JP2020156236A - Insulation type power converter unit and power converter system - Google Patents

Insulation type power converter unit and power converter system Download PDF

Info

Publication number
JP2020156236A
JP2020156236A JP2019053634A JP2019053634A JP2020156236A JP 2020156236 A JP2020156236 A JP 2020156236A JP 2019053634 A JP2019053634 A JP 2019053634A JP 2019053634 A JP2019053634 A JP 2019053634A JP 2020156236 A JP2020156236 A JP 2020156236A
Authority
JP
Japan
Prior art keywords
external connection
unit
power converter
connection terminal
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019053634A
Other languages
Japanese (ja)
Inventor
猛 近藤
Takeshi Kondo
近藤  猛
圭一 小太刀
Keiichi Kodachi
圭一 小太刀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2019053634A priority Critical patent/JP2020156236A/en
Publication of JP2020156236A publication Critical patent/JP2020156236A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

To enable two windings of an insulating transformer to be shielded individually so as to eliminate electric influence on the two windings and other components.SOLUTION: A DC/DC conversion unit 11 comprises: a conductive DC/AC winding shield 41 disposed between a DC/AC winding 31, which is one of two windings of an insulating transformer, and an iron core 33 so as to face the DC/AC winding and the iron core; a conductive AC/DC winding shield 42 disposed between an AC/DC winding 32, which is the other of the two windings, and the iron core 33 so as to face the AC/DC winding and the iron core; a DC/AC conversion section 51 connected between the DC/AC winding 31 and power conversion section external connection terminals M1-1, M1-2; an AC/DC conversion section 52 connected between the AC/DC winding 32 and power conversion section external connection terminals M2-1, M2-2; shield external connection terminals S1-1, S1-2 connected to both ends of the DC/AC winding shield 41, respectively; and shield external connection terminals S2-1, S2-2 connected to both ends of the AC/DC winding shield 42, respectively.SELECTED DRAWING: Figure 1

Description

本発明は、絶縁変圧器の絶縁状態を監視し、絶縁劣化を検出した場合には警報を発し、または故障の場合には電源を遮断する変圧器の絶縁監視保護システムに関するものである。 The present invention relates to an insulation monitoring and protection system for a transformer that monitors the insulation state of an insulated transformer, issues an alarm when an insulation deterioration is detected, or shuts off the power supply in the case of a failure.

従来、変圧器を備えた電力変換装置において、変圧器の一次、二次巻線間に、混触を防止するための混触防止板を設けることが、例えば特許文献1に記載されている。 Conventionally, in a power conversion device provided with a transformer, for example, Patent Document 1 describes that a touch-prevention plate for preventing touch-touch is provided between the primary and secondary windings of the transformer.

特許第5465023号公報Japanese Patent No. 5465023

特許文献1の課題は、電力変換装置から流出する接地電流の低減にある。しかし、高圧側の巻線と混触防止板の間に絶縁破壊が生じると、電源側の系統が非接地の場合には、系統全体の健全相の対地電位が上昇する。また、電源側の系統が接地方式の場合には、大きな地絡電流が流れる。 An object of Patent Document 1 is to reduce the ground current flowing out from the power conversion device. However, if dielectric breakdown occurs between the winding on the high voltage side and the contact prevention plate, the ground potential of the healthy phase of the entire system rises when the system on the power supply side is not grounded. Further, when the system on the power supply side is a grounding system, a large ground fault current flows.

系統全体として考えた場合には、健全相の上昇は好ましくなく、大きな地絡電流が流れる場合には、混触防止板などの導体が大型化する。さらに、一次側、もしくは二次側の巻線と混触防止板との間に絶縁破壊が生じた場合には、その相に短絡電流が流れる。よって、回路の短絡耐量の増加を招く恐れがある。また、二次側の絶縁劣化を個別に監視することはできない。 When considering the entire system, an increase in the healthy phase is not preferable, and when a large ground fault current flows, the conductor such as the contact prevention plate becomes large. Further, when dielectric breakdown occurs between the winding on the primary side or the secondary side and the contact prevention plate, a short-circuit current flows in that phase. Therefore, there is a risk of increasing the short-circuit withstand capability of the circuit. Moreover, it is not possible to individually monitor the deterioration of insulation on the secondary side.

本発明は上記課題を解決するものであり、その目的は、絶縁変圧器の2巻線を個別にシールドすることができ、2巻線と他の構成要素に電気的に影響を与えることがない絶縁型電力変換器ユニット、電力変換器システムを提供することにある。 The present invention solves the above problems, and an object of the present invention is to be able to shield the two windings of an insulated transformer individually and not to electrically affect the two windings and other components. The purpose is to provide an isolated power converter unit and a power converter system.

上記課題を解決するための請求項1に記載の絶縁型電力変換器ユニットは、
互いに絶縁された2巻線が鉄心を介して各々対向配設された絶縁変圧器と、
前記2巻線のうち一方の巻線と鉄心との間に対向して配設された導電性の第1のシールドと、
前記2巻線のうち他方の巻線と鉄心との間に対向して配設された導電性の第2のシールドと、
前記一方の巻線と第1、第2の電力変換部用外部接続端子の間に接続された第1の電力変換部と、
前記他方の巻線と第3、第4の電力変換部用外部接続端子の間に接続された第2の電力変換部と、
前記第1のシールドに接続された第1、第2のシールド用外部接続端子と、
前記第2のシールドに接続された第3、第4のシールド用外部接続端子と、を備えたことを特徴とする。
The insulated power converter unit according to claim 1 for solving the above problems is
An insulating transformer in which two windings insulated from each other are arranged to face each other via an iron core,
A first conductive shield disposed so as to face between one of the two windings and the iron core,
A second conductive shield disposed so as to face between the other winding of the two windings and the iron core,
A first power conversion unit connected between the one winding and the external connection terminals for the first and second power conversion units, and
A second power conversion unit connected between the other winding and the external connection terminals for the third and fourth power conversion units.
The first and second shield external connection terminals connected to the first shield,
It is characterized by including a third and fourth shield external connection terminals connected to the second shield.

請求項2に記載の絶縁型電力変換器ユニットは、請求項1において、
前記第1のシールド用外部接続端子と第1のシールドの一端の間、又は前記第2のシールド用外部接続端子と第1のシールドの他端の間の少なくともいずれか一方に、直列に接続された分圧抵抗および電圧検出用抵抗と、
前記第3のシールド用外部接続端子と第2のシールドの一端の間、又は前記第4のシールド用外部接続端子と第2のシールドの他端の間の少なくともいずれか一方に、直列に接続された分圧抵抗および電圧検出用抵抗と、
前記電圧検出用抵抗の電圧を検出し、その検出電圧に基いて絶縁劣化を判断する制御部と、を備えたことを特徴とする。
The insulated power converter unit according to claim 2 is claimed in claim 1.
It is connected in series between the first shield external connection terminal and one end of the first shield, or at least one of the second shield external connection terminal and the other end of the first shield. Voltage dividing resistor and voltage detection resistor,
It is connected in series to at least one of the third shield external connection terminal and one end of the second shield, or the fourth shield external connection terminal and the other end of the second shield. Voltage dividing resistor and voltage detection resistor,
It is characterized by including a control unit that detects the voltage of the voltage detection resistor and determines insulation deterioration based on the detected voltage.

請求項3に記載の絶縁型電力変換器ユニットは、請求項1又は2において、
前記第1の電力変換部は、直流側が前記第1、第2の電力変換部用外部接続端子に接続され、交流側が前記一方の巻線に接続されたDC/AC変換部によって構成され、
前記第2の電力変換部は、交流側が前記他方の巻線に接続され、直流側が前記第3、第4の電力変換部用外部接続端子に接続されたAC/DC変換部によって構成されていることを特徴とする。
The insulated power converter unit according to claim 3 is claimed in claim 1 or 2.
The first power conversion unit is composed of a DC / AC conversion unit in which the DC side is connected to the external connection terminal for the first and second power conversion units and the AC side is connected to the one winding.
The second power conversion unit is composed of an AC / DC conversion unit in which the AC side is connected to the other winding and the DC side is connected to the external connection terminals for the third and fourth power conversion units. It is characterized by that.

請求項4に記載の絶縁型電力変換器ユニットは、請求項1又は2において、
前記第1の電力変換部は、交流側が前記第1、第2の電力変換部用外部接続端子に接続されたAC/DC変換部と、直流側が前記AC/DC変換部の直流側に接続され、交流側が前記一方の巻線に接続されたDC/AC変換部によって構成され、
前記第2の電力変換部は、交流側が前記他方の巻線に接続され、直流側が前記第3、第4の電力変換部用外部接続端子に接続されたAC/DC変換部によって構成されていることを特徴とする。
The insulated power converter unit according to claim 4 is claimed in claim 1 or 2.
In the first power conversion unit, the AC side is connected to the AC / DC conversion unit whose AC side is connected to the external connection terminal for the first and second power conversion units, and the DC side is connected to the DC side of the AC / DC conversion unit. , The AC side is composed of a DC / AC converter connected to one of the windings.
The second power conversion unit is composed of an AC / DC conversion unit in which the AC side is connected to the other winding and the DC side is connected to the external connection terminals for the third and fourth power conversion units. It is characterized by that.

請求項5に記載の絶縁型電力変換器ユニットは、請求項1又は2において、
前記第1の電力変換部は、直流側が前記第1、第2の電力変換部用外部接続端子に接続され、交流側が前記一方の巻線に接続されたDC/AC変換部によって構成され、
前記第2の電力変換部は、交流側が前記他方の巻線に接続されたAC/DC変換部と、直流側が前記AC/DC変換部の直流側に接続され、交流側が前記第3、第4の電力変換部用外部接続端子に接続されたDC/AC変換部によって構成されていることを特徴とする。
The insulated power converter unit according to claim 5 is claimed in claim 1 or 2.
The first power conversion unit is composed of a DC / AC conversion unit in which the DC side is connected to the external connection terminal for the first and second power conversion units and the AC side is connected to the one winding.
In the second power conversion unit, the AC side is connected to the AC / DC conversion unit connected to the other winding, the DC side is connected to the DC side of the AC / DC conversion unit, and the AC side is the third and fourth parts. It is characterized in that it is composed of a DC / AC conversion unit connected to an external connection terminal for the power conversion unit.

請求項6に記載の絶縁型電力変換器ユニットは、請求項1又は2において、
前記第1の電力変換部は、交流側が前記第1、第2の電力変換部用外部接続端子に接続されたAC/DC変換部と、直流側が前記AC/DC変換部の直流側に接続され、交流側が前記一方の巻線に接続されたDC/AC変換部によって構成され、
前記第2の電力変換部は、交流側が前記他方の巻線に接続されたAC/DC変換部と、直流側が前記AC/DC変換部の直流側に接続され、交流側が前記第3、第4の電力変換部用外部接続端子に接続されたDC/AC変換部によって構成されていることを特徴とする。
The insulated power converter unit according to claim 6 is claimed in claim 1 or 2.
In the first power conversion unit, the AC side is connected to the AC / DC conversion unit whose AC side is connected to the external connection terminal for the first and second power conversion units, and the DC side is connected to the DC side of the AC / DC conversion unit. , The AC side is composed of a DC / AC converter connected to one of the windings.
In the second power conversion unit, the AC side is connected to the AC / DC conversion unit connected to the other winding, the DC side is connected to the DC side of the AC / DC conversion unit, and the AC side is the third and fourth parts. It is characterized in that it is composed of a DC / AC conversion unit connected to an external connection terminal for the power conversion unit.

請求項7に記載の電力変換器システムは、
請求項1から6のいずれかに記載の絶縁型電力変換器ユニットを複数段設け、
互いに隣接する2つの絶縁型電力変換器ユニット間の、第1の電力変換部用外部接続端子と第2の電力変換部用外部接続端子を接続し、第1のシールド用外部接続端子と第2のシールド用外部接続端子を接続し、
互いに隣接する2つの絶縁型電力変換器ユニット間の、第3の電力変換部用外部接続端子と第4の電力変換部用外部接続端子を接続し、第3のシールド用外部接続端子と第4のシールド用外部接続端子を接続するように構成することによって、複数段の絶縁型電力変換器ユニットを直列多重構成とし、
前記複数段のうち第1段の絶縁型電力変換器ユニットの第1の電力変換部用外部接続端子を、基準電位点を備えた第1の電源又は負荷の一端に接続し、前記複数段のうち最終段の絶縁型電力変換器ユニットの第2の電力変換部用外部接続端子を、前記第1の電源又は負荷の他端に接続し、
前記複数段の中央で互いに隣接する2つの絶縁型電力変換器ユニット間の、第1および第2の電力変換部用外部接続端子の共通接続点と、第1および第2のシールド用外部接続端子の共通接続点とを、前記第1の電源又は負荷の基準電位点に接続し、
前記第1段の絶縁型電力変換器ユニットの、第3の電力変換部用外部接続端子と、第3のシールド用外部接続端子とを、基準電位点を備えた第2の電源又は負荷の基準電位点としての一端に接続し、
前記最終段の絶縁型電力変換器ユニットの、第4の電力変換部用外部接続端子を、前記第2の電源又は負荷の他端に接続したことを特徴とする。
The power converter system according to claim 7 is
The insulated power converter unit according to any one of claims 1 to 6 is provided in a plurality of stages.
The first power conversion unit external connection terminal and the second power conversion unit external connection terminal are connected between two isolated power converter units adjacent to each other, and the first shield external connection terminal and the second are connected. Connect the external connection terminal for the shield of
The third power converter external connection terminal and the fourth power converter external connection terminal are connected between two isolated power converter units adjacent to each other, and the third shield external connection terminal and the fourth By configuring to connect the external connection terminal for shielding, the multi-stage isolated power converter unit has a series multiplex configuration.
Of the plurality of stages, the external connection terminal for the first power conversion unit of the first stage insulated power converter unit is connected to one end of the first power supply or load provided with a reference potential point, and the plurality of stages are connected. Of these, the external connection terminal for the second power converter of the isolated power converter unit in the final stage is connected to the other end of the first power supply or load.
A common connection point for the first and second external connection terminals for the power converter and an external connection terminal for the first and second shields between the two isolated power converter units adjacent to each other in the center of the plurality of stages. Connect the common connection point of the above to the reference potential point of the first power supply or load.
The third power conversion unit external connection terminal and the third shield external connection terminal of the first-stage insulated power converter unit are designated as a second power source or load having a reference potential point. Connect to one end as a potential point,
It is characterized in that the external connection terminal for the fourth power conversion unit of the isolated power converter unit in the final stage is connected to the other end of the second power supply or load.

請求項8に記載の電力変換器システムは、
請求項1から6のいずれかに記載の絶縁型電力変換器ユニットを複数段設け、
互いに隣接する2つの絶縁型電力変換器ユニット間の、第1の電力変換部用外部接続端子と第2の電力変換部用外部接続端子を接続し、第1のシールド用外部接続端子と第2のシールド用外部接続端子を接続し、
互いに隣接する2つの絶縁型電力変換器ユニット間の、第3の電力変換部用外部接続端子と第4の電力変換部用外部接続端子を接続し、第3のシールド用外部接続端子と第4のシールド用外部接続端子を接続するように構成することによって、複数段の絶縁型電力変換器ユニットを直列多重構成とし、
前記複数段のうち第1段の絶縁型電力変換器ユニットの、第1の電力変換部用外部接続端子と第1のシールド用外部接続端子とを、第1の電源又は負荷の一端に接続し、前記複数段のうち最終段の絶縁型電力変換器ユニットの第2の電力変換部用外部接続端子を、前記第1の電源又は負荷の他端に接続し、
前記複数段のうち第1段の絶縁型電力変換器ユニットの、第3の電力変換部用外部接続端子を、第2の電源又は負荷の一端に接続し、前記複数段のうち最終段の絶縁型電力変換器ユニットの第4の電力変換部用外部接続端子を、前記第2の電源又は負荷の他端に接続し、
前記複数段の中央で互いに隣接する2つの絶縁型電力変換器ユニット間の、第3および第4の電力変換部用外部接続端子の共通接続点と、第3および第4のシールド用外部接続端子の共通接続点とを、共通に接続したことを特徴とする。
The power converter system according to claim 8 is
The insulated power converter unit according to any one of claims 1 to 6 is provided in a plurality of stages.
The first power conversion unit external connection terminal and the second power conversion unit external connection terminal are connected between two isolated power converter units adjacent to each other, and the first shield external connection terminal and the second are connected. Connect the external connection terminal for the shield of
The third power converter external connection terminal and the fourth power converter external connection terminal are connected between two isolated power converter units adjacent to each other, and the third shield external connection terminal and the fourth By configuring to connect the external connection terminal for shielding, the multi-stage isolated power converter unit has a series multiplex configuration.
Of the plurality of stages, the first stage external connection terminal for the power conversion unit and the first shield external connection terminal of the first stage isolated power converter unit are connected to one end of the first power supply or load. , The external connection terminal for the second power conversion unit of the isolated power converter unit in the final stage of the plurality of stages is connected to the other end of the first power supply or load.
The external connection terminal for the third power conversion unit of the first-stage isolated power converter unit among the plurality of stages is connected to one end of the second power supply or load, and the final stage of the plurality of stages is insulated. The external connection terminal for the fourth power converter of the type power converter unit is connected to the other end of the second power supply or load.
The common connection point of the external connection terminals for the third and fourth power converters and the external connection terminals for the third and fourth shields between the two isolated power converter units adjacent to each other in the center of the plurality of stages. It is characterized in that it is connected in common with the common connection point of.

請求項9に記載の電力変換器システムは、
請求項1から6のいずれかに記載の絶縁型電力変換器ユニットを複数段設け、
前記複数段の絶縁型電力変換器ユニットの、第1の電力変換部用外部接続端子各々を、基準電位点を備えた第1の電源又は負荷の一端に接続し、第2の電力変換部用外部接続端子各々を、前記第1の電源又は負荷の他端に接続し、
前記複数段の絶縁型電力変換器ユニットの、第3の電力変換部用外部接続端子各々と、第3のシールド用外部接続端子各々を、基準電位点を備えた第2の電源又は負荷の基準電位点としての一端に接続し、第4の電力変換部用外部接続端子各々を、前記第2の電源又は負荷の他端に接続することによって、前記複数段の絶縁型電力変換器ユニットを並列多重構成とし、
前記複数段の絶縁型電力変換器ユニットの、第1のシールド用外部接続端子各々を共通に接続し、
前記複数段の中央で互いに隣接する2つの絶縁型電力変換器ユニット間の、第1のシールド用外部接続端子の共通接続点を前記第1の電源又は負荷の基準電位点に接続したことを特徴とする。
The power converter system according to claim 9 is
The insulated power converter unit according to any one of claims 1 to 6 is provided in a plurality of stages.
Each of the external connection terminals for the first power conversion unit of the multi-stage insulated power converter unit is connected to one end of a first power supply or load provided with a reference potential point for the second power conversion unit. Connect each of the external connection terminals to the other end of the first power supply or load.
Each of the external connection terminals for the third power conversion unit and each of the external connection terminals for the third shield of the multi-stage insulated power converter unit is used as a reference for a second power supply or load having a reference potential point. By connecting to one end as a potential point and connecting each of the external connection terminals for the fourth power converter to the other end of the second power supply or load, the plurality of stages of the isolated power converter unit are connected in parallel. Multiple configurations
Each of the first shield external connection terminals of the multi-stage insulated power converter unit is connected in common.
The feature is that the common connection point of the first external connection terminal for shielding between the two insulated power converter units adjacent to each other at the center of the plurality of stages is connected to the reference potential point of the first power supply or load. And.

請求項10に記載の電力変換器システムは、
請求項1から6のいずれかに記載の絶縁型電力変換器ユニットを複数段設け、
前記複数段の絶縁型電力変換器ユニットの、第1の電力変換部用外部接続端子各々を、第1の電源又は負荷の一端に接続し、第2の電力変換部用外部接続端子各々を、前記第1の電源又は負荷の他端に接続し、第1のシールド用外部接続端子各々を共通に接続し、
前記複数段の絶縁型電力変換器ユニットの、第3の電力変換部用外部接続端子各々と、第3のシールド用外部接続端子各々を、第2の電源又は負荷の一端に接続し、第4の電力変換部用外部接続端子各々を、前記第2の電源又は負荷の他端に接続することによって、
前記複数段の絶縁型電力変換器ユニットを並列多重構成としたことを特徴とする。
The power converter system according to claim 10 is
The insulated power converter unit according to any one of claims 1 to 6 is provided in a plurality of stages.
Each of the external connection terminals for the first power conversion unit of the multi-stage isolated power converter unit is connected to one end of the first power supply or load, and each of the external connection terminals for the second power conversion unit is connected. Connect to the other end of the first power supply or load, and connect each of the first shield external connection terminals in common.
Each of the third external connection terminals for the power conversion unit and each of the third external connection terminals for the shield of the multi-stage insulated power converter unit are connected to one end of the second power supply or load, and the fourth By connecting each of the external connection terminals for the power converter of the above to the other end of the second power supply or load.
It is characterized in that the plurality of stages of isolated power converter units have a parallel multiplex configuration.

