JP2020153646A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2020153646A
JP2020153646A JP2019055447A JP2019055447A JP2020153646A JP 2020153646 A JP2020153646 A JP 2020153646A JP 2019055447 A JP2019055447 A JP 2019055447A JP 2019055447 A JP2019055447 A JP 2019055447A JP 2020153646 A JP2020153646 A JP 2020153646A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
indoor heat
air conditioner
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019055447A
Other languages
Japanese (ja)
Inventor
太郎 黒田
Taro Kuroda
太郎 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2019055447A priority Critical patent/JP2020153646A/en
Publication of JP2020153646A publication Critical patent/JP2020153646A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

To provide an air conditioner enabling dehumidification while performing strong heating by a heating cycle without deteriorating air-conditioning capacity other than the dehumidification operation by the heating cycle.SOLUTION: An air conditioner includes a refrigerant circuit (RC) in which a refrigerant circulates and a control section (100) controlling the refrigerant circuit (RC). An indoor heat exchanger (11) includes a refrigerant passage in which a refrigerant flows and a control valve (13) provided in the middle of the refrigerant passage. When a dehumidification operation is performed by a heating cycle, the control section (100) controls the control valve (13) and decompresses the refrigerant by using the control valve (13) so that portions (11a, 11b, 11c, 11e) on the upstream side of the control valve (13) in the indoor heat exchanger (11) serve as condensation regions and a portion (11d) on the downstream side of the control valve (13) in the indoor heat exchanger (11) serves as an evaporation region. The approximately entire evaporation region is provided in a part of windward sides of the condensation regions.SELECTED DRAWING: Figure 1

Description

本開示は、空気調和機に関する。 The present disclosure relates to an air conditioner.

従来、空気調和機としては、暖房サイクルで除湿運転を行うものがある(例えば、特開2003−214723号公報(特許文献1)参照)。 Conventionally, as an air conditioner, there is one that performs a dehumidifying operation in a heating cycle (see, for example, Japanese Patent Application Laid-Open No. 2003-214723 (Patent Document 1)).

上記空気調和機では、室内熱交換器を前面熱交換器と背面熱交換器とに二分割して除湿弁を介して接続し、圧縮機から出た冷媒を前面熱交換器に導いてこの前面熱交換器を凝縮器とし、前面熱交換器の上流側に配置した補助熱交換器および背面熱交換器を蒸発器とする暖房サイクルで除湿運転を行う。 In the above air conditioner, the indoor heat exchanger is divided into two parts, a front heat exchanger and a rear heat exchanger, which are connected via a dehumidifying valve, and the refrigerant discharged from the compressor is guided to the front heat exchanger on the front surface. Dehumidification operation is performed in a heating cycle in which the heat exchanger is used as a condenser and the auxiliary heat exchanger and the rear heat exchanger arranged on the upstream side of the front heat exchanger are used as evaporators.

特開2003−214723号公報Japanese Unexamined Patent Publication No. 2003-214723

上記従来の空気調和機では、冷房運転時および暖房運転時に、気液2相流状態の冷媒が除湿弁を通過し、除湿弁が圧損となるので、冷房運転および暖房運転の能力が低下するという問題がある。
また、上記空気調和機では、室内熱交換器の風下側から風上側に冷媒を流す暖房カウンターパスを、暖房運転時に室内熱交換器の略全域にわたって取ることができないため、暖房能力が低下する。
また、上記空気調和機では、寒い冬場に暖房サイクルにより除湿運転を行うと、膨張弁を全開にしているので、室内熱交換器の蒸発域温度は、室外熱交換器の温度(室外温度以下)近くまで低下してしまい、室内熱交換器の蒸発域が凍結したり低温になり過ぎたりして、暖房能力が低下する。
In the above-mentioned conventional air conditioner, during the cooling operation and the heating operation, the refrigerant in the gas-liquid two-phase flow state passes through the dehumidifying valve, and the dehumidifying valve becomes a pressure loss, so that the cooling operation and the heating operation ability are reduced. There's a problem.
Further, in the above air conditioner, the heating capacity is lowered because the heating counter path for flowing the refrigerant from the leeward side to the leeward side of the indoor heat exchanger cannot be taken over substantially the entire area of the indoor heat exchanger during the heating operation.
Further, in the above air conditioner, when the dehumidifying operation is performed by the heating cycle in the cold winter, the expansion valve is fully opened, so that the temperature in the evaporation region of the indoor heat exchanger is the temperature of the outdoor heat exchanger (below the outdoor temperature). The temperature drops to near, and the evaporation area of the indoor heat exchanger freezes or becomes too cold, reducing the heating capacity.

本開示では、暖房サイクルによる除湿運転以外の空調能力を損なうことなく、暖房サイクルにより強力に暖房しながら除湿できる空気調和機を提案する。 The present disclosure proposes an air conditioner capable of dehumidifying while strongly heating by the heating cycle without impairing the air conditioning capacity other than the dehumidifying operation by the heating cycle.

本開示の空気調和機は、
圧縮機、室外熱交換器、膨張機構および室内熱交換器が環状に接続され、冷媒が循環する冷媒回路と、
上記冷媒回路を制御する制御部と
を備え、
上記室内熱交換器は、冷媒が流れる冷媒経路と、上記冷媒経路の途中に設けられた制御弁とを有し、
上記制御部は、暖房サイクルにより除湿運転をするとき、上記制御弁(13)を制御して、上記室内熱交換器において上記制御弁よりも上流側の部分が凝縮域となる一方、上記室内熱交換器において上記制御弁よりも下流側の部分が蒸発域となるように、上記制御弁により冷媒を減圧し、
上記蒸発域の略全部は、上記室内熱交換器の上記凝縮域の風上側の一部に設けられていることを特徴とする。
The air conditioner of the present disclosure is
A refrigerant circuit in which a compressor, an outdoor heat exchanger, an expansion mechanism and an indoor heat exchanger are connected in a ring shape and a refrigerant circulates.
It is equipped with a control unit that controls the above-mentioned refrigerant circuit.
The indoor heat exchanger has a refrigerant path through which the refrigerant flows and a control valve provided in the middle of the refrigerant path.
The control unit controls the control valve (13) when the dehumidifying operation is performed by the heating cycle, and the portion upstream of the control valve in the indoor heat exchanger becomes a condensing region, while the indoor heat. The refrigerant is depressurized by the control valve so that the portion downstream of the control valve in the exchanger is in the evaporation region.
Almost all of the evaporation region is provided on a part of the windward side of the condensation region of the indoor heat exchanger.

本開示によれば、暖房サイクルによる除湿運転において、室内熱交換器の蒸発域の略全部が、室内熱交換器の凝縮域の風上側の一部に設けられている。このため、暖房サイクルによる除湿運転を行う際の室内熱交換器の蒸発域の熱交換能力は、暖房サイクルによる除湿運転を行う際の室内熱交換器の凝縮域の熱交換能力よりも大幅に低くなっており、冷房運転や暖房運転では、制御弁に湿り度が高い冷媒が流れるので、制御弁による圧損低下を抑えられ、冷房能力や暖房能力の低下を抑える。
また、暖房サイクルによる除湿運転を行う際、室内熱交換器の蒸発域の熱交換能力は室内熱交換器の凝縮域の熱交換能力よりも大幅に低いため、暖房サイクルによる除湿運転時に暖房能力の低下を抑えつつ除湿することができる。
また、室内熱交換器の風下側から風上側に冷媒を流す暖房カウンターパスを、暖房運転時に室内熱交換器の略全域にわたって取ることが可能になる。したがって、暖房サイクルによる除湿運転以外の空調能力を損なうことなく、暖房サイクルにより強力に暖房しながら高い暖房性能を得ることができる。
According to the present disclosure, in the dehumidifying operation by the heating cycle, substantially the entire evaporation area of the indoor heat exchanger is provided on a part of the windward side of the condensation area of the indoor heat exchanger. Therefore, the heat exchange capacity of the evaporation area of the indoor heat exchanger when performing the dehumidifying operation by the heating cycle is significantly lower than the heat exchange capacity of the condensing area of the indoor heat exchanger when performing the dehumidifying operation by the heating cycle. In the cooling operation and the heating operation, a highly moist refrigerant flows through the control valve, so that the decrease in pressure loss due to the control valve can be suppressed, and the decrease in the cooling capacity and the heating capacity can be suppressed.
In addition, when the dehumidifying operation is performed by the heating cycle, the heat exchange capacity of the evaporation area of the indoor heat exchanger is significantly lower than the heat exchange capacity of the condensed area of the indoor heat exchanger. It is possible to dehumidify while suppressing the decrease.
Further, it is possible to take a heating counter path for flowing the refrigerant from the leeward side to the leeward side of the indoor heat exchanger over substantially the entire area of the indoor heat exchanger during the heating operation. Therefore, it is possible to obtain high heating performance while strongly heating by the heating cycle without impairing the air conditioning capacity other than the dehumidifying operation by the heating cycle.

また、本開示の1つの態様に係る空気調和機では、
上記室内熱交換器の上記凝縮域の部分を、上記蒸発域の部分とドレンパンとの間に設けない。
Further, in the air conditioner according to one aspect of the present disclosure,
The portion of the condensation region of the indoor heat exchanger is not provided between the portion of the evaporation region and the drain pan.

室内熱交換器の凝縮域の部分を蒸発域の部分とドレンパンとの間に設けると、暖房サイクルにより除湿運転をするとき、蒸発域の部分で発生した結露水が凝縮域の部分で再蒸発してしまうが、本開示によれば、室内熱交換器の凝縮域の部分を蒸発域の部分とドレンパンとの間に設けないことによって、結露水が再蒸発するのを抑制できる。 If the condensing area of the indoor heat exchanger is provided between the evaporating area and the drain pan, the condensed water generated in the evaporating area will re-evaporate in the condensing area during the dehumidifying operation by the heating cycle. However, according to the present disclosure, it is possible to suppress the re-evaporation of the condensed water by not providing the condensed region portion of the indoor heat exchanger between the evaporation region portion and the drain pan.

また、本開示の1つの態様に係る空気調和機では、
上記室内熱交換器に送風する室内ファンと、
上記室内熱交換器および上記室内ファンを収容すると共に、上記室内ファンからの空気が吹き出す吹出口に有するケーシングと
を備え、
上記室内ファンは、上記ケーシング内に配置され、
上記室内熱交換器は、前面側熱交換部と背面側熱交換部とを有し、
上記室内熱交換器の上記蒸発域の部分は、上記室内熱交換器の上記前面側熱交換部側に設けられている。
Further, in the air conditioner according to one aspect of the present disclosure,
An indoor fan that blows air to the above indoor heat exchanger,
In addition to accommodating the indoor heat exchanger and the indoor fan, the casing provided at the outlet from which the air from the indoor fan blows out is provided.
The indoor fan is arranged in the casing and
The indoor heat exchanger has a front side heat exchange part and a back side heat exchange part.
The portion of the evaporation region of the indoor heat exchanger is provided on the front side heat exchange portion side of the indoor heat exchanger.

