JP2020157173A - Operational method for pretreatment equipment for air liquefaction/separation device - Google Patents

Operational method for pretreatment equipment for air liquefaction/separation device Download PDF

Info

Publication number
JP2020157173A
JP2020157173A JP2019055888A JP2019055888A JP2020157173A JP 2020157173 A JP2020157173 A JP 2020157173A JP 2019055888 A JP2019055888 A JP 2019055888A JP 2019055888 A JP2019055888 A JP 2019055888A JP 2020157173 A JP2020157173 A JP 2020157173A
Authority
JP
Japan
Prior art keywords
flow rate
raw material
length
air
regenerated gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019055888A
Other languages
Japanese (ja)
Inventor
伸一郎 山本
Shinichiro Yamamoto
伸一郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2019055888A priority Critical patent/JP2020157173A/en
Publication of JP2020157173A publication Critical patent/JP2020157173A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04775Air purification and pre-cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

To provide an operational method for pretreatment equipment for an air liquefaction/separation device that can optimize operation of the pretreatment equipment even if a condition for raw material air varies.SOLUTION: A step of regenerating an adsorption tower 17 is divided into a plurality of operation steps. With respect to a length of one operation step and a flow volume of regenerated gas, the length of the operation step which is shortest among lengths of the operation steps estimated from flow rates, temperatures and pressure respectively of raw material air in an inlet of a purifier measured at preset intervals during a precedent operation step is set as a length for the following operation step, and the flow volume of the regenerated gas which is largest among the estimated flow volumes of the regenerated gas is set as a flow volume of the regenerated gas in the following operation step.SELECTED DRAWING: Figure 1

Description

本発明は、空気液化分離装置の前処理設備の運転方法に関し、詳しくは、空気液化分離装置に供給される原料空気中の水分及び二酸化炭素をはじめとする不純物成分を温度変動吸着法により吸着除去して原料空気を精製する空気液化分離装置の前処理設備の運転方法に関する。 The present invention relates to a method of operating a pretreatment facility of an air liquefaction separation device. Specifically, the present invention adsorbs and removes impurity components such as moisture and carbon dioxide in the raw material air supplied to the air liquefaction separation device by a temperature fluctuation adsorption method. The present invention relates to an operation method of a pretreatment facility of an air liquefaction separation device for purifying raw air.

空気液化分離装置における深冷部の前段には、複数の吸着塔を吸着工程と再生工程とに順次切り換え使用する吸着装置を用いた前処理設備を設置し、吸着塔に充填した吸着剤に原料空気中の水分や二酸化炭素、炭化水素類、窒素酸化物のような不純物成分を吸着除去させて原料空気を精製するようにしている。この前処理設備における吸着装置の運転方法として、吸着工程にある吸着塔に流入する原料空気の温度を測定し、測定した原料空気温度に応じて吸着工程と再生工程との切替時間を変更することが行われている(例えば、特許文献1参照。)。また、吸着塔に導入する原料空気中の二酸化炭素の積算量から切替時間を変更することも行われている(例えば、特許文献2参照。)。 In front of the deep-cooled part of the air liquefaction separation device, a pretreatment facility using an adsorption device that sequentially switches between the adsorption process and the regeneration process is installed, and the adsorbent filled in the adsorption tower is used as a raw material. The raw material air is refined by adsorbing and removing water in the air and impurity components such as carbon dioxide, hydrocarbons, and nitrogen oxides. As an operation method of the adsorption device in this pretreatment facility, the temperature of the raw material air flowing into the adsorption tower in the adsorption process is measured, and the switching time between the adsorption process and the regeneration process is changed according to the measured raw material air temperature. (See, for example, Patent Document 1). Further, the switching time is also changed from the integrated amount of carbon dioxide in the raw material air introduced into the adsorption tower (see, for example, Patent Document 2).

特開2006−258302号公報Japanese Unexamined Patent Publication No. 2006-258302 特開2014−113594号公報Japanese Unexamined Patent Publication No. 2014-11359

しかし、従来の方法では、一つの吸着工程中の原料空気の温度や二酸化炭素の積算量といった条件に基づいて切替時間を変更しているため、例えば、一つ前の条件に基づいて切替時間を長くし、長時間の再生工程を行っているときに、何らかの外的要因で原料空気の温度上昇や二酸化炭素量の増加が発生した場合、吸着工程中の吸着塔で水分や二酸化炭素を確実に除去するためには、切替時間を短くして吸着工程時間を短縮させる必要があり、再生工程の時間を十分にとれなくなるおそれがある。また、製品ガス使用量の変動によって原料空気量が大きくかつ急激に変動した場合も、対応が困難になるおそれがある。 However, in the conventional method, the switching time is changed based on the conditions such as the temperature of the raw material air and the integrated amount of carbon dioxide in one adsorption process. Therefore, for example, the switching time is changed based on the previous condition. If the temperature of the raw material air rises or the amount of carbon dioxide increases due to some external factor during the long and long regeneration process, the adsorption tower during the adsorption process ensures that moisture and carbon dioxide are removed. In order to remove the carbon dioxide, it is necessary to shorten the switching time to shorten the adsorption process time, and there is a possibility that the regeneration process time cannot be sufficiently taken. In addition, even if the amount of raw material air fluctuates abruptly due to fluctuations in the amount of product gas used, it may be difficult to deal with it.

そこで本発明は、原料空気の条件が変動しても前処理設備の運転を最適化できる空気液化分離装置の前処理設備の運転方法を提供することを目的としている。 Therefore, an object of the present invention is to provide a method of operating a pretreatment facility of an air liquefaction separation device that can optimize the operation of the pretreatment facility even if the conditions of the raw material air fluctuate.