請求項11に記載の電力変換器システムは、
請求項1から6のいずれかに記載の絶縁型電力変換器ユニットを複数段設け、
互いに隣接する2つの絶縁型電力変換器ユニット間の、第1の電力変換部用外部接続端子と第2の電力変換部用外部接続端子を接続し、第1のシールド用外部接続端子と第2のシールド用外部接続端子を接続するように構成することによって複数段の絶縁型電力変換器ユニットを直列多重構成とし、
前記複数段のうち第1段の絶縁型電力変換器ユニットの第1の電力変換部用外部接続端子を、基準電位点を備えた第1の電源又は負荷の一端に接続し、前記複数段のうち最終段の絶縁型電力変換器ユニットの第2の電力変換部用外部接続端子を、前記第1の電源又は負荷の他端に接続し、
前記複数段の中央で互いに隣接する2つの絶縁型電力変換器ユニット間の、第1および第2の電力変換部用外部接続端子の共通接続点と、第1および第2のシールド用外部接続端子の共通接続点とを、前記第1の電源又は負荷の基準電位点に接続し、
前記複数段のうち、互いに隣接する2つの絶縁型電力変換器ユニットの、第3および第4のシールド用外部接続端子を共通接続し、第3および第4の電力変換部用外部接続端子を共通接続し、前記2つの共通接続点を共通に接続し、
前記互いに隣接する2つのうち一方の絶縁型電力変換器ユニットの、前記共通接続されていない第3又は第4の電力変換部用外部接続端子を、基準電位点を有しない第2の電源又は負荷の一端に接続し、
前記互いに隣接する2つのうち他方の絶縁型電力変換器ユニットの、前記共通接続されていない第3又は第4の電力変換部用外部接続端子を、前記第2の電源又は負荷の他端に接続し、
前記複数段のうち、互いに隣接する前記以外の2つの絶縁型電力変換器ユニットの、第3および第4のシールド用外部接続端子を共通接続し、第3および第4の電力変換部用外部接続端子を共通接続し、前記2つの共通接続点を共通に接続し、
前記互いに隣接する2つのうち一方の絶縁型電力変換器ユニットの、前記共通接続されていない第3又は第4の電力変換部用外部接続端子を、接地された基準電位点を有した第3の電源又は負荷の一端に接続し、
前記互いに隣接する2つのうち他方の絶縁型電力変換器ユニットの、前記共通接続されていない第3又は第4の電力変換部用外部接続端子を、前記第3の電源又は負荷の他端に接続し、前記2つの共通接続点を前記第3の電源又は負荷の基準電位点に接続し、
前記複数段のうち、互いに隣接する前記以外の2つの絶縁型電力変換器ユニットの、第3および第4のシールド用外部接続端子を共通接続し、第3および第4の電力変換部用外部接続端子を共通接続し、前記2つの共通接続点を共通に接続し、
前記互いに隣接する2つのうち一方の絶縁型電力変換器ユニットの、前記共通接続されていない第3又は第4の電力変換部用外部接続端子を、基準電位点を有した第4の電源又は負荷の一端に接続し、
前記互いに隣接する2つのうち他方の絶縁型電力変換器ユニットの、前記共通接続されていない第3又は第4の電力変換部用外部接続端子を、前記第4の電源又は負荷の他端に接続し、前記2つの共通接続点を前記第4の電源又は負荷の基準電位点に接続したことを特徴とする。
The power converter system according to claim 11.
The insulated power converter unit according to any one of claims 1 to 6 is provided in a plurality of stages.
The first power conversion unit external connection terminal and the second power conversion unit external connection terminal are connected between two isolated power converter units adjacent to each other, and the first shield external connection terminal and the second are connected. By configuring to connect the external connection terminal for shielding, a multi-stage isolated power converter unit is configured in series and multiplex.
Of the plurality of stages, the external connection terminal for the first power conversion unit of the first stage insulated power converter unit is connected to one end of the first power supply or load provided with a reference potential point, and the plurality of stages are connected. Of these, the external connection terminal for the second power converter of the isolated power converter unit in the final stage is connected to the other end of the first power supply or load.
A common connection point for the first and second external connection terminals for the power converter and an external connection terminal for the first and second shields between the two isolated power converter units adjacent to each other in the center of the plurality of stages. Connect the common connection point of the above to the reference potential point of the first power supply or load.
Of the plurality of stages, the external connection terminals for the third and fourth shields of the two isolated power converter units adjacent to each other are commonly connected, and the external connection terminals for the third and fourth power converters are common. Connect, connect the two common connection points in common,
A second power source or load that does not have a reference potential point at the external connection terminal for the third or fourth power conversion unit that is not commonly connected to one of the two adjacent isolated power converter units. Connect to one end of
The external connection terminal for the third or fourth power conversion unit, which is not commonly connected, of the other insulated power converter unit of the two adjacent to each other is connected to the other end of the second power supply or load. And
Of the plurality of stages, the third and fourth shield external connection terminals of the two other isolated power converter units adjacent to each other are commonly connected, and the third and fourth power converter external connections are made. Connect the terminals in common, and connect the two common connection points in common.
A third external connection terminal for a third or fourth power conversion unit that is not commonly connected to one of the two adjacent isolated power converter units has a grounded reference potential point. Connect to one end of the power supply or load
The external connection terminal for the third or fourth power conversion unit, which is not commonly connected, of the other insulated power converter unit of the two adjacent to each other is connected to the other end of the third power supply or load. Then, the two common connection points are connected to the reference potential point of the third power source or load.
Of the plurality of stages, the third and fourth shield external connection terminals of the two other isolated power converter units adjacent to each other are commonly connected, and the third and fourth power converter external connections are made. Connect the terminals in common, and connect the two common connection points in common.
A fourth power source or load having a reference potential point at the external connection terminal for the third or fourth power conversion unit, which is not commonly connected, of one of the two isolated power converter units adjacent to each other. Connect to one end of
The external connection terminal for the third or fourth power conversion unit, which is not commonly connected, of the other insulated power converter unit of the two adjacent to each other is connected to the other end of the fourth power supply or load. The two common connection points are connected to the reference potential point of the fourth power source or load.

請求項12に記載の電力変換器システムは、
請求項1から6のいずれかに記載の絶縁型電力変換器ユニットを複数段設け、
互いに隣接する2つの絶縁型電力変換器ユニット間の、第1の電力変換部用外部接続端子と第2の電力変換部用外部接続端子を接続し、第1のシールド用外部接続端子と第2のシールド用外部接続端子を接続するように構成して第1の直列多重ユニット部を構成し、
請求項1から6のいずれかに記載の絶縁型電力変換器ユニットを複数段設け、それら複数段のユニットを前記第1の直列多重ユニット部と同一に構成して第2の直列多重ユニット部を構成し、
請求項1から6のいずれかに記載の絶縁型電力変換器ユニットを複数段設け、それら複数段のユニットを前記第1の直列多重ユニット部と同一に構成して第3の直列多重ユニット部を構成し、
前記第1の直列多重ユニット部の最終段の絶縁型電力変換器ユニットの第2の電力変換部用外部接続端子を、第1の電源を構成する三相交流電源の第1相電源に接続し、
前記第2の直列多重ユニット部の最終段の絶縁型電力変換器ユニットの第2の電力変換部用外部接続端子を、前記三相交流電源の第2相電源に接続し、
前記第3の直列多重ユニット部の最終段の絶縁型電力変換器ユニットの第2の電力変換部用外部接続端子を、前記三相交流電源の第3相電源に接続し、
前記第1、第2、第3の直列多重ユニット部の各々の第1段の絶縁型電力変換器ユニットの第1の電力変換部用外部接続端子どうしを共通に接続し、前記第1、第2、第3の直列多重ユニット部の各々の第1段の絶縁型電力変換器ユニットの第1のシールド用外部接続端子どうしを共通に接続し、それら2つの共通接続点を共通に接続し、
前記第1の直列多重ユニット部における、前記複数段のうち、互いに隣接する2つの段の絶縁型電力変換器ユニット間の第3の電力変換部用外部接続端子と第4の電力変換部用外部接続端子を接続し、第3のシールド用外部接続端子と第4のシールド用外部接続端子を接続し、それら接続点を共通に接続して第1共通接続点とし、
前記第2の直列多重ユニット部における、前記複数段のうち、互いに隣接する2つの段の絶縁型電力変換器ユニット間の第3の電力変換部用外部接続端子と第4の電力変換部用外部接続端子を接続し、第3のシールド用外部接続端子と第4のシールド用外部接続端子を接続し、それら接続点を共通に接続して第2共通接続点とし、
前記第3の直列多重ユニット部における、前記複数段のうち、互いに隣接する2つの段の絶縁型電力変換器ユニット間の第3の電力変換部用外部接続端子と第4の電力変換部用外部接続端子を接続し、第3のシールド用外部接続端子と第4のシールド用外部接続端子を接続し、それら接続点を共通に接続して第3共通接続点とし、
前記第1の直列多重ユニット部におけるすべての第1共通接続点と、前記第2の直列多重ユニット部におけるすべての第2共通接続点と、前記第3の直列多重ユニット部におけるすべての第3共通接続点とを共通に接続し、
前記第3の直列多重ユニット部における、前記複数段の中央で互いに隣接する2つの絶縁型電力変換器ユニット間の第3共通接続点を、基準電位を備えた第2の電源又は負荷の基準電位点に接続し、
前記第1の直列多重ユニット部における複数段のうち、隣接する絶縁型電力変換器ユニットと共通接続されていない各第3の電力変換部用外部接続端子と、
前記第2の直列多重ユニット部における複数段のうち、隣接する絶縁型電力変換器ユニットと共通接続されていない各第3の電力変換部用外部接続端子と、
前記第3の直列多重ユニット部における複数段のうち、隣接する絶縁型電力変換器ユニットと共通接続されていない各第3の電力変換部用外部接続端子とを、前記第2の電源又は負荷の一端に接続し
前記第1の直列多重ユニット部における複数段のうち、隣接する絶縁型電力変換器ユニットと共通接続されていない各第4の電力変換部用外部接続端子と、
前記第2の直列多重ユニット部における複数段のうち、隣接する絶縁型電力変換器ユニットと共通接続されていない各第4の電力変換部用外部接続端子と、
前記第3の直列多重ユニット部における複数段のうち、隣接する絶縁型電力変換器ユニットと共通接続されていない各第4の電力変換部用外部接続端子とを、前記第2の電源又は負荷の他端に接続したことを特徴とする。
The power converter system according to claim 12
The insulated power converter unit according to any one of claims 1 to 6 is provided in a plurality of stages.
The first power conversion unit external connection terminal and the second power conversion unit external connection terminal are connected between two isolated power converter units adjacent to each other, and the first shield external connection terminal and the second are connected. The first series multiplex unit unit is configured to connect the external connection terminal for shielding.
The isolated power converter unit according to any one of claims 1 to 6 is provided in a plurality of stages, and the plurality of stages of the units are configured in the same manner as the first series multiplexing unit portion to form a second series multiplexing unit portion. Configure and
The insulated power converter unit according to any one of claims 1 to 6 is provided in a plurality of stages, and the plurality of stages of the units are configured in the same manner as the first series multiplexing unit portion to form a third series multiplexing unit portion. Configure and
The external connection terminal for the second power converter of the isolated power converter unit in the final stage of the first series multiplex unit is connected to the first phase power supply of the three-phase AC power supply constituting the first power supply. ,
The external connection terminal for the second power converter of the isolated power converter unit in the final stage of the second series multiplex unit is connected to the second phase power supply of the three-phase AC power supply.
The external connection terminal for the second power conversion unit of the isolated power converter unit in the final stage of the third series multiplex unit unit is connected to the third phase power supply of the three-phase AC power supply.
The external connection terminals for the first power conversion unit of the first-stage insulated power converter unit of each of the first, second, and third series multiplexing unit units are connected in common, and the first and first stages are connected. The first shield external connection terminals of the first-stage insulated power converter units of the second and third series multiplex units are connected in common, and these two common connection points are connected in common.
In the first series multiplexing unit unit, the external connection terminal for the third power conversion unit and the external for the fourth power conversion unit between the isolated power converter units of the two stages adjacent to each other among the plurality of stages. Connect the connection terminals, connect the third shield external connection terminal and the fourth shield external connection terminal, and connect these connection points in common to make the first common connection point.
In the second series multiplexing unit unit, the external connection terminal for the third power conversion unit and the external for the fourth power conversion unit between the isolated power converter units of the two stages adjacent to each other among the plurality of stages. Connect the connection terminals, connect the third shield external connection terminal and the fourth shield external connection terminal, and connect these connection points in common to make the second common connection point.
Out of the plurality of stages in the third series multiplexing unit unit, an external connection terminal for a third power conversion unit and an external connection for a fourth power conversion unit between two stages of isolated power converter units adjacent to each other. Connect the connection terminals, connect the third shield external connection terminal and the fourth shield external connection terminal, and connect these connection points in common to make it the third common connection point.
All first common connection points in the first series multiplex unit section, all second common connection points in the second series multiplex unit section, and all third common points in the third series multiplex unit section. Connect to the connection point in common,
A reference potential of a second power source or load having a reference potential at a third common connection point between two isolated power converter units adjacent to each other at the center of the plurality of stages in the third series multiplexing unit unit. Connect to the point
Of the plurality of stages in the first series multiplexing unit unit, the external connection terminals for each third power converter unit that are not commonly connected to the adjacent isolated power converter unit,
Of the plurality of stages in the second series multiplexing unit unit, the external connection terminals for each third power converter unit that are not commonly connected to the adjacent isolated power converter unit,
Of the plurality of stages in the third series multiplexing unit unit, the external connection terminals for each third power converter unit that are not commonly connected to the adjacent isolated power converter unit are connected to the second power supply or load. Of the plurality of stages in the first series multiplexing unit unit connected to one end, the external connection terminals for each fourth power converter unit that are not commonly connected to the adjacent isolated power converter unit,
Of the plurality of stages in the second series multiplexing unit unit, the external connection terminals for each fourth power converter unit that are not commonly connected to the adjacent isolated power converter unit,
Of the plurality of stages in the third series multiplexing unit unit, the external connection terminals for each fourth power converter unit that are not commonly connected to the adjacent isolated power converter unit are connected to the second power supply or load. It is characterized by being connected to the other end.

(1)請求項1〜12に記載の発明によれば、第1、第2のシールドによって、絶縁変圧器の2巻線を個別にシールドすることができ、2巻線と他の構成要素に電気的に影響を与えることがない。また、第1〜第4のシールド用外部接続端子を設けているので、第1、第2のシールドを外部の電源又は負荷の基準電位点と接続することができる。
(2)請求項2に記載の発明によれば、2巻線と第1、第2のシールドの間の絶縁劣化は、電圧検出用抵抗によって確実に検出され、制御部によって判断される。このため、外部回路に頼ることなく絶縁劣化を判断して、例えば警報を発し、故障の場合は電源を遮断する等の保護を行うことができる。
(1) According to the inventions of claims 1 to 12, the first and second shields allow the two windings of the insulated transformer to be individually shielded into the two windings and other components. It has no electrical effect. Further, since the first to fourth shield external connection terminals are provided, the first and second shields can be connected to the reference potential point of the external power supply or load.
(2) According to the invention of claim 2, the deterioration of the insulation between the two windings and the first and second shields is reliably detected by the voltage detection resistor and determined by the control unit. Therefore, it is possible to determine insulation deterioration without relying on an external circuit, issue an alarm, for example, and perform protection such as shutting off the power supply in the event of a failure.

また、第1、第2のシールドに各々直列接続された分圧抵抗および電圧検出用抵抗によって、絶縁劣化時や絶縁破壊時の影響を抑制することができる。 Further, the voltage dividing resistor and the voltage detecting resistor connected in series to the first and second shields can suppress the influence at the time of insulation deterioration or dielectric breakdown.

また、シールドと、分圧抵抗および電圧検出用抵抗を、一方の巻線側と他方の巻線側の2系統に設けているので、第1、第2のシールド用外部接続端子と第3、第4のシールド用外部接続端子に、各々異なる電源又は負荷の基準電位点を接続することができる。
(3)請求項3に記載の発明によれば、前記(1)の効果を備えるか、又は前記(1)、(2)の効果を備えたDC/DC変換器ユニットを構成することができる。
(4)請求項4に記載の発明によれば、前記(1)の効果を備えるか、又は前記(1)、(2)の効果を備えたAC/DC変換器ユニットを構成することができる。
(5)請求項5に記載の発明によれば、前記(1)の効果を備えるか、又は前記(1)、(2)の効果を備えたDC/AC変換器ユニットを構成することができる。
(6)請求項6に記載の発明によれば、前記(1)の効果を備えるか、又は前記(1)、(2)の効果を備えたAC/AC変換器ユニットを構成することができる。
(7)請求項7に記載の発明によれば、絶縁型電力変換器ユニットを複数段に直列多重化し、基準電位点を備えた電源又は負荷に接続した電力変換器システムにおいて、前記(1)の効果か、又は前記(1)、(2)の効果が得られる。
(8)請求項8に記載の発明によれば、絶縁型電力変換器ユニットを複数段に直列多重化し、基準電位点を備えていない電源又は負荷に接続した電力変換器システムにおいて、前記(1)の効果か、又は前記(1)、(2)の効果が得られる。
(9)請求項9に記載の発明によれば、絶縁型電力変換器ユニットを複数段に並列多重化し、基準電位点を備えた電源又は負荷に接続した電力変換器システムにおいて、前記(1)の効果か、又は前記(1)、(2)の効果が得られる。
(10)請求項10に記載の発明によれば、絶縁型電力変換器ユニットを複数段に並列多重化し、基準電位点を備えていない電源又は負荷に接続した電力変換器システムにおいて、前記(1)の効果か、又は前記(1)、(2)の効果が得られる。
(11)請求項11に記載の発明によれば、絶縁型電力変換器ユニットを複数段に直列多重化した電力変換器システムにおいて、複数の独立した電源又は負荷であって、基準電位点を有する、有しない等の形態の異なる電源又は負荷に接続することが可能であり、前記(1)の効果か、又は前記(1)、(2)の効果を得ることができる。
(12)請求項12に記載の発明によれば、絶縁型電力変換器ユニットを、三相交流電源に対して直並列多重化することで、高電圧を任意の電圧に降圧して大容量化を実施することができ、また、前記(1)の効果か、又は前記(1)、(2)の効果を得ることができる。
Further, since the shield, the voltage dividing resistor, and the voltage detecting resistor are provided in two systems, one winding side and the other winding side, the first and second external connection terminals for shielding and the third, Reference potential points of different power supplies or loads can be connected to the fourth external connection terminal for shielding.
(3) According to the invention of claim 3, the DC / DC converter unit having the effect of the above (1) or the effect of the above (1) and (2) can be configured. ..
(4) According to the invention of claim 4, the AC / DC converter unit having the effect of the above (1) or the effect of the above (1) and (2) can be configured. ..
(5) According to the invention of claim 5, the DC / AC converter unit having the effect of the above (1) or the effect of the above (1) and (2) can be configured. ..
(6) According to the invention of claim 6, the AC / AC converter unit having the effect of the above (1) or the effect of the above (1) and (2) can be configured. ..
(7) According to the invention of claim 7, in the power converter system in which the isolated power converter unit is serially multiplexed in a plurality of stages and connected to a power source or a load provided with a reference potential point, the above (1). Or the effects of (1) and (2) above can be obtained.
(8) According to the invention of claim 8, in the power converter system in which the isolated power converter unit is serially multiplexed in a plurality of stages and connected to a power source or a load not provided with a reference potential point, the above (1). ) Or the effects of (1) and (2) above can be obtained.
(9) According to the invention of claim 9, in the power converter system in which the isolated power converter unit is multiplexed in parallel in a plurality of stages and connected to a power source or a load provided with a reference potential point, the above (1). Or the effects of (1) and (2) above can be obtained.
(10) According to the invention of claim 10, in the power converter system in which the isolated power converter unit is multiplexed in parallel in a plurality of stages and connected to a power source or a load not provided with a reference potential point, the above (1). ) Or the effects of (1) and (2) above can be obtained.
(11) According to the invention of claim 11, in a power converter system in which isolated power converter units are serially multiplexed in a plurality of stages, a plurality of independent power supplies or loads having a reference potential point. It is possible to connect to a power source or load having a different form such as having no effect, and the effect of the above (1) or the effect of the above (1) and (2) can be obtained.
(12) According to the invention of claim 12, the isolated power converter unit is serially and parallel-multiplexed with respect to the three-phase AC power supply to step down the high voltage to an arbitrary voltage and increase the capacity. The above-mentioned effect (1) or the above-mentioned effects (1) and (2) can be obtained.

本発明の実施例1による絶縁変圧器絶縁監視保護システムの基本構成図。The basic block diagram of the insulation transformer insulation monitoring protection system according to Example 1 of this invention. 本発明の実施例2による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 2 of this invention. 本発明の実施例3による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 3 of this invention. 本発明の実施例4による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 4 of this invention. 本発明の実施例5による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 5 of this invention. 本発明の実施例6による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 6 of this invention. 本発明の実施例7による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 7 of this invention. 本発明の実施例8による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 8 of this invention. 本発明の実施例9による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 9 of this invention. 本発明の実施例10による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 10 of this invention. 本発明の実施例11による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 11 of this invention. 本発明の実施例12による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 12 of this invention. 本発明の実施例13による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 13 of this invention. 本発明の実施例14による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 14 of this invention. 本発明の実施例15による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 15 of this invention. 本発明の実施例16による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 16 of this invention. 本発明の実施例17による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 17 of this invention. 本発明の実施例18による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 18 of this invention. 本発明の実施例19による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 19 of this invention. 本発明の実施例20による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 20 of this invention. 本発明の実施例21による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 21 of this invention. 本発明の実施例22による絶縁変圧器絶縁監視保護システムの構成図。The block diagram of the insulation transformer insulation monitoring protection system according to Example 22 of this invention.