本開示によれば、暖房サイクルで除湿運転をするとき、室内熱交換器の前面側熱交換部の蒸発域と凝縮域を通過した若干温度が低い空気が、吹出口の上側から吹き出し、背面側熱交換部の凝縮域を通過した高温の空気が、吹出口の下側から吹き出すので、吹出口の上側から吹き出す若干温度の低い暖気で、吹出口の下側から吹き出した高温の暖気を抑え込むことにより、暖気の舞い上がりを抑制できる。
According to the present disclosure, when the dehumidifying operation is performed in the heating cycle, slightly low temperature air that has passed through the evaporation area and the condensation area of the front side heat exchanger of the indoor heat exchanger is blown out from the upper side of the outlet and the back side. Since the high-temperature air that has passed through the condensing area of the heat exchange section is blown out from the lower side of the outlet, the warm air with a slightly lower temperature blown out from the upper side of the outlet should suppress the high-temperature warm air blown out from the lower side of the outlet. Therefore, the soaring of warm air can be suppressed.

また、本開示の1つの態様に係る空気調和機では、
上記室内熱交換器は、上記蒸発域の部分と上記凝縮域の部分とを熱的に分離する手段を有する。
Further, in the air conditioner according to one aspect of the present disclosure,
The indoor heat exchanger has means for thermally separating the portion of the evaporation region and the portion of the condensation region.

本開示によれば、高温の凝縮域の熱が、低温の蒸発域に伝わるのを抑制できるので、蒸発域が凝縮域により加熱されて除湿量が低下するのを抑制できる。 According to the present disclosure, since the heat of the high temperature condensing region can be suppressed from being transferred to the low temperature evaporation region, it is possible to suppress that the evaporation region is heated by the condensing region and the amount of dehumidification decreases.

また、本開示の1つの態様に係る空気調和機では、
上記制御部は、上記制御弁により冷媒を減圧して暖房サイクルにより除湿運転をするとき、上記膨張機構でも冷媒が減圧されるように、上記膨張機構を制御する。
Further, in the air conditioner according to one aspect of the present disclosure,
The control unit controls the expansion mechanism so that when the refrigerant is depressurized by the control valve and the dehumidifying operation is performed by the heating cycle, the refrigerant is also depressurized by the expansion mechanism.

従来のように膨張機構を全開にすると共に制御弁で減圧して暖房サイクルにより除湿運転をするとき、室内熱交換器の蒸発域の温度は、室外熱交換器と略同じ温度まで低下する。このため、寒い冬場に暖房サイクルにより除湿運転を行うと、室内熱交換器の蒸発域温度は、室外温度以下まで低下してしまい、室内熱交換器の蒸発域が凍結したり、室内熱交換器の蒸発域が低温になり過ぎたりするため、除湿性能や暖房能力が低下してしまうという不具合があった。本開示によれば、暖房サイクルにより除湿運転をする場合、制御弁で減圧した冷媒を膨張機構でも減圧するので、
室内熱交換器の蒸発域温度 ≫ 室外熱交換器の温度
となるように制御できる。したがって、室外環境によらず、暖房能力を確保しつつ、室内熱交換器の蒸発域温度を除湿に適当な温度に調節して、効率よく除湿を行うことができる。
When the expansion mechanism is fully opened and the pressure is reduced by the control valve and the dehumidifying operation is performed by the heating cycle as in the conventional case, the temperature of the evaporation area of the indoor heat exchanger drops to substantially the same temperature as that of the outdoor heat exchanger. For this reason, when the dehumidifying operation is performed by the heating cycle in the cold winter, the temperature in the evaporation area of the indoor heat exchanger drops to below the outdoor temperature, and the evaporation area of the indoor heat exchanger freezes or the indoor heat exchanger freezes. There was a problem that the dehumidifying performance and the heating capacity were lowered because the evaporation area of the heat was too low. According to the present disclosure, when the dehumidifying operation is performed by the heating cycle, the refrigerant decompressed by the control valve is also decompressed by the expansion mechanism.
Evaporation area temperature of indoor heat exchanger ≫ It can be controlled to be the temperature of outdoor heat exchanger. Therefore, regardless of the outdoor environment, it is possible to efficiently perform dehumidification by adjusting the temperature in the evaporation region of the indoor heat exchanger to a temperature suitable for dehumidification while ensuring the heating capacity.

また、本開示の1つの態様に係る空気調和機では、
上記制御弁と上記膨張機構との間を流れる冷媒の温度を検出する冷媒温度センサを備える。
Further, in the air conditioner according to one aspect of the present disclosure,
A refrigerant temperature sensor for detecting the temperature of the refrigerant flowing between the control valve and the expansion mechanism is provided.

本開示によれば、暖房サイクルにより除湿運転をするとき、冷媒温度センサによって検出された冷媒の温度を用いて、制御部により膨張機構を制御して膨張機構でも冷媒を減圧することによって、室内熱交換器の蒸発域の温度を除湿に適した温度に調節できる。 According to the present disclosure, when the dehumidifying operation is performed by the heating cycle, the temperature of the refrigerant detected by the refrigerant temperature sensor is used to control the expansion mechanism by the control unit, and the expansion mechanism also depressurizes the refrigerant to heat the room. The temperature of the evaporation area of the exchanger can be adjusted to a temperature suitable for dehumidification.

本開示の第1実施形態の空気調和機の冷媒回路の回路図である。It is a circuit diagram of the refrigerant circuit of the air conditioner of 1st Embodiment of this disclosure. 上記空気調和機の室内機の断面模式図である。It is sectional drawing of the indoor unit of the said air conditioner. 上記空気調和機の制御ブロック図である。It is a control block diagram of the said air conditioner. 上記空気調和機の室内熱交換器の構成を示す模式図である。It is a schematic diagram which shows the structure of the room heat exchanger of the said air conditioner. 上記空気調和機の冷房除湿運転を説明するための模式図である。It is a schematic diagram for demonstrating the cooling dehumidification operation of the said air conditioner. 上記空気調和機の過絞り除湿運転を説明するための模式図である。It is a schematic diagram for demonstrating the over-throttle dehumidification operation of the said air conditioner. 上記空気調和機の暖房サイクルによる除湿運転を説明するための模式図である。It is a schematic diagram for demonstrating the dehumidifying operation by the heating cycle of the said air conditioner. 上記空気調和機の冷房除湿運転時、過絞り除湿運転時および暖房サイクルによる除湿運転時のモリエル線図である。It is a Moriel diagram at the time of the cooling dehumidification operation of the above-mentioned air conditioner, at the time of over-throttle dehumidification operation, and at the time of dehumidification operation by a heating cycle. 本開示の第2実施形態の空気調和機の冷房除湿運転時、過絞り除湿運転時および暖房サイクルによる除湿運転時のモリエル線図である。It is a Moriel diagram at the time of the cooling dehumidification operation, the over-throttle dehumidification operation, and the dehumidification operation by a heating cycle of the air conditioner of the second embodiment of the present disclosure.

以下、実施形態を説明する。なお、図面において、同一の参照番号は、同一部分または相当部分を表わすものである。 Hereinafter, embodiments will be described. In the drawings, the same reference number represents the same part or the corresponding part.

〔第1実施形態〕
図1は、本開示の第1実施形態の空気調和機の冷媒回路の回路図である。上記空気調和機は、空調対象である室内に設置される室内機1と、室外に設置される室外機2とを備える。
[First Embodiment]
FIG. 1 is a circuit diagram of a refrigerant circuit of the air conditioner according to the first embodiment of the present disclosure. The air conditioner includes an indoor unit 1 installed indoors to be air-conditioned and an outdoor unit 2 installed outdoors.

<室内機1の構成>
上記空気調和機の室内機1は、例えば、室内の壁面に取り付けられる壁掛け式の室内ユニットである。この室内機1は、室内熱交換器11と、この室内熱交換器11に空気を送る室内ファン12と、室内熱交換器11の温度を検出する室内熱交換器温度センサ51と、室内温度を検出する室内温度センサ52と、室内湿度を検出する室内湿度センサ53とを有する。
<Configuration of indoor unit 1>
The indoor unit 1 of the air conditioner is, for example, a wall-mounted indoor unit mounted on a wall surface of the room. The indoor unit 1 measures the indoor heat exchanger 11, the indoor fan 12 that sends air to the indoor heat exchanger 11, the indoor heat exchanger temperature sensor 51 that detects the temperature of the indoor heat exchanger 11, and the indoor temperature. It has an indoor temperature sensor 52 for detecting and an indoor humidity sensor 53 for detecting indoor humidity.

室内熱交換器11は、室内ファン12による空気流に関して、室内ファン12よりも上流側に位置している。この室内熱交換器11は、室内機1の前面側に位置する第1主熱交換部11aと、室内機1の前面側に位置する第2主熱交換部11bと、室内機1の背面側に位置する第3主熱交換部11cと、第1主熱交換部11aの風上側に位置する第1補助熱交換部11dと、第2主熱交換部11bの風上側に位置する第2補助熱交換部11eと、制御弁の一例としての(冷媒減圧手段を備えた)電磁弁13とを有する。電磁弁13は、室内熱交換器11の冷媒が流れる冷媒経路の途中(第1補助熱交換部11dと第2補助熱交換部11eの間)に設けられている。第1主熱交換部11aと第2主熱交換部11bと第1補助熱交換部11dと第2補助熱交換部11eとで前面側熱交換部を構成している。また、第3主熱交換部11cは、背面側熱交換部の一例である。 The indoor heat exchanger 11 is located on the upstream side of the indoor fan 12 with respect to the air flow by the indoor fan 12. The indoor heat exchanger 11 includes a first main heat exchange unit 11a located on the front side of the indoor unit 1, a second main heat exchange unit 11b located on the front side of the indoor unit 1, and a back side of the indoor unit 1. The third main heat exchange section 11c located in, the first auxiliary heat exchange section 11d located on the wind side of the first main heat exchange section 11a, and the second auxiliary located on the wind side of the second main heat exchange section 11b. It has a heat exchange unit 11e and an electromagnetic valve 13 (provided with a refrigerant depressurizing means) as an example of a control valve. The solenoid valve 13 is provided in the middle of the refrigerant path through which the refrigerant of the indoor heat exchanger 11 flows (between the first auxiliary heat exchange section 11d and the second auxiliary heat exchange section 11e). The first main heat exchange unit 11a, the second main heat exchange unit 11b, the first auxiliary heat exchange unit 11d, and the second auxiliary heat exchange unit 11e form a front side heat exchange unit. The third main heat exchange unit 11c is an example of the back surface side heat exchange unit.