上記目的を達成するため、本発明の空気液化分離装置の前処理設備の運転方法は、第1の構成として、吸着剤を充填した複数の吸着塔を温度変動吸着法により吸着工程と再生工程とに順次切り換え使用する精製器によって、少なくとも、原料空気中の水分及び二酸化炭素を除去して空気液化分離装置に導入する原料空気を精製する空気液化分離装置の前処理設備の運転方法において、前記工程を複数の運転ステップに分割し、一つの運転ステップの長さ及び再生ガスの流量を、前回の運転ステップ中にあらかじめ設定された間隔で測定した前記精製器の入口における原料空気の流量、温度及び圧力のそれぞれから推算した運転ステップの長さ中で最も短い運転ステップの長さを次の運転ステップの長さとし、推算した再生ガスの流量の中で最も多い再生ガスの流量を次のステップの再生ガスの流量とすることを特徴としている。 In order to achieve the above object, the operation method of the pretreatment equipment of the air liquefaction separation device of the present invention has, as the first configuration, a plurality of adsorption towers filled with an adsorbent, and an adsorption step and a regeneration step by a temperature fluctuation adsorption method. In the operation method of the pretreatment equipment of the air liquefaction separation device for purifying the raw material air to be introduced into the air liquefaction separation device by removing at least water and carbon dioxide in the raw material air by the refiner used sequentially. Was divided into a plurality of operation steps, and the length of one operation step and the flow rate of the regenerated gas were measured at preset intervals during the previous operation step, and the flow rate, temperature, and temperature of the raw material air at the inlet of the refiner were measured. The shortest operating step length estimated from each of the pressures is taken as the next operating step length, and the largest regenerated gas flow rate in the estimated regenerated gas flow rate is used for the next step regeneration. It is characterized by the flow rate of gas.

また、本発明の第2の構成は、前記工程を複数の運転ステップに分割し、一つの運転ステップの長さ及び再生ガスの流量を、前回の運転ステップ中にあらかじめ設定された間隔で測定した前記精製器の入口における原料空気の流量、温度、圧力及び二酸化炭素濃度のそれぞれから推算した運転ステップの長さ中で最も短い運転ステップの長さを次の運転ステップの長さとし、推算した再生ガスの流量の中で最も多い再生ガスの流量を次のステップの再生ガスの流量とすることを特徴としている。 Further, in the second configuration of the present invention, the process is divided into a plurality of operation steps, and the length of one operation step and the flow rate of the regenerated gas are measured at intervals set in advance during the previous operation step. The length of the shortest operating step among the lengths of the operating steps estimated from each of the flow rate, temperature, pressure and carbon dioxide concentration of the raw material air at the inlet of the refiner is set as the length of the next operating step, and the regenerated gas is estimated. It is characterized in that the flow rate of the regenerated gas having the largest flow rate in the next step is set as the flow rate of the regenerated gas in the next step.

さらに、本発明の第3の構成は、前記工程を複数の運転ステップに分割し、一つの運転ステップの長さ及び再生ガスの流量を、前回の運転ステップ中にあらかじめ設定された間隔で測定した前記精製器の入口における原料空気の流量、温度、圧力、二酸化炭素濃度、炭化水素濃度及び亜酸化窒素濃度のそれぞれから推算した運転ステップの長さ中で最も短い運転ステップの長さを次の運転ステップの長さとし、推算した再生ガスの流量の中で最も多い再生ガスの流量を次のステップの再生ガスの流量とすることを特徴としている。 Further, in the third configuration of the present invention, the process is divided into a plurality of operation steps, and the length of one operation step and the flow rate of the regenerated gas are measured at preset intervals during the previous operation step. The shortest operation step length estimated from each of the flow rate, temperature, pressure, carbon dioxide concentration, hydrocarbon concentration and nitrous oxide concentration of the raw material air at the inlet of the refiner is set to the next operation. The length of the step is defined as the flow rate of the regenerated gas having the largest estimated flow rate of the regenerated gas, which is the flow rate of the regenerated gas in the next step.

加えて、本発明の第4の構成は、前記工程を複数の運転ステップに分割し、一つの運転ステップの長さ及び再生ガスの流量を、前回の運転ステップ中にあらかじめ設定された間隔で測定した前記精製器の入口における原料空気の流量、温度、圧力、二酸化炭素濃度、炭化水素及び亜酸化窒素の少なくとも一つから推算した運転ステップの長さ中で最も短い運転ステップの長さを次の運転ステップの長さとし、推算した再生ガスの流量の中で最も多い再生ガスの流量を次のステップの再生ガスの流量とすることを特徴としている。 In addition, in the fourth configuration of the present invention, the process is divided into a plurality of operation steps, and the length of one operation step and the flow rate of the regenerated gas are measured at preset intervals during the previous operation step. The shortest operating step length estimated from at least one of the flow rate, temperature, pressure, carbon dioxide concentration, hydrocarbon and nitrogen phosphite of the raw material air at the inlet of the refiner is as follows. It is characterized in that the length of the operation step is defined as the flow rate of the regenerated gas having the largest estimated flow rate of the regenerated gas as the flow rate of the regenerated gas in the next step.

本発明の空気液化分離装置の前処理設備の運転方法によれば、精製器に導入される原料空気の条件に応じて精製器の運転状態を的確に制御できるので、原料空気の精製を確実に行うことができ、運転コストの低減を図ることもできる。 According to the operation method of the pretreatment equipment of the air liquefaction separation device of the present invention, the operating state of the refiner can be accurately controlled according to the conditions of the raw material air introduced into the refiner, so that the raw material air can be reliably purified. This can be done, and the operating cost can be reduced.