以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following examples of embodiments.

図1に、実施例1による絶縁DC/DCユニットの絶縁変圧器絶縁監視保護システムの基本構成例を示す。図1において、31は、図示省略の筐体内に設けられた絶縁変圧器の鉄心33を介して互いに絶縁して配設された2巻線のうちの、一方の巻線(例えば一次側巻線)を構成するDC/AC巻線であり、32は、他方の巻線(例えば二次側巻線)を構成するAC/DC巻線である。 FIG. 1 shows an example of a basic configuration of an insulation transformer insulation monitoring protection system for an insulation DC / DC unit according to the first embodiment. In FIG. 1, reference numeral 31 denotes a winding (for example, a primary winding) of two windings arranged so as to be insulated from each other via an iron core 33 of an insulating transformer provided in a housing (not shown). ) Is a DC / AC winding, and 32 is an AC / DC winding that constitutes the other winding (for example, a secondary winding).

DC/AC巻線31および鉄心33から所定距離隔てて、DC/AC巻線31と鉄心33の間に対向して、DC/AC巻線31と他の構成部品との混触を防止するための導電性のDC/AC巻線シールド(第1のシールド)41が配設されている。 A predetermined distance from the DC / AC winding 31 and the iron core 33, facing between the DC / AC winding 31 and the iron core 33 to prevent contact between the DC / AC winding 31 and other components. A conductive DC / AC winding shield (first shield) 41 is provided.

AC/DC巻線32および鉄心33から所定距離隔てて、AC/DC巻線32と鉄心33の間に対向して、AC/DC巻線32と他の構成部品との混触を防止するための導電性のAC/DC巻線シールド(第2のシールド)42が配設されている。 To prevent the AC / DC winding 32 and the iron core 33 from coming into contact with each other so as to face each other between the AC / DC winding 32 and the iron core 33 at a predetermined distance from the AC / DC winding 32 and the iron core 33. A conductive AC / DC winding shield (second shield) 42 is provided.

51は、第1の電力変換部としての、直流電力を交流電力に変換するDC/AC変換部であり、直流側は図示省略の筐体壁に設けられた第1の電力変換部用外部接続端子M1−1および第2の電力変換部用外部接続端子M1−2に接続され、交流側はDC/AC巻線31に接続されている。 Reference numeral 51 denotes a DC / AC conversion unit that converts DC power into AC power as a first power conversion unit, and the DC side is an external connection for the first power conversion unit provided on a housing wall (not shown). It is connected to the terminal M1-1 and the external connection terminal M1-2 for the second power conversion unit, and the AC side is connected to the DC / AC winding 31.

52は、第2の電力変換部としての、交流電力を直流電力に変換するAC/DC変換部であり、交流側はAC/DC巻線32に接続され、直流側は図示省略の筐体壁に設けられた第3の電力変換部用外部接続端子M2−1および第4の電力変換部用外部接続端子M2−2に接続されている。 Reference numeral 52 denotes an AC / DC conversion unit that converts AC power into DC power as a second power conversion unit. The AC side is connected to the AC / DC winding 32, and the DC side is a housing wall (not shown). It is connected to the third power conversion unit external connection terminal M2-1 and the fourth power conversion unit external connection terminal M2-2 provided in the above.

DC/AC巻線シールド41の一端は、他の回路と接続することが可能なように、筐体壁に設けられた第1のシールド用外部接続端子S1−1に接続され、DC/AC巻線シールド41の他端は、他の回路と接続することが可能なように、筐体壁に設けられた第2のシールド用外部接続端子S1−2に接続され、AC/DC巻線シールド42の一端は、他の回路と接続することが可能なように、筐体壁に設けられた第3のシールド用外部接続端子S2−1に接続され、AC/DC巻線シールド42の他端は、他の回路と接続することが可能なように、筐体壁に設けられた第4のシールド用外部接続端子S2−2に接続されている。 One end of the DC / AC winding shield 41 is connected to the first external connection terminal S1-1 for shielding provided on the housing wall so that it can be connected to another circuit, and the DC / AC winding shield 41 is wound. The other end of the wire shield 41 is connected to a second external connection terminal S1-2 for shielding provided on the housing wall so that it can be connected to another circuit, and the AC / DC winding shield 42 One end of the AC / DC winding shield 42 is connected to a third external connection terminal S2-1 for shielding provided on the housing wall so that it can be connected to another circuit. , It is connected to the fourth shield external connection terminal S2-2 provided on the housing wall so that it can be connected to other circuits.

61は、DC/AC変換部51の制御部であり、62はAC/DC変換部52の制御部である。 Reference numeral 61 denotes a control unit of the DC / AC conversion unit 51, and 62 is a control unit of the AC / DC conversion unit 52.

前記図1の各構成要素によってDC/DCユニット11を構成している。 The DC / DC unit 11 is composed of the components of FIG.

DC/DCユニット11のDC/AC巻線31側において、第1、第2の電力変換部用外部接続端子M1−1,M1−2には直流電源、或いは負荷の正極、負極が外部から接続される。絶縁変圧器のDC/AC巻線31は、他の巻線や鉄心、筐体、他の部品等との電気的な混触を防止することを目的としてDC/AC巻線シールド41(混触防止のための導体)を施し、第1、第2のシールド用外部接続端子S1−1,S1−2にて外部と接続可能な構成としている。 On the DC / AC winding 31 side of the DC / DC unit 11, the DC power supply or the positive and negative electrodes of the load are connected from the outside to the external connection terminals M1-1 and M1-2 for the first and second power converters. Will be done. The DC / AC winding 31 of the insulation transformer is a DC / AC winding shield 41 (for prevention of contact) for the purpose of preventing electrical contact with other windings, an iron core, a housing, other parts, and the like. (Conductor for this purpose) is provided, and the configuration is such that it can be connected to the outside at the first and second external connection terminals S1-1 and S1-2 for shielding.

同様にDC/DCユニット11のAC/DC巻線32側において、第3、第4の電力変換部用外部接続端子M2−1,M2−2には直流電源、或いは負荷の正極、負極が外部から接続される。絶縁変圧器のAC/DC巻線32は、他の巻線や鉄心、筐体等との電位的な混触を防止することを目的としてAC/DC巻線シールド42を施し、第3、第4のシールド用外部接続端子S2−1,S2−2にて外部と接続可能な構成としている。 Similarly, on the AC / DC winding 32 side of the DC / DC unit 11, the DC power supply or the positive and negative electrodes of the load are external to the external connection terminals M2-1 and M2-2 for the third and fourth power converters. Connected from. The AC / DC winding 32 of the insulation transformer is provided with an AC / DC winding shield 42 for the purpose of preventing potential contact with other windings, an iron core, a housing, etc. It is configured so that it can be connected to the outside through the external connection terminals S2-1 and S2-2 for shielding.

前記外部接続端子M1−1,M1−2,M2−1,M2−2,S1−1,S1−2,S2−1,S2−2の電位は各々絶縁されている。 The potentials of the external connection terminals M1-1, M1-2, M2-1, M2-2, S1-1, S1-2, S2-1, and S2-2 are each insulated.

また、DC/AC変換部51は、一般的なIGBTなどのスイッチング素子を用いて直流を交流に変換するものであり、スイッチング素子を駆動するためのゲート出力信号や保護機構が備えられている。同様にAC/DC変換部52は、一般的なIGBTなどのスイッチング素子を用いて交流を直流に変換するものであり、スイッチング素子を駆動するためのゲート出力信号や保護機構が備えられている。 Further, the DC / AC conversion unit 51 converts direct current into alternating current using a switching element such as a general IGBT, and is provided with a gate output signal and a protection mechanism for driving the switching element. Similarly, the AC / DC conversion unit 52 converts alternating current into direct current using a switching element such as a general IGBT, and is provided with a gate output signal and a protection mechanism for driving the switching element.

一般的な絶縁変圧器において、一次側と二次側の混触を許容できない場合には、一次巻線と二次巻線の間に混触防止板を施し、混触防止板は安全のために保護接地されることが多い。 In a general insulated transformer, if contact between the primary side and the secondary side cannot be tolerated, a contact prevention plate is provided between the primary winding and the secondary winding, and the contact prevention plate is protected and grounded for safety. Often done.

しかし、多種多様な電源や負荷を絶縁して接続する電力変換器システムでは、AC/DC側のユニットの外部と、DC/AC側のユニットの外部の電源システムや接地システムは異なることが多く、保護や安全性、およびコモンモードノイズの影響を抑制するために図1のようなDC/DCユニット11は外部回路に応じて接地や基準電位の施し方等の構成を変更する必要がある。 However, in a power converter system that insulates and connects a wide variety of power supplies and loads, the power supply system and grounding system outside the AC / DC side unit and the external power supply system and grounding system of the DC / AC side unit are often different. In order to protect, safety, and suppress the influence of common mode noise, it is necessary to change the configuration of the DC / DC unit 11 as shown in FIG. 1 such as grounding and how to apply a reference potential according to an external circuit.

図1の構成において、DC/AC巻線31の電位はDC/AC巻線シールド41によって他の巻線やシールド、鉄心や筐体と絶縁しており、DC/AC巻線31とDC/AC巻線シールド41の絶縁が破壊されない限りDC/AC巻線31の電位は他の部品に移行しない。同様に、AC/DC巻線32の電位はAC/DC巻線シールド42によって他の巻線やシールド、鉄心や筐体と絶縁しており、AC/DC巻線32とAC/DC巻線シールド42の絶縁が破壊されない限りAC/DC巻線32の電位は他の部品に移行しない。 In the configuration of FIG. 1, the potential of the DC / AC winding 31 is insulated from other windings, shields, iron cores and housings by the DC / AC winding shield 41, and the DC / AC windings 31 and DC / AC The potential of the DC / AC winding 31 does not shift to other components unless the insulation of the winding shield 41 is destroyed. Similarly, the potential of the AC / DC winding 32 is insulated from other windings and shields, the iron core and the housing by the AC / DC winding shield 42, and the AC / DC winding 32 and the AC / DC winding shield The potential of the AC / DC winding 32 does not shift to other components unless the insulation of 42 is broken.

よって、DC/AC巻線シールド41の電位は、第1、第2のシールド用外部接続端子S1−1,S1−2によって、それに接続される電源や負荷の基準電位と共通にできる。同様にAC/DC巻線シールド42の電位は、第3、第4のシールド用外部接続端子S2−1,S2−2によって、それに接続される電源や負荷の基準電位と共通にできる。 Therefore, the potential of the DC / AC winding shield 41 can be shared with the reference potential of the power supply or load connected to the first and second shield external connection terminals S1-1 and S1-2. Similarly, the potential of the AC / DC winding shield 42 can be made common with the reference potential of the power supply or load connected to the third and fourth external connection terminals S2-1 and S2-2 for shielding.

図1の構成において、DC/AC巻線31とDC/AC巻線シールド41の絶縁が正常な場合には、その間の大きな絶縁インピーダンスによって、DC/AC巻線シールド41の電位変動は少ない。しかし、DC/AC巻線31とDC/AC巻線シールド41の絶縁が破壊された場合には、DC/AC巻線31とDC/AC巻線シールド41が混触するために、DC/AC巻線31の電位がDC/AC巻線シールド41に移行する。 In the configuration of FIG. 1, when the insulation between the DC / AC winding 31 and the DC / AC winding shield 41 is normal, the potential fluctuation of the DC / AC winding shield 41 is small due to the large insulation impedance between them. However, when the insulation between the DC / AC winding 31 and the DC / AC winding shield 41 is broken, the DC / AC winding 31 and the DC / AC winding shield 41 come into contact with each other, so that the DC / AC winding is wound. The potential of the wire 31 shifts to the DC / AC winding shield 41.

これにより、第1、第2のシールド用外部接続端子S1−1,S1−2は大きく電位変動が生じる。この電位変動に伴う対地電圧の変動や漏れ電流の増加をDC/DCユニット11の外部にて例えば漏電継電器等で監視することにより、DC/AC巻線31側の絶縁破壊を監視し保護できる。 As a result, the first and second shield external connection terminals S1-1 and S1-2 have large potential fluctuations. By monitoring the fluctuation of the voltage to ground and the increase of the leakage current due to the potential fluctuation with a leakage relay or the like outside the DC / DC unit 11, it is possible to monitor and protect the dielectric breakdown on the DC / AC winding 31 side.

また、DC/AC巻線シールド41は、AC/DC巻線シールド42や、AC/DC巻線32、鉄心33と絶縁されているために、この絶縁破壊の影響は、波及しない。同様にAC/DC巻線32とAC/DC巻線シールド42の絶縁が破壊された場合にもその影響は鉄心33やDC/AC巻線31、DC/AC巻線シールド41に波及しない。 Further, since the DC / AC winding shield 41 is insulated from the AC / DC winding shield 42, the AC / DC winding 32, and the iron core 33, the influence of this dielectric breakdown does not spread. Similarly, even if the insulation between the AC / DC winding 32 and the AC / DC winding shield 42 is broken, the effect does not spread to the iron core 33, the DC / AC winding 31, and the DC / AC winding shield 41.

以上のように、図1のDC/DCユニット11は、変圧器の各巻線を他の構成要素と確実に絶縁するために個別巻線シールドを有し、変圧器の一次側と二次側を独立した電源、負荷、接地システムとして接続でき、しかも絶縁破壊が生じた場合においては、絶縁破壊した回路外部への影響は他の巻線の巻線シールドが施されているため、従来のように一次巻線と二次巻線の間に唯一の混触防止板を設けた場合に比べ限定的である。 As described above, the DC / DC unit 11 of FIG. 1 has an individual winding shield to ensure that each winding of the transformer is insulated from other components, and the primary side and the secondary side of the transformer are separated from each other. It can be connected as an independent power supply, load, and grounding system, and in the event of insulation breakage, the effect on the outside of the circuit where insulation breakage occurs is due to the winding shield of other windings, as in the past. This is more limited than the case where only a contact prevention plate is provided between the primary winding and the secondary winding.

本実施例では、次のような効果が得られる。 In this embodiment, the following effects can be obtained.

電力系統との接続や高圧から低圧に降圧する変圧器は人身事故火災、事故波及範囲拡大の抑制を目的として、変圧器内部に一次側と二次側の混触を防止するための単一の混触防止板を施している。しかし、電源や負荷が直接接地システムの場合には絶縁破壊によって混触防止板を含めた故障回路に瞬時過大電流が流れる。このため、混触防止板を含めた故障回路は過大電流に耐えるための導体容積が必要である。 A transformer that connects to the power system and steps down from high voltage to low voltage is intended to prevent accidents resulting in injury or death and the expansion of the accident spread range, and a single touch prevention to prevent contact between the primary side and the secondary side inside the transformer. It has a board. However, when the power supply or load is a direct grounding system, an instantaneous excessive current flows through the faulty circuit including the contact prevention plate due to dielectric breakdown. For this reason, the fault circuit including the contact prevention plate needs a conductor volume to withstand an excessive current.

また、電源や負荷が非接地システムの場合には絶縁破壊によって混触防止板を含めた故障回路の電位が故障点の電位になるため、健全回路の電位が上昇する。このため、混触防止板を含めた故障回路は故障時の電圧に耐えるための絶縁が必要である。さらに混触防止板が単一で接地されている場合には、変圧器1次側と二次側が混触防止板や接地線を介して接続される。したがって、インバータなどのノイズが変圧器の浮遊容量などによって一次側と二次側の間を結合する。 Further, when the power supply or the load is a non-grounded system, the potential of the faulty circuit including the contact prevention plate becomes the potential of the faulty point due to dielectric breakdown, so that the potential of the sound circuit rises. For this reason, the faulty circuit including the contact prevention plate needs to be insulated to withstand the voltage at the time of fault. Further, when the contact prevention plate is grounded by itself, the primary side and the secondary side of the transformer are connected via the contact prevention plate and the ground wire. Therefore, noise from the inverter or the like couples between the primary side and the secondary side due to the stray capacitance of the transformer or the like.

実施例1では、変圧器の一次側(DC/AC巻線31側)と二次側(AC/DC巻線32側)は個別にシールドする構成としている。またシールド相互は絶縁している。さらにそのシールドは個別に外部回路と接続可能な構成としている。これにより、変圧器の一次側と二次側は個別の電源、接地システムを選択できる。これにより、インバータなどのノイズが変圧器の浮遊容量などによって一次側と二次側の間を結合することを抑制できる。 In the first embodiment, the primary side (DC / AC winding 31 side) and the secondary side (AC / DC winding 32 side) of the transformer are individually shielded. In addition, the shields are insulated from each other. Furthermore, the shield is configured so that it can be individually connected to an external circuit. This allows the primary and secondary sides of the transformer to select separate power and grounding systems. As a result, it is possible to prevent noise from the inverter or the like from being coupled between the primary side and the secondary side due to stray capacitance of the transformer or the like.

本実施例2では、DC/DCユニット内に分圧抵抗および電圧検出用抵抗を追加して、外部回路を用いることなく絶縁劣化の監視、保護が行えるように構成した。図2に、実施例2による絶縁DC/DCユニットの絶縁変圧器絶縁監視保護システムの構成例を示す。図2において図1と同一部分は同一符号をもって示している。 In the second embodiment, a voltage dividing resistor and a voltage detecting resistor are added in the DC / DC unit so that insulation deterioration can be monitored and protected without using an external circuit. FIG. 2 shows a configuration example of the insulation transformer insulation monitoring protection system of the insulation DC / DC unit according to the second embodiment. In FIG. 2, the same parts as those in FIG. 1 are indicated by the same reference numerals.

図2のDC/DCユニット12において、図1と異なる点は、第1のシールド用外部接続端子S1−1とDC/AC巻線シールド41の一端の間に、高抵抗値の分圧抵抗R10と低抵抗の電圧検出用抵抗R11を直列に接続し、第2のシールド用外部接続端子S1−2とDC/AC巻線シールド41の他端の間に、高抵抗値の分圧抵抗R10と低抵抗の電圧検出用抵抗R11を直列に接続し、前記2つの電圧検出用抵抗R11の各電圧(各々の抵抗の両端間電圧)を電圧検出部71により検出し、制御部61が、前記検出電圧に基いて絶縁劣化を判断し、例えば警報を発し、故障の場合は電源を遮断する等の保護を行うように構成し、
また、第3のシールド用外部接続端子S2−1とAC/DC巻線シールド42の一端の間に、高抵抗値の分圧抵抗R20と低抵抗の電圧検出用抵抗R21を直列に接続し、第4のシールド用外部接続端子S2−2とAC/DC巻線シールド42の他端の間に、高抵抗値の分圧抵抗R20と低抵抗の電圧検出用抵抗R21を直列に接続し、前記2つの電圧検出用抵抗R21の各電圧(各々の抵抗の両端間電圧)を電圧検出部72により検出し、制御部62が、前記検出電圧に基いて絶縁劣化を判断し、例えば警報を発し、故障の場合は電源を遮断する等の保護を行うように構成したことにあり、その他の部分は図1と同様に構成されている。
In the DC / DC unit 12 of FIG. 2, the difference from FIG. 1 is that the voltage dividing resistor R10 having a high resistance value is located between the first shield external connection terminal S1-1 and one end of the DC / AC winding shield 41. And a low resistance voltage detection resistor R11 are connected in series, and a high resistance value dividing resistor R10 is connected between the second shield external connection terminal S1-2 and the other end of the DC / AC winding shield 41. A low resistance voltage detection resistor R11 is connected in series, each voltage of the two voltage detection resistors R11 (voltage between both ends of each resistor) is detected by the voltage detection unit 71, and the control unit 61 detects the detection. It is configured to judge insulation deterioration based on voltage, issue an alarm, for example, and shut off the power supply in the event of a failure.
Further, a voltage dividing resistor R20 having a high resistance value and a voltage detecting resistor R21 having a low resistance are connected in series between the third external connection terminal S2-1 for shielding and one end of the AC / DC winding shield 42. A voltage dividing resistor R20 having a high resistance value and a voltage detecting resistor R21 having a low resistance are connected in series between the fourth external connection terminal S2-2 for shielding and the other end of the AC / DC winding shield 42. Each voltage of the two voltage detection resistors R21 (voltage between both ends of each resistor) is detected by the voltage detection unit 72, and the control unit 62 determines insulation deterioration based on the detected voltage, for example, issues an alarm. In the event of a failure, it is configured to provide protection such as shutting off the power supply, and other parts are configured in the same manner as in FIG.

図1では、絶縁破壊によりDC/AC巻線シールド41、またはAC/DC巻線シールド42に大きな地絡電流が生じるような外部回路構成の場合に対して、図2では前記抵抗R10、R11、又は抵抗R20、R21がその電流を制限する機能を有する。このため、DC/AC巻線シールド41、AC/DC巻線シールド42の容積を小さくできる。 In FIG. 1, in contrast to the case of an external circuit configuration in which a large ground fault current is generated in the DC / AC winding shield 41 or the AC / DC winding shield 42 due to dielectric breakdown, in FIG. 2, the resistors R10, R11, Alternatively, the resistors R20 and R21 have a function of limiting the current. Therefore, the volumes of the DC / AC winding shield 41 and the AC / DC winding shield 42 can be reduced.