第1補助熱交換部11dは、2列熱交など複数列の熱交換部でもよいが、図4に示すように、1列の熱交換部を使用すれば、同等の熱交換能力を有した複数列の熱交換器と比べて、より多くの空気が通過するように構成できるので、暖房サイクルにより除湿運転をする場合、蒸発能力が小さくて暖房能力への影響が小さい第1補助熱交換部11dを使用して、高い除湿性能を得ることができる。なお、室内熱交換器11の他の部分については、あまり容積比は必要ないが、第2補助熱交換部11eも1列の熱交換部であることが望ましい。 The first auxiliary heat exchange unit 11d may be a multi-row heat exchange unit such as a two-row heat exchange unit, but as shown in FIG. 4, if a single-row heat exchange unit is used, it has the same heat exchange capacity. Since it can be configured to allow more air to pass through compared to multiple rows of heat exchangers, the first auxiliary heat exchanger has a small evaporation capacity and a small effect on the heating capacity when performing dehumidifying operation by a heating cycle. High dehumidifying performance can be obtained by using 11d. Although the volume ratio is not so required for the other parts of the indoor heat exchanger 11, it is desirable that the second auxiliary heat exchange unit 11e is also a single row heat exchange unit.

第1補助熱交換部11dの一端に冷媒配管L4(連絡配管)の一端が接続されている。第1補助熱交換部11dの一端と第2補助熱交換部11eの一端とが、冷媒配管L21,電磁弁13および冷媒配管L22を介して接続されている。 One end of the refrigerant pipe L4 (communication pipe) is connected to one end of the first auxiliary heat exchange unit 11d. One end of the first auxiliary heat exchange unit 11d and one end of the second auxiliary heat exchange unit 11e are connected via a refrigerant pipe L21, a solenoid valve 13, and a refrigerant pipe L22.

第1主熱交換部11aと第2主熱交換部11bと第3主熱交換部11cは、並列接続されている。並列接続された第1主熱交換部11aと第2主熱交換部11bと第3主熱交換部11cの一端に、第2補助熱交換部11eの他端が冷媒配管L23を介して接続されている。一方、並列接続された第1主熱交換部11aと第2主熱交換部11bと第3主熱交換部11cの他端に、冷媒配管L5(連絡配管)の一端が接続されている。 The first main heat exchange unit 11a, the second main heat exchange unit 11b, and the third main heat exchange unit 11c are connected in parallel. The other end of the second auxiliary heat exchange unit 11e is connected to one end of the first main heat exchange unit 11a, the second main heat exchange unit 11b, and the third main heat exchange unit 11c connected in parallel via the refrigerant pipe L23. ing. On the other hand, one end of the refrigerant pipe L5 (communication pipe) is connected to the other ends of the first main heat exchange unit 11a, the second main heat exchange unit 11b, and the third main heat exchange unit 11c that are connected in parallel.

電磁弁13は、暖房サイクルによる除湿運転時に減圧絞りとして作用する。冷房運転時や暖房運転時は、電磁弁13を全開にして減圧絞りとして作用しないように制御する。暖房サイクルにより除湿運転を行うときは、暖房サイクルでの運転中に、電磁弁13を閉じて減圧絞りとして作用するように制御することで、電磁弁13の下流側が蒸発域になるように制御する。なお、電磁弁13のかわりに電動膨張弁を使用してもよいが、電磁弁の方が全開時の開度を大きくとり易く、全開時の圧損を小さくできるので、冷房運転時や暖房運転時の性能低下を抑えることができる。 The solenoid valve 13 acts as a decompression throttle during the dehumidifying operation by the heating cycle. During the cooling operation and the heating operation, the solenoid valve 13 is fully opened and controlled so as not to act as a pressure reducing throttle. When the dehumidifying operation is performed by the heating cycle, the solenoid valve 13 is closed and controlled to act as a decompression throttle during the operation in the heating cycle, so that the downstream side of the solenoid valve 13 is controlled to be in the evaporation region. .. An electric expansion valve may be used instead of the solenoid valve 13, but the solenoid valve is easier to take a larger opening when fully opened and can reduce the pressure loss when fully opened, so that during cooling operation or heating operation. Performance degradation can be suppressed.

室内ファン12としては、例えば、クロスフローファンが採用される。このクロスフローファンは、室内熱交換器11で温度などが調整された空気を室内に向けて吹き出す。 As the indoor fan 12, for example, a cross flow fan is adopted. This cross-flow fan blows out air whose temperature and the like are adjusted by the indoor heat exchanger 11 toward the room.

<室外機2の構成>
上記空気調和機の室外機2は、圧縮機21と、四路切換弁22と、室外熱交換器23と、膨張機構の一例としての膨張弁24と、アキュムレータ25と、室外熱交換器23に空気を送る室外ファン26とを有する。
<Structure of outdoor unit 2>
The outdoor unit 2 of the air conditioner includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an expansion valve 24 as an example of an expansion mechanism, an accumulator 25, and an outdoor heat exchanger 23. It has an outdoor fan 26 that sends air.

上記圧縮機21の吐出側が冷媒配管L1を介して四路切換弁22の第1ポート22aに接続されている。四路切換弁22の第2ポート22bが冷媒配管L2を介して室外熱交換器23の一端に接続されている。室外熱交換器23の他端が冷媒配管L3を介して膨張弁24の一端に接続され、膨張弁24の他端が冷媒配管L4(連絡配管)の一端に接続されている。冷媒配管L5(連絡配管)の一端が四路切換弁22の第3ポート22cが接続されている。四路切換弁22の第4ポート22dが、冷媒配管L6,アキュムレータ25,冷媒配管L7を介して圧縮機21の吸入側に接続されている。 The discharge side of the compressor 21 is connected to the first port 22a of the four-way switching valve 22 via the refrigerant pipe L1. The second port 22b of the four-way switching valve 22 is connected to one end of the outdoor heat exchanger 23 via the refrigerant pipe L2. The other end of the outdoor heat exchanger 23 is connected to one end of the expansion valve 24 via the refrigerant pipe L3, and the other end of the expansion valve 24 is connected to one end of the refrigerant pipe L4 (communication pipe). One end of the refrigerant pipe L5 (communication pipe) is connected to the third port 22c of the four-way switching valve 22. The fourth port 22d of the four-way switching valve 22 is connected to the suction side of the compressor 21 via the refrigerant pipe L6, the accumulator 25, and the refrigerant pipe L7.

さらに、室外機2は、室外熱交換器23の温度を検出する室外熱交換器温度センサ54と、外気温度を検出する外気温度センサ55と、膨張弁24と電磁弁13との間の冷媒温度を検知する冷媒温度センサ56とを有する。この冷媒温度センサ56は、暖房サイクルによる除湿運転時に電磁弁13で減圧された冷媒温度を検出する。なお、冷媒温度センサ56の設置位置は室外機2に限られることなく室内機1側に設けてもよい。 Further, the outdoor unit 2 has an outdoor heat exchanger temperature sensor 54 that detects the temperature of the outdoor heat exchanger 23, an outside air temperature sensor 55 that detects the outside air temperature, and a refrigerant temperature between the expansion valve 24 and the electromagnetic valve 13. It has a refrigerant temperature sensor 56 for detecting the above. The refrigerant temperature sensor 56 detects the refrigerant temperature decompressed by the solenoid valve 13 during the dehumidifying operation by the heating cycle. The installation position of the refrigerant temperature sensor 56 is not limited to the outdoor unit 2, but may be provided on the indoor unit 1 side.

室外熱交換器23は、室外ファン26による空気流に関して、室外ファン26よりも上流側に位置している。室外熱交換器23内を流れる冷媒は、室外ファン26により吸い込まれる空気と熱交換する。 The outdoor heat exchanger 23 is located on the upstream side of the outdoor fan 26 with respect to the air flow by the outdoor fan 26. The refrigerant flowing in the outdoor heat exchanger 23 exchanges heat with the air sucked by the outdoor fan 26.

膨張弁24は、開度を調整可能な例えば電動弁であって、制御装置100(図3に示す)からの信号に応じて開度が変化する。 The expansion valve 24 is, for example, an electric valve whose opening degree can be adjusted, and the opening degree changes according to a signal from the control device 100 (shown in FIG. 3).

<冷媒回路RCの構成>
また、上記空気調和機の冷媒回路RCは、室内熱交換器11、圧縮機21、四路切換弁22、室外熱交換器23、膨張弁24、アキュムレータ25および冷媒配管L1〜L7から成っている。これにより、環状の冷媒回路RCが構成されている。この冷媒回路RCにおいて、圧縮機21を駆動時することにより冷媒が循環する。
<Construction of refrigerant circuit RC>
Further, the refrigerant circuit RC of the air conditioner includes an indoor heat exchanger 11, a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an expansion valve 24, an accumulator 25, and refrigerant pipes L1 to L7. .. As a result, the annular refrigerant circuit RC is configured. In this refrigerant circuit RC, the refrigerant circulates by driving the compressor 21.

また、上記空気調和機は、図示しないリモートコントローラ(以下、「リモコン」と言う)を備える。ユーザーは、リモコンを操作して、自動運転、冷房運転、暖房運転、除湿運転などを開始させたり、停止させたりすることができる。 Further, the air conditioner includes a remote controller (hereinafter, referred to as "remote controller") (hereinafter, not shown). The user can operate the remote controller to start or stop automatic operation, cooling operation, heating operation, dehumidifying operation, and the like.

図2は、上記空気調和機の室内機1の断面模式図である。図2に示すように、室内機1は、室内熱交換器11が風通路内に配置されたケーシング10と、ケーシング10の風通路内かつ室内熱交換器11よりも下流側に配置された室内ファン12とを有する。ケーシング10は、室内熱交換器11および室内ファン12を収容している。ケーシング10の下側に吹出口10aを設け、ケーシング10の吹出口10aに水平フラップ31を上下方向に回動可能に設けている。また、ケーシング10の風通路は、図2において太い実線の矢印で示されている空気流の通路である。また、図2において16はドレンパンである。 FIG. 2 is a schematic cross-sectional view of the indoor unit 1 of the air conditioner. As shown in FIG. 2, the indoor unit 1 has a casing 10 in which the indoor heat exchanger 11 is arranged in the air passage, and an indoor unit in which the indoor heat exchanger 11 is arranged in the air passage of the casing 10 and downstream of the indoor heat exchanger 11. It has a fan 12. The casing 10 houses the indoor heat exchanger 11 and the indoor fan 12. An outlet 10a is provided on the lower side of the casing 10, and a horizontal flap 31 is provided on the outlet 10a of the casing 10 so as to be rotatable in the vertical direction. The air passage of the casing 10 is an air flow passage indicated by a thick solid arrow in FIG. Further, in FIG. 2, 16 is a drain pan.

図3は、上記空気調和機の制御ブロック図である。 FIG. 3 is a control block diagram of the air conditioner.

上記空気調和機は、図3に示すように、冷媒回路RC(図1に示す)を制御する制御部の一例としての制御装置100を備える。制御装置100は、マイクロコンピュータおよび入出力回路などからなる。この制御装置100は、室内熱交換器温度センサ51、室内温度センサ52、室内湿度センサ53、室外熱交換器温度センサ54、外気温度センサ55、冷媒温度センサ56などからの信号に基づいて、圧縮機21、四路切換弁22、膨張弁24、室外ファン26、室内ファン12、電磁弁13および水平フラップ用駆動モータ32などを制御する。 As shown in FIG. 3, the air conditioner includes a control device 100 as an example of a control unit that controls a refrigerant circuit RC (shown in FIG. 1). The control device 100 includes a microcomputer, an input / output circuit, and the like. The control device 100 compresses based on signals from the indoor heat exchanger temperature sensor 51, the indoor temperature sensor 52, the indoor humidity sensor 53, the outdoor heat exchanger temperature sensor 54, the outside air temperature sensor 55, the refrigerant temperature sensor 56, and the like. It controls the machine 21, the four-way switching valve 22, the expansion valve 24, the outdoor fan 26, the indoor fan 12, the electromagnetic valve 13, the horizontal flap drive motor 32, and the like.