本発明方法を適用可能な前処理設備を備えた空気液化分離装置の一例を示す系統図である。It is a system diagram which shows an example of the air liquefaction separation apparatus provided with the pretreatment equipment to which the method of this invention is applied. 基本的な運転サイクルの一例を示す説明図である。It is explanatory drawing which shows an example of a basic operation cycle. 本発明方法の運転制御手順を説明するための説明図である。It is explanatory drawing for demonstrating the operation control procedure of the method of this invention. 精製器負荷の変化の一例を示す図である。It is a figure which shows an example of the change of a refiner load.

図1乃至図4は、本発明における空気液化分離装置の前処理設備の運転方法を説明するためのもので、図1は、本発明方法を適用可能な前処理設備を備えた空気液化分離装置の一例を示す系統図である。図1に示す空気液化分離装置は、原料空気を圧縮、精製するための前処理設備11と、原料空気を冷却して液化分離する深冷部12とを備えている。 1 to 4 are for explaining the operation method of the pretreatment equipment of the air liquefaction separation device in the present invention, and FIG. 1 is an air liquefaction separation device provided with the pretreatment equipment to which the method of the present invention can be applied. It is a system diagram which shows an example. The air liquefaction separation device shown in FIG. 1 includes a pretreatment facility 11 for compressing and purifying the raw material air, and a deep cooling unit 12 for cooling and liquefying the raw material air.

前処理設備11は、空気濾過器13で塵埃を除去した原料空気を圧縮機14で所定圧力に圧縮し、予冷設備15で圧縮熱を除去した後、精製器16で原料空気中の不純物、例えば、水分、二酸化炭素、炭化水素、亜酸化窒素といった不純物を除去するもので、精製器16には、前記不純物を除去可能な吸着剤を充填した複数の吸着塔17を吸着工程と再生工程とに順次切り替えて原料空気の精製を連続して行える温度変動吸着法を採用した吸着装置が用いられている。この吸着装置には、吸着塔17の一端側及び他端側に複数の切替弁が設けられており、これらの切替弁を所定の順序で切替開閉することにより、各吸着塔が吸着工程と再生工程とに切り替えられる。 In the pretreatment equipment 11, the raw material air from which dust has been removed by the air filter 13 is compressed to a predetermined pressure by the compressor 14, the heat of compression is removed by the precooling equipment 15, and then impurities in the raw material air, for example, by the refiner 16. A plurality of adsorption towers 17 filled with an adsorbent capable of removing the impurities are used in the adsorption step and the regeneration step in the purifier 16 for removing impurities such as water, carbon dioxide, hydrocarbons, and nitrogen borooxide. An adsorption device that employs a temperature fluctuation adsorption method that can continuously purify the raw material air by switching sequentially is used. This suction device is provided with a plurality of switching valves on one end side and the other end side of the suction tower 17, and by switching and opening and closing these switching valves in a predetermined order, each suction tower can perform the suction process and regeneration. It can be switched to the process.

また、吸着装置には、再生工程を行っている吸着塔に加熱ガスと冷却ガスとを切替供給するための再生ガス供給部18が設けられており、再生工程における加熱段階では、深冷部から導出した低温の排ガスを加熱器18aで所定温度に加熱して加熱段階を行っている吸着塔に導入し、加熱段階後の冷却段階では、低温の排ガスをバイパス経路18bを通して低温のまま冷却段階を行っている吸着塔に導入するように各弁が切替開閉される。 Further, the adsorption device is provided with a regenerated gas supply unit 18 for switching and supplying heating gas and cooling gas to the adsorption tower performing the regeneration process, and in the heating stage in the regeneration process, the deep cooling unit is used. The derived low-temperature exhaust gas is introduced into the adsorption tower in which the heating stage is performed by heating the derived low-temperature exhaust gas to a predetermined temperature with the heater 18a, and in the cooling stage after the heating stage, the low-temperature exhaust gas is passed through the bypass path 18b to perform the cooling stage at a low temperature. Each valve is switched and opened and closed so as to be introduced into the suction tower.

図2は、基本的な運転サイクルの一例を示すもので、本例では、吸着工程と再生工程との切替時間を240分に設定して1サイクルを形成しており、再生工程は、圧縮空気の導入により加圧された塔内の圧力を大気圧に下げる脱圧段階を10分、加熱器18aで加熱された加熱再生ガスを塔内に流通させて吸着剤を加熱再生する加熱段階を90分、低温再生ガスを塔内に流通させて吸着剤を吸着工程に適した温度に冷却する冷却段階を116分、塔内に精製原料空気の一部を導入して塔内を吸着工程圧力に昇圧する充圧段階を24分の各段階に区分けされている。 FIG. 2 shows an example of a basic operation cycle. In this example, one cycle is formed by setting the switching time between the adsorption process and the regeneration process to 240 minutes, and the regeneration process is the compressed air. The depressurization step of lowering the pressure in the tower pressurized by the introduction of the above to atmospheric pressure is 10 minutes, and the heating step of heating and regenerating the adsorbent by circulating the heated regeneration gas heated by the heater 18a in the tower is 90. Minutes, the cooling step of circulating the low-temperature recycled gas into the tower to cool the adsorbent to a temperature suitable for the adsorption process is 116 minutes, and a part of the purified raw material air is introduced into the column to make the inside of the column the pressure of the adsorption process. The charging stage for increasing the pressure is divided into 24 minutes.