また、DC/AC巻線31とDC/AC巻線シールド41の間の絶縁劣化が進んだ場合には、その絶縁インピーダンスが低下するため、前記抵抗R10、R11の電圧分担が増加していく。電圧検出用抵抗R11やR21の両端の電圧を制御部61や62に設けた電圧検出部71、72により検出し、絶縁が劣化したと判定する基準電圧を上回った場合には絶縁劣化と判定し、制御部61、62から警報を発することにより、絶縁破壊に至る前に装置を点検、或いは故障停止することでより安全なシステムを提供する。 Further, when the insulation deterioration between the DC / AC winding 31 and the DC / AC winding shield 41 progresses, the insulation impedance thereof decreases, so that the voltage sharing of the resistors R10 and R11 increases. The voltage across the voltage detection resistors R11 and R21 is detected by the voltage detection units 71 and 72 provided in the control units 61 and 62, and if it exceeds the reference voltage for determining that the insulation has deteriorated, it is determined that the insulation has deteriorated. By issuing an alarm from the control units 61 and 62, a safer system is provided by inspecting the device or stopping the failure before the insulation breaks down.

本構成では、DC/AC巻線シールド41、AC/DC巻線シールド42を、シールド用外部接続端子S1−1およびS1−2、またはS2−1およびS2−2を介して複数の外部回路の基準電位に接続できるため、例えば保護接地と中性点等に各々接続し、監視保護が可能である。以上により、実施例1に比べ外部回路による保護機能は不要である。また、DC/AC巻線シールド41、AC/DC巻線シールド42の電位をDC/AC変換部やAC/DC変換部の基準電位(例えばDCリンク部の中性点)に接続すれば、巻線シールドの電位を安定化でき、ノイズ等の影響が改善される。その他は実施例1と同じ動作である。 In this configuration, the DC / AC winding shield 41 and the AC / DC winding shield 42 are connected to a plurality of external circuits via the external connection terminals S1-1 and S1-2 for shielding, or S2-1 and S2-2. Since it can be connected to the reference potential, it can be connected to a protective ground and a neutral point, respectively, for monitoring and protection. As described above, the protection function by the external circuit is unnecessary as compared with the first embodiment. Further, if the potentials of the DC / AC winding shield 41 and the AC / DC winding shield 42 are connected to the reference potentials of the DC / AC conversion unit and the AC / DC conversion unit (for example, the neutral point of the DC link unit), the winding can be performed. The potential of the wire shield can be stabilized, and the influence of noise and the like is improved. Others are the same operations as in the first embodiment.

以上のように、本実施例2によれば次のような効果が得られる。 As described above, according to the second embodiment, the following effects can be obtained.

実施例2では、前記巻線シールド41、42に高抵抗(分圧抵抗R10,R20)と検出用の低抵抗(電圧検出用抵抗R11,R21)を直列に接続している。これにより、絶縁劣化に伴う絶縁インピーダンスの抵抗により、高抵抗の分圧抵抗と検出用の低抵抗の電位が上昇する。この検出電圧が異常判定基準を上回った場合には、絶縁劣化と判断し、警報を出すことが可能である。よって、絶縁破壊等に至る前に事故を未然に防止できるため、安全である。また、万が一絶縁破壊が生じても、高抵抗の分圧抵抗R10,R20と電圧検出用の低抵抗R11,R21があるため、直接接地系統においても故障電流は微弱に抑制できる。 In the second embodiment, a high resistance (voltage dividing resistance R10, R20) and a low detection resistance (voltage detection resistance R11, R21) are connected in series to the winding shields 41 and 42. As a result, the potential of the high resistance voltage dividing resistance and the low resistance for detection rises due to the resistance of the insulation impedance due to the deterioration of the insulation. When this detected voltage exceeds the abnormality judgment standard, it is possible to judge that the insulation has deteriorated and issue an alarm. Therefore, it is safe because accidents can be prevented before dielectric breakdown occurs. Further, even if dielectric breakdown occurs, the high resistance voltage dividing resistors R10 and R20 and the low resistances R11 and R21 for voltage detection are provided, so that the fault current can be weakly suppressed even in the direct grounding system.

また、絶縁劣化検出機能を内蔵しているため、外部に保護継電器が不要である。また、前記巻線シールド41,42の配線を変換器ユニット(DC/DCユニット12)の基準電位(例えばDCリンクの中点)に接続することも可能であり、この場合には、ノイズの流出をより抑制できるとともに、DC/DCユニット12内の電位安定化が可能である。 In addition, since it has a built-in insulation deterioration detection function, no external protective relay is required. It is also possible to connect the wiring of the winding shields 41 and 42 to the reference potential (for example, the midpoint of the DC link) of the converter unit (DC / DC unit 12), and in this case, noise outflow. Can be further suppressed, and the potential in the DC / DC unit 12 can be stabilized.

さらに、前記巻線シールド41,42と抵抗(R10,R11,R20,R21)の回路は一次側(DC/AC巻線31側)と二次側(AC/DC巻線32側)の2系統施している。このため、DC/AC巻線シールド41、AC/DC巻線シールド42各々を、シールド用外部接続端子S1−1,S1−2,S2−1,S2−2を介して外部の異なる基準電位(例えば電源系統基準、信号電源基準等)と接続することができる。 Further, the winding shields 41 and 42 and the resistors (R10, R11, R20, R21) have two circuits, a primary side (DC / AC winding 31 side) and a secondary side (AC / DC winding 32 side). Giving. Therefore, each of the DC / AC winding shield 41 and the AC / DC winding shield 42 is externally connected to different reference potentials (externally) via the external connection terminals S1-1, S1-2, S2-1, and S2-2 for shielding. For example, it can be connected to a power system standard, a signal power standard, etc.).

図3に実施例3による絶縁DC/DC変換器ユニットの絶縁変圧器絶縁監視保護システムの構成例を示す。図3では、図2における第2のシールド用外部接続端子S1−2およびDC/AC巻線シールド41の間と、第4のシールド用外部接続端子S2−2およびAC/DC巻線シールド42の間の各分圧抵抗R10,R20および電圧検出用抵抗R11,R21を削除してDC/DCユニット13を構成しており、図2と同一部分は同一符号をもって示している。 FIG. 3 shows a configuration example of the insulation transformer insulation monitoring protection system of the insulation DC / DC converter unit according to the third embodiment. In FIG. 3, between the second shield external connection terminal S1-2 and the DC / AC winding shield 41 in FIG. 2, and the fourth shield external connection terminal S2-2 and the AC / DC winding shield 42. The DC / DC unit 13 is configured by deleting the voltage dividing resistors R10 and R20 and the voltage detecting resistors R11 and R21 in between, and the same parts as those in FIG. 2 are indicated by the same reference numerals.

図3の構成によれば、前記抵抗R10,R11,R20,R21を削除した側の第2のシールド用外部接続端子S1−2、第4のシールド用外部接続端子S2−2は、図2の実施例2の場合よりも絶縁破壊等の影響が大きくなる。但し、部品点数は実施例2よりも削減される。 According to the configuration of FIG. 3, the second shield external connection terminal S1-2 and the fourth shield external connection terminal S2-2 on the side where the resistors R10, R11, R20, and R21 are deleted are shown in FIG. The effect of dielectric breakdown and the like is greater than in the case of Example 2. However, the number of parts is reduced as compared with Example 2.

その他の動作、効果は実施例2と同様である。 Other operations and effects are the same as in the second embodiment.

図4に実施例4による絶縁DC/DC変換器ユニットの絶縁変圧器絶縁監視保護システムの構成例を示す。図4では、図2における第1のシールド用外部接続端子S1−1およびDC/AC巻線シールド41の間と、第3のシールド用外部接続端子S2−1およびAC/DC巻線シールド42の間の各分圧抵抗R10,R20および電圧検出用抵抗R11,R21を削除してDC/DCユニット14を構成しており、図2と同一部分は同一符号をもって示している。 FIG. 4 shows a configuration example of the insulation transformer insulation monitoring protection system of the insulation DC / DC converter unit according to the fourth embodiment. In FIG. 4, between the first shield external connection terminal S1-1 and the DC / AC winding shield 41 in FIG. 2, and the third shield external connection terminal S2-1 and the AC / DC winding shield 42. The DC / DC unit 14 is configured by deleting the voltage dividing resistors R10 and R20 and the voltage detecting resistors R11 and R21 in between, and the same parts as those in FIG. 2 are indicated by the same reference numerals.

図4の構成によれば、前記抵抗R10,R11,R20,R21を削除した側の第1のシールド用外部接続端子S1−1、第3のシールド用外部接続端子S2−1は、図2の実施例2の場合よりも絶縁破壊等の影響が大きくなる。但し、部品点数は実施例2よりも削減される。 According to the configuration of FIG. 4, the first shield external connection terminal S1-1 and the third shield external connection terminal S2-1 on the side where the resistors R10, R11, R20, and R21 are deleted are shown in FIG. The effect of dielectric breakdown and the like is greater than in the case of Example 2. However, the number of parts is reduced as compared with Example 2.

その他の動作、効果は実施例2と同様である。 Other operations and effects are the same as in the second embodiment.

図5に実施例5による絶縁AC/DC変換器ユニットの絶縁変圧器絶縁監視保護システムの構成例を示す。図5では、図1のDC/AC変換部51と第1、第2電力変換部用外部接続端子M1−1、M1−2の間に、交流電力を直流電力に変換するAC/DC変換部53を接続し、DC/AC巻線31側の第1の電力変換部をAC/DC変換部53およびDC/AC変換部51とし、AC/DCユニット15を構成しており、図1と同一部分は同一符号をもって示している。 FIG. 5 shows a configuration example of the insulation transformer insulation monitoring protection system of the insulation AC / DC converter unit according to the fifth embodiment. In FIG. 5, an AC / DC conversion unit that converts AC power into DC power between the DC / AC conversion unit 51 of FIG. 1 and the external connection terminals M1-1 and M1-2 for the first and second power conversion units. The AC / DC unit 15 is configured by connecting the 53 and using the first power conversion unit on the DC / AC winding 31 side as the AC / DC conversion unit 53 and the DC / AC conversion unit 51, which is the same as in FIG. The parts are indicated by the same reference numerals.

図5によれば、図1のDC/DCユニット11をAC/DCユニット化することができ、その他の動作、効果は図1と同様となる。 According to FIG. 5, the DC / DC unit 11 of FIG. 1 can be converted into an AC / DC unit, and other operations and effects are the same as those of FIG.

図6に実施例6による絶縁AC/DC変換器ユニットの絶縁変圧器絶縁監視保護システムの構成例を示す。図6では、図2のDC/AC変換部51と第1、第2電力変換部用外部接続端子M1−1、M1−2の間に、交流電力を直流電力に変換するAC/DC変換部53を接続し、DC/AC巻線31側の第1の電力変換部をAC/DC変換部53およびDC/AC変換部51とし、AC/DCユニット16を構成しており、図2と同一部分は同一符号をもって示している。 FIG. 6 shows a configuration example of the insulation transformer insulation monitoring protection system of the insulation AC / DC converter unit according to the sixth embodiment. In FIG. 6, an AC / DC conversion unit that converts AC power into DC power between the DC / AC conversion unit 51 of FIG. 2 and the external connection terminals M1-1 and M1-2 for the first and second power conversion units. The AC / DC unit 16 is configured by connecting the 53 and using the first power conversion unit on the DC / AC winding 31 side as the AC / DC conversion unit 53 and the DC / AC conversion unit 51, which is the same as in FIG. The parts are indicated by the same reference numerals.

図6によれば、図2のDC/DCユニット12をAC/DCユニット化することができ、その他の動作、効果は図2と同様となる。 According to FIG. 6, the DC / DC unit 12 of FIG. 2 can be converted into an AC / DC unit, and other operations and effects are the same as those of FIG.

図7に実施例7による絶縁AC/DC変換器ユニットの絶縁変圧器絶縁監視保護システムの構成例を示す。図7では、図3のDC/AC変換部51と第1、第2電力変換部用外部接続端子M1−1、M1−2の間に、交流電力を直流電力に変換するAC/DC変換部53を接続し、DC/AC巻線31側の第1の電力変換部をAC/DC変換部53およびDC/AC変換部51とし、AC/DCユニット17を構成しており、図3と同一部分は同一符号をもって示している。 FIG. 7 shows a configuration example of the insulation transformer insulation monitoring protection system of the insulation AC / DC converter unit according to the seventh embodiment. In FIG. 7, an AC / DC conversion unit that converts AC power into DC power between the DC / AC conversion unit 51 of FIG. 3 and the external connection terminals M1-1 and M1-2 for the first and second power conversion units. The AC / DC unit 17 is configured by connecting the 53 and using the first power conversion unit on the DC / AC winding 31 side as the AC / DC conversion unit 53 and the DC / AC conversion unit 51, which is the same as in FIG. The parts are indicated by the same reference numerals.

図7によれば、図3のDC/DCユニット13をAC/DCユニット化することができ、その他の動作、効果は図3と同様となる。 According to FIG. 7, the DC / DC unit 13 of FIG. 3 can be converted into an AC / DC unit, and other operations and effects are the same as those of FIG.

図8に実施例8による絶縁AC/DC変換器ユニットの絶縁変圧器絶縁監視保護システムの構成例を示す。図8では、図4のDC/AC変換部51と第1、第2電力変換部用外部接続端子M1−1、M1−2の間に、交流電力を直流電力に変換するAC/DC変換部53を接続し、DC/AC巻線31側の第1の電力変換部をAC/DC変換部53およびDC/AC変換部51とし、AC/DCユニット18を構成しており、図4と同一部分は同一符号をもって示している。 FIG. 8 shows a configuration example of the insulation transformer insulation monitoring protection system of the insulation AC / DC converter unit according to the eighth embodiment. In FIG. 8, an AC / DC conversion unit that converts AC power into DC power between the DC / AC conversion unit 51 of FIG. 4 and the external connection terminals M1-1 and M1-2 for the first and second power conversion units. The AC / DC unit 18 is configured by connecting the 53 and using the first power conversion unit on the DC / AC winding 31 side as the AC / DC conversion unit 53 and the DC / AC conversion unit 51, which is the same as in FIG. The parts are indicated by the same reference numerals.

図8によれば、図4のDC/DCユニット14をAC/DCユニット化することができ、その他の動作、効果は図4と同様となる。 According to FIG. 8, the DC / DC unit 14 of FIG. 4 can be converted into an AC / DC unit, and other operations and effects are the same as those of FIG.

図9に実施例9による絶縁DC/AC変換器ユニットの絶縁変圧器絶縁監視保護システムの構成例を示す。図9では、図1のAC/DC変換部52と第3、第4電力変換部用外部接続端子M2−1、M2−2の間に、直流電力を交流電力に変換するDC/AC変換部54を接続し、AC/DC巻線32側の第2の電力変換部をAC/DC変換部52およびDC/AC変換部54とし、DC/ACユニット19を構成しており、図1と同一部分は同一符号をもって示している。 FIG. 9 shows a configuration example of the insulation transformer insulation monitoring protection system of the insulation DC / AC converter unit according to the ninth embodiment. In FIG. 9, a DC / AC conversion unit that converts DC power into AC power between the AC / DC conversion unit 52 of FIG. 1 and the external connection terminals M2-1 and M2-2 for the third and fourth power conversion units. The DC / AC unit 19 is configured by connecting 54 and using the second power conversion unit on the AC / DC winding 32 side as the AC / DC conversion unit 52 and the DC / AC conversion unit 54, which is the same as in FIG. The parts are indicated by the same reference numerals.

図9によれば、図1のDC/DCユニット11をDC/ACユニット化することができ、その他の動作、効果は図1と同様となる。 According to FIG. 9, the DC / DC unit 11 of FIG. 1 can be converted into a DC / AC unit, and other operations and effects are the same as those of FIG.

図10に実施例10による絶縁DC/AC変換器ユニットの絶縁変圧器絶縁監視保護システムの構成例を示す。図10では、図2のAC/DC変換部52と第3、第4電力変換部用外部接続端子M2−1、M2−2の間に、直流電力を交流電力に変換するDC/AC変換部54を接続し、AC/DC巻線32側の第2の電力変換部をAC/DC変換部52およびDC/AC変換部54とし、DC/ACユニット20を構成しており、図2と同一部分は同一符号をもって示している。 FIG. 10 shows a configuration example of the insulation transformer insulation monitoring protection system of the insulation DC / AC converter unit according to the tenth embodiment. In FIG. 10, a DC / AC conversion unit that converts DC power into AC power between the AC / DC conversion unit 52 of FIG. 2 and the external connection terminals M2-1 and M2-2 for the third and fourth power conversion units. The DC / AC unit 20 is configured by connecting 54 and using the second power conversion unit on the AC / DC winding 32 side as the AC / DC conversion unit 52 and the DC / AC conversion unit 54, which is the same as in FIG. The parts are indicated by the same reference numerals.

図10によれば、図2のDC/DCユニット12をDC/ACユニット化することができ、その他の動作、効果は図2と同様となる。 According to FIG. 10, the DC / DC unit 12 of FIG. 2 can be converted into a DC / AC unit, and other operations and effects are the same as those of FIG.

図11に実施例11による絶縁DC/AC変換器ユニットの絶縁変圧器絶縁監視保護システムの構成例を示す。図11では、図3のAC/DC変換部52と第3、第4電力変換部用外部接続端子M2−1、M2−2の間に、直流電力を交流電力に変換するDC/AC変換部54を接続し、AC/DC巻線32側の第2の電力変換部をAC/DC変換部52およびDC/AC変換部54とし、DC/ACユニット21を構成しており、図3と同一部分は同一符号をもって示している。 FIG. 11 shows a configuration example of the insulation transformer insulation monitoring protection system of the insulation DC / AC converter unit according to the eleventh embodiment. In FIG. 11, a DC / AC conversion unit that converts DC power into AC power between the AC / DC conversion unit 52 of FIG. 3 and the external connection terminals M2-1 and M2-2 for the third and fourth power conversion units. The DC / AC unit 21 is configured by connecting 54 and using the second power conversion unit on the AC / DC winding 32 side as the AC / DC conversion unit 52 and the DC / AC conversion unit 54, which is the same as in FIG. The parts are indicated by the same reference numerals.

図11によれば、図3のDC/DCユニット13をDC/ACユニット化することができ、その他の動作、効果は図3と同様となる。 According to FIG. 11, the DC / DC unit 13 of FIG. 3 can be converted into a DC / AC unit, and other operations and effects are the same as those of FIG.

図12に実施例12による絶縁DC/AC変換器ユニットの絶縁変圧器絶縁監視保護システムの構成例を示す。図12では、図4のAC/DC変換部52と第3、第4電力変換部用外部接続端子M2−1、M2−2の間に、直流電力を交流電力に変換するDC/AC変換部54を接続し、AC/DC巻線32側の第2の電力変換部をAC/DC変換部52およびDC/AC変換部54とし、DC/ACユニット22を構成しており、図4と同一部分は同一符号をもって示している。 FIG. 12 shows a configuration example of the insulation transformer insulation monitoring protection system of the insulation DC / AC converter unit according to the twelfth embodiment. In FIG. 12, a DC / AC conversion unit that converts DC power into AC power between the AC / DC conversion unit 52 of FIG. 4 and the external connection terminals M2-1 and M2-2 for the third and fourth power conversion units. The DC / AC unit 22 is configured by connecting 54 and using the second power conversion unit on the AC / DC winding 32 side as the AC / DC conversion unit 52 and the DC / AC conversion unit 54, which is the same as in FIG. The parts are indicated by the same reference numerals.

図12によれば、図4のDC/DCユニット14をDC/ACユニット化することができ、その他の動作、効果は図4と同様となる。 According to FIG. 12, the DC / DC unit 14 of FIG. 4 can be converted into a DC / AC unit, and other operations and effects are the same as those of FIG.

図13に実施例13による絶縁AC/AC変換器ユニットの絶縁変圧器絶縁監視保護システムの構成例を示す。図13では、図5のAC/DC変換部52と第3、第4電力変換部用外部接続端子M2−1、M2−2の間に、直流電力を交流電力に変換するDC/AC変換部54を接続し、AC/DC巻線32側の第2の電力変換部をAC/DC変換部52およびDC/AC変換部54とし、AC/ACユニット23を構成しており、図5と同一部分は同一符号をもって示している。 FIG. 13 shows a configuration example of the insulation transformer insulation monitoring protection system of the insulation AC / AC converter unit according to the thirteenth embodiment. In FIG. 13, a DC / AC conversion unit that converts DC power into AC power between the AC / DC conversion unit 52 of FIG. 5 and the external connection terminals M2-1 and M2-2 for the third and fourth power conversion units. The AC / AC unit 23 is configured by connecting 54 and using the second power conversion unit on the AC / DC winding 32 side as the AC / DC conversion unit 52 and the DC / AC conversion unit 54, which is the same as in FIG. The parts are indicated by the same reference numerals.

図13によれば、図5のAC/DCユニット15をAC/ACユニット化することができ、その他の動作、効果は図5と同様となる。 According to FIG. 13, the AC / DC unit 15 of FIG. 5 can be converted into an AC / AC unit, and other operations and effects are the same as those of FIG.

図14に実施例14による絶縁AC/AC変換器ユニットの絶縁変圧器絶縁監視保護システムの構成例を示す。図14では、図6のAC/DC変換部52と第3、第4電力変換部用外部接続端子M2−1、M2−2の間に、直流電力を交流電力に変換するDC/AC変換部54を接続し、AC/DC巻線32側の第2の電力変換部をAC/DC変換部52およびDC/AC変換部54とし、AC/ACユニット24を構成しており、図6と同一部分は同一符号をもって示している。 FIG. 14 shows a configuration example of the insulation transformer insulation monitoring protection system of the insulation AC / AC converter unit according to the fourteenth embodiment. In FIG. 14, a DC / AC conversion unit that converts DC power into AC power between the AC / DC conversion unit 52 of FIG. 6 and the external connection terminals M2-1 and M2-2 for the third and fourth power conversion units. The AC / AC unit 24 is configured by connecting 54 and using the second power conversion unit on the AC / DC winding 32 side as the AC / DC conversion unit 52 and the DC / AC conversion unit 54, which is the same as in FIG. The parts are indicated by the same reference numerals.