また、制御装置100は、室内熱交換器11の実質的に全部が蒸発域となる冷房除湿運転を行う第1運転制御部100aと、第1,第2主熱交換部11a,11bの風上側に配置した第1,第2補助熱交換部11d,11eの上流側の一部だけを蒸発域にする一方、第1,第2補助熱交換部11d,11eの蒸発域の下流側および第1,第2,第3主熱交換部11a,11b,11cを過熱域にし、蒸発域の範囲を負荷に応じて変化するように圧縮機21および膨張弁24を制御する過絞り除湿運転を行う第2運転制御部100bと、第1主熱交換部11aの風上側に配置した第1補助熱交換部11dだけを蒸発域にする一方、第2補助熱交換部11eおよび第1,第2,第3主熱交換部11a,11b,11cを凝縮域にする暖房サイクルによる除湿運転を行う第3運転制御部100cとを有する。この第1運転制御部100a、第2運転制御部100bおよび第3運転制御部100cは、それぞれ、ソフトウェアにより構成されている。 Further, the control device 100 includes a first operation control unit 100a that performs a cooling and dehumidifying operation in which substantially the entire indoor heat exchanger 11 is in an evaporation region, and windsides of the first and second main heat exchange units 11a and 11b. Only a part of the upstream side of the first and second auxiliary heat exchange units 11d and 11e arranged in is set as the evaporation area, while the downstream side and the first of the evaporation area of the first and second auxiliary heat exchange units 11d and 11e. The second and third main heat exchange units 11a, 11b, 11c are set to the superheated region, and the over-throttle dehumidifying operation is performed by controlling the compressor 21 and the expansion valve 24 so that the range of the evaporation region changes according to the load. 2 Only the operation control unit 100b and the first auxiliary heat exchange unit 11d arranged on the wind side of the first main heat exchange unit 11a are set as the evaporation region, while the second auxiliary heat exchange unit 11e and the first, second, and first It has a third operation control unit 100c that performs a dehumidifying operation by a heating cycle in which the main heat exchange units 11a, 11b, and 11c are set as a condensation region. The first operation control unit 100a, the second operation control unit 100b, and the third operation control unit 100c are each composed of software.

上記冷房除湿運転、過絞り除湿運転、暖房サイクルによる除湿運転は、室内熱交換器11の蒸発域の面積が異なる除湿モードの運転である。なお、冷房除湿運転および過絞り除湿運転は、冷房サイクルで行われる一方、暖房サイクルによる除湿運転は、暖房サイクルで行われる。 The cooling dehumidifying operation, the over-squeezing dehumidifying operation, and the dehumidifying operation by the heating cycle are operations in the dehumidifying mode in which the area of the evaporation area of the indoor heat exchanger 11 is different. The cooling dehumidifying operation and the over-squeezing dehumidifying operation are performed in the cooling cycle, while the dehumidifying operation by the heating cycle is performed in the heating cycle.

なお、制御装置100は、室内機1に備えられた室内制御部(図示せず)と室外機2に備えられた室外制御部(図示せず)とで構成されている。制御装置100の室内制御部と室外制御部とは、通信線(図示せず)を介して互いに通信を行って協調動作することにより、空気調和機が動作する。 The control device 100 is composed of an indoor control unit (not shown) provided in the indoor unit 1 and an outdoor control unit (not shown) provided in the outdoor unit 2. The indoor control unit and the outdoor control unit of the control device 100 communicate with each other via a communication line (not shown) and cooperate with each other to operate the air conditioner.

図4は、上記空気調和機の室内熱交換器11の構成を示している。図4において、14,15は冷媒分流器などの分岐部である。 FIG. 4 shows the configuration of the indoor heat exchanger 11 of the air conditioner. In FIG. 4, reference numerals 14 and 15 are branch portions of a refrigerant shunt or the like.

冷房除湿運転および過絞り除湿運転では、第1補助熱交換部11dの下端から冷媒が流入して分岐部14から流出する。 In the cooling dehumidification operation and the over-squeeze dehumidification operation, the refrigerant flows in from the lower end of the first auxiliary heat exchange section 11d and flows out from the branch section 14.

また、暖房サイクルによる除湿運転では、分岐部14から冷媒が流入して第1補助熱交換部11dの下端から流出する。図4に示す室内熱交換器11のパス構成では、暖房運転において、室内熱交換器の風下側から風上側に冷媒を流す暖房カウンターパスを室内熱交換器の全域にわたって取れるので、高い暖房性能を得ることができる。 Further, in the dehumidifying operation by the heating cycle, the refrigerant flows in from the branch portion 14 and flows out from the lower end of the first auxiliary heat exchange portion 11d. In the path configuration of the indoor heat exchanger 11 shown in FIG. 4, in the heating operation, a heating counter path for flowing the refrigerant from the leeward side to the windy side of the indoor heat exchanger can be taken over the entire area of the indoor heat exchanger, so that high heating performance can be achieved. Obtainable.

上記冷房除湿運転、過絞り除湿運転および暖房サイクルによる除湿運転は、リモコンの除湿運転のボタンの押下に応じて開始するようになっている。 The cooling dehumidifying operation, the over-squeezing dehumidifying operation, and the dehumidifying operation by the heating cycle are started in response to the pressing of the dehumidifying operation button on the remote controller.

[冷房除湿運転]
冷房除湿運転は、図1に示すように、四路切換弁22を実線の切換え位置に切り換えると共に、圧縮機21を起動することで、冷房サイクルで運転が開始される。この冷房除湿運転中、圧縮機21から吐出された高温高圧の冷媒が四路切換弁22を介して室外熱交換器23に流入する。そして、室外熱交換器23で凝縮した冷媒は、膨張弁24で減圧された後、室内熱交換器11の第1補助熱交換部11dと第2補助熱交換部11eの順で流入する。次に、並列接続された第1主熱交換部11aと第2主熱交換部11bと第3主熱交換部11cに流入し、室内熱交換器11で蒸発した冷媒が四路切換弁22およびアキュムレータ25を介して圧縮機21の吸入側に戻る。
[Cooling and dehumidifying operation]
In the cooling / dehumidifying operation, as shown in FIG. 1, the operation is started in the cooling cycle by switching the four-way switching valve 22 to the switching position of the solid line and activating the compressor 21. During this cooling / dehumidifying operation, the high-temperature and high-pressure refrigerant discharged from the compressor 21 flows into the outdoor heat exchanger 23 via the four-way switching valve 22. Then, the refrigerant condensed by the outdoor heat exchanger 23 is decompressed by the expansion valve 24, and then flows into the first auxiliary heat exchange section 11d and the second auxiliary heat exchange section 11e of the indoor heat exchanger 11 in this order. Next, the refrigerant that flows into the first main heat exchange section 11a, the second main heat exchange section 11b, and the third main heat exchange section 11c that are connected in parallel and evaporates in the indoor heat exchanger 11 flows into the four-way switching valve 22 and It returns to the suction side of the compressor 21 via the accumulator 25.

このように、冷媒が冷媒回路RCを循環するとき、第1運転制御部100aが、圧縮機21の周波数と膨張弁24の開度とを調整すると共に、電磁弁13を全開にすることで、図5に示すように、室内熱交換器11の全部を実質的に蒸発域(図5に示す斜線領域)とする。これにより、冷房除湿運転は、室内温度を変化させるための能力である顕熱能力が高くなる。 In this way, when the refrigerant circulates in the refrigerant circuit RC, the first operation control unit 100a adjusts the frequency of the compressor 21 and the opening degree of the expansion valve 24, and opens the solenoid valve 13 fully. As shown in FIG. 5, substantially the entire indoor heat exchanger 11 is set as an evaporation region (hatched region shown in FIG. 5). As a result, the cooling / dehumidifying operation has a high sensible heat capacity, which is the ability to change the room temperature.

ここで、室内熱交換器11の全部を実質的に蒸発域にするとは、室内熱交換器11の全部を蒸発域にするときだけでなく、所定条件下で室内熱交換器11において一部を除いた部分だけを蒸発域にするときも含む。この一部(例えば、室内熱交換器11の全容積の1/3以下の部分)だけが蒸発域とならない所定条件としては、例えば、冷房(顕熱)負荷が小さくなり圧縮機21の周波数が低下するなどによって、室内熱交換器11の冷媒出口近傍の部分が過熱域となるときなどがある。 Here, the fact that the entire indoor heat exchanger 11 is substantially set to the evaporation region is not only when the entire indoor heat exchanger 11 is set to the evaporation region, but also a part of the indoor heat exchanger 11 is set to the evaporation region under predetermined conditions. It also includes the case where only the excluded part is set as the evaporation area. As a predetermined condition that only a part of this (for example, a part of 1/3 or less of the total volume of the indoor heat exchanger 11) does not become an evaporation region, for example, the cooling (sensible heat) load becomes small and the frequency of the compressor 21 becomes high. The portion of the indoor heat exchanger 11 in the vicinity of the refrigerant outlet may become an overheated region due to a decrease or the like.

[過絞り除湿運転]
過絞り除湿運転は、冷房除湿運転のときと同じ方向に冷媒を流す。このとき、第2運転制御部100bが、圧縮機21の周波数を冷房除湿運転時よりも低く、膨張弁24の開度を冷房除湿運転時よりも小さく調整すると共に、電磁弁13を全開にすることで、室内熱交換器11の上流側の一部を蒸発域とする一方、室内熱交換器11の残りの部分を過熱域とする。
[Over-squeezing dehumidifying operation]
In the over-throttle dehumidification operation, the refrigerant flows in the same direction as in the cooling dehumidification operation. At this time, the second operation control unit 100b adjusts the frequency of the compressor 21 to be lower than that during the cooling / dehumidifying operation, adjusts the opening degree of the expansion valve 24 to be smaller than that during the cooling / dehumidifying operation, and fully opens the electromagnetic valve 13. As a result, a part of the upstream side of the indoor heat exchanger 11 is set as an evaporation area, while the remaining part of the indoor heat exchanger 11 is set as an overheating area.