本発明方法では、前記1サイクルを複数の運転ステップ(以下、ステップという。)に区分けし、各ステップごとに得た情報に基づいて制御するようにしている。例えば、流量変更時の応答性を考慮して60秒を基本的な1ステップの時間とすると、1サイクルは、吸着工程が240ステップ、再生工程では、脱圧段階が10ステップ、加熱段階が90ステップ、冷却段階が116ステップに区分けされる。 In the method of the present invention, the one cycle is divided into a plurality of operation steps (hereinafter, referred to as steps), and control is performed based on the information obtained for each step. For example, if 60 seconds is set as the basic one-step time in consideration of the responsiveness when the flow rate is changed, the adsorption step is 240 steps in one cycle, the decompression step is 10 steps, and the heating step is 90 in the regeneration step. The steps and cooling steps are divided into 116 steps.

また、各ステップで得る情報としては、精製器16の入口における原料空気の流量、温度、圧力のほか、二酸化炭素濃度、炭化水素濃度、亜酸化窒素濃度といった吸着剤で吸着除去可能な不純物成分であり、原料空気中の水分量は、予冷設備15から導出した原料空気中に飽和量の水分が含まれているとして、原料空気の流量、温度及び圧力に基づいて容易に算出できる。これらの情報は、精製器16の入口部に、各情報に対応した流量計、温度計、圧力計、各種分析計を配置することで容易に得ることができる。 The information obtained in each step includes the flow rate, temperature, and pressure of the raw material air at the inlet of the purifier 16, as well as impurity components that can be adsorbed and removed by an adsorbent such as carbon dioxide concentration, hydrocarbon concentration, and nitrogen peroxide concentration. Yes, the amount of water in the raw material air can be easily calculated based on the flow rate, temperature and pressure of the raw material air, assuming that the raw material air derived from the precooling facility 15 contains a saturated amount of water. This information can be easily obtained by arranging a flow meter, a thermometer, a pressure gauge, and various analyzers corresponding to each information at the inlet of the refiner 16.

さらに、各情報の値は、あらかじめ設定された間隔、例えば、1秒間隔、5秒間隔などの間隔で測定した測定値の移動平均で算出するようにしている。例えば、5秒間隔で測定値を採取していて1ステップが60秒であるときには、60秒間で測定した12(60/5)回の測定値の和を12で除した移動平均の値を、制御用に使用する値として採用する。そして、各ステップにおける最後の測定値を含めて移動平均を求め、ここから採用した値が、前のステップで採用した値に比較して上昇しているときには、前のステップに対する上昇割合に基づいて次のステップの時間を短縮するとともに、吸着塔の再生ガスを増加させ、逆に前のステップで採用した値に比較して下降しているときには、下降割合に基づいて次のステップの時間を延長するとともに、再生ガスを減少させる。また、一つの移動平均の値が上昇し、他の移動平均の値が下降したときでも、同様に演算処理することにより、次のステップの条件を算出すればよい。 Further, the value of each information is calculated by a moving average of the measured values measured at a preset interval, for example, an interval of 1 second or an interval of 5 seconds. For example, when the measured values are collected at 5-second intervals and one step is 60 seconds, the moving average value obtained by dividing the sum of 12 (60/5) measured values measured in 60 seconds by 12 is used. Adopted as the value used for control. Then, the moving average is calculated including the last measured value in each step, and when the value adopted from this is higher than the value adopted in the previous step, it is based on the rate of increase with respect to the previous step. Shorten the time of the next step and increase the regenerated gas in the adsorption tower, and conversely extend the time of the next step based on the rate of descent when it is descending compared to the value adopted in the previous step. At the same time, reduce the amount of regenerated gas. Further, even when the value of one moving average rises and the value of the other moving average falls, the condition of the next step may be calculated by performing the same calculation processing.

例えば、図3に示すように、1サイクル中のn番目のステップ(ステップn)におけるステップの時間及び再生ガスの流量は、一つ前のステップ、すなわち、ステップn−1での最終の測定結果を含めた移動平均に基づいて決定され、次のステップであるステップn+1におけるステップの時間及び再生ガスの流量は、ステップnでの最終の測定結果を含めた移動平均によって決定される。 For example, as shown in FIG. 3, the step time and the flow rate of the regenerated gas in the nth step (step n) in one cycle are the final measurement results in the previous step, that is, step n-1. The step time and the flow rate of the regenerated gas in the next step, step n + 1, are determined by the moving average including the final measurement result in step n.

ここで、図4に示すように、工程切替時の原料空気の流量が10000Nm/h、1ステップの時間が60秒、再生ガス流量が1600Nm/hである設計条件で運転しているときに、工程切替後に原料空気の流量が次第に減少して精製器負荷が減少するような場合、5秒間隔で測定した原料空気の流量が次第に変化し、ステップn−1の終了直前に測定した流量を含めた12回分の移動平均が9873Nm/hとなり、流量が10000Nm/hから減少、すなわち、原料空気量の減少に伴って精製器負荷が低下していると判断した場合は、再生ガスの流量を1600Nm/hから1580Nm/h(1600*(9873/10000))に減少させるとともに、次のステップnの時間を60秒から61秒((60/9873)*10000)に延長する。 Here, as shown in FIG. 4, when operating under the design condition that the flow rate of the raw material air at the time of process switching is 10000 Nm 3 / h, the time of one step is 60 seconds, and the flow rate of the regenerated gas is 1600 Nm 3 / h. In addition, when the flow rate of the raw material air gradually decreases after the process is switched and the load on the refiner decreases, the flow rate of the raw material air measured at 5-second intervals gradually changes, and the flow rate measured immediately before the end of step n-1. If it is judged that the moving average for 12 times including the above is 9873 Nm 3 / h and the flow rate decreases from 10000 Nm 3 / h, that is, the purifier load decreases as the amount of raw material air decreases, the recycled gas The flow rate of the next step n is reduced from 1600 Nm 3 / h to 1580 Nm 3 / h (1600 * (9873/10000)), and the time of the next step n is extended from 60 seconds to 61 seconds ((60/9873) * 10000). ..