図14によれば、図6のAC/DCユニット16をAC/ACユニット化することができ、その他の動作、効果は図6と同様となる。 According to FIG. 14, the AC / DC unit 16 of FIG. 6 can be converted into an AC / AC unit, and other operations and effects are the same as those of FIG.

図15に実施例15による絶縁AC/AC変換器ユニットの絶縁変圧器絶縁監視保護システムの構成例を示す。図15では、図7のAC/DC変換部52と第3、第4電力変換部用外部接続端子M2−1、M2−2の間に、直流電力を交流電力に変換するDC/AC変換部54を接続し、AC/DC巻線32側の第2の電力変換部をAC/DC変換部52およびDC/AC変換部54とし、AC/ACユニット25を構成しており、図7と同一部分は同一符号をもって示している。 FIG. 15 shows a configuration example of the insulation transformer insulation monitoring protection system of the insulation AC / AC converter unit according to the fifteenth embodiment. In FIG. 15, a DC / AC conversion unit that converts DC power into AC power between the AC / DC conversion unit 52 of FIG. 7 and the external connection terminals M2-1 and M2-2 for the third and fourth power conversion units. The AC / AC unit 25 is configured by connecting 54 and using the second power conversion unit on the AC / DC winding 32 side as the AC / DC conversion unit 52 and the DC / AC conversion unit 54, which is the same as in FIG. The parts are indicated by the same reference numerals.

図15によれば、図7のAC/DCユニット17をAC/ACユニット化することができ、その他の動作、効果は図7と同様となる。 According to FIG. 15, the AC / DC unit 17 of FIG. 7 can be converted into an AC / AC unit, and other operations and effects are the same as those of FIG. 7.

図16に実施例16による絶縁AC/AC変換器ユニットの絶縁変圧器絶縁監視保護システムの構成例を示す。図16では、図8のAC/DC変換部52と第3、第4電力変換部用外部接続端子M2−1、M2−2の間に、直流電力を交流電力に変換するDC/AC変換部54を接続し、AC/DC巻線32側の第2の電力変換部をAC/DC変換部52およびDC/AC変換部54とし、AC/ACユニット26を構成しており、図8と同一部分は同一符号をもって示している。 FIG. 16 shows a configuration example of the insulation transformer insulation monitoring protection system of the insulation AC / AC converter unit according to the sixteenth embodiment. In FIG. 16, a DC / AC conversion unit that converts DC power into AC power between the AC / DC conversion unit 52 of FIG. 8 and the external connection terminals M2-1 and M2-2 for the third and fourth power conversion units. The AC / AC unit 26 is configured by connecting 54 and using the second power conversion unit on the AC / DC winding 32 side as the AC / DC conversion unit 52 and the DC / AC conversion unit 54, which is the same as in FIG. The parts are indicated by the same reference numerals.

図16によれば、図8のAC/DCユニット18をAC/ACユニット化することができ、その他の動作、効果は図8と同様となる。 According to FIG. 16, the AC / DC unit 18 of FIG. 8 can be converted into an AC / AC unit, and other operations and effects are the same as those of FIG.

図17に、実施例1〜16の変換器ユニット(11〜26)を応用した、実施例17による絶縁変圧器絶縁監視保護システム(電力変換器システム)の構成例を示す。 FIG. 17 shows a configuration example of an insulated transformer insulation monitoring and protection system (power converter system) according to Example 17, which applies the converter units (11 to 26) of Examples 1 to 16.

図17において、実施例1〜16の絶縁型電力変換器ユニット(DC/DCユニット11〜14、AC/DCユニット15〜18、DC/ACユニット19〜22、AC/ACユニット23〜26)のうちいずれかを複数段直列に設けている。 In FIG. 17, of the insulated power converter units (DC / DC units 11 to 14, AC / DC units 15 to 18, DC / AC units 19 to 22, AC / AC units 23 to 26) of Examples 1 to 16. One of them is provided in series in multiple stages.

本実施例17では、直列段数を、1段(第1段)、2段〜M段、M+1段〜N段、N+1段(最終段)とし、M段目とM+1段目の間を中央としている。 In the 17th embodiment, the number of series stages is 1 stage (1st stage), 2 stages to M stage, M + 1 stage to N stage, N + 1 stage (final stage), and the center between the M stage and the M + 1 stage is set. There is.

図17において、各変換器ユニット内の、外部接続端子M1−1、M1−2、M2−1、M2−2、S1−1、S1−2、S2−1、S2−2以外の構成部品の番号は図示省略している。 In FIG. 17, components other than the external connection terminals M1-1, M1-2, M2-1, M2-2, S1-1, S1-2, S2-1, and S2-2 in each converter unit. The numbers are not shown.

81は基準電位点を備えた電源(第1の電源又は負荷)、82は基準電位点を備えた電源(第2の電源又は負荷)である。電源81、82は各々直流電源(負荷)又は交流電源(負荷)から成るが、本実施例では直列接続された複数の直流電圧源で構成されている。 81 is a power source having a reference potential point (first power source or load), and 82 is a power source having a reference potential point (second power source or load). The power supplies 81 and 82 are each composed of a DC power supply (load) or an AC power supply (load), but in this embodiment, they are composed of a plurality of DC voltage sources connected in series.

変換器ユニット1段の第1の電力変換部用外部接続端子M1−1は電源81の一端(直流電圧源の負極)に接続され、変換器ユニットN+1段の第2の電力変換部用外部接続端子M1−2は電源81の他端(直流電圧源の正極)に接続されている。 The external connection terminal M1-1 for the first power converter in the first stage of the converter unit is connected to one end of the power supply 81 (negative voltage of the DC voltage source), and is externally connected to the second power converter in the converter unit N + 1 stage. The terminal M1-2 is connected to the other end of the power supply 81 (the positive electrode of the DC voltage source).

前記複数段の変換器ユニット(1段〜N+1段)のうち、前記変換器ユニット1段の第1の電力変換部用外部接続端子M1−1および変換器ユニットN+1段の第2の電力変換部用外部接続端子M1−2以外の、前記外部接続端子M1−1とM1−2は、互いに隣接する2つの変換器ユニットの間で各々接続されている。同様に複数段の変換器ユニット(1段〜N+1段)の、第1のシールド用外部接続端子S1−1と第2のシールド用外部接続端子S1−2は、互いに隣接する2つの変換器ユニットの間で各々接続されている。 Of the plurality of stages of converter units (1 stage to N + 1 stage), the external connection terminal M1-1 for the first power conversion unit of the converter unit 1 stage and the second power conversion unit of the converter unit N + 1 stage. The external connection terminals M1-1 and M1-2 other than the external connection terminal M1-2 for use are each connected between two converter units adjacent to each other. Similarly, the first shield external connection terminal S1-1 and the second shield external connection terminal S1-2 of the multi-stage converter unit (1st stage to N + 1 stage) are two converter units adjacent to each other. Each is connected between.

前記複数段の中央で互いに隣接する2つの変換器ユニットM段とM+1段の間の、第1および第2の電力変換部用外部接続端子M1−1およびM1−2の共通接続点と、第1および第2のシールド用外部接続端子S1−1およびS1−2の共通接続点とを、電源81の基準電位点(複数の直流電圧源の中間接続点)に接続し、その基準電位点を接地している。 A common connection point of the first and second external connection terminals M1-1 and M1-2 for the power conversion unit between the M and M + 1 stages of the two converter units adjacent to each other at the center of the plurality of stages, and the first The common connection points of the first and second shield external connection terminals S1-1 and S1-2 are connected to the reference potential point of the power supply 81 (intermediate connection point of a plurality of DC voltage sources), and the reference potential point is set. It is grounded.

変換器ユニット1段の、第3の電力変換部用外部接続端子M2−1および第3のシールド用外部接続端子S2−1は電源82の一端(直流電圧源の接地された負極)に接続され、変換器ユニットN+1段の第4の電力変換部用外部接続端子M2−2は電源82の他端(直流電圧源の正極)に接続されている。 The third power converter external connection terminal M2-1 and the third shield external connection terminal S2-1 of the first stage of the converter unit are connected to one end of the power supply 82 (grounded negative electrode of the DC voltage source). The fourth power converter external connection terminal M2-2 of the converter unit N + 1 stage is connected to the other end of the power supply 82 (the positive electrode of the DC voltage source).

前記複数段の変換器ユニット(1段〜N+1段)のうち、前記変換器ユニット1段の第3の電力変換部用外部接続端子M2−1および変換器ユニットN+1段の第4の電力変換部用外部接続端子M2−2以外の、前記外部接続端子M2−1とM2−2は、互いに隣接する2つの変換器ユニットの間で各々接続されている。同様に複数段の変換器ユニット(1段〜N+1段)の、第3のシールド用外部接続端子S2−1と第4のシールド用外部接続端子S2−2は、互いに隣接する2つの変換器ユニットの間で各々接続されている。 Of the plurality of stages of converter units (1 stage to N + 1 stage), the external connection terminal M2-1 for the third power conversion unit of the converter unit 1 stage and the fourth power conversion unit of the converter unit N + 1 stage. The external connection terminals M2-1 and M2-2 other than the external connection terminal M2-2 are connected to each other between two converter units adjacent to each other. Similarly, the third shield external connection terminal S2-1 and the fourth shield external connection terminal S2-2 of the multi-stage converter unit (1st stage to N + 1 stage) are two converter units adjacent to each other. Each is connected between.

上記構成により、複数段の変換器ユニットを直列多重化した電力変換器システムが構成される。 With the above configuration, a power converter system in which a plurality of stages of converter units are serially multiplexed is configured.

本構成において、直列多重化されたいずれかの変換器ユニットの巻線(DC/AC巻線31、AC/DC巻線32)とその巻線のシールド(DC/AC巻線シールド41、AC/DC巻線シールド42)が絶縁劣化すると、その絶縁インピーダンスが低下し、各変換器ユニットの巻線シールドの電位が巻線の電位に近づいていく。この際、絶縁劣化した箇所が基準電位から離れるほど大きな電位が巻線シールドに印加される。その際、変換器ユニットに絶縁劣化検出の機能がある変換器ユニット(12〜14、16〜18、20〜22、24〜26)では、基準電位から離れれば離れるほどユニット内の絶縁劣化検出抵抗(電圧検出抵抗R11、R21)の直列数が比例して増加するため、絶縁劣化に伴う電流は各ユニットでほぼ同一となり、かつ、ユニット1台の場合のシステムと同程度の電圧検出値となる。また、直列接続したユニットの電位があるため、ユニット間の電位がほぼ安定にかつ同一に保たれる。ただし、実施例1、5、9、13のように絶縁破壊時の電流制限抵抗や絶縁劣化検出用の抵抗がないユニット(11、15、19、23)の場合には、絶縁劣化した変換器ユニットが基準電位から離れるほどその絶縁インピーダンスに印加される電位が大きくなり、絶縁劣化に伴う電流も大きくなる。よって、絶縁破壊の影響が大きい変換器ユニットほど絶縁劣化に伴う電流が大きく、より確実に故障検出が可能である。 In this configuration, the windings (DC / AC winding 31, AC / DC winding 32) of any of the converter units in series multiplexing and the shields of the windings (DC / AC winding shield 41, AC / When the insulation of the DC winding shield 42) deteriorates, its insulation impedance decreases, and the potential of the winding shield of each converter unit approaches the potential of the winding. At this time, a larger potential is applied to the winding shield as the portion where the insulation is deteriorated is separated from the reference potential. At that time, in the converter unit (12 to 14, 16 to 18, 20 to 22, 24 to 26) in which the converter unit has an insulation deterioration detection function, the insulation deterioration detection resistance in the unit increases as the distance from the reference potential increases. Since the number of series (voltage detection resistors R11, R21) increases proportionally, the current due to insulation deterioration is almost the same for each unit, and the voltage detection value is about the same as the system for one unit. .. Further, since there is a potential of the units connected in series, the potential between the units is kept substantially stable and the same. However, in the case of a unit (11, 15, 19, 23) that does not have a current limiting resistance at the time of dielectric breakdown or a resistance for detecting insulation deterioration as in Examples 1, 5, 9, and 13, a converter with insulation deterioration. As the unit moves away from the reference potential, the potential applied to the insulation impedance increases, and the current due to dielectric breakdown also increases. Therefore, the greater the influence of dielectric breakdown, the larger the current associated with insulation deterioration, and the more reliable failure detection is possible.

本実施例18では、複数段の変換器ユニットを実施例17と同様に直列多重化し、基準電位点を有しない電源又は負荷に接続して電力変換器システムを構成した。 In the 18th embodiment, a plurality of stages of converter units are multiplexed in series in the same manner as in the 17th embodiment, and the power converter system is configured by connecting to a power source or a load having no reference potential point.

図18に、実施例1〜16の変換器ユニット(11〜26)を応用した、実施例18による絶縁変圧器絶縁監視保護システム(電力変換器システム)の構成例を示す。図18において図17と同一部分は同一符号をもって示している。 FIG. 18 shows a configuration example of an insulation transformer insulation monitoring protection system (power converter system) according to Example 18 to which the converter units (11 to 26) of Examples 1 to 16 are applied. In FIG. 18, the same parts as those in FIG. 17 are indicated by the same reference numerals.

図18において図17と異なる点は、
図17の電源81に代えて、基準電位点を有しない電源91(本実施例では直列接続された複数の直流電圧源)を設け、
変換器ユニット1段の第1の電力変換部用外部接続端子M1−1および第1のシールド用外部接続端子S1−1を電源91の一端(負極)に接続し、
変換器ユニットN+1段の第2の電力変換部用外部接続端子M1−2を電源91の他端(正極)に接続し、
図17における変換器ユニットM段とM+1段の間の、前記外部接続端子M1−1とM1−2の接続線と、前記外部接続端子S1−1とS1−2の接続線との共通接続を取り止め、
図17の電源82に代えて、基準電位点を有しない電源92(本実施例では直列接続された複数の直流電圧源)を設け、
変換器ユニット1段の第3の電力変換部用外部接続端子M2−1を電源92の一端(負極)に接続し、
変換器ユニットN+1段の第4の電力変換部用外部接続端子M2−2を電源92の他端(正極)に接続し、
変換器ユニットM段とM+1段の間の、前記外部接続端子M2−1とM2−2の接続線と、前記外部接続端子S2−1とS2−2の接続線とを共通に接続した点にあり、その他の部分は図17と同一に構成されている。
The difference in FIG. 18 from FIG. 17 is
Instead of the power supply 81 of FIG. 17, a power supply 91 having no reference potential point (in this embodiment, a plurality of DC voltage sources connected in series) is provided.
The first power converter external connection terminal M1-1 and the first shield external connection terminal S1-1 of the converter unit 1 stage are connected to one end (negative electrode) of the power supply 91.
Connect the external connection terminal M1-2 for the second power conversion unit of the converter unit N + 1 stage to the other end (positive electrode) of the power supply 91, and connect it.
The common connection between the connection lines of the external connection terminals M1-1 and M1-2 and the connection lines of the external connection terminals S1-1 and S1-2 between the M and M + 1 stages of the converter unit in FIG. Cancel,
Instead of the power supply 82 of FIG. 17, a power supply 92 having no reference potential point (a plurality of DC voltage sources connected in series in this embodiment) is provided.
Connect the external connection terminal M2-1 for the third power converter of the first stage of the converter unit to one end (negative electrode) of the power supply 92,
The external connection terminal M2-2 for the fourth power conversion unit of the converter unit N + 1 stage is connected to the other end (positive electrode) of the power supply 92.
At the point where the connection line of the external connection terminals M2-1 and M2-2 and the connection line of the external connection terminals S2-1 and S2-2 are commonly connected between the M stage and the M + 1 stage of the converter unit. Yes, the other parts are configured the same as in FIG.

図18の構成において、直列接続された変換器ユニットでは、例えばシステムの左側では負極側を基準電位とし(変換器ユニット1段の前記外部接続端子M1−1およびS1−1を電源91の負極に接続している)、システムの右側では中央の主回路電位を基準電位とする(変換器ユニットM段とM+1段の間の、前記外部接続端子M2−1とM2−2の接続線と、前記外部接続端子S2−1とS2−2の接続線とを共通に接続している)ことにより、外部電源の基準電位の配線がなくても絶縁破壊時の電流制限抵抗(分圧抵抗R10、R20)や絶縁劣化検出用の抵抗(電圧検出用抵抗R11、R21)がある場合には実施例17と同様の動作で絶縁劣化や絶縁破壊を検出できる。ただし、絶縁破壊時の電流制限抵抗や絶縁劣化検出用の抵抗がない場合(例えば変換器ユニット11、15、19、23)には、絶縁破壊時の電流が過大となるため、システムの過電流保護機能等により保護する必要がある。 In the configuration of FIG. 18, in the converter unit connected in series, for example, on the left side of the system, the negative electrode side is set as the reference potential (the external connection terminals M1-1 and S1-1 of the converter unit 1 stage are used as the negative electrode of the power supply 91. On the right side of the system (connected), the central main circuit potential is used as the reference potential (the connection line between the external connection terminals M2-1 and M2-2 between the converter unit M stage and M + 1 stage, and the above. By connecting the external connection terminals S2-1 and S2-2 in common), the current limiting resistance (voltage division resistors R10, R20) at the time of insulation failure even if there is no wiring of the reference potential of the external power supply. ) Or a resistor for detecting insulation deterioration (voltage detection resistors R11, R21), insulation deterioration and insulation destruction can be detected by the same operation as in Example 17. However, if there is no current limiting resistor at dielectric breakdown or a resistor for detecting dielectric breakdown (for example, converter units 11, 15, 19, 23), the current at dielectric breakdown becomes excessive, and the system overcurrent. It is necessary to protect it with a protection function.

図19に、実施例1〜16の変換器ユニット(11〜26)を応用した、実施例19による絶縁変圧器絶縁監視保護システム(電力変換器システム)の構成例を示す。 FIG. 19 shows a configuration example of an insulated transformer insulation monitoring and protection system (power converter system) according to Example 19 to which the converter units (11 to 26) of Examples 1 to 16 are applied.

図19において、実施例1〜16の絶縁型電力変換器ユニット(DC/DCユニット11〜14、AC/DCユニット15〜18、DC/ACユニット19〜22、AC/ACユニット23〜26)のうちいずれかを、基準電位点を有した電源101(第1の電源又は負荷)と基準電位点を有した電源102(第2の電源又は負荷)の間に、複数段並列に設けている。 In FIG. 19, of the insulated power converter units (DC / DC units 11 to 14, AC / DC units 15 to 18, DC / AC units 19 to 22, AC / AC units 23 to 26) of Examples 1 to 16. One of them is provided in parallel in a plurality of stages between the power source 101 having the reference potential point (first power source or load) and the power source 102 having the reference potential point (second power source or load).

本実施例19では、並列段数を、1段(第1段)、2段〜M段、M+1段〜N段、N+1段(最終段)とし、M段目とM+1段目の間を中央としている。 In the 19th embodiment, the number of parallel stages is 1 stage (1st stage), 2 stages to M stage, M + 1 stage to N stage, N + 1 stage (final stage), and the center between the M stage and the M + 1 stage is set. There is.

図19では、各変換器ユニット内の、外部接続端子M1−1、M1−2、M2−1、M2−2、S1−1、S1−2、S2−1、S2−2以外の構成部品の番号は図示省略している。 In FIG. 19, components other than the external connection terminals M1-1, M1-2, M2-1, M2-2, S1-1, S1-2, S2-1, and S2-2 in each converter unit are shown. The numbers are not shown.

電源101は、本実施例では直列接続された2つの直流電圧源で構成され、その中点且つ接地された電位点を基準電位点とし、電源102は、本実施例では直列接続された2つの直流電圧源で構成され、その負極且つ接地された電位点を基準電位点としている。 In this embodiment, the power supply 101 is composed of two DC voltage sources connected in series, the midpoint and the grounded potential point are set as reference potential points, and the power supply 102 is two connected in series in this embodiment. It is composed of a DC voltage source, and its negative potential and grounded potential points are used as reference potential points.

複数段の変換器ユニット1段〜N+1段の、第1の電力変換部用外部接続端子M1−1各々は電源101の一端(負極)に接続され、第2の電力変換部用外部接続端子M1−2各々は電源101の他端(正極)に接続され、第1のシールド用外部接続端子S1−1各々は共通に接続され、変換器ユニットM段とM+1段の間の、第1のシールド用外部接続端子S1−1の共通接続点は電源101の、中点且つ接地された基準電位点に接続されている。 Each of the first power converter external connection terminals M1-1 of the multi-stage converter units 1 to N + 1 is connected to one end (negative electrode) of the power supply 101, and the second power converter external connection terminal M1 -2 Each is connected to the other end (positive electrode) of the power supply 101, and each of the first shield external connection terminals S1-1 is connected in common, and the first shield between the M stage and the M + 1 stage of the converter unit. The common connection point of the external connection terminal S1-1 for use is connected to the reference potential point at the midpoint and grounded of the power supply 101.

