 and the flow direction of water in the water pipe 18 can always be countercurrent. Further, as shown in FIGS. 4 and 5, when the set of the first and second water heat exchangers 9A and 9B and the third water heat exchanger 9C are arranged in series, the first and second water heat exchangers 9A and 9C are arranged in series. The set of the water heat exchangers 9A and 9B can be configured so that the water always flows before the third water heat exchanger 9C.

1 :チラーユニット
3 :水系統部
5 :圧縮機
6 :オイルセパレータ
7 :逆止弁
8 :四方弁
9 :水熱交換器
9A :第1水熱交換器
9B :第2水熱交換器
9C :第3水熱交換器
10 :レシーバ
11 :電子膨張弁
12 :空冷熱交換器
12a :冷却ファン
13 :気液分離器
15 :水入口部
16 :水ポンプ
17 :水出口部
18,18a,18b,18c,18d :水配管
19a :第1分岐管
19b :第2分岐管
19c :第3分岐管
20 :四方弁
21 :第1接続口
22 :第2接続口
23 :第3接続口
24 :第4接続口
31 :温度検出部
32 :圧力検出部
33 :制御部
41 :第1三方弁
42 :第2三方弁
43 :第3三方弁
44 :第4三方弁
R1 :第1冷凍サイクル系統
R2 :第2冷凍サイクル系統
R3 :第3冷凍サイクル系統
R4 :第4冷凍サイクル系統
1: Chiller unit 3: Water system part 5: Compressor 6: Oil separator 7: Check valve 8: Four-way valve 9: Water heat exchanger 9A: First water heat exchanger 9B: Second water heat exchanger 9C: Third water heat exchanger 10: Receiver 11: Electronic expansion valve 12: Air-cooled heat exchanger 12a: Cooling fan 13: Gas-liquid separator 15: Water inlet 16: Water pump 17: Water outlets 18, 18a, 18b, 18c, 18d: Water pipe 19a: First branch pipe 19b: Second branch pipe 19c: Third branch pipe 20: Four-way valve 21: First connection port 22: Second connection port 23: Third connection port 24: Fourth Connection port 31: Temperature detection unit 32: Pressure detection unit 33: Control unit 41: First three-way valve 42: Second three-way valve 43: Third three-way valve 44: Fourth three-way valve R1: First refrigeration cycle system R2: First 2 Refrigeration cycle system R3: 3rd refrigeration cycle system R4: 4th refrigeration cycle system

Claims (8)