同様に、ステップn+1は、ステップnの終了直前に測定した流量の移動平均に基づいて再生ガスの流量及びステップn+1の時間が設定される。例えば、流量の移動平均が9550Nm/hになったときには、再生ガスの流量を1580Nm/hから1528Nm/h(1580*(9550/9873))に減少させるとともに、次のステップn+1の時間を61秒から63秒((61/9550)*9873)に延長する。一方、後半で原料空気の流量が次第に増加して精製器負荷が増大するような場合は、移動平均で求めた値が1より大きくなるので、次のステップにおける再生ガスの流量が増加するとともに、ステップの時間が短縮されることになる。 Similarly, in step n + 1, the flow rate of the regenerated gas and the time of step n + 1 are set based on the moving average of the flow rates measured immediately before the end of step n. For example, when the moving average of the flow rate becomes 9550 Nm 3 / h, the flow rate of the regenerated gas is reduced from 1580 Nm 3 / h to 1528 Nm 3 / h (1580 * (9550/9873)), and the time of the next step n + 1 is reached. Is extended from 61 seconds to 63 seconds ((61/9550) * 9873). On the other hand, when the flow rate of the raw material air gradually increases and the refiner load increases in the latter half, the value obtained by the moving average becomes larger than 1, so that the flow rate of the regenerated gas in the next step increases and the flow rate of the recycled gas increases. The step time will be shortened.

このように、前回のステップで算出した移動平均の変化に応じて今回のステップの長さ及び再生ガスの流量を変化させることにより、精製器16を負荷に応じた最適な条件で運転することができ、各回の吸着工程において吸着剤で吸着する不純物量を略一定量に制御でき、原料空気中の不純物を確実に除去できるとともに、吸着剤の再生も、略一定の加熱再生ガスによって確実に行うことができる。特に、ステップの長さ及び再生ガスの流量を変化させるための値を移動平均によって算出しているので、測定値をそのまま制御用に用いる場合に比べて、測定値のばらつきや誤差を吸収することができ、例えば、再生ガスの流量を変化させるための弁が頻繁に作動することがなくなる。 In this way, by changing the length of this step and the flow rate of the regenerated gas according to the change in the moving average calculated in the previous step, the purifier 16 can be operated under the optimum conditions according to the load. The amount of impurities adsorbed by the adsorbent can be controlled to a substantially constant amount in each adsorption step, impurities in the raw material air can be reliably removed, and the adsorbent can be reliably regenerated by a substantially constant heated regenerated gas. be able to. In particular, since the value for changing the step length and the flow rate of the regenerated gas is calculated by the moving average, it is necessary to absorb the variation and error of the measured value as compared with the case where the measured value is used as it is for control. For example, the valve for changing the flow rate of the regenerated gas does not operate frequently.

通常の大気条件では、原料空気中の各不純物成分の濃度はほとんど変化せず、原料空気の圧力や温度もほとんど変化しないので、深冷部12で分離した製品ガスの使用量の変動に伴う原料空気の流量変化を測定するだけでも十分な制御を行うことが可能である。特に、製鉄所向けの空気液化分離装置のように、製品ガスの需要変動が大きいときに極めて有効である。 Under normal atmospheric conditions, the concentration of each impurity component in the raw material air hardly changes, and the pressure and temperature of the raw material air hardly change. Therefore, the raw material due to fluctuations in the amount of product gas used separated by the deep cooling portion 12 Sufficient control can be performed simply by measuring changes in the flow rate of air. In particular, it is extremely effective when the demand for product gas fluctuates greatly, such as an air liquefaction separation device for steelworks.

また、周辺に工場が多く、二酸化炭素が増減するおそれのあるときには、原料空気中の二酸化炭素濃度を制御用の情報として加えることにより、二酸化炭素の濃度が上昇したときでも、二酸化炭素を吸着剤で確実に除去できるとともに二酸化炭素を吸着した吸着剤の再生も確実に行うことができる。さらに、周囲に化学コンビナートや製鉄所がある場合、あるいは、化学コンビナートや製鉄所の敷地内に配置された空気液化分離装置の場合は、吸着剤で除去可能な炭化水素や亜酸化窒素も制御用の情報に加えることにより、より確実な運転を行うことができる。また、通常の運転では、最大負荷を想定した設計条件に比べて吸着塔の切替間隔が長くなるので、例えば一日あたり6サイクルの切替運転を5サイクル以下にすることができ、吸着塔の再生に要するエネルギーを削減することができる。 In addition, when there are many factories in the vicinity and there is a risk that carbon dioxide will increase or decrease, by adding the carbon dioxide concentration in the raw material air as control information, carbon dioxide will be adsorbed even when the carbon dioxide concentration rises. It can be reliably removed and the adsorbent that has adsorbed carbon dioxide can be reliably regenerated. Furthermore, if there is a chemical complex or steelworks in the surrounding area, or if the air liquefaction separation device is located on the premises of the chemical complex or steelworks, hydrocarbons and nitrogen phosphite that can be removed by the adsorbent are also used for control. By adding to the information of, more reliable operation can be performed. Further, in normal operation, the switching interval of the adsorption tower is longer than the design condition assuming the maximum load. Therefore, for example, the switching operation of 6 cycles per day can be reduced to 5 cycles or less, and the adsorption tower can be regenerated. The energy required for the bicycle can be reduced.