複数段の変換器ユニット1段〜N+1段の、第3の電力変換部用外部接続端子M2−1各々と、第3のシールド用外部接続端子S2−1各々は、電源102の一端(接地された負極)に接続され、第4の電力変換部用外部接続端子M2−2各々は電源102の他端(正極)に接続されている。 Each of the third external connection terminal M2-1 for the power conversion unit and the third external connection terminal S2-1 for the shield of the multi-stage converter units 1 to N + 1 is one end (grounded) of the power supply 102. It is connected to the negative electrode), and each of the fourth external connection terminals M2-2 for the power conversion unit is connected to the other end (positive electrode) of the power supply 102.

図19の構成において、並列多重化されたいずれかの変換器ユニットの巻線(DC/AC巻線31、AC/DC巻線32)とその巻線のシールド(DC/AC巻線シールド41、AC/DC巻線シールド42)が絶縁劣化すると、その絶縁インピーダンスが低下し、その変換器ユニットの巻線シールドの電位が巻線の電位に近づいていく。この際、絶縁劣化した箇所の変換器ユニットの巻線の電位が巻線シールドに印加される。 In the configuration of FIG. 19, the windings (DC / AC winding 31, AC / DC winding 32) of any of the converter units multiplexed in parallel and the shields of the windings (DC / AC winding shield 41, When the AC / DC winding shield 42) deteriorates in insulation, its insulation impedance decreases, and the potential of the winding shield of the converter unit approaches the potential of the winding. At this time, the potential of the winding of the converter unit at the portion where the insulation is deteriorated is applied to the winding shield.

その際、変換器ユニットに絶縁劣化検出の機能がある変換器ユニット(12〜14、16〜18、20〜22、24〜26)では、ユニット1台の場合のシステムと同程度の電圧検出値となる。よって、絶縁が健全な変換器ユニットは絶縁劣化検出をしないため、絶縁劣化や絶縁破壊の変換器ユニットを選択遮断することができる。ただし、実施例1、5、9、13のように絶縁破壊時の電流制限抵抗(分圧抵抗R10、R20)や絶縁劣化検出用の抵抗(電圧検出用抵抗R11、R21)がない変換器ユニットの場合には、外部回路での絶縁劣化検出は困難である。 At that time, in the converter unit (12-14, 16-18, 20-22, 24-26) having the function of detecting insulation deterioration in the converter unit, the voltage detection value is about the same as that of the system in the case of one unit. It becomes. Therefore, since a converter unit having sound insulation does not detect insulation deterioration, it is possible to selectively cut off a converter unit having insulation deterioration or dielectric breakdown. However, as in Examples 1, 5, 9, and 13, a converter unit that does not have a current limiting resistor (voltage dividing resistor R10, R20) at the time of dielectric breakdown or a resistor for detecting insulation deterioration (voltage detecting resistor R11, R21). In this case, it is difficult to detect dielectric breakdown in an external circuit.

本実施例20では、複数段の変換器ユニットを実施例19と同様に並列多重化し、基準電位点を有しない電源又は負荷に接続して電力変換器システムを構成した。図20に、実施例1〜16の変換器ユニット(11〜26)を応用した、実施例20による絶縁変圧器絶縁監視保護システム(電力変換器システム)の構成例を示す。図20において、図19と同一部分は同一符号をもって示している。 In the 20th embodiment, a plurality of stages of converter units are multiplexed in parallel in the same manner as in the 19th embodiment, and the power converter system is configured by connecting to a power source or a load having no reference potential point. FIG. 20 shows a configuration example of an insulated transformer insulation monitoring and protection system (power converter system) according to Example 20 to which the converter units (11 to 26) of Examples 1 to 16 are applied. In FIG. 20, the same parts as those in FIG. 19 are indicated by the same reference numerals.

図20において図19と異なる点は、図19の電源101に代えて、基準電位点を有しない電源111(第1の電源又は負荷、本実施例では直列接続された2つの直流電圧源)を設け、変換器ユニットM+1段における第1の電力変換部用外部接続端子M1−1と第1のシールド用外部接続端子S1−1とを共通に接続し、図19の電源102に代えて基準電位点を有しない電源112(第2の電源又は負荷、本実施例では直列接続された2つの直流電圧源)を設けた点にあり、その他の部分は図19と同一に構成されている。 The difference from FIG. 19 in FIG. 20 is that instead of the power supply 101 of FIG. 19, a power supply 111 having no reference potential point (first power supply or load, two DC voltage sources connected in series in this embodiment) is used. The external connection terminal M1-1 for the first power conversion unit and the external connection terminal S1-1 for the first shield in the converter unit M + 1 stage are commonly connected, and the reference potential is replaced with the power supply 102 in FIG. It is located at a point where a power source 112 (second power source or load, two DC voltage sources connected in series in this embodiment) having no point is provided, and other parts are configured in the same manner as in FIG.

図20の構成において、並列接続された変換器ユニットでは、例えばシステムの左側では中央の主回路電位を基準電位とし(中央の変換器ユニットM+1段において前記外部接続端子M1−1とS1−1を共通接続している)、システムの右側では主回路負極を基準電位とする(電源112の負極に接続している)ことにより、外部電源の基準電位の配線がなくても絶縁破壊時の電流制限抵抗(分圧抵抗R10、R20)や絶縁劣化検出用の抵抗(電圧検出用抵抗R11、R21)がある場合には実施例19と同様に絶縁劣化や絶縁破壊を検出できる。 In the configuration of FIG. 20, in the converter unit connected in parallel, for example, on the left side of the system, the central main circuit potential is used as the reference potential (in the central converter unit M + 1 stage, the external connection terminals M1-1 and S1-1 are used. By using the main circuit negative voltage as the reference potential (connected to the negative voltage of the power supply 112) on the right side of the system (commonly connected), the current limit at the time of dielectric breakdown even without wiring of the reference potential of the external power supply When there is a resistor (voltage dividing resistance R10, R20) or a resistor for detecting insulation deterioration (voltage detection resistors R11, R21), insulation deterioration and dielectric breakdown can be detected as in Example 19.

本実施例21では、複数段の変換器ユニットを直列多重化し、複数の独立した電源又は負荷であって、基準電位点を有する、有しない等の形態の異なる電源又は負荷に接続して電力変換器システムを構成した。 In the 21st embodiment, a plurality of stages of converter units are multiplexed in series and connected to a plurality of independent power supplies or loads having different forms such as having or not having a reference potential point for power conversion. The instrument system was configured.

図21に、実施例1〜16の変換器ユニット(11〜26)を応用した、実施例21による絶縁変圧器絶縁監視保護システム(電力変換器システム)の構成例を示す。 FIG. 21 shows a configuration example of an insulation transformer insulation monitoring and protection system (power converter system) according to Example 21 to which the converter units (11 to 26) of Examples 1 to 16 are applied.

図21において、実施例1〜16の絶縁型電力変換器ユニット(DC/DCユニット11〜14、AC/DCユニット15〜18、DC/ACユニット19〜22、AC/ACユニット23〜26)のうちいずれかを複数段直列に設けている。 In FIG. 21, of the insulated power converter units (DC / DC units 11 to 14, AC / DC units 15 to 18, DC / AC units 19 to 22, AC / AC units 23 to 26) of Examples 1 to 16. One of them is provided in series in multiple stages.

本実施例21では、直列段数を、1段(第1段)、2段〜M段、M+1段〜N段、N+1段(最終段)とし、M段目とM+1段目の間を中央としている。 In the 21st embodiment, the number of series stages is 1 stage (1st stage), 2 stages to M stage, M + 1 stage to N stage, N + 1 stage (final stage), and the center between the M stage and the M + 1 stage is set. There is.

図21において、各変換器ユニット内の、外部接続端子M1−1、M1−2、M2−1、M2−2、S1−1、S1−2、S2−1、S2−2以外の構成部品およびその番号は図示省略している。 In FIG. 21, components and components other than the external connection terminals M1-1, M1-2, M2-1, M2-2, S1-1, S1-2, S2-1, and S2-2 in each converter unit. The numbers are not shown.

121は、基準電位点を備えた電源(第1の電源又は負荷)であり、本実施例では直列接続された複数の直流電圧源から成り、その中点を接地して構成している。 Reference numeral 121 denotes a power source (first power source or load) having a reference potential point, and in this embodiment, it is composed of a plurality of DC voltage sources connected in series, and the midpoint thereof is grounded.

変換器ユニット1段の第1の電力変換部用外部接続端子M1−1は電源121の一端(直流電圧源の負極)に接続され、変換器ユニットN+1段の第2の電力変換部用外部接続端子M1−2は電源121の他端(直流電圧源の正極)に接続されている。 The external connection terminal M1-1 for the first power converter in the first stage of the converter unit is connected to one end of the power supply 121 (negative voltage of the DC voltage source), and is externally connected to the second power converter in the converter unit N + 1 stage. The terminal M1-2 is connected to the other end of the power supply 121 (the positive electrode of the DC voltage source).

前記複数段の変換器ユニット(1段〜N+1段)のうち、前記変換器ユニット1段の第1の電力変換部用外部接続端子M1−1および変換器ユニットN+1段の第2の電力変換部用外部接続端子M1−2以外の、前記外部接続端子M1−1とM1−2は、互いに隣接する2つの変換器ユニットの間で各々接続されている。同様に複数段の変換器ユニット(1段〜N+1段)の、第1のシールド用外部接続端子S1−1と第2のシールド用外部接続端子S1−2は、互いに隣接する2つの変換器ユニットの間で各々接続されている。 Of the plurality of stages of converter units (1 stage to N + 1 stage), the external connection terminal M1-1 for the first power conversion unit of the converter unit 1 stage and the second power conversion unit of the converter unit N + 1 stage. The external connection terminals M1-1 and M1-2 other than the external connection terminal M1-2 for use are each connected between two converter units adjacent to each other. Similarly, the first shield external connection terminal S1-1 and the second shield external connection terminal S1-2 of the multi-stage converter unit (1st stage to N + 1 stage) are two converter units adjacent to each other. Each is connected between.

前記複数段の中央で互いに隣接する2つの変換器ユニットM段とM+1段の間の、第1および第2の電力変換部用外部接続端子M1−1およびM1−2の共通接続点と、第1および第2のシールド用外部接続端子S1−1およびS1−2の共通接続点とを、電源121の基準電位点に接続している。 A common connection point between the first and second power converter external connection terminals M1-1 and M1-2 between the two converter units M and M + 1 that are adjacent to each other at the center of the plurality of stages, and a first The common connection points of the first and second shield external connection terminals S1-1 and S1-2 are connected to the reference potential point of the power supply 121.

変換器ユニット1段〜N+1段のうち、互いに隣接する2つの変換器ユニット、例えば変換器ユニットN段とN+1段の、第3および第4のシールド用外部接続端子S2−1およびS2−2は共通接続され、第3および第4の電力変換部用外部接続端子M2−1およびM2−2は共通接続され、それら2つの共通接続線は共通に接続されている。 Of the converter units 1 to N + 1, two converter units adjacent to each other, for example, the third and fourth shield external connection terminals S2-1 and S2-2 of the converter units N and N + 1 are Commonly connected, the third and fourth external connection terminals M2-1 and M2-2 for the power converter are commonly connected, and the two common connection lines are commonly connected.

変換器ユニットN段の第3の電力変換部用外部接続端子M2−1は、基準電位点を有しない電源122(第2の電源又は負荷、本実施例では直列接続した2つの直流電圧源)の一端(負極)に接続され、変換器ユニットN+1段の第4の電力変換部用外部接続端子M2−2は電源122の他端(正極)に接続されている。 The external connection terminal M2-1 for the third power conversion unit of the N stage of the converter unit is a power supply 122 having no reference potential point (second power supply or load, two DC voltage sources connected in series in this embodiment). The external connection terminal M2-2 for the fourth power conversion unit of the converter unit N + 1 stage is connected to the other end (positive electrode) of the power supply 122.

互いに隣接する、前記以外の2つの変換器ユニット、例えば変換器ユニットM段とM+1段の、第3および第4のシールド用外部接続端子S2−1およびS2−2は共通接続され、第3および第4の電力変換部用外部接続端子M2−1およびM2−2は共通接続され、それら2つの共通接続線は共通に接続されている。 Two converter units other than the above, for example, the third and fourth external connection terminals S2-1 and S2-2 for shielding of the converter units M stage and M + 1 stage, which are adjacent to each other, are commonly connected and are connected to the third and third. The fourth external connection terminals M2-1 and M2-2 for the power converter are commonly connected, and the two common connection lines are commonly connected.

変換器ユニットM段の第3の電力変換部用外部接続端子M2−1は、基準電位点を有する電源123(第3の電源又は負荷、本実施例では直列接続した2つの直流電圧源を備え、その中点を接地して基準電位点としている)の一端(負極)に接続され、変換器ユニットM+1段の第4の電力変換部用外部接続端子M2−2は電源123の他端(正極)に接続され、前記外部接続端子S2−1、S2−2、M2−1、M2−2の共通接続点は電源123の基準電位点に接続されている。 The third power conversion unit external connection terminal M2-1 of the converter unit M stage includes a power supply 123 having a reference potential point (a third power supply or load, and in this embodiment, two DC voltage sources connected in series). , The middle point is grounded to be the reference potential point), and the external connection terminal M2-2 for the fourth power conversion unit of the converter unit M + 1 stage is connected to the other end (positive electrode) of the power supply 123. ), And the common connection points of the external connection terminals S2-1, S2-2, M2-1, and M2-2 are connected to the reference potential point of the power supply 123.

互いに隣接する、前記以外の2つの変換器ユニット、例えば変換器ユニット1段と2段の、第3および第4のシールド用外部接続端子S2−1およびS2−2は共通接続され、第3および第4の電力変換部用外部接続端子M2−1およびM2−2は共通接続され、それら2つの共通接続線は共通に接続されている。 Two converter units other than the above, for example, the first and second stages of the converter units, the third and fourth external connection terminals for shielding S2-1 and S2-2, which are adjacent to each other, are commonly connected, and the third and third and third. The fourth external connection terminals M2-1 and M2-2 for the power converter are commonly connected, and the two common connection lines are commonly connected.

変換器ユニット1段の第3の電力変換部用外部接続端子M2−1は、基準電位点を有する電源124(第4の電源又は負荷、本実施例では直列接続した2つの直流電圧源を備え、その中点を基準電位点としている)の一端(負極)に接続され、変換器ユニット2段の第4の電力変換部用外部接続端子M2−2は電源124の他端(正極)に接続され、前記外部接続端子S2−1、S2−2、M2−1、M2−2の共通接続点は電源124の基準電位点に接続されている。 The third power converter external connection terminal M2-1 of the converter unit 1 stage includes a power supply 124 having a reference potential point (fourth power supply or load, and two DC voltage sources connected in series in this embodiment). , The middle point is used as the reference potential point), and the fourth power conversion unit external connection terminal M2-2 of the second stage of the converter unit is connected to the other end (positive electrode) of the power supply 124. The common connection points of the external connection terminals S2-1, S2-2, M2-1, and M2-2 are connected to the reference potential point of the power supply 124.

基準電位点を有しない電源122側のシステムにおいて、変換器ユニットN段とN+1段は前記外部接続端子M2−1とM2−2の接続線、S2−1とS2−2の接続線により直列に接続され、且つ前記2つの接続線が共通に接続されている。 In the system on the power supply 122 side that does not have a reference potential point, the converter unit N stage and N + 1 stage are connected in series by the connection lines of the external connection terminals M2-1 and M2-2 and the connection lines of S2-1 and S2-2. It is connected and the two connection lines are connected in common.

これらの接続構成によって、変換器ユニットN段とN+1段の間の主回路電位を、(基準電位点を有しない電源122に接続しているにもかかわらず)基準電位とすることができる。これは、実施例18(図18)の右側のシステムと同様の機能である。 With these connection configurations, the main circuit potential between the N stage and the N + 1 stage of the converter unit can be set as the reference potential (despite being connected to the power supply 122 having no reference potential point). This is the same function as the system on the right side of Example 18 (FIG. 18).

また、接地された基準電位点を有した電源123側のシステムにおいて、変換器ユニットM段とM+1段は前記外部接続端子M2−1とM2−2の接続線、S2−1とS2−2の接続線により直列に接続され、且つ前記2つの接続線が共に電源123の接地された基準電位点に接続されている。 Further, in the system on the power supply 123 side having the grounded reference potential point, the converter unit M stage and M + 1 stage are the connection lines of the external connection terminals M2-1 and M2-2, and S2-1 and S2-2. It is connected in series by a connecting line, and both of the two connecting lines are connected to a grounded reference potential point of the power supply 123.

これらの接続構成によって、変換器ユニットM段とM+1段の間の主回路電位を、接地された基準電位とすることができる。これは、実施例17(図17)の左側のシステムと同様の機能である。 With these connection configurations, the main circuit potential between the M stage and the M + 1 stage of the converter unit can be set as the grounded reference potential. This is the same function as the system on the left side of Example 17 (FIG. 17).

また、基準電位点を有した電源124側のシステムにおいて、変換器ユニット1段と2段は前記外部接続端子M2−1とM2−2の接続線、S2−1とS2−2の接続線により直列に接続され、且つ前記2つの接続線が共に電源124の基準電位点に接続されている。 Further, in the system on the power supply 124 side having the reference potential point, the first and second stages of the converter unit are connected by the connection lines of the external connection terminals M2-1 and M2-2 and the connection lines of S2-1 and S2-2. They are connected in series and both of the two connecting lines are connected to the reference potential point of the power supply 124.

これらの接続構成によって、変換器ユニット1段と2段の間の主回路電位を、基準電位とすることができる。この部分では、電源124は接地されていないが、接地されている場合と同様の機能を有する。 With these connection configurations, the main circuit potential between the first and second stages of the converter unit can be used as the reference potential. In this part, the power supply 124 is not grounded, but has the same function as when it is grounded.

以上のように本実施例21のシステムは、複数の独立した電源又は負荷に対して、絶縁劣化検出時や絶縁破壊時の影響を、限定した範囲に抑制することができる。 As described above, the system of the present embodiment 21 can suppress the influence of insulation deterioration detection and dielectric breakdown on a plurality of independent power sources or loads within a limited range.

本実施例22では、三相交流電源から成る第1の電源と、基準電位点を有する第2の電源又は負荷の間に、実施例1〜16の変換器ユニットを直並列接続し、高電圧を任意の電圧に降圧し大容量化できるように構成した。 In the 22nd embodiment, the converter units of the 1st to 16th embodiments are connected in series and parallel between the first power supply including the three-phase AC power supply and the second power supply or the load having the reference potential point, and the high voltage is obtained. Was configured to be able to step down to an arbitrary voltage and increase the capacity.

図22に、実施例1〜16の変換器ユニット(11〜26)を応用した、実施例22による絶縁変圧器絶縁監視保護システム(電力変換器システム)の構成例を示す。 FIG. 22 shows a configuration example of an insulated transformer insulation monitoring and protection system (power converter system) according to the twenty-second embodiment, to which the converter units (11 to 26) of the first to sixth embodiments are applied.

図22において、実施例1〜16の絶縁型電力変換器ユニット(DC/DCユニット11〜14、AC/DCユニット15〜18、DC/ACユニット19〜22、AC/ACユニット23〜26)のうちいずれかを複数段直列に設けて第1の直列多重ユニット部201を構成している。 In FIG. 22, of the insulated power converter units (DC / DC units 11 to 14, AC / DC units 15 to 18, DC / AC units 19 to 22, AC / AC units 23 to 26) of Examples 1 to 16. One of them is provided in series in a plurality of stages to form the first series multiplexing unit unit 201.

本実施例22では、直列段数を、1段(第1段)、2段〜M段、M+1段〜N段、N+1段(最終段)とし、M段目とM+1段目の間を中央としている。図22において、各変換器ユニット内の、外部接続端子M1−1、M1−2、M2−1、M2−2、S1−1、S1−2、S2−1、S2−2以外の構成部品およびその番号は図示省略している。 In the 22nd embodiment, the number of series stages is 1 stage (1st stage), 2 stages to M stage, M + 1 stage to N stage, N + 1 stage (final stage), and the center between the M stage and the M + 1 stage is set. There is. In FIG. 22, components and components other than the external connection terminals M1-1, M1-2, M2-1, M2-2, S1-1, S1-2, S2-1, and S2-2 in each converter unit. The numbers are omitted in the figure.

第1の直列多重ユニット部201の各変換器ユニット1段〜N+1段の、互いに隣接する変換器ユニット間の、第1の電力変換部用外部接続端子M1−1と第2の電力変換部用外部接続端子M1−2は接続され、第1のシールド用外部接続端子S1−1と第2のシールド用外部接続端子S1−2は接続されている。 For the external connection terminal M1-1 for the first power conversion unit and the second power conversion unit between the converter units of the first series multiplex unit unit 201, each of the converter units 1 to N + 1 stages adjacent to each other. The external connection terminal M1-2 is connected, and the first shield external connection terminal S1-1 and the second shield external connection terminal S1-2 are connected.

202は、前記第1の直列多重ユニット部201と同一に、変換器ユニット(11〜26)のいずれかを1段〜N+1段直列に設けた第2の直列多重ユニット部である。 Reference numeral 202 denotes a second series multiplexing unit unit in which any of the converter units (11 to 26) is provided in series from one stage to N + 1 stages in the same manner as the first series multiplexing unit unit 201.

203は、前記第1の直列多重ユニット部201と同一に、変換器ユニット(11〜26)のいずれかを1段〜N+1段直列に設けた第3の直列多重ユニット部である。 Reference numeral 203 denotes a third series multiplexing unit unit in which any of the converter units (11 to 26) is provided in series from one stage to N + 1 stages in the same manner as the first series multiplexing unit unit 201.