第1水熱交換器を有し、冷媒が循環する第1冷凍サイクル系統と、
第2水熱交換器を有し、冷媒が循環する第2冷凍サイクル系統と、
第3水熱交換器を共有し、冷媒がそれぞれ循環する第3冷凍サイクル系統及び第4冷凍サイクル系統と、
前記第1水熱交換器、前記第2水熱交換器及び前記第3水熱交換器に接続され、水が流通する水配管と、
を備え、
前記第1水熱交換器と前記第2水熱交換器が前記水配管によって並列に接続され、
前記第3水熱交換器が前記第1水熱交換器及び前記第2水熱交換器に対して前記水配管によって直列に接続され、
前記第1水熱交換器と前記第2水熱交換器において、前記第1冷凍サイクル系統及び前記第2冷凍サイクル系統の冷房運転と暖房運転の切り換えに応じて、前記冷媒の流れ方向と前記水の流れ方向が向かい合う対向流となるように、及び/又は、前記第3水熱交換器において、前記第3冷凍サイクル系統及び前記第4冷凍サイクル系統の冷房運転と暖房運転の切り換えに応じて、前記冷媒の流れ方向と前記水の流れ方向が向かい合う対向流となるように、前記水配管が構成されているチラーユニット。
A first refrigeration cycle system that has a first water heat exchanger and circulates refrigerant,
A second refrigeration cycle system that has a second water heat exchanger and circulates refrigerant,
The third refrigeration cycle system and the fourth refrigeration cycle system, which share the third water heat exchanger and circulate the refrigerant, respectively.
A water pipe connected to the first water heat exchanger, the second water heat exchanger, and the third water heat exchanger, and through which water flows.
With
The first water heat exchanger and the second water heat exchanger are connected in parallel by the water pipe.
The third water heat exchanger is connected in series to the first water heat exchanger and the second water heat exchanger by the water pipe.
In the first water heat exchanger and the second water heat exchanger, the flow direction of the refrigerant and the water are switched according to the switching between the cooling operation and the heating operation of the first refrigeration cycle system and the second refrigeration cycle system. And / or, in the third water heat exchanger, depending on the switching between the cooling operation and the heating operation of the third refrigerating cycle system and the fourth refrigerating cycle system, so that the flow directions of the water are opposite to each other. A chiller unit in which the water pipe is configured so that the flow direction of the refrigerant and the flow direction of the water are opposite to each other.
前記第3水熱交換器が前記第1水熱交換器と前記第2水熱交換器の下流側に前記水配管によって接続されている請求項1に記載のチラーユニット。 The chiller unit according to claim 1, wherein the third water heat exchanger is connected to the downstream side of the first water heat exchanger and the second water heat exchanger by the water pipe. 前記水配管に設置され、第1接続口、第2接続口、第3接続口及び第4接続口を有する四方弁と、
を備え、
前記第1接続口において前記水配管を流れる前記水が前記四方弁に常に流入し、前記第4接続口において前記第1水熱交換器と前記第2水熱交換器を流通した前記水、又は、前記第3水熱交換器を流通した前記水が前記四方弁から常に流出し、
前記第2接続口と前記第1水熱交換器と前記第2水熱交換器の一端側の接続口、又は、前記第3水熱交換器の一端側の接続口とが前記水配管によって接続され、前記第3接続口と前記第1水熱交換器と前記第2水熱交換器の他端側の接続口、又は、前記第3水熱交換器の他端側の接続口とが前記水配管によって接続され、
前記四方弁は、前記第1接続口と前記第2接続口が流通可能となり、かつ、前記第3接続口と前記第4接続口が流通可能となる第1モード、又は、前記第1接続口と前記第3接続口が流通可能となり、かつ、前記第2接続口と前記第4接続口が流通可能となる第2モードに切り換え可能である構成を有する請求項1又は2に記載のチラーユニット。
A four-way valve installed in the water pipe and having a first connection port, a second connection port, a third connection port, and a fourth connection port.
With
The water flowing through the water pipe at the first connection port always flows into the four-way valve, and the water flowing through the first water heat exchanger and the second water heat exchanger at the fourth connection port, or , The water flowing through the third water heat exchanger always flows out from the four-way valve,
The second connection port, the first water heat exchanger and the connection port on one end side of the second water heat exchanger, or the connection port on one end side of the third water heat exchanger are connected by the water pipe. The third connection port, the first water heat exchanger, and the connection port on the other end side of the second water heat exchanger, or the connection port on the other end side of the third water heat exchanger are said. Connected by water pipes
The four-way valve has a first mode in which the first connection port and the second connection port can be distributed, and the third connection port and the fourth connection port can be distributed, or the first connection port. The chiller unit according to claim 1 or 2, which has a configuration in which the third connection port can be distributed and the second connection port and the fourth connection port can be switched to a second mode in which distribution is possible. ..