実際の空気液化分離装置の運転では、必要な製品流量の減少によって原料空気の流量が減少し、その結果、次のステップにおける再生ガスの流量を減少させ、ステップの時間を長くすることが必要な場合でも、前記精製器16の入口における原料空気中の二酸化炭素濃度が一時的に上昇し、その二酸化炭素濃度の上昇からは、次のステップにおける再生ガスの流量の増加と、ステップの時間の短縮が必要となる場合がある。 In the actual operation of the air liquefaction separator, it is necessary to reduce the flow rate of the raw material air by reducing the required product flow rate, and as a result, reduce the flow rate of the regenerated gas in the next step and lengthen the step time. Even in this case, the carbon dioxide concentration in the raw material air at the inlet of the purifier 16 temporarily increases, and the increase in the carbon dioxide concentration causes an increase in the flow rate of the regenerated gas in the next step and a reduction in the step time. May be required.

すなわち、前記精製器の入口における原料空気の流量、温度、圧力、原料空気中の二酸化炭素濃度、炭化水素濃度又は亜酸化窒素濃度といった条件は、基本的に独立してステップの長さ、再生ガスの流量に影響を及ぼす要素である。本発明では、各要素から求められた最も短いステップの長さを採用するとともに、最も多い再生ガスの流量を採用するようにしているので、原料空気の条件に応じた最適なステップの長さ及び再生ガスの流量を設定することができる。したがって、各条件に応じて吸着工程及び再生工程を最適化できるので、各種不純物の除去及び吸着剤の再生を確実に行うことができる。 That is, conditions such as the flow rate, temperature, pressure, carbon dioxide concentration, hydrocarbon concentration, or nitrous oxide concentration of the raw material air at the inlet of the refiner are basically independent of the step length and the regenerated gas. It is a factor that affects the flow rate of. In the present invention, the shortest step length obtained from each element is adopted, and the largest flow rate of the regenerated gas is adopted. Therefore, the optimum step length and the optimum step length according to the conditions of the raw material air are adopted. The flow rate of the regenerated gas can be set. Therefore, since the adsorption step and the regeneration step can be optimized according to each condition, various impurities can be removed and the adsorbent can be reliably regenerated.

また、本発明では、前記精製器の入口における原料空気の流量、温度、圧力、原料空気中の二酸化炭素濃度、炭化水素濃度及び亜酸化窒素濃度といった各種条件の内、任意の要素の一つだけを採用してもよい。しかし、より多くの場合にも前記精製器の適切な運転を担保するためには、前記精製器の入口における原料空気の流量、温度及び圧力を基に単位時間あたりの移動平均を算出する方法、前記精製器の入口における原料空気の流量、温度、圧力及び前記精製器の入口における原料空気中の二酸化炭素濃度を基に単位時間あたりの移動平均を算出する方法、又は、前記精製器の入口における原料空気の流量、温度、圧力及び前記精製器の入口における原料空気中の二酸化炭素濃度、炭化水素又は亜酸化窒素の濃度を基に単位時間あたりの移動平均を算出する方法を採用することが望ましい。 Further, in the present invention, only one of any elements among various conditions such as the flow rate, temperature, pressure, carbon dioxide concentration in the raw material air, hydrocarbon concentration and nitrous oxide concentration at the inlet of the refiner is used. May be adopted. However, in more cases, in order to ensure proper operation of the refiner, a method of calculating a moving average per unit time based on the flow rate, temperature and pressure of the raw material air at the inlet of the refiner, A method of calculating a moving average per unit time based on the flow rate, temperature, pressure of raw material air at the inlet of the refiner and the concentration of carbon dioxide in the raw material air at the inlet of the refiner, or at the inlet of the refiner. It is desirable to adopt a method of calculating the moving average per unit time based on the flow rate, temperature, pressure of the raw material air, the carbon dioxide concentration in the raw material air at the inlet of the refiner, and the concentration of hydrocarbons or nitrous oxide. ..

さらに、本発明では、特定のステップの長さと再生ガスの流量とを対応させることが可能である。つまり、前のステップから求められた次のステップの運転ステップの長さが10%長くなった場合、単純に再生ガスの流量を10%減少させることができる。つまり、各ステップにおいて、運転ステップの長さと再生ガスの流量との積の値を一定とすることができる。このような制御方法を採用すると、各制御方法において、各要素からステップの長さのみを演算すればよく、再生ガスの流量は簡単に決めることができる。 Further, in the present invention, it is possible to make a specific step length correspond to the flow rate of the regenerated gas. That is, when the length of the operation step of the next step obtained from the previous step is increased by 10%, the flow rate of the regenerated gas can be simply reduced by 10%. That is, in each step, the value of the product of the length of the operation step and the flow rate of the regenerated gas can be made constant. When such a control method is adopted, in each control method, only the step length needs to be calculated from each element, and the flow rate of the regenerated gas can be easily determined.

なお、1ステップの時間は任意に設定することができ、測定間隔も任意に設定することができる。また、空気液化分離装置の起動時などの特別+な場合は、運転状態が安定するまで制御を行わないように設定することができる。 The time of one step can be arbitrarily set, and the measurement interval can also be arbitrarily set. Further, in a special case such as when the air liquefaction separation device is started, it can be set so that the control is not performed until the operating state becomes stable.