第1の直列多重ユニット部201の最終段の変換器ユニットN+1段の第2の電力変換部用外部接続端子M1−2は、第1の電源を構成する三相交流電源131のU相電源(第1相電源)131Uに接続され、第2の直列多重ユニット部202の最終段の変換器ユニットN+1段の第2の電力変換部用外部接続端子M1−2は、三相交流電源131のV相電源(第2相電源)131Vに接続され、第3の直列多重ユニット部203の最終段の変換器ユニットN+1段の第2の電力変換部用外部接続端子M1−2は、三相交流電源131のW相電源(第3相電源)131Wに接続されている。 The external connection terminal M1-2 for the second power conversion unit of the converter unit N + 1 stage of the final stage of the first series multiplex unit unit 201 is the U-phase power supply of the three-phase AC power supply 131 constituting the first power supply. The external connection terminal M1-2 for the second power converter of the converter unit N + 1 of the final stage of the second series multiplex unit 202 connected to the first phase power supply (131U) is the V of the three-phase AC power supply 131. The external connection terminal M1-2 for the second power converter of the converter unit N + 1 of the final stage of the third series multiplex unit 203 connected to the phase power supply (second phase power supply) 131V is a three-phase AC power supply. It is connected to 131 W-phase power supply (third-phase power supply) 131W.

前記第1〜第3の直列多重ユニット部201〜203の各々の変換器ユニット1段の、第1の電力変換部用外部接続端子M1−1どうしは共通に接続され、第1のシールド用外部接続端子S1−1どうしは共通に接続され、それら2つの共通接続点は中性点として共通に接続されている。 The external connection terminals M1-1 for the first power conversion unit of the first stage of the converter units of the first to third series multiplexing unit units 2001 to 203 are commonly connected to each other, and the external connection for the first shield The connection terminals S1-1 are commonly connected to each other, and these two common connection points are commonly connected as neutral points.

第1の直列多重ユニット部201における、複数段のうち、互いに隣接する2つの変換器ユニット間の、第3の電力変換部用外部接続端子M2−1と第4の電力変換部用外部接続端子M2−2を接続し、第3のシールド用外部接続端子S2−1と第4のシールド用外部接続端子S2−2を接続し、それら接続点を共通に接続して第1共通接続点211としている。 External connection terminal M2-1 for the third power conversion unit and external connection terminal for the fourth power conversion unit between two converter units adjacent to each other in the plurality of stages in the first series multiplexing unit unit 201. M2-2 is connected, the third shield external connection terminal S2-1 and the fourth shield external connection terminal S2-2 are connected, and these connection points are connected in common to form the first common connection point 211. There is.

第2の直列多重ユニット部202における、複数段のうち、互いに隣接する2つの変換器ユニット間の、第3の電力変換部用外部接続端子M2−1と第4の電力変換部用外部接続端子M2−2を接続し、第3のシールド用外部接続端子S2−1と第4のシールド用外部接続端子S2−2を接続し、それら接続点を共通に接続して第2共通接続点212としている。 External connection terminal M2-1 for the third power conversion unit and external connection terminal for the fourth power conversion unit between two converter units adjacent to each other in the plurality of stages in the second series multiplexing unit unit 202. M2-2 is connected, the third shield external connection terminal S2-1 and the fourth shield external connection terminal S2-2 are connected, and these connection points are connected in common to form the second common connection point 212. There is.

第3の直列多重ユニット部203における、複数段のうち、互いに隣接する2つの変換器ユニット間の、第3の電力変換部用外部接続端子M2−1と第4の電力変換部用外部接続端子M2−2を接続し、第3のシールド用外部接続端子S2−1と第4のシールド用外部接続端子S2−2を接続し、それら接続点を共通に接続して第3共通接続点213としている。 External connection terminal M2-1 for the third power conversion unit and external connection terminal for the fourth power conversion unit between two converter units adjacent to each other in the plurality of stages in the third series multiplex unit unit 203. M2-2 is connected, the third shield external connection terminal S2-1 and the fourth shield external connection terminal S2-2 are connected, and these connection points are connected in common to form the third common connection point 213. There is.

前記第1の直列多重ユニット部201のすべての第1共通接続点211と、第2の直列多重ユニット部202のすべての第2共通接続点212と、第3の直列多重ユニット部203のすべての第3共通接続点213とを共通に接続している。 All the first common connection points 211 of the first series multiplexing unit section 201, all the second common connection points 212 of the second series multiplexing unit section 202, and all of the third series multiplexing unit section 203. It is commonly connected to the third common connection point 213.

前記第3の直列多重ユニット部203における、複数段の中央で互いに隣接する2つの変換器ユニットM段とM+1段の間の第3共通接続点213は、基準電位点を備えた電源132(第2の電源又は負荷)の基準電位点に接続されている。 The third common connection point 213 between the two converter units M and M + 1 stages adjacent to each other at the center of the plurality of stages in the third series multiplexing unit unit 203 is a power supply 132 having a reference potential point (third). It is connected to the reference potential point of (2 power supply or load).

電源132は、本実施例では直列接続された2つの直流電圧源から成り、それらの中点を基準電位点としている。 In this embodiment, the power supply 132 is composed of two DC voltage sources connected in series, and the midpoint between them is used as a reference potential point.

前記第1の直列多重ユニット部201における複数段ユニットのうち、隣接する変換器ユニットと共通接続されていない各第3の電力変換部用外部接続端子M2−1と、前記第2の直列多重ユニット部202における複数段ユニットのうち、隣接する変換器ユニットと共通接続されていない各第3の電力変換部用外部接続端子M2−1と、前記第3の直列多重ユニット部203における複数段ユニットのうち、隣接する変換器ユニットと共通接続されていない各第3の電力変換部用外部接続端子M2−1と、を電源132の一端(負極)に接続している。 Of the multi-stage units in the first series multiplexing unit section 201, each third power converter external connection terminal M2-1 that is not commonly connected to an adjacent converter unit, and the second series multiplexing unit. Of the multi-stage units in the unit 202, the external connection terminals M2-1 for each third power conversion unit that are not commonly connected to the adjacent converter units, and the multi-stage units in the third series multiplexing unit unit 203. Among them, the external connection terminals M2-1 for each third power conversion unit, which are not commonly connected to the adjacent converter units, are connected to one end (negative side) of the power supply 132.

前記第1の直列多重ユニット部201における複数段ユニットのうち、隣接する変換器ユニットと共通接続されていない各第4の電力変換部用外部接続端子M2−2と、前記第2の直列多重ユニット部202における複数段ユニットのうち、隣接する変換器ユニットと共通接続されていない各第4の電力変換部用外部接続端子M2−2と、前記第3の直列多重ユニット部203における複数段ユニットのうち、隣接する変換器ユニットと共通接続されていない各第4の電力変換部用外部接続端子M2−2と、を電源132の他端(正極)に接続している。 Of the multi-stage units in the first series multiplexing unit section 201, each fourth power converter external connection terminal M2-2 that is not commonly connected to an adjacent converter unit, and the second series multiplexing unit. Among the multi-stage units in the unit 202, the external connection terminals M2-2 for each fourth power conversion unit that are not commonly connected to the adjacent converter units, and the multi-stage units in the third series multiplexing unit unit 203. Of these, the fourth external connection terminal M2-2 for the power conversion unit, which is not commonly connected to the adjacent converter unit, is connected to the other end (positive electrode) of the power supply 132.

上記のように本実施例22は、実施例17〜20を組み合わせた構成となっており、実施例17〜20の場合と同様の作用、効果を奏する。また直並列多重化によって大容量化が実現される。 As described above, the present embodiment 22 has a configuration in which the examples 17 to 20 are combined, and exhibits the same actions and effects as those of the examples 17 to 20. In addition, the capacity can be increased by serial-parallel multiplexing.

11〜14…DC/DCユニット
14〜18…AC/DCユニット
19〜22…DC/ACユニット
23〜26…AC/ACユニット
31…DC/AC巻線
32…AC/DC巻線
33…鉄心
41…DC/AC巻線シールド
42…AC/DC巻線シールド
51、54…DC/AC変換部
52、53…AC/DC変換部
61、62…制御部
71、72…電圧検出部
81、91、101、111、121…電源(第1の電源又は負荷)
82、92、102、112、122、132…電源(第2の電源又は負荷)
123…電源(第3の電源又は負荷)
124…電源(第4の電源又は負荷)
131…三相交流電源
201…第1の直列多重ユニット部
202…第2の直列多重ユニット部
203…第3の直列多重ユニット部
211…第1共通接続点
212…第2共通接続点
213…第3共通接続点
R10、R20…分圧抵抗
R11、R21…電圧検出用抵抗
M1−1…第1の電力変換部用外部接続端子
M1−2…第2の電力変換部用外部接続端子
M2−1…第3の電力変換部用外部接続端子
M2−2…第4の電力変換部用外部接続端子
S1−1…第1のシールド用外部接続端子
S1−2…第2のシールド用外部接続端子
S2−1…第3のシールド用外部接続端子
S2−2…第4のシールド用外部接続端子
11-14 ... DC / DC unit 14-18 ... AC / DC unit 19-22 ... DC / AC unit 23-26 ... AC / AC unit 31 ... DC / AC winding 32 ... AC / DC winding 33 ... Iron core 41 ... DC / AC winding shield 42 ... AC / DC winding shield 51, 54 ... DC / AC conversion unit 52, 53 ... AC / DC conversion unit 61, 62 ... Control unit 71, 72 ... Voltage detection unit 81, 91, 101, 111, 121 ... Power supply (first power supply or load)
82, 92, 102, 112, 122, 132 ... Power supply (second power supply or load)
123 ... Power supply (third power supply or load)
124 ... Power supply (fourth power supply or load)
131 ... Three-phase AC power supply 201 ... First series multiplex unit 202 ... Second series multiplex unit 203 ... Third series multiplex unit 211 ... First common connection point 212 ... Second common connection point 213 ... Second 3 Common connection points R10, R20 ... Voltage dividing resistor R11, R21 ... Voltage detection resistor M1-1 ... External connection terminal for the first power conversion unit M1-2 ... External connection terminal for the second power conversion unit M2-1 ... External connection terminal for the third power conversion unit M2-2 ... External connection terminal for the fourth power conversion unit S1-1 ... External connection terminal for the first shield S1-2 ... External connection terminal for the second shield S2 -1 ... Third shield external connection terminal S2-2 ... Fourth shield external connection terminal

Claims (12)