例えば、第2運転制御部100bは、図6に示すように、第1補助熱交換部11dと第2補助熱交換部11eとを蒸発域(斜線のハッチングを付した領域)を蒸発域にする一方、第1主熱交換部11aと第2主熱交換部11bと第3主熱交換部11cとを過熱域(点のハッチングを付した領域)にする。これにより、過絞り除湿運転は、冷房除湿運転よりも顕熱能力が低くなるので、室内の熱負荷が高くも低くもないとき、室温の低下を抑制しつつ、室内の除湿を行える。なお、図6では、第2補助熱交換部11eおよび第1補助熱交換部11dの全部が蒸発域となるように描かれているが、周波数を制御することで第2補助熱交換部11eおよび第1補助熱交換部11dの冷媒流れ方向に対して上流側の一部だけを蒸発域にすることも可能である。すなわち、上記蒸発域は、容積を変更することが可能な可変領域である。 For example, as shown in FIG. 6, the second operation control unit 100b sets the first auxiliary heat exchange unit 11d and the second auxiliary heat exchange unit 11e as an evaporation region (a region with shaded hatching). On the other hand, the first main heat exchange unit 11a, the second main heat exchange unit 11b, and the third main heat exchange unit 11c are set as an overheating region (a region with point hatching). As a result, the over-squeezing dehumidifying operation has a lower sensible heat capacity than the cooling dehumidifying operation. Therefore, when the heat load in the room is neither high nor low, it is possible to dehumidify the room while suppressing a decrease in room temperature. In FIG. 6, the second auxiliary heat exchange unit 11e and the first auxiliary heat exchange unit 11d are all drawn so as to be in the evaporation region, but the second auxiliary heat exchange unit 11e and the second auxiliary heat exchange unit 11e are drawn by controlling the frequency. It is also possible to set only a part of the upstream side of the first auxiliary heat exchange unit 11d in the refrigerant flow direction as an evaporation region. That is, the evaporation region is a variable region whose volume can be changed.

また、上記圧縮機21および膨張弁24は、過絞り除湿運転中、室内熱交換器11の蒸発域の容積が環境負荷に応じて変化するように制御される。 Further, the compressor 21 and the expansion valve 24 are controlled so that the volume of the evaporation area of the indoor heat exchanger 11 changes according to the environmental load during the over-throttle dehumidification operation.

第2運転制御部100bの制御は、負荷に応じて圧縮機21の周波数を調整することで室内熱交換器11の蒸発域の大きさを制御することができる。膨張弁24の開度は、冷媒温度センサ56で検知した室内熱交換器11の蒸発域の温度が除湿に好適な温度になるように制御する。 The control of the second operation control unit 100b can control the size of the evaporation region of the indoor heat exchanger 11 by adjusting the frequency of the compressor 21 according to the load. The opening degree of the expansion valve 24 is controlled so that the temperature in the evaporation region of the indoor heat exchanger 11 detected by the refrigerant temperature sensor 56 becomes a temperature suitable for dehumidification.

[暖房サイクルによる除湿運転]
暖房サイクルによる除湿運転は、図1に示すように、四路切換弁22を点線の切換え位置に切り換えると共に、圧縮機21を起動することで、暖房サイクルで運転が開始される。このとき、第3運転制御部100cが、圧縮機21の周波数を調整すると共に、膨張弁24を全開にすると共に、電磁弁13を閉じることで、室内熱交換器11において電磁弁13よりも上流側の第2補助熱交換部11e,第3主熱交換部11c,第2主熱交換部11b,第1主熱交換部11aを凝縮域にする一方、室内熱交換器11において電磁弁13より下流側の第1補助熱交換部11dを蒸発域とする。
[Dehumidifying operation by heating cycle]
In the dehumidifying operation by the heating cycle, as shown in FIG. 1, the operation is started in the heating cycle by switching the four-way switching valve 22 to the switching position of the dotted line and activating the compressor 21. At this time, the third operation control unit 100c adjusts the frequency of the compressor 21, opens the expansion valve 24 fully, and closes the electromagnetic valve 13, so that the indoor heat exchanger 11 is upstream from the electromagnetic valve 13. The second auxiliary heat exchange section 11e, the third main heat exchange section 11c, the second main heat exchange section 11b, and the first main heat exchange section 11a on the side are set to the condensation region, while the indoor heat exchanger 11 is connected to the electromagnetic valve 13. The first auxiliary heat exchange section 11d on the downstream side is set as the evaporation region.

例えば、第3運転制御部100cは、図7に示すように、第1〜第3主熱交換部11a,11b,11cと第2補助熱交換部11eを凝縮域(図7に示す格子のハッチングを付した領域)にする一方、第1補助熱交換部11dを蒸発域(図7に示す斜線領域)にする。これにより、暖房サイクルによる除湿運転は、高い暖房能力を保ちつつ、室内の除湿を行える。 For example, as shown in FIG. 7, the third operation control unit 100c condenses the first to third main heat exchange units 11a, 11b, 11c and the second auxiliary heat exchange unit 11e in a condensing region (hatching of the lattice shown in FIG. 7). The first auxiliary heat exchange section 11d is set to the evaporation area (the shaded area shown in FIG. 7). As a result, the dehumidifying operation by the heating cycle can dehumidify the room while maintaining a high heating capacity.

このように、制御装置100は、暖房サイクルによる除湿運転時、室内熱交換器11において電磁弁13よりも上流側の部分が凝縮域となる一方、室内熱交換器11において電磁弁13よりも下流側の部分が蒸発域となるように、冷媒回路RCを制御する。そうして、室内熱交換器11の風上側の一部に蒸発域が設けられる。 As described above, in the control device 100, during the dehumidifying operation by the heating cycle, the portion upstream of the solenoid valve 13 in the indoor heat exchanger 11 becomes a condensed region, while the portion downstream of the solenoid valve 13 in the indoor heat exchanger 11 The refrigerant circuit RC is controlled so that the side portion is in the evaporation region. Then, an evaporation region is provided in a part of the windward side of the indoor heat exchanger 11.

図8は、上記空気調和機の冷房除湿運転時、過絞り除湿運転時および暖房サイクルによる除湿運転時のモリエル線図である。図8において、縦軸は圧力[MPa]を表し、横軸はエンタルピー[kJ/kg]を表す。 FIG. 8 is a Moriel diagram of the air conditioner during the cooling dehumidifying operation, the over-throttle dehumidifying operation, and the dehumidifying operation by the heating cycle. In FIG. 8, the vertical axis represents pressure [MPa] and the horizontal axis represents enthalpy [kJ / kg].

図8に示す曲線の内側が湿り蒸気であり、曲線で囲まれた領域の左側が過冷却液であり、曲線で囲まれた領域の右側が過熱蒸気である。ここで、図8に示す暖房サイクルによる除湿運転では、DからAが圧縮行程、AからBが凝縮行程、BからCが膨張行程、CからDが蒸発行程である。 The inside of the curve shown in FIG. 8 is wet steam, the left side of the region surrounded by the curve is supercooling liquid, and the right side of the region surrounded by the curve is superheated steam. Here, in the dehumidifying operation by the heating cycle shown in FIG. 8, D to A are compression strokes, A to B are condensation strokes, B to C are expansion strokes, and C to D are evaporation strokes.

また、凝縮行程のA−B間において、曲線上の点P1は露点であり、曲線上の点P2は沸点である。凝縮行程のBでは、過冷却液になった状態である。 Further, between AB of the condensation stroke, the point P1 on the curve is the dew point, and the point P2 on the curve is the boiling point. In the condensation process B, the supercooled liquid is used.

上記構成の空気調和機によれば、暖房サイクルによる除湿運転において、室内熱交換器11の蒸発域の略全部が、室内熱交換器11の凝縮域の風上側の一部に設けられている。このため、暖房サイクルによる除湿運転を行う際の室内熱交換器11の蒸発域の熱交換能力は、暖房サイクルによる除湿運転を行う際の室内熱交換器11の凝縮域の熱交換能力よりも大幅に低くなっており、冷房運転や暖房運転では、電磁弁13(制御弁)に湿り度が高い冷媒が流れるので、電磁弁13による圧損低下を抑えられ、冷房能力や暖房能力の低下を抑える。
また、暖房サイクルによる除湿運転を行う際、室内熱交換器11の蒸発域の熱交換能力は室内熱交換器11の凝縮域の熱交換能力よりも大幅に低くいが、室内熱交換器11の蒸発域を通過する風量と室内熱交換器11の凝縮域を通過する風量との比は、室内熱交換器11の蒸発域の熱交換能力と室内熱交換器11の凝縮域の熱交換能力との比よりも大幅大きい。このため、暖房サイクルにより除湿運転する際の暖房能力の低下を抑えつつ、高い除湿量を得ることができる。
また、室内熱交換器11の風下側から風上側に冷媒を流す暖房カウンターパスを、暖房運転時に室内熱交換器11の略全域にわたって取ることが可能になる。したがって、暖房サイクルによる除湿運転以外の空調能力を損なうことなく、暖房サイクルにより強力に暖房しながら高い除湿性能を得ることができる。
According to the air conditioner having the above configuration, in the dehumidifying operation by the heating cycle, almost the entire evaporation area of the indoor heat exchanger 11 is provided on a part of the windward side of the condensation area of the indoor heat exchanger 11. Therefore, the heat exchange capacity of the evaporation area of the indoor heat exchanger 11 when performing the dehumidifying operation by the heating cycle is significantly larger than the heat exchange capacity of the condensing area of the indoor heat exchanger 11 when performing the dehumidifying operation by the heating cycle. In the cooling operation and the heating operation, a highly moist refrigerant flows through the electromagnetic valve 13 (control valve), so that the decrease in pressure loss due to the electromagnetic valve 13 can be suppressed, and the decrease in the cooling capacity and the heating capacity can be suppressed.
Further, when performing the dehumidifying operation by the heating cycle, the heat exchange capacity of the evaporation area of the indoor heat exchanger 11 is significantly lower than the heat exchange capacity of the condensation area of the indoor heat exchanger 11, but the indoor heat exchanger 11 has a heat exchange capacity. The ratio of the air volume passing through the evaporation region to the air volume passing through the condensation region of the indoor heat exchanger 11 is the heat exchange capacity of the evaporation region of the indoor heat exchanger 11 and the heat exchange capacity of the condensation region of the indoor heat exchanger 11. Greater than the ratio of. Therefore, a high dehumidifying amount can be obtained while suppressing a decrease in the heating capacity during the dehumidifying operation by the heating cycle.
Further, it is possible to take a heating counter path for flowing the refrigerant from the leeward side to the leeward side of the indoor heat exchanger 11 over substantially the entire area of the indoor heat exchanger 11 during the heating operation. Therefore, it is possible to obtain high dehumidifying performance while strongly heating by the heating cycle without impairing the air conditioning capacity other than the dehumidifying operation by the heating cycle.

これにより、この第1実施形態の空気調和機は、真冬でも強力に暖房しながら除湿を行うことができ、冬場に室内に洗濯物を干しても、室内が湿気ることなく早く乾かすことができる。また、冷房時から暖房時までの熱負荷の全てのエリアで除湿が可能になる。 As a result, the air conditioner of the first embodiment can perform dehumidification while strongly heating even in the middle of winter, and even if the laundry is dried indoors in winter, the indoors can be dried quickly without getting damp. .. In addition, dehumidification is possible in all areas of the heat load from cooling to heating.