11…前処理設備、12…深冷部、13…空気濾過器、14…圧縮機、15…予冷設備、16…精製器、17…吸着塔、18…再生ガス供給部、18a…加熱器、18b…バイパス経路 11 ... Pretreatment equipment, 12 ... Deep cooling part, 13 ... Air filter, 14 ... Compressor, 15 ... Precooling equipment, 16 ... Purifier, 17 ... Adsorption tower, 18 ... Recycled gas supply part, 18a ... Heater, 18b ... Bypass route

Claims (4)

吸着剤を充填した複数の吸着塔を温度変動吸着法により吸着工程と再生工程とに順次切り換え使用する精製器によって、少なくとも、原料空気中の水分及び二酸化炭素を除去して空気液化分離装置に導入する原料空気を精製する空気液化分離装置の前処理設備の運転方法において、前記工程を複数の運転ステップに分割し、一つの運転ステップの長さ及び再生ガスの流量を、前回の運転ステップ中にあらかじめ設定された間隔で測定した前記精製器の入口における原料空気の流量、温度及び圧力のそれぞれから推算した運転ステップの長さ中で最も短い運転ステップの長さを次の運転ステップの長さとし、推算した再生ガスの流量の中で最も多い再生ガスの流量を次のステップの再生ガスの流量とすることを特徴とする空気液化分離装置の前処理設備の運転方法。 At least water and carbon dioxide in the raw material air are removed and introduced into the air liquefaction separation device by a refiner that sequentially switches between the adsorption process and the regeneration process by the temperature fluctuation adsorption method for a plurality of adsorption towers filled with an adsorbent. In the operation method of the pretreatment equipment of the air liquefaction separation device that purifies the raw material air, the process is divided into a plurality of operation steps, and the length of one operation step and the flow rate of the regenerated gas are set during the previous operation step. The shortest operating step length estimated from each of the flow rate, temperature, and pressure of the raw material air at the inlet of the refiner measured at preset intervals is defined as the length of the next operating step. A method for operating a pretreatment facility of an air liquefaction separation device, wherein the flow rate of the regenerated gas having the largest flow rate of the regenerated gas estimated is the flow rate of the regenerated gas in the next step. 吸着剤を充填した複数の吸着塔を温度変動吸着法により吸着工程と再生工程とに順次切り換え使用する精製器によって、少なくとも、原料空気中の水分及び二酸化炭素を除去して空気液化分離装置に導入する原料空気を精製する空気液化分離装置の前処理設備の運転方法において、前記工程を複数の運転ステップに分割し、一つの運転ステップの長さ及び再生ガスの流量を、前回の運転ステップ中にあらかじめ設定された間隔で測定した前記精製器の入口における原料空気の流量、温度、圧力及び二酸化炭素濃度のそれぞれから推算した運転ステップの長さ中で最も短い運転ステップの長さを次の運転ステップの長さとし、推算した再生ガスの流量の中で最も多い再生ガスの流量を次のステップの再生ガスの流量とすることを特徴とする空気液化分離装置の前処理設備の運転方法。 At least water and carbon dioxide in the raw material air are removed and introduced into the air liquefaction separation device by a refiner that sequentially switches between the adsorption process and the regeneration process by the temperature fluctuation adsorption method for a plurality of adsorption towers filled with an adsorbent. In the operation method of the pretreatment equipment of the air liquefaction separation device that purifies the raw material air, the process is divided into a plurality of operation steps, and the length of one operation step and the flow rate of the regenerated gas are set during the previous operation step. The shortest operation step length estimated from each of the flow rate, temperature, pressure and carbon dioxide concentration of the raw material air at the inlet of the refiner measured at preset intervals is set as the next operation step. A method of operating a pretreatment facility of an air liquefaction separator, characterized in that the flow rate of the reclaimed gas, which is the largest of the estimated flow rates of the reclaimed gas, is set as the flow rate of the reclaimed gas in the next step. 吸着剤を充填した複数の吸着塔を温度変動吸着法により吸着工程と再生工程とに順次切り換え使用する精製器によって、少なくとも、原料空気中の水分及び二酸化炭素を除去して空気液化分離装置に導入する原料空気を精製する空気液化分離装置の前処理設備の運転方法において、前記工程を複数の運転ステップに分割し、一つの運転ステップの長さ及び再生ガスの流量を、前回の運転ステップ中にあらかじめ設定された間隔で測定した前記精製器の入口における原料空気の流量、温度、圧力、二酸化炭素濃度、炭化水素濃度及び亜酸化窒素濃度のそれぞれから推算した運転ステップの長さ中で最も短い運転ステップの長さを次の運転ステップの長さとし、推算した再生ガスの流量の中で最も多い再生ガスの流量を次のステップの再生ガスの流量とすることを特徴とする空気液化分離装置の前処理設備の運転方法。 At least water and carbon dioxide in the raw material air are removed and introduced into the air liquefaction separation device by a refiner that sequentially switches between the adsorption process and the regeneration process by the temperature fluctuation adsorption method for a plurality of adsorption towers filled with an adsorbent. In the operation method of the pretreatment equipment of the air liquefaction separation device that purifies the raw material air, the process is divided into a plurality of operation steps, and the length of one operation step and the flow rate of the regenerated gas are set during the previous operation step. The shortest operation in the length of the operation step estimated from each of the flow rate, temperature, pressure, carbon dioxide concentration, hydrocarbon concentration and nitrous oxide concentration of the raw material air at the inlet of the refiner measured at preset intervals. In front of the air liquefaction separator characterized in that the length of the step is the length of the next operation step and the flow rate of the regenerated gas having the largest estimated flow rate of the regenerated gas is the flow rate of the regenerated gas in the next step. How to operate the processing equipment. 吸着剤を充填した複数の吸着塔を温度変動吸着法により吸着工程と再生工程とに順次切り換え使用する精製器によって、少なくとも、原料空気中の水分及び二酸化炭素を除去して空気液化分離装置に導入する原料空気を精製する空気液化分離装置の前処理設備の運転方法において、前記工程を複数の運転ステップに分割し、一つの運転ステップの長さ及び再生ガスの流量を、前回の運転ステップ中にあらかじめ設定された間隔で測定した前記精製器の入口における原料空気の流量、温度、圧力、二酸化炭素濃度、炭化水素及び亜酸化窒素の少なくとも一つから推算した運転ステップの長さ中で最も短い運転ステップの長さを次の運転ステップの長さとし、推算した再生ガスの流量の中で最も多い再生ガスの流量を次のステップの再生ガスの流量とすることを特徴とする空気液化分離装置の前処理設備の運転方法。 At least water and carbon dioxide in the raw material air are removed and introduced into the air liquefaction separation device by a refiner that sequentially switches between the adsorption process and the regeneration process by the temperature fluctuation adsorption method for a plurality of adsorption towers filled with an adsorbent. In the operation method of the pretreatment equipment of the air liquefaction separation device that purifies the raw material air, the process is divided into a plurality of operation steps, and the length of one operation step and the flow rate of the regenerated gas are set during the previous operation step. The shortest operation in the length of the operation step estimated from at least one of the flow rate, temperature, pressure, carbon dioxide concentration, hydrocarbon and nitrogen peroxide of the raw material air at the inlet of the refiner measured at preset intervals. In front of the air liquefaction separator characterized in that the length of the step is the length of the next operation step and the flow rate of the regenerated gas having the largest estimated flow rate of the regenerated gas is the flow rate of the regenerated gas in the next step. How to operate the processing equipment.
JP2019055888A 2019-03-25 2019-03-25 Operational method for pretreatment equipment for air liquefaction/separation device Pending JP2020157173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019055888A JP2020157173A (en) 2019-03-25 2019-03-25 Operational method for pretreatment equipment for air liquefaction/separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019055888A JP2020157173A (en) 2019-03-25 2019-03-25 Operational method for pretreatment equipment for air liquefaction/separation device