前記四方弁は、ユニット本体の内部に設置されている請求項3に記載のチラーユニット。 The chiller unit according to claim 3, wherein the four-way valve is installed inside the unit body. 前記四方弁は、ユニット本体の外部に設置され、前記ユニット本体の内部に設置された前記水配管と接続されている請求項3に記載のチラーユニット。 The chiller unit according to claim 3, wherein the four-way valve is installed outside the unit body and is connected to the water pipe installed inside the unit body. 前記水配管において、前記第1水熱交換器及び前記第2水熱交換器と前記第3水熱交換器の間に設置された第1三方弁と、
一端が前記第1水熱交換器と前記第2水熱交換器の上流側の前記水配管と接続され、他端が前記第1三方弁と接続された第1分岐管と、
前記水配管において、前記第1水熱交換器及び前記第2水熱交換器と、前記第3水熱交換器の間において、前記第1三方弁よりも前記第3水熱交換器側に設置された第2三方弁と、
一端が前記第2三方弁と接続され、他端が前記第3水熱交換器の下流側の前記水配管と接続された第2分岐管と、
前記水配管と前記第1分岐管の接続部分と、前記第1水熱交換器及び前記第2水熱交換器の間に設置された第3三方弁と、
前記第3水熱交換器と、前記水配管の前記第2分岐管の接続部分の間に設置された第4三方弁と、
一端が前記第3三方弁と接続され、他端が前記第4三方弁と接続された第3分岐管と、
を備える請求項1又は2に記載のチラーユニット。
In the water pipe, the first three-way valve installed between the first water heat exchanger, the second water heat exchanger, and the third water heat exchanger.
A first branch pipe having one end connected to the first water heat exchanger and the water pipe on the upstream side of the second water heat exchanger, and the other end connected to the first three-way valve.
In the water pipe, it is installed between the first water heat exchanger, the second water heat exchanger, and the third water heat exchanger on the third water heat exchanger side of the first three-way valve. The second three-way valve and
A second branch pipe having one end connected to the second three-way valve and the other end connected to the water pipe on the downstream side of the third water heat exchanger.
A connection portion between the water pipe and the first branch pipe, and a third three-way valve installed between the first water heat exchanger and the second water heat exchanger.
A fourth three-way valve installed between the third water heat exchanger and the connection portion of the second branch pipe of the water pipe.
A third branch pipe having one end connected to the third three-way valve and the other end connected to the fourth three-way valve.
The chiller unit according to claim 1 or 2.
前記第1冷凍サイクル系統、前記第2冷凍サイクル系統、又は、前記第3冷凍サイクル系統において、前記第1水熱交換器、前記第2水熱交換器、又は、前記第3水熱交換器の接続口よりも上流側又は下流側に設置され、前記第1冷凍サイクル系統、前記第2冷凍サイクル系統、又は、前記第3冷凍サイクル系統を流れる前記冷媒の温度を検出する温度検出部と、
前記温度検出部によって検出された温度に基づいて、前記四方弁、又は、前記第1三方弁、前記第2三方弁、前記第3三方弁及び前記第4三方弁を切り換える制御部と、
を備える請求項3から6のいずれか1項に記載のチラーユニット。
In the first refrigeration cycle system, the second refrigeration cycle system, or the third refrigeration cycle system, the first water heat exchanger, the second water heat exchanger, or the third water heat exchanger. A temperature detection unit installed on the upstream side or the downstream side of the connection port and detecting the temperature of the refrigerant flowing through the first refrigeration cycle system, the second refrigeration cycle system, or the third refrigeration cycle system.
A control unit that switches between the four-way valve, the first three-way valve, the second three-way valve, the third three-way valve, and the fourth three-way valve based on the temperature detected by the temperature detection unit.
The chiller unit according to any one of claims 3 to 6.
前記第1冷凍サイクル系統、前記第2冷凍サイクル系統、又は、前記第3冷凍サイクル系統に設置され、前記第1冷凍サイクル系統、前記第2冷凍サイクル系統、又は、前記第3冷凍サイクル系統を流れる前記冷媒の圧力を検出する圧力検出部と、
前記制御部は、前記圧力検出部によって検出された圧力に基づいて、前記四方弁、又は、前記第1三方弁、前記第2三方弁、前記第3三方弁及び前記第4三方弁の切り換えの成否を判断する請求項7に記載のチラーユニット。
It is installed in the first refrigeration cycle system, the second refrigeration cycle system, or the third refrigeration cycle system, and flows through the first refrigeration cycle system, the second refrigeration cycle system, or the third refrigeration cycle system. A pressure detection unit that detects the pressure of the refrigerant,
The control unit switches between the four-way valve, the first three-way valve, the second three-way valve, the third three-way valve, and the fourth three-way valve based on the pressure detected by the pressure detection unit. The chiller unit according to claim 7, wherein the success or failure is determined.
JP2019056821A 2019-03-25 2019-03-25 chiller unit Active JP7258618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019056821A JP7258618B2 (en) 2019-03-25 2019-03-25 chiller unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019056821A JP7258618B2 (en) 2019-03-25 2019-03-25 chiller unit