また、室内熱交換器11の凝縮域の部分を、蒸発域の部分とドレンパン16との間に設けると、暖房サイクルによる除湿運転時、蒸発域の結露水が凝縮域で再蒸発してしまうが、第1実施形態では、暖房サイクルによる除湿運転時に室内熱交換器11の凝縮域の部分(第1〜第3主熱交換部11a,11b,11cと第2補助熱交換部11e)を、蒸発域の部分(第1補助熱交換部11d)とドレンパン16との間に設けないので、結露水が再蒸発して室内に戻る湿度戻りを抑制できる。 Further, if the condensing region portion of the indoor heat exchanger 11 is provided between the evaporating region portion and the drain pan 16, the condensed water in the evaporating region re-evaporates in the condensing region during the dehumidifying operation by the heating cycle. In the first embodiment, the condensed region portions (first to third main heat exchange portions 11a, 11b, 11c and second auxiliary heat exchange portions 11e) of the indoor heat exchanger 11 are evaporated during the dehumidifying operation by the heating cycle. Since it is not provided between the region portion (first auxiliary heat exchange section 11d) and the drain pan 16, it is possible to suppress the return of humidity that the condensed water re-evaporates and returns to the room.

また、暖房サイクルによる除湿運転時、ケーシング10内の風通路の前面側かつ下側に配置された第1補助熱交換部11dが蒸発域となるので、室内熱交換器11の第1補助熱交換部11d(蒸発域)と第1主熱交換部11a(凝縮域)を通過した若干温度が低い空気が、吹出口10aの上側から吹き出し、第3主熱交換部11cの凝縮域を通過した高温の空気が、吹出口10aの下側から吹き出すので、吹出口10aの上側から吹き出す若干温度の低い暖気で、吹出口10aの下側から吹き出した高温の暖気を抑え込むことにより、暖気の舞い上がりを抑制できる。 Further, during the dehumidifying operation by the heating cycle, the first auxiliary heat exchange portion 11d arranged on the front side and the lower side of the air passage in the casing 10 becomes the evaporation region, so that the first auxiliary heat exchange of the indoor heat exchanger 11 The slightly lower temperature air that has passed through the parts 11d (evaporation area) and the first main heat exchange part 11a (condensation area) blows out from the upper side of the outlet 10a and passes through the condensation area of the third main heat exchange part 11c. The air blows out from the lower side of the air outlet 10a, so that the warm air with a slightly lower temperature blown out from the upper side of the air outlet 10a suppresses the high-temperature warm air blown out from the lower side of the air outlet 10a, thereby suppressing the rise of warm air. it can.

また、室内熱交換器11の蒸発域の部分(第1補助熱交換部11d)と凝縮域の部分(第1〜第3主熱交換部11a,11b,11cと第2補助熱交換部11e)とが熱的に分離している。ここで、熱的に分離する手段としては、第1主熱交換部11aと第1補助熱交換部11dとを間隔をあけて配置することなどがある。これにより、室内熱交換器11の高温の第1主熱交換部11a(凝縮域)の熱が、低温の第1補助熱交換部11d(蒸発域)に伝わるのを抑制でき、第1補助熱交換部11d(蒸発域)が第1主熱交換部11a(凝縮域)により加熱されて除湿量が低下するのを抑制できる。 Further, the evaporation region portion (first auxiliary heat exchange portion 11d) and the condensation region portion (first to third main heat exchange portions 11a, 11b, 11c and the second auxiliary heat exchange portion 11e) of the indoor heat exchanger 11). And are thermally separated. Here, as a means for thermally separating the heat, the first main heat exchange unit 11a and the first auxiliary heat exchange unit 11d may be arranged at intervals. As a result, it is possible to suppress the heat of the high temperature first main heat exchange unit 11a (condensation region) of the indoor heat exchanger 11 from being transferred to the low temperature first auxiliary heat exchange unit 11d (evaporation region), and the first auxiliary heat. It is possible to prevent the exchange unit 11d (evaporation region) from being heated by the first main heat exchange unit 11a (condensation region) to reduce the amount of dehumidification.

〔第2実施形態〕
本開示の第2実施形態の空気調和機は、制御装置100の動作を除いて第1実施形態の空気調和機と同一の構成をしており、図1〜図3を援用する。
[Second Embodiment]
The air conditioner of the second embodiment of the present disclosure has the same configuration as the air conditioner of the first embodiment except for the operation of the control device 100, and FIGS. 1 to 3 are incorporated.

この第2実施形態の空気調和機では、第3運転制御部100cは、暖房サイクルによる除湿運転の開始後、冷媒温度センサ56によって検出された蒸発温度を用いて、膨張弁24の開度を調整する。より具体的に説明すると、上記第1補助熱交換部11dの蒸発温度が除湿に好適な温度(例えば10℃前後)となるように、膨張弁24(膨張機構)の開度が調整される。 In the air conditioner of the second embodiment, the third operation control unit 100c adjusts the opening degree of the expansion valve 24 by using the evaporation temperature detected by the refrigerant temperature sensor 56 after the start of the dehumidification operation by the heating cycle. To do. More specifically, the opening degree of the expansion valve 24 (expansion mechanism) is adjusted so that the evaporation temperature of the first auxiliary heat exchange unit 11d becomes a temperature suitable for dehumidification (for example, around 10 ° C.).

暖房サイクルにより除湿運転を行うときは、電磁弁13および膨張弁24の2段階で減圧することで、室内熱交換器11の蒸発域が低温になり過ぎないようにする。なお、暖房サイクルにより除湿運転を行うときの膨張弁24での減圧量は、圧縮機21の運転周波数が同じ条件の暖房運転時の減圧量より小さいことが望ましい。室外温度が低いときに暖房サイクルによる除湿運転を行うときには、特に、室内熱交換器11の蒸発域温度が低くなり過ぎないようにするために膨張弁24での減圧は必要だが、電磁弁13でも減圧しているため、減圧量が大きくなりすぎて室外熱交換器23が必要以上に低温となり、デフロスト頻度が増えるなどの不具合を生じるおそれを低減するためである。 When the dehumidifying operation is performed by the heating cycle, the pressure is reduced in two stages of the solenoid valve 13 and the expansion valve 24 so that the evaporation area of the indoor heat exchanger 11 does not become too low. It is desirable that the amount of decompression in the expansion valve 24 when the dehumidifying operation is performed by the heating cycle is smaller than the amount of decompression during the heating operation in which the operating frequency of the compressor 21 is the same. When performing dehumidification operation by a heating cycle when the outdoor temperature is low, decompression by the expansion valve 24 is necessary to prevent the evaporation area temperature of the indoor heat exchanger 11 from becoming too low, but the solenoid valve 13 also This is because the pressure is reduced, so that the amount of pressure reduced becomes too large and the temperature of the outdoor heat exchanger 23 becomes lower than necessary, which reduces the possibility of causing problems such as an increase in the frequency of defrosting.

このように、上記空気調和機では、暖房サイクルによる除湿運転時、膨張弁24の開度を制御して、第1補助熱交換部11dの蒸発温度が室外熱交換器23の温度よりも高くなるようにする。これにより、室内熱交換器11の第1補助熱交換部11dの蒸発温度を除湿に適した温度にでき、不必要に低温にしないので、室内が暖まりにくかったり、室内熱交換器11の第1補助熱交換部11dが凍結したりするのを防ぐことができる。 As described above, in the air conditioner, the opening degree of the expansion valve 24 is controlled during the dehumidifying operation by the heating cycle, and the evaporation temperature of the first auxiliary heat exchange unit 11d becomes higher than the temperature of the outdoor heat exchanger 23. To do so. As a result, the evaporation temperature of the first auxiliary heat exchange unit 11d of the indoor heat exchanger 11 can be set to a temperature suitable for dehumidification, and the temperature is not unnecessarily lowered, so that it is difficult for the room to warm up or the first of the indoor heat exchanger 11 is used. It is possible to prevent the auxiliary heat exchange unit 11d from freezing.

図9は、上記空気調和機の冷房除湿運転時、過絞り除湿運転時および暖房サイクルによる除湿運転時のモリエル線図である。図9において、縦軸は圧力[MPa]を表し、横軸はエンタルピー[kJ/kg]を表す。 FIG. 9 is a Moriel diagram of the air conditioner during the cooling dehumidifying operation, the over-throttle dehumidifying operation, and the dehumidifying operation by the heating cycle. In FIG. 9, the vertical axis represents pressure [MPa] and the horizontal axis represents enthalpy [kJ / kg].

図9に示す曲線の内側が湿り蒸気であり、曲線で囲まれた領域の左側が過冷却液であり、曲線で囲まれた領域の右側が過熱蒸気である。ここで、図9に示す暖房サイクルによる除湿運転では、DからAが圧縮行程、AからB1が第1〜第3主熱交換部11a,11b,11cと第2補助熱交換部11eでの凝縮行程、B1からB2が電磁弁13(制御弁)による第1膨張行程、B2からC1が第1補助熱交換部11dでの蒸発行程、C1からC2が膨張弁24(膨張機構)による第2膨張行程、C2からDが室外熱交換器23での蒸発行程である。 The inside of the curve shown in FIG. 9 is wet steam, the left side of the region surrounded by the curve is supercooled liquid, and the right side of the region surrounded by the curve is superheated steam. Here, in the dehumidifying operation by the heating cycle shown in FIG. 9, D to A are compression strokes, and A to B1 are condensed in the first to third main heat exchange units 11a, 11b, 11c and the second auxiliary heat exchange unit 11e. B1 to B2 are the first expansion strokes by the electromagnetic valve 13 (control valve), B2 to C1 are the evaporation strokes at the first auxiliary heat exchange section 11d, and C1 to C2 are the second expansion strokes by the expansion valve 24 (expansion mechanism). The strokes, C2 to D, are the evaporation strokes in the outdoor heat exchanger 23.

また、凝縮行程のA−B1間において、曲線上の点P1は露点であり、曲線上の点P2は沸点である。凝縮行程のB1では、過冷却液になった状態である。 Further, between A and B1 of the condensation process, the point P1 on the curve is the dew point, and the point P2 on the curve is the boiling point. In B1 of the condensation process, it is in a state of becoming a supercooled liquid.

上記第2実施形態の空気調和機は、第1実施形態の空気調和機と同様の効果を有する。 The air conditioner of the second embodiment has the same effect as the air conditioner of the first embodiment.