互いに絶縁された2巻線が鉄心を介して各々対向配設された絶縁変圧器と、
前記2巻線のうち一方の巻線と鉄心との間に対向して配設された導電性の第1のシールドと、
前記2巻線のうち他方の巻線と鉄心との間に対向して配設された導電性の第2のシールドと、
前記一方の巻線と第1、第2の電力変換部用外部接続端子の間に接続された第1の電力変換部と、
前記他方の巻線と第3、第4の電力変換部用外部接続端子の間に接続された第2の電力変換部と、
前記第1のシールドに接続された第1、第2のシールド用外部接続端子と、
前記第2のシールドに接続された第3、第4のシールド用外部接続端子と、
を備えたことを特徴とする絶縁型電力変換器ユニット。
An insulating transformer in which two windings insulated from each other are arranged to face each other via an iron core,
A first conductive shield disposed so as to face between one of the two windings and the iron core,
A second conductive shield disposed so as to face between the other winding of the two windings and the iron core,
A first power conversion unit connected between the one winding and the external connection terminals for the first and second power conversion units, and
A second power conversion unit connected between the other winding and the external connection terminals for the third and fourth power conversion units.
The first and second shield external connection terminals connected to the first shield,
The third and fourth shield external connection terminals connected to the second shield,
An isolated power converter unit characterized by being equipped with.
前記第1のシールド用外部接続端子と第1のシールドの一端の間、又は前記第2のシールド用外部接続端子と第1のシールドの他端の間の少なくともいずれか一方に、直列に接続された分圧抵抗および電圧検出用抵抗と、
前記第3のシールド用外部接続端子と第2のシールドの一端の間、又は前記第4のシールド用外部接続端子と第2のシールドの他端の間の少なくともいずれか一方に、直列に接続された分圧抵抗および電圧検出用抵抗と、
前記電圧検出用抵抗の電圧を検出し、その検出電圧に基いて絶縁劣化を判断する制御部と、
を備えたことを特徴とする請求項1に記載の絶縁型電力変換器ユニット。
It is connected in series between the first shield external connection terminal and one end of the first shield, or at least one of the second shield external connection terminal and the other end of the first shield. Voltage dividing resistor and voltage detection resistor,
It is connected in series to at least one of the third shield external connection terminal and one end of the second shield, or the fourth shield external connection terminal and the other end of the second shield. Voltage dividing resistor and voltage detection resistor,
A control unit that detects the voltage of the voltage detection resistor and determines insulation deterioration based on the detected voltage.
The insulated power converter unit according to claim 1, further comprising.
前記第1の電力変換部は、直流側が前記第1、第2の電力変換部用外部接続端子に接続され、交流側が前記一方の巻線に接続されたDC/AC変換部によって構成され、
前記第2の電力変換部は、交流側が前記他方の巻線に接続され、直流側が前記第3、第4の電力変換部用外部接続端子に接続されたAC/DC変換部によって構成されていることを特徴とする請求項1又は2に記載の絶縁型電力変換器ユニット。
The first power conversion unit is composed of a DC / AC conversion unit in which the DC side is connected to the external connection terminal for the first and second power conversion units and the AC side is connected to the one winding.
The second power conversion unit is composed of an AC / DC conversion unit in which the AC side is connected to the other winding and the DC side is connected to the external connection terminals for the third and fourth power conversion units. The isolated power converter unit according to claim 1 or 2, wherein the power converter unit is characterized in that.
前記第1の電力変換部は、交流側が前記第1、第2の電力変換部用外部接続端子に接続されたAC/DC変換部と、直流側が前記AC/DC変換部の直流側に接続され、交流側が前記一方の巻線に接続されたDC/AC変換部によって構成され、
前記第2の電力変換部は、交流側が前記他方の巻線に接続され、直流側が前記第3、第4の電力変換部用外部接続端子に接続されたAC/DC変換部によって構成されていることを特徴とする請求項1又は2に記載の絶縁型電力変換器ユニット。
In the first power conversion unit, the AC side is connected to the AC / DC conversion unit whose AC side is connected to the external connection terminal for the first and second power conversion units, and the DC side is connected to the DC side of the AC / DC conversion unit. , The AC side is composed of a DC / AC converter connected to one of the windings.
The second power conversion unit is composed of an AC / DC conversion unit in which the AC side is connected to the other winding and the DC side is connected to the external connection terminals for the third and fourth power conversion units. The isolated power converter unit according to claim 1 or 2, wherein the power converter unit is characterized in that.
前記第1の電力変換部は、直流側が前記第1、第2の電力変換部用外部接続端子に接続され、交流側が前記一方の巻線に接続されたDC/AC変換部によって構成され、
前記第2の電力変換部は、交流側が前記他方の巻線に接続されたAC/DC変換部と、直流側が前記AC/DC変換部の直流側に接続され、交流側が前記第3、第4の電力変換部用外部接続端子に接続されたDC/AC変換部によって構成されていることを特徴とする請求項1又は2に記載の絶縁型電力変換器ユニット。
The first power conversion unit is composed of a DC / AC conversion unit in which the DC side is connected to the external connection terminal for the first and second power conversion units and the AC side is connected to the one winding.
In the second power conversion unit, the AC side is connected to the AC / DC conversion unit connected to the other winding, the DC side is connected to the DC side of the AC / DC conversion unit, and the AC side is the third and fourth parts. The isolated power converter unit according to claim 1 or 2, wherein the DC / AC conversion unit is connected to an external connection terminal for the power conversion unit.
前記第1の電力変換部は、交流側が前記第1、第2の電力変換部用外部接続端子に接続されたAC/DC変換部と、直流側が前記AC/DC変換部の直流側に接続され、交流側が前記一方の巻線に接続されたDC/AC変換部によって構成され、
前記第2の電力変換部は、交流側が前記他方の巻線に接続されたAC/DC変換部と、直流側が前記AC/DC変換部の直流側に接続され、交流側が前記第3、第4の電力変換部用外部接続端子に接続されたDC/AC変換部によって構成されていることを特徴とする請求項1又は2に記載の絶縁型電力変換器ユニット。
In the first power conversion unit, the AC side is connected to the AC / DC conversion unit whose AC side is connected to the external connection terminal for the first and second power conversion units, and the DC side is connected to the DC side of the AC / DC conversion unit. , The AC side is composed of a DC / AC converter connected to one of the windings.
In the second power conversion unit, the AC side is connected to the AC / DC conversion unit connected to the other winding, the DC side is connected to the DC side of the AC / DC conversion unit, and the AC side is the third and fourth parts. The isolated power converter unit according to claim 1 or 2, wherein the DC / AC conversion unit is connected to an external connection terminal for the power conversion unit.
請求項1から6のいずれかに記載の絶縁型電力変換器ユニットを複数段設け、
互いに隣接する2つの絶縁型電力変換器ユニット間の、第1の電力変換部用外部接続端子と第2の電力変換部用外部接続端子を接続し、第1のシールド用外部接続端子と第2のシールド用外部接続端子を接続し、
互いに隣接する2つの絶縁型電力変換器ユニット間の、第3の電力変換部用外部接続端子と第4の電力変換部用外部接続端子を接続し、第3のシールド用外部接続端子と第4のシールド用外部接続端子を接続するように構成することによって、複数段の絶縁型電力変換器ユニットを直列多重構成とし、
前記複数段のうち第1段の絶縁型電力変換器ユニットの第1の電力変換部用外部接続端子を、基準電位点を備えた第1の電源又は負荷の一端に接続し、前記複数段のうち最終段の絶縁型電力変換器ユニットの第2の電力変換部用外部接続端子を、前記第1の電源又は負荷の他端に接続し、
前記複数段の中央で互いに隣接する2つの絶縁型電力変換器ユニット間の、第1および第2の電力変換部用外部接続端子の共通接続点と、第1および第2のシールド用外部接続端子の共通接続点とを、前記第1の電源又は負荷の基準電位点に接続し、
前記第1段の絶縁型電力変換器ユニットの、第3の電力変換部用外部接続端子と、第3のシールド用外部接続端子とを、基準電位点を備えた第2の電源又は負荷の基準電位点としての一端に接続し、
前記最終段の絶縁型電力変換器ユニットの、第4の電力変換部用外部接続端子を、前記第2の電源又は負荷の他端に接続したことを特徴とする電力変換器システム。
The insulated power converter unit according to any one of claims 1 to 6 is provided in a plurality of stages.
The first power conversion unit external connection terminal and the second power conversion unit external connection terminal are connected between two isolated power converter units adjacent to each other, and the first shield external connection terminal and the second are connected. Connect the external connection terminal for the shield of
The third power converter external connection terminal and the fourth power converter external connection terminal are connected between two isolated power converter units adjacent to each other, and the third shield external connection terminal and the fourth By configuring to connect the external connection terminal for shielding, the multi-stage isolated power converter unit has a series multiplex configuration.
Of the plurality of stages, the external connection terminal for the first power conversion unit of the first stage insulated power converter unit is connected to one end of the first power supply or load provided with a reference potential point, and the plurality of stages are connected. Of these, the external connection terminal for the second power converter of the isolated power converter unit in the final stage is connected to the other end of the first power supply or load.
A common connection point for the first and second external connection terminals for the power converter and an external connection terminal for the first and second shields between the two isolated power converter units adjacent to each other in the center of the plurality of stages. Connect the common connection point of the above to the reference potential point of the first power supply or load.
The third power conversion unit external connection terminal and the third shield external connection terminal of the first-stage insulated power converter unit are designated as a second power source or load having a reference potential point. Connect to one end as a potential point,
A power converter system characterized in that an external connection terminal for a fourth power converter of the isolated power converter unit in the final stage is connected to the other end of the second power supply or load.
請求項1から6のいずれかに記載の絶縁型電力変換器ユニットを複数段設け、
互いに隣接する2つの絶縁型電力変換器ユニット間の、第1の電力変換部用外部接続端子と第2の電力変換部用外部接続端子を接続し、第1のシールド用外部接続端子と第2のシールド用外部接続端子を接続し、
互いに隣接する2つの絶縁型電力変換器ユニット間の、第3の電力変換部用外部接続端子と第4の電力変換部用外部接続端子を接続し、第3のシールド用外部接続端子と第4のシールド用外部接続端子を接続するように構成することによって、複数段の絶縁型電力変換器ユニットを直列多重構成とし、
前記複数段のうち第1段の絶縁型電力変換器ユニットの、第1の電力変換部用外部接続端子と第1のシールド用外部接続端子とを、第1の電源又は負荷の一端に接続し、前記複数段のうち最終段の絶縁型電力変換器ユニットの第2の電力変換部用外部接続端子を、前記第1の電源又は負荷の他端に接続し、
前記複数段のうち第1段の絶縁型電力変換器ユニットの、第3の電力変換部用外部接続端子を、第2の電源又は負荷の一端に接続し、前記複数段のうち最終段の絶縁型電力変換器ユニットの第4の電力変換部用外部接続端子を、前記第2の電源又は負荷の他端に接続し、
前記複数段の中央で互いに隣接する2つの絶縁型電力変換器ユニット間の、第3および第4の電力変換部用外部接続端子の共通接続点と、第3および第4のシールド用外部接続端子の共通接続点とを、共通に接続したことを特徴とする電力変換器システム。
The insulated power converter unit according to any one of claims 1 to 6 is provided in a plurality of stages.
The first power conversion unit external connection terminal and the second power conversion unit external connection terminal are connected between two isolated power converter units adjacent to each other, and the first shield external connection terminal and the second are connected. Connect the external connection terminal for the shield of
The third power converter external connection terminal and the fourth power converter external connection terminal are connected between two isolated power converter units adjacent to each other, and the third shield external connection terminal and the fourth By configuring to connect the external connection terminal for shielding, the multi-stage isolated power converter unit has a series multiplex configuration.
Of the plurality of stages, the first stage external connection terminal for the power conversion unit and the first shield external connection terminal of the first stage isolated power converter unit are connected to one end of the first power supply or load. , The external connection terminal for the second power conversion unit of the isolated power converter unit in the final stage of the plurality of stages is connected to the other end of the first power supply or load.
The external connection terminal for the third power conversion unit of the first-stage isolated power converter unit among the plurality of stages is connected to one end of the second power supply or load, and the final stage of the plurality of stages is insulated. The external connection terminal for the fourth power converter of the type power converter unit is connected to the other end of the second power supply or load.
A common connection point for external connection terminals for the third and fourth power converters and external connection terminals for the third and fourth shields between two isolated power converter units adjacent to each other in the center of the plurality of stages. A power converter system characterized in that the common connection points of the above are connected in common.
請求項1から6のいずれかに記載の絶縁型電力変換器ユニットを複数段設け、
前記複数段の絶縁型電力変換器ユニットの、第1の電力変換部用外部接続端子各々を、基準電位点を備えた第1の電源又は負荷の一端に接続し、第2の電力変換部用外部接続端子各々を、前記第1の電源又は負荷の他端に接続し、
前記複数段の絶縁型電力変換器ユニットの、第3の電力変換部用外部接続端子各々と、第3のシールド用外部接続端子各々を、基準電位点を備えた第2の電源又は負荷の基準電位点としての一端に接続し、第4の電力変換部用外部接続端子各々を、前記第2の電源又は負荷の他端に接続することによって、前記複数段の絶縁型電力変換器ユニットを並列多重構成とし、
前記複数段の絶縁型電力変換器ユニットの、第1のシールド用外部接続端子各々を共通に接続し、
前記複数段の中央で互いに隣接する2つの絶縁型電力変換器ユニット間の、第1のシールド用外部接続端子の共通接続点を前記第1の電源又は負荷の基準電位点に接続したことを特徴とする電力変換器システム。
The insulated power converter unit according to any one of claims 1 to 6 is provided in a plurality of stages.
Each of the external connection terminals for the first power conversion unit of the multi-stage insulated power converter unit is connected to one end of a first power supply or load provided with a reference potential point for the second power conversion unit. Connect each of the external connection terminals to the other end of the first power supply or load.
Each of the external connection terminals for the third power conversion unit and each of the external connection terminals for the third shield of the multi-stage insulated power converter unit is used as a reference for a second power supply or load having a reference potential point. By connecting to one end as a potential point and connecting each of the external connection terminals for the fourth power converter to the other end of the second power supply or load, the plurality of stages of the isolated power converter unit are connected in parallel. Multiple configurations
Each of the first shield external connection terminals of the multi-stage insulated power converter unit is connected in common.
The feature is that the common connection point of the first external connection terminal for shielding between the two isolated power converter units adjacent to each other at the center of the plurality of stages is connected to the reference potential point of the first power supply or load. Power converter system.
請求項1から6のいずれかに記載の絶縁型電力変換器ユニットを複数段設け、
前記複数段の絶縁型電力変換器ユニットの、第1の電力変換部用外部接続端子各々を、第1の電源又は負荷の一端に接続し、第2の電力変換部用外部接続端子各々を、前記第1の電源又は負荷の他端に接続し、第1のシールド用外部接続端子各々を共通に接続し、
前記複数段の絶縁型電力変換器ユニットの、第3の電力変換部用外部接続端子各々と、第3のシールド用外部接続端子各々を、第2の電源又は負荷の一端に接続し、第4の電力変換部用外部接続端子各々を、前記第2の電源又は負荷の他端に接続することによって、
前記複数段の絶縁型電力変換器ユニットを並列多重構成としたことを特徴とする電力変換器システム。
The insulated power converter unit according to any one of claims 1 to 6 is provided in a plurality of stages.
Each of the external connection terminals for the first power conversion unit of the multi-stage isolated power converter unit is connected to one end of the first power supply or load, and each of the external connection terminals for the second power conversion unit is connected. Connect to the other end of the first power supply or load, and connect each of the first shield external connection terminals in common.
Each of the third external connection terminals for the power conversion unit and each of the third external connection terminals for the shield of the multi-stage insulated power converter unit are connected to one end of the second power supply or load, and the fourth By connecting each of the external connection terminals for the power converter of the above to the other end of the second power supply or load.
A power converter system characterized in that the multi-stage isolated power converter unit has a parallel multiplex configuration.
請求項1から6のいずれかに記載の絶縁型電力変換器ユニットを複数段設け、
互いに隣接する2つの絶縁型電力変換器ユニット間の、第1の電力変換部用外部接続端子と第2の電力変換部用外部接続端子を接続し、第1のシールド用外部接続端子と第2のシールド用外部接続端子を接続するように構成することによって複数段の絶縁型電力変換器ユニットを直列多重構成とし、
前記複数段のうち第1段の絶縁型電力変換器ユニットの第1の電力変換部用外部接続端子を、基準電位点を備えた第1の電源又は負荷の一端に接続し、前記複数段のうち最終段の絶縁型電力変換器ユニットの第2の電力変換部用外部接続端子を、前記第1の電源又は負荷の他端に接続し、
前記複数段の中央で互いに隣接する2つの絶縁型電力変換器ユニット間の、第1および第2の電力変換部用外部接続端子の共通接続点と、第1および第2のシールド用外部接続端子の共通接続点とを、前記第1の電源又は負荷の基準電位点に接続し、
前記複数段のうち、互いに隣接する2つの絶縁型電力変換器ユニットの、第3および第4のシールド用外部接続端子を共通接続し、第3および第4の電力変換部用外部接続端子を共通接続し、前記2つの共通接続点を共通に接続し、
前記互いに隣接する2つのうち一方の絶縁型電力変換器ユニットの、前記共通接続されていない第3又は第4の電力変換部用外部接続端子を、基準電位点を有しない第2の電源又は負荷の一端に接続し、
前記互いに隣接する2つのうち他方の絶縁型電力変換器ユニットの、前記共通接続されていない第3又は第4の電力変換部用外部接続端子を、前記第2の電源又は負荷の他端に接続し、
前記複数段のうち、互いに隣接する前記以外の2つの絶縁型電力変換器ユニットの、第3および第4のシールド用外部接続端子を共通接続し、第3および第4の電力変換部用外部接続端子を共通接続し、前記2つの共通接続点を共通に接続し、
前記互いに隣接する2つのうち一方の絶縁型電力変換器ユニットの、前記共通接続されていない第3又は第4の電力変換部用外部接続端子を、接地された基準電位点を有した第3の電源又は負荷の一端に接続し、
前記互いに隣接する2つのうち他方の絶縁型電力変換器ユニットの、前記共通接続されていない第3又は第4の電力変換部用外部接続端子を、前記第3の電源又は負荷の他端に接続し、前記2つの共通接続点を前記第3の電源又は負荷の基準電位点に接続し、
前記複数段のうち、互いに隣接する前記以外の2つの絶縁型電力変換器ユニットの、第3および第4のシールド用外部接続端子を共通接続し、第3および第4の電力変換部用外部接続端子を共通接続し、前記2つの共通接続点を共通に接続し、
前記互いに隣接する2つのうち一方の絶縁型電力変換器ユニットの、前記共通接続されていない第3又は第4の電力変換部用外部接続端子を、基準電位点を有した第4の電源又は負荷の一端に接続し、
前記互いに隣接する2つのうち他方の絶縁型電力変換器ユニットの、前記共通接続されていない第3又は第4の電力変換部用外部接続端子を、前記第4の電源又は負荷の他端に接続し、前記2つの共通接続点を前記第4の電源又は負荷の基準電位点に接続したことを特徴とする電力変換器システム。
The insulated power converter unit according to any one of claims 1 to 6 is provided in a plurality of stages.
The first power conversion unit external connection terminal and the second power conversion unit external connection terminal are connected between two isolated power converter units adjacent to each other, and the first shield external connection terminal and the second are connected. By configuring to connect the external connection terminal for shielding, a multi-stage isolated power converter unit is configured in series and multiplex.
Of the plurality of stages, the external connection terminal for the first power conversion unit of the first stage insulated power converter unit is connected to one end of the first power supply or load provided with a reference potential point, and the plurality of stages are connected. Of these, the external connection terminal for the second power converter of the isolated power converter unit in the final stage is connected to the other end of the first power supply or load.
A common connection point for the first and second external connection terminals for the power converter and an external connection terminal for the first and second shields between the two isolated power converter units adjacent to each other in the center of the plurality of stages. Connect the common connection point of the above to the reference potential point of the first power supply or load.
Of the plurality of stages, the external connection terminals for the third and fourth shields of the two isolated power converter units adjacent to each other are commonly connected, and the external connection terminals for the third and fourth power converters are common. Connect, connect the two common connection points in common,
A second power source or load that does not have a reference potential point at the external connection terminal for the third or fourth power conversion unit that is not commonly connected to one of the two adjacent isolated power converter units. Connect to one end of
The external connection terminal for the third or fourth power conversion unit, which is not commonly connected, of the other insulated power converter unit of the two adjacent to each other is connected to the other end of the second power supply or load. And
Of the plurality of stages, the third and fourth shield external connection terminals of the two other isolated power converter units adjacent to each other are commonly connected, and the third and fourth power converter external connections are made. Connect the terminals in common, and connect the two common connection points in common.
A third external connection terminal for a third or fourth power conversion unit that is not commonly connected to one of the two adjacent isolated power converter units has a grounded reference potential point. Connect to one end of the power supply or load
The external connection terminal for the third or fourth power conversion unit, which is not commonly connected, of the other insulated power converter unit of the two adjacent to each other is connected to the other end of the third power supply or load. Then, the two common connection points are connected to the reference potential point of the third power source or load.
Of the plurality of stages, the third and fourth shield external connection terminals of the two other isolated power converter units adjacent to each other are commonly connected, and the third and fourth power converter external connections are made. Connect the terminals in common, and connect the two common connection points in common.
A fourth power source or load having a reference potential point at the external connection terminal for the third or fourth power conversion unit, which is not commonly connected, of one of the two isolated power converter units adjacent to each other. Connect to one end of
The external connection terminal for the third or fourth power conversion unit, which is not commonly connected, of the other isolated power converter unit of the two adjacent to each other is connected to the other end of the fourth power supply or load. A power converter system comprising connecting the two common connection points to a reference potential point of the fourth power source or load.
請求項1から6のいずれかに記載の絶縁型電力変換器ユニットを複数段設け、
互いに隣接する2つの絶縁型電力変換器ユニット間の、第1の電力変換部用外部接続端子と第2の電力変換部用外部接続端子を接続し、第1のシールド用外部接続端子と第2のシールド用外部接続端子を接続するように構成して第1の直列多重ユニット部を構成し、
請求項1から6のいずれかに記載の絶縁型電力変換器ユニットを複数段設け、それら複数段のユニットを前記第1の直列多重ユニット部と同一に構成して第2の直列多重ユニット部を構成し、
請求項1から6のいずれかに記載の絶縁型電力変換器ユニットを複数段設け、それら複数段のユニットを前記第1の直列多重ユニット部と同一に構成して第3の直列多重ユニット部を構成し、
前記第1の直列多重ユニット部の最終段の絶縁型電力変換器ユニットの第2の電力変換部用外部接続端子を、第1の電源を構成する三相交流電源の第1相電源に接続し、
前記第2の直列多重ユニット部の最終段の絶縁型電力変換器ユニットの第2の電力変換部用外部接続端子を、前記三相交流電源の第2相電源に接続し、
前記第3の直列多重ユニット部の最終段の絶縁型電力変換器ユニットの第2の電力変換部用外部接続端子を、前記三相交流電源の第3相電源に接続し、
前記第1、第2、第3の直列多重ユニット部の各々の第1段の絶縁型電力変換器ユニットの第1の電力変換部用外部接続端子どうしを共通に接続し、前記第1、第2、第3の直列多重ユニット部の各々の第1段の絶縁型電力変換器ユニットの第1のシールド用外部接続端子どうしを共通に接続し、それら2つの共通接続点を共通に接続し、
前記第1の直列多重ユニット部における、前記複数段のうち、互いに隣接する2つの段の絶縁型電力変換器ユニット間の第3の電力変換部用外部接続端子と第4の電力変換部用外部接続端子を接続し、第3のシールド用外部接続端子と第4のシールド用外部接続端子を接続し、それら接続点を共通に接続して第1共通接続点とし、
前記第2の直列多重ユニット部における、前記複数段のうち、互いに隣接する2つの段の絶縁型電力変換器ユニット間の第3の電力変換部用外部接続端子と第4の電力変換部用外部接続端子を接続し、第3のシールド用外部接続端子と第4のシールド用外部接続端子を接続し、それら接続点を共通に接続して第2共通接続点とし、
前記第3の直列多重ユニット部における、前記複数段のうち、互いに隣接する2つの段の絶縁型電力変換器ユニット間の第3の電力変換部用外部接続端子と第4の電力変換部用外部接続端子を接続し、第3のシールド用外部接続端子と第4のシールド用外部接続端子を接続し、それら接続点を共通に接続して第3共通接続点とし、
前記第1の直列多重ユニット部におけるすべての第1共通接続点と、前記第2の直列多重ユニット部におけるすべての第2共通接続点と、前記第3の直列多重ユニット部におけるすべての第3共通接続点とを共通に接続し、
前記第3の直列多重ユニット部における、前記複数段の中央で互いに隣接する2つの絶縁型電力変換器ユニット間の第3共通接続点を、基準電位を備えた第2の電源又は負荷の基準電位点に接続し、
前記第1の直列多重ユニット部における複数段のうち、隣接する絶縁型電力変換器ユニットと共通接続されていない各第3の電力変換部用外部接続端子と、
前記第2の直列多重ユニット部における複数段のうち、隣接する絶縁型電力変換器ユニットと共通接続されていない各第3の電力変換部用外部接続端子と、
前記第3の直列多重ユニット部における複数段のうち、隣接する絶縁型電力変換器ユニットと共通接続されていない各第3の電力変換部用外部接続端子とを、前記第2の電源又は負荷の一端に接続し
前記第1の直列多重ユニット部における複数段のうち、隣接する絶縁型電力変換器ユニットと共通接続されていない各第4の電力変換部用外部接続端子と、
前記第2の直列多重ユニット部における複数段のうち、隣接する絶縁型電力変換器ユニットと共通接続されていない各第4の電力変換部用外部接続端子と、
前記第3の直列多重ユニット部における複数段のうち、隣接する絶縁型電力変換器ユニットと共通接続されていない各第4の電力変換部用外部接続端子とを、前記第2の電源又は負荷の他端に接続したことを特徴とする電力変換器システム。
The insulated power converter unit according to any one of claims 1 to 6 is provided in a plurality of stages.
The first power conversion unit external connection terminal and the second power conversion unit external connection terminal are connected between two isolated power converter units adjacent to each other, and the first shield external connection terminal and the second are connected. The first series multiplex unit unit is configured to connect the external connection terminal for shielding.
The isolated power converter unit according to any one of claims 1 to 6 is provided in a plurality of stages, and the plurality of stages of the units are configured in the same manner as the first series multiplexing unit portion to form a second series multiplexing unit portion. Configure and
The insulated power converter unit according to any one of claims 1 to 6 is provided in a plurality of stages, and the plurality of stages of the units are configured in the same manner as the first series multiplexing unit portion to form a third series multiplexing unit portion. Configure and
The external connection terminal for the second power converter of the isolated power converter unit in the final stage of the first series multiplex unit is connected to the first phase power supply of the three-phase AC power supply constituting the first power supply. ,
The external connection terminal for the second power converter of the isolated power converter unit in the final stage of the second series multiplex unit is connected to the second phase power supply of the three-phase AC power supply.
The external connection terminal for the second power conversion unit of the isolated power converter unit in the final stage of the third series multiplex unit unit is connected to the third phase power supply of the three-phase AC power supply.
The external connection terminals for the first power conversion unit of the first-stage insulated power converter unit of each of the first, second, and third series multiplexing unit units are connected in common, and the first and first The first shield external connection terminals of the first-stage insulated power converter units of each of the second and third series multiplex units are connected in common, and these two common connection points are connected in common.
In the first series multiplexing unit unit, the external connection terminal for the third power conversion unit and the external for the fourth power conversion unit between the isolated power converter units of the two stages adjacent to each other among the plurality of stages. Connect the connection terminals, connect the third shield external connection terminal and the fourth shield external connection terminal, and connect these connection points in common to make the first common connection point.
In the second series multiplexing unit unit, the external connection terminal for the third power conversion unit and the external for the fourth power conversion unit between the isolated power converter units of the two stages adjacent to each other among the plurality of stages. Connect the connection terminals, connect the third shield external connection terminal and the fourth shield external connection terminal, and connect these connection points in common to make the second common connection point.
Out of the plurality of stages in the third series multiplexing unit unit, an external connection terminal for a third power conversion unit and an external connection for a fourth power conversion unit between two stages of isolated power converter units adjacent to each other. Connect the connection terminals, connect the third shield external connection terminal and the fourth shield external connection terminal, and connect these connection points in common to make it the third common connection point.
All first common connection points in the first series multiplex unit section, all second common connection points in the second series multiplex unit section, and all third common points in the third series multiplex unit section. Connect to the connection point in common,
A reference potential of a second power source or load having a reference potential at a third common connection point between two isolated power converter units adjacent to each other at the center of the plurality of stages in the third series multiplexing unit unit. Connect to the point
Of the plurality of stages in the first series multiplexing unit unit, the external connection terminals for each third power converter unit that are not commonly connected to the adjacent isolated power converter unit,
Of the plurality of stages in the second series multiplexing unit unit, the external connection terminals for each third power converter unit that are not commonly connected to the adjacent isolated power converter unit,
Of the plurality of stages in the third series multiplexing unit unit, the external connection terminals for each third power converter unit that are not commonly connected to the adjacent isolated power converter unit are connected to the second power supply or load. Of the plurality of stages in the first series multiplexing unit unit connected to one end, the external connection terminals for each fourth power converter unit that are not commonly connected to the adjacent isolated power converter unit,
Of the plurality of stages in the second series multiplexing unit unit, the external connection terminals for each fourth power converter unit that are not commonly connected to the adjacent isolated power converter unit,
Of the plurality of stages in the third series multiplexing unit unit, the external connection terminals for each fourth power converter unit that are not commonly connected to the adjacent isolated power converter unit are connected to the second power supply or load. A power converter system characterized by being connected to the other end.
JP2019053634A 2019-03-20 2019-03-20 Insulation type power converter unit and power converter system Pending JP2020156236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019053634A JP2020156236A (en) 2019-03-20 2019-03-20 Insulation type power converter unit and power converter system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019053634A JP2020156236A (en) 2019-03-20 2019-03-20 Insulation type power converter unit and power converter system

Publications (1)

Publication Number Publication Date
JP2020156236A true JP2020156236A (en) 2020-09-24

Family

ID=72560121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019053634A Pending JP2020156236A (en) 2019-03-20 2019-03-20 Insulation type power converter unit and power converter system

Country Status (1)

Country Link
JP (1) JP2020156236A (en)

Similar Documents

Publication Publication Date Title
CN110277770B (en) Double safety device for modular memory connection
US8502416B2 (en) Method and circuit arrangement for connecting at least one string of a photovoltaic system to an inverter
KR101052471B1 (en) Neutral wire replacement device in power system and method
JP5268624B2 (en) Instrument current transformer secondary circuit open prevention device
CN104782012A (en) Differential current monitoring device with arc detection
US10903640B2 (en) Electrical link comprising an electrical protection device
JP2021502048A (en) Circuit layout to protect the load from both temporary and transient overvoltages
US11615933B2 (en) Safety apparatus having terminal shield with indication circuit, and circuit interruption apparatus
JP3121137U (en) In-panel copper bar wiring type lightning arrester panel
KR101451389B1 (en) The Switchboard with the device of sensing open state and protecting of a current transformer
KR101490770B1 (en) Ground fault detecting apparatus
US10495695B2 (en) Abnormality detecting device for a system including battery assemblies
KR101049862B1 (en) Distrtibuting board cabinet panel with neutral line replacement
US9698592B2 (en) Device for connecting to a power network and method for protecting such a device
JP2020156236A (en) Insulation type power converter unit and power converter system
KR102386390B1 (en) Electrical equipment for electrical shock protection and fire prevention of insulated electrical equipment
JP2009261039A (en) High-voltage dc power feed ground circuit and high-voltage dc power feed leakage current breaking circuit
JP5646544B2 (en) Apparatus and method for detecting abnormality in electric circuit
JP2013214914A (en) Switch element temperature detection circuit
JP2603528B2 (en) AA neutral line open phase detection point extension unit
US11774918B2 (en) Electric circuit arrangement for standard insulation monitoring with emergency shut-down for an ungrounded power supply system upon detection of a ground fault
WO2023176348A1 (en) Circuit protection device
US8837095B2 (en) DC electrical power system
WO2023038121A1 (en) Electrical discharge detection system
Sattari et al. High reliability electrical distribution system for industrial facilities