Publications (2)

Publication Number Publication Date
JP2020159585A true JP2020159585A (en) 2020-10-01
JP7258618B2 JP7258618B2 (en) 2023-04-17

Family

ID=72642658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019056821A Active JP7258618B2 (en) 2019-03-25 2019-03-25 chiller unit

Country Status (1)

Country Link
JP (1) JP7258618B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026259A (en) * 1983-07-22 1985-02-09 ヤンマーディーゼル株式会社 Heat pump device
JPH0886477A (en) * 1994-09-19 1996-04-02 Hitachi Ltd Heat pump air conditioner
JP2011033290A (en) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp Heat exchanger, air conditioner and heat pump system
JP2014130003A (en) * 2010-11-24 2014-07-10 Mitsubishi Electric Corp Air conditioner
JP2014190645A (en) * 2013-03-28 2014-10-06 Corona Corp Air conditioner
WO2015111175A1 (en) * 2014-01-23 2015-07-30 三菱電機株式会社 Heat pump apparatus
JP2017106643A (en) * 2015-12-07 2017-06-15 三菱重工業株式会社 Chiller unit
JP2018159507A (en) * 2017-03-22 2018-10-11 大阪瓦斯株式会社 GHP Chiller
WO2019049255A1 (en) * 2017-09-07 2019-03-14 三菱電機株式会社 Air conditioning device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026259A (en) * 1983-07-22 1985-02-09 ヤンマーディーゼル株式会社 Heat pump device
JPH0886477A (en) * 1994-09-19 1996-04-02 Hitachi Ltd Heat pump air conditioner
JP2011033290A (en) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp Heat exchanger, air conditioner and heat pump system
JP2014130003A (en) * 2010-11-24 2014-07-10 Mitsubishi Electric Corp Air conditioner
JP2014190645A (en) * 2013-03-28 2014-10-06 Corona Corp Air conditioner
WO2015111175A1 (en) * 2014-01-23 2015-07-30 三菱電機株式会社 Heat pump apparatus
JP2017106643A (en) * 2015-12-07 2017-06-15 三菱重工業株式会社 Chiller unit
JP2018159507A (en) * 2017-03-22 2018-10-11 大阪瓦斯株式会社 GHP Chiller
WO2019049255A1 (en) * 2017-09-07 2019-03-14 三菱電機株式会社 Air conditioning device

Also Published As

Publication number Publication date
JP7258618B2 (en) 2023-04-17

Similar Documents

Publication Publication Date Title
JP6644154B2 (en) Air conditioner
US20230092215A1 (en) Air conditioning system with capacity control and controlled hot water generation
JP4948016B2 (en) Air conditioner
CN110831796B (en) Refrigeration device for a vehicle comprising a refrigerant circuit with a heat exchanger, and heat exchanger for such a refrigeration device
US10393418B2 (en) Air-conditioning apparatus
WO2006003967A1 (en) Air conditioner
JP6880204B2 (en) Air conditioner
JP4553761B2 (en) Air conditioner
JP7455211B2 (en) air conditioner
US11578898B2 (en) Air conditioning apparatus
CN113614470B (en) Air conditioning equipment
US11499727B2 (en) Air conditioning apparatus
CN115038917A (en) Air conditioner
JP5202073B2 (en) Refrigeration air conditioner
US20210048216A1 (en) Air-conditioning apparatus
JP5216557B2 (en) Refrigeration cycle equipment
JP2018080883A (en) Multi-room type air conditioner
JP2017106643A (en) Chiller unit
JP7258618B2 (en) chiller unit
JP2011127785A (en) Refrigerating device
JP7258616B2 (en) chiller unit
CN113874662B (en) air conditioner
US11359842B2 (en) Air conditioning apparatus
WO2019026234A1 (en) Refrigeration cycle device
JP2018173191A (en) Air conditioner

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20211210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230405

R150 Certificate of patent or registration of utility model

Ref document number: 7258618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150