上記第1実施形態では、膨張弁24(膨張機構)を全開にした暖房サイクルによる除湿運転時に、室内熱交換器11の蒸発域の温度は室外熱交換器23の温度近くまで低下するため、室外温度が低い場合は室内熱交換器11の蒸発域の温度が低くなり過ぎる場合がある。これに対して、この第2実施形態の空気調和機では、暖房サイクルによる除湿運転時に、電磁弁13(制御弁)で減圧した冷媒を膨張弁24(膨張機構)でも減圧するので、
室内熱交換器11の蒸発域温度 ≫ 室外熱交換器23の温度
となるように制御できる。したがって、室外環境によらず、暖房能力を確保しつつ、室内熱交換器11の蒸発域温度を除湿に適当な温度に調節して、効率よく除湿を行うことができる。これにより、室内熱交換器11の蒸発域である第1補助熱交換部11dの温度が低くなり過ぎるのを抑えて、第1補助熱交換部11dの凍結を抑制できる。
In the first embodiment, the temperature in the evaporation area of the indoor heat exchanger 11 drops to near the temperature of the outdoor heat exchanger 23 during the dehumidifying operation by the heating cycle in which the expansion valve 24 (expansion mechanism) is fully opened. If the temperature is low, the temperature in the evaporation region of the indoor heat exchanger 11 may become too low. On the other hand, in the air conditioner of the second embodiment, the refrigerant decompressed by the solenoid valve 13 (control valve) is also decompressed by the expansion valve 24 (expansion mechanism) during the dehumidifying operation by the heating cycle.
Evaporation area temperature of indoor heat exchanger 11 >> It can be controlled to be the temperature of outdoor heat exchanger 23. Therefore, regardless of the outdoor environment, the temperature in the evaporation region of the indoor heat exchanger 11 can be adjusted to a temperature suitable for dehumidification while ensuring the heating capacity, and dehumidification can be performed efficiently. As a result, it is possible to prevent the temperature of the first auxiliary heat exchange unit 11d, which is the evaporation region of the indoor heat exchanger 11, from becoming too low, and to suppress freezing of the first auxiliary heat exchange unit 11d.

また、暖房サイクルによる除湿運転時に、冷媒温度センサ56によって検出された冷媒の温度を用いて、制御装置100により膨張弁24を制御して膨張弁24で冷媒を減圧するので、室内熱交換器11の蒸発域の温度を除湿に適した温度にできる。
なお、室外熱交換器23の温度が低くなり過ぎるのを防止するため、膨張弁24の開度は、圧縮機21の周波数が同じ暖房運転時よりも減圧量が小さくなるように制御することが望ましい。
Further, during the dehumidifying operation by the heating cycle, the expansion valve 24 is controlled by the control device 100 using the temperature of the refrigerant detected by the refrigerant temperature sensor 56, and the refrigerant is depressurized by the expansion valve 24. Therefore, the indoor heat exchanger 11 The temperature of the evaporative region can be set to a temperature suitable for dehumidification.
In order to prevent the temperature of the outdoor heat exchanger 23 from becoming too low, the opening degree of the expansion valve 24 may be controlled so that the amount of decompression is smaller than that during the heating operation in which the frequency of the compressor 21 is the same. desirable.

〔第3実施形態〕
本開示の第3実施形態の空気調和機は、制御装置100の動作を除いて第2実施形態の空気調和機と同一の構成をしており、図1〜図3を援用する。
[Third Embodiment]
The air conditioner of the third embodiment of the present disclosure has the same configuration as the air conditioner of the second embodiment except for the operation of the control device 100, and FIGS. 1 to 3 are incorporated.

上記第3実施形態の空気調和機は、第2実施形態の空気調和機と同様の効果を有する。 The air conditioner of the third embodiment has the same effect as the air conditioner of the second embodiment.

上記空気調和機では、暖房サイクルによる除湿運転時に、制御装置100(制御部)により膨脹弁24(膨張機構)の開度を制御して、室内熱交換器11の蒸発域の温度を−1℃以上(願わくば0℃以上)にする。これにより、室内熱交換器11の凍結を確実に防ぐことができる。 In the above air conditioner, the opening degree of the expansion valve 24 (expansion mechanism) is controlled by the control device 100 (control unit) during the dehumidification operation by the heating cycle, and the temperature of the evaporation region of the indoor heat exchanger 11 is set to -1 ° C. Set to above (hopefully 0 ° C or above). This makes it possible to reliably prevent the indoor heat exchanger 11 from freezing.

また、暖房サイクルによる除湿運転時に、制御装置100により膨脹弁24の開度を制御して、目標湿度における露点温度をT1とするとき、上記室内熱交換器11の蒸発域の温度を(T1−10℃)以上かつT1以下とする。これにより、効率のよい除湿が行える。 Further, when the opening degree of the expansion valve 24 is controlled by the control device 100 during the dehumidifying operation by the heating cycle and the dew point temperature at the target humidity is set to T1, the temperature in the evaporation region of the indoor heat exchanger 11 is set to (T1-). 10 ° C.) or higher and T1 or lower. As a result, efficient dehumidification can be performed.

また、暖房サイクルによる除湿運転時に、制御装置100により膨脹弁24の開度を制御して、室外熱交換器23の温度を室外温度よりも低くする。これにより、暖房能力を確保できる。 Further, during the dehumidifying operation by the heating cycle, the opening degree of the expansion valve 24 is controlled by the control device 100 to make the temperature of the outdoor heat exchanger 23 lower than the outdoor temperature. As a result, the heating capacity can be secured.

また、暖房サイクルによる除湿運転時に、制御装置100により膨脹弁24の開度を制御して、室外温度が0℃以上の場合、室外熱交換器23の温度が−1℃前後以上になるようにする。これにより、室外熱交換器23が凍結することがなく、効率のよい暖房サイクルによる除湿運転が行える。 Further, during the dehumidifying operation by the heating cycle, the opening degree of the expansion valve 24 is controlled by the control device 100 so that the temperature of the outdoor heat exchanger 23 becomes about -1 ° C or higher when the outdoor temperature is 0 ° C. or higher. To do. As a result, the outdoor heat exchanger 23 does not freeze, and the dehumidifying operation can be performed by an efficient heating cycle.

また、暖房サイクルによる除湿運転時に、室外温度が0℃以下(願わくば−1℃以下)の場合、暖房サイクルによる除湿運転を行う時間を制限する。
除湿運転を行う時間を制限する方法としては、
・室外温度が0℃以下(願わくば−1℃以下)の場合、暖房サイクルによる除湿運転を停止する。
・室外温度が0℃以下(願わくば−1℃以下)の状態が一定時間以上続く場合、暖房サイクルによる除湿運転を停止する。
などが考えられる。
ここで、室外温度が0℃以下(願わくば−1℃以下)の状態が一定時間以上続く場合の一定時間とは、特定の決められた時間に限られることなく、室外温度や、想定される除湿量などで変化する時間であってもよい。
Further, when the outdoor temperature is 0 ° C. or lower (hopefully -1 ° C. or lower) during the dehumidifying operation by the heating cycle, the time for performing the dehumidifying operation by the heating cycle is limited.
As a method of limiting the time for dehumidifying operation,
-If the outdoor temperature is 0 ° C or less (hopefully -1 ° C or less), stop the dehumidifying operation by the heating cycle.
-If the outdoor temperature is 0 ° C or lower (hopefully -1 ° C or lower) for a certain period of time or longer, the dehumidifying operation by the heating cycle is stopped.
And so on.
Here, when the outdoor temperature is 0 ° C. or lower (hopefully -1 ° C. or lower) for a certain period of time or longer, the fixed time is not limited to a specific fixed time, but is assumed to be the outdoor temperature or the like. The time may change depending on the amount of dehumidification or the like.

これにより、暖房サイクルによる除湿運転で除湿した結露水をドレインホースで屋外に排水する際に、結露水が凍結してドレインホースを閉塞してしまうのを防ぐことができる。 This makes it possible to prevent the condensed water from freezing and blocking the drain hose when the condensed water dehumidified by the dehumidifying operation by the heating cycle is drained to the outside by the drain hose.

また、制御装置100は、室内熱交換器11の略全部を凝縮域とする暖房運転から暖房サイクルにより除湿運転をする運転モードに変更する場合、圧縮機21の運転周波数を最大周波数にしない。これにより、冷媒回路RC内の低圧の下がり過ぎを抑制できる。 Further, when the control device 100 changes from the heating operation in which substantially the entire indoor heat exchanger 11 is a condensing region to the operation mode in which the dehumidifying operation is performed by the heating cycle, the operating frequency of the compressor 21 is not set to the maximum frequency. As a result, it is possible to suppress an excessive drop in low pressure in the refrigerant circuit RC.

または、制御装置100は、室内熱交換器11の略全部を凝縮域とする暖房運転から暖房サイクルにより除湿運転をする運転モードに変更する場合、上記運転モードに変更する前の運転周波数よりも圧縮機21の運転周波数を低くした後、電磁弁13(制御弁)の開度を絞るようにしてもよい。これにより、冷媒回路RC内の低圧の下がり過ぎを抑制できる。 Alternatively, when the control device 100 is changed from the heating operation in which substantially the entire indoor heat exchanger 11 is a condensing area to the operation mode in which the dehumidifying operation is performed by the heating cycle, the control device 100 is compressed more than the operation frequency before the change to the operation mode. After lowering the operating frequency of the machine 21, the opening degree of the solenoid valve 13 (control valve) may be reduced. As a result, it is possible to suppress an excessive drop in low pressure in the refrigerant circuit RC.

または、制御装置100は、室内熱交換器11の略全部を凝縮域とする暖房運転から暖房サイクルにより除湿運転をする運転モードに変更する場合、上記運転モードに変更する前の膨脹弁24の開度よりも膨脹弁24の開度を開いた後、電磁弁13の開度を絞るようにしてもよい。これにより、冷媒回路RC内の低圧の下がり過ぎを抑制できる。 Alternatively, when the control device 100 changes from a heating operation in which substantially the entire indoor heat exchanger 11 is a condensing area to an operation mode in which a dehumidifying operation is performed by a heating cycle, the expansion valve 24 is opened before the change to the above operation mode. The opening degree of the solenoid valve 13 may be reduced after the opening degree of the expansion valve 24 is opened more than the degree. As a result, it is possible to suppress an excessive drop in low pressure in the refrigerant circuit RC.

また、制御装置100は、室内熱交換器11を凝縮域とする暖房運転から暖房サイクルにより除湿運転をする運転モードに変更する場合、環境負荷に応じて、圧縮機21の運転周波数と室外ファン26の回転数と膨脹弁24の開度のうちの少なくとも1つを制御する。 Further, when the control device 100 changes from the heating operation in which the indoor heat exchanger 11 is the condensing area to the operation mode in which the dehumidifying operation is performed by the heating cycle, the operating frequency of the compressor 21 and the outdoor fan 26 are changed according to the environmental load. Controls at least one of the number of revolutions and the opening degree of the expansion valve 24.

ここで、環境負荷とは、室内温度、室内湿度、室外温度、顕熱比、床面温度や壁面温度などの躯体温度の少なくとも1つを用いた空調負荷である。 Here, the environmental load is an air conditioning load using at least one of the skeleton temperatures such as indoor temperature, indoor humidity, outdoor temperature, sensible heat ratio, floor surface temperature and wall surface temperature.

上記第1〜第3実施形態では、室内機が1つの空気調和機について説明したが、2以上の室内機を備えたマルチ型空気調和機にこの発明を適用してもよい。 In the first to third embodiments, the air conditioner having one indoor unit has been described, but the present invention may be applied to a multi-type air conditioner including two or more indoor units.