Publications (1)

Publication Number Publication Date
JP2020157173A true JP2020157173A (en) 2020-10-01

Family

ID=72640837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019055888A Pending JP2020157173A (en) 2019-03-25 2019-03-25 Operational method for pretreatment equipment for air liquefaction/separation device

Country Status (1)

Country Link
JP (1) JP2020157173A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0842964A (en) * 1994-07-29 1996-02-16 Nippon Steel Corp Producing method of adsorption tank in deep freeze separation method
JP2006258302A (en) * 2005-03-15 2006-09-28 Taiyo Nippon Sanso Corp Purification method for raw material air in air liquefaction separation device
JP2009262151A (en) * 2008-04-21 2009-11-12 Air Products & Chemicals Inc Cyclical swing adsorption process
JP2014113594A (en) * 2014-03-10 2014-06-26 Shinko Air Water Cryoplant Ltd Pre-treatment device for air separation apparatus and pre-treatment method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0842964A (en) * 1994-07-29 1996-02-16 Nippon Steel Corp Producing method of adsorption tank in deep freeze separation method
JP2006258302A (en) * 2005-03-15 2006-09-28 Taiyo Nippon Sanso Corp Purification method for raw material air in air liquefaction separation device
JP2009262151A (en) * 2008-04-21 2009-11-12 Air Products & Chemicals Inc Cyclical swing adsorption process
JP2014113594A (en) * 2014-03-10 2014-06-26 Shinko Air Water Cryoplant Ltd Pre-treatment device for air separation apparatus and pre-treatment method therefor

Similar Documents

Publication Publication Date Title
RU2460573C2 (en) Improvements in methods of short-cycle adsorption
EP2318116B1 (en) Adsorbent bed repressurization control method
US7501009B2 (en) Combined cryogenic distillation and PSA for argon production
KR101407896B1 (en) Compressed air producing method and producing plant
KR19990063146A (en) Operation method and device of preliminary air purifier considering inlet air condition
CN107019992B (en) Heater device for heat-enhanced pressure swing adsorption system
CA2581252A1 (en) Tsa process
MX2011010063A (en) Cyclic adsorption control method and controller.
CA2825319C (en) Process for purifying a gas in a temperature swing adsorption unit
JP4590287B2 (en) Purification method of raw material air in air liquefaction separation device
AU2012249139A1 (en) Process for purifying a gas in a temperature swing adsorption unit
BR112020006604B1 (en) METHODS FOR MAXIMIZING THE TIME AN ADSORBENT BED CAN REMAIN ONLINE IN FEED MODE AN ADSORPTION PROCESS BY VARIATION WITHOUT EXPERIENCING ADSORBATE BREAKTHROUGH, AND TO IMPROVE THE EFFICIENCY OF PREPURIFIER CYCLE TIME IN A TSA PROCESS, PSA OR TSA/PSA HYBRID FOR THE REMOVAL OF CO 2 FROM A FEED GAS MIXTURE, AIR SEPARATION PROCESS, AND, TSA OR TSA/PSA HYBRID PROCESS CYCLE FOR AIR PURIFICATION
JP2020157173A (en) Operational method for pretreatment equipment for air liquefaction/separation device
JP4719598B2 (en) Pretreatment method and apparatus in air liquefaction separation
JP4845334B2 (en) Purification method of raw material air in air liquefaction separation device
US4522637A (en) Integrated adsorption system for the purification of separate crude gases
CN105126532A (en) Method, apparatus and system for controlling natural gas adsorption column
KR101018388B1 (en) Gas purification apparatus and reactivation method of catalyst therein
EP3773989B1 (en) Temperature swing adsorption process with purification
Dube et al. Control of swing adsorption process cycle time with ambient CO 2 monitoring
JP5550486B2 (en) Air liquefaction separation device and operation method thereof
KR101800031B1 (en) Purifying method and purifying apparatus for argon gas
KR101603432B1 (en) System for removing volatile organosiloxane compounds
CN111085089A (en) Full-automatic drying, purifying and decompressing device applied to SF6 gas transmission system
US20140047978A1 (en) Process for purifying a gas in a temperature swing adsorption unit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240409