上記第1〜第3実施形態では、壁掛け式の室内機1を備えた空気調和機について説明したが、天井埋込型などの室内機を備えた空気調和機にこの発明を適用してもよい。 In the first to third embodiments, the air conditioner provided with the wall-mounted indoor unit 1 has been described, but the present invention may be applied to an air conditioner provided with an indoor unit such as a ceiling-embedded type. ..

上記第1〜第3実施形態では、制御弁として電磁弁13を用いたが、制御弁はこれに限らず、例えば膨張弁などを用いてもよい。 In the first to third embodiments, the solenoid valve 13 is used as the control valve, but the control valve is not limited to this, and for example, an expansion valve or the like may be used.

本開示の具体的な実施の形態について説明したが、本開示は上記第1〜第3実施形態に限定されるものではなく、本開示の範囲内で種々変更して実施することができる。 Although the specific embodiment of the present disclosure has been described, the present disclosure is not limited to the above-mentioned first to third embodiments, and various modifications can be made within the scope of the present disclosure.

また、本開示の空気調和機は、
圧縮機(21)、室外熱交換器(23)、膨張機構(24)および室内熱交換器(11)が環状に接続され、冷媒が循環する冷媒回路(RC)と、
上記冷媒回路(RC)を制御する制御部(100)と
を備え、
上記室内熱交換器(11)は、冷媒が流れる冷媒経路と、上記冷媒経路の途中に設けられた制御弁(13) とを有し、
上記制御部(100)は、暖房サイクルにより除湿運転をするとき、上記室内熱交換器(11)において上記制御弁(13)よりも上流側の部分が凝縮域となる一方、上記室内熱交換器(11)において上記制御弁(13)よりも下流側の部分が蒸発域となるように、上記圧縮機(21)と上記制御弁(13)とを制御すると共に、上記膨張機構(24)で冷媒が減圧されるように、上記膨張機構(24)を制御することを特徴とする。
In addition, the air conditioner of the present disclosure is
A refrigerant circuit (RC) in which a compressor (21), an outdoor heat exchanger (23), an expansion mechanism (24) and an indoor heat exchanger (11) are connected in a ring shape and a refrigerant circulates.
A control unit (100) for controlling the refrigerant circuit (RC) is provided.
The indoor heat exchanger (11) has a refrigerant path through which the refrigerant flows and a control valve (13) provided in the middle of the refrigerant path.
When the control unit (100) is dehumidified by the heating cycle, the portion of the indoor heat exchanger (11) on the upstream side of the control valve (13) becomes a condensing region, while the indoor heat exchanger In (11), the compressor (21) and the control valve (13) are controlled so that the portion downstream of the control valve (13) is in the evaporation region, and the expansion mechanism (24) is used. The expansion mechanism (24) is controlled so that the refrigerant is depressurized.

本開示によれば、暖房サイクルにより除湿運転をするとき、制御部(100)により制御された膨張機構(24)で冷媒を減圧するので、室内熱交換器(11)の蒸発域の温度が低くなり過ぎるのを抑えて、室内熱交換器(11)の凍結を抑制できる。 According to the present disclosure, when the dehumidifying operation is performed by the heating cycle, the refrigerant is depressurized by the expansion mechanism (24) controlled by the control unit (100), so that the temperature in the evaporation region of the indoor heat exchanger (11) is low. It is possible to suppress the freezing of the indoor heat exchanger (11) by suppressing it from becoming too much.

また、本開示の1つの態様に係る空気調和機では、
上記制御弁(13)と上記膨張機構(24)との間の冷媒の温度を検出する冷媒温度センサ(56)を備え、
上記制御部(100)は、暖房サイクルにより除湿運転をするとき、上記冷媒温度センサ(56)によって検出された冷媒の温度を用いて、上記膨張機構(24)の開度を制御する。
Further, in the air conditioner according to one aspect of the present disclosure,
A refrigerant temperature sensor (56) for detecting the temperature of the refrigerant between the control valve (13) and the expansion mechanism (24) is provided.
The control unit (100) controls the opening degree of the expansion mechanism (24) by using the temperature of the refrigerant detected by the refrigerant temperature sensor (56) during the dehumidifying operation by the heating cycle.

本開示によれば、暖房サイクルにより除湿運転をするとき、冷媒温度センサ(56)によって検出された冷媒の温度を用いて、制御部(100)により膨張機構(24)を制御して膨張機構(24)で冷媒を減圧するので、室内熱交換器(11)の蒸発域の温度を除湿に適した温度にできる。 According to the present disclosure, when the dehumidifying operation is performed by the heating cycle, the expansion mechanism (24) is controlled by the control unit (100) using the temperature of the refrigerant detected by the refrigerant temperature sensor (56) to control the expansion mechanism (24). Since the refrigerant is depressurized in 24), the temperature in the evaporation region of the indoor heat exchanger (11) can be set to a temperature suitable for dehumidification.

また、本開示の1つの態様に係る空気調和機では、
上記制御部(100)は、暖房サイクルにより除湿運転をするとき、上記膨張機構(24)の開度を制御して、上記室内熱交換器(11)の蒸発域の温度を−1℃以上(願わくば0℃以上)にする。
Further, in the air conditioner according to one aspect of the present disclosure,
When the dehumidifying operation is performed by the heating cycle, the control unit (100) controls the opening degree of the expansion mechanism (24) to raise the temperature of the evaporation region of the indoor heat exchanger (11) to -1 ° C. or higher (1 ° C. or higher). Hopefully it will be above 0 ° C).

本開示によれば、暖房サイクルにより除湿運転をするときに室内熱交換器(11)の凍結を確実に抑制できる。 According to the present disclosure, freezing of the indoor heat exchanger (11) can be reliably suppressed during the dehumidifying operation by the heating cycle.

また、本開示の1つの態様に係る空気調和機では、
上記制御部(100)は、暖房サイクルにより除湿運転をするとき、上記膨張機構(24)の開度を制御して、目標湿度における露点温度をT1とするとき、上記室内熱交換器(11)の蒸発域の温度を(T1−10℃)以上かつT1以下とする。
Further, in the air conditioner according to one aspect of the present disclosure,
The control unit (100) controls the opening degree of the expansion mechanism (24) when the dehumidifying operation is performed by the heating cycle, and when the dew point temperature at the target humidity is set to T1, the indoor heat exchanger (11) The temperature in the evaporation region of is (T1-10 ° C.) or higher and T1 or lower.

本開示によれば、効率のよい除湿が行える。 According to the present disclosure, efficient dehumidification can be performed.

また、本開示の1つの態様に係る空気調和機では、
上記制御部(100)は、暖房サイクルにより除湿運転をするとき、上記膨張機構(24)の開度を制御して、上記室外熱交換器(23)の温度を室外温度よりも低くする。
Further, in the air conditioner according to one aspect of the present disclosure,
The control unit (100) controls the opening degree of the expansion mechanism (24) to make the temperature of the outdoor heat exchanger (23) lower than the outdoor temperature when the dehumidifying operation is performed by the heating cycle.

本開示によれば、暖房能力を確保できる。 According to the present disclosure, the heating capacity can be ensured.

また、本開示の1つの態様に係る空気調和機では、
上記制御部(100)は、暖房サイクルにより除湿運転をするとき、上記膨張機構(24)の開度を制御して、室外温度が0℃以上の場合、室外熱交換器(23)の温度が−1℃前後以上になるようにする。
Further, in the air conditioner according to one aspect of the present disclosure,
The control unit (100) controls the opening degree of the expansion mechanism (24) when the dehumidifying operation is performed by the heating cycle, and when the outdoor temperature is 0 ° C. or higher, the temperature of the outdoor heat exchanger (23) becomes high. Keep the temperature above -1 ° C.

本開示によれば、室外熱交換器(23)が凍結することがなく、暖房サイクルによる効率のよい暖房サイクルによる除湿運転が行える。 According to the present disclosure, the outdoor heat exchanger (23) does not freeze, and the dehumidifying operation can be performed by an efficient heating cycle by the heating cycle.

また、本開示の1つの態様に係る空気調和機では、
上記制御部(100)は、暖房サイクルによる除湿運転時に、室外温度が0℃以下(願わくば−1℃以下)の場合、暖房サイクルによる除湿運転を行う時間を制限して、暖房サイクルによる除湿運転で除湿した結露水をドレインホースで屋外に排水する際に、結露水が凍結してドレインホースを閉塞してしまうのを防ぐようにする。
Further, in the air conditioner according to one aspect of the present disclosure,
When the outdoor temperature is 0 ° C. or lower (hopefully -1 ° C. or lower) during the dehumidifying operation by the heating cycle, the control unit (100) limits the time for performing the dehumidifying operation by the heating cycle and dehumidifies the operation by the heating cycle. When draining the dehumidified dehumidified water to the outside with a drain hose, prevent the dehumidified water from freezing and blocking the drain hose.

また、本開示の1つの態様に係る空気調和機では、
上記制御部(100)は、上記室内熱交換器(11)の略全部を凝縮域とする暖房運転から暖房サイクルにより除湿運転をする運転モードに変更する場合、上記圧縮機(21)の運転周波数を最大周波数にしないか、または、上記運転モードに変更する前の運転周波数よりも上記圧縮機(21)の運転周波数を低くした後、上記制御弁(13)の開度を絞る。
Further, in the air conditioner according to one aspect of the present disclosure,
When the control unit (100) changes from a heating operation in which substantially all of the indoor heat exchanger (11) is a condensation region to an operation mode in which a dehumidifying operation is performed by a heating cycle, the operating frequency of the compressor (21) Is not set to the maximum frequency, or the operating frequency of the compressor (21) is lowered from the operating frequency before changing to the operating mode, and then the opening degree of the control valve (13) is reduced.

本開示によれば、暖房サイクルにより除湿運転をするときに冷媒回路(RC)内の低圧の下がり過ぎを抑制できる。 According to the present disclosure, it is possible to suppress an excessive drop in low pressure in the refrigerant circuit (RC) during the dehumidifying operation by the heating cycle.

また、本開示の1つの態様に係る空気調和機では、
上記制御部(100)は、上記室内熱交換器(11)の略全部を凝縮域とする暖房運転から暖房サイクルにより除湿運転をする運転モードに変更する場合、上記圧縮機(21)の運転周波数を最大周波数にしないか、または、上記運転モードに変更する前の上記膨張機構(24)の開度よりも上記膨張機構(24)の開度を開いた後、上記制御弁(13)の開度を絞る。
Further, in the air conditioner according to one aspect of the present disclosure,
When the control unit (100) changes from a heating operation in which substantially the entire indoor heat exchanger (11) is a condensing region to an operation mode in which a dehumidifying operation is performed by a heating cycle, the operating frequency of the compressor (21) Is not set to the maximum frequency, or after the opening degree of the expansion mechanism (24) is opened more than the opening degree of the expansion mechanism (24) before changing to the operation mode, the control valve (13) is opened. Squeeze the degree.

本開示によれば、暖房サイクルにより除湿運転をするときに冷媒回路(RC)内の低圧の下がり過ぎを抑制できる。 According to the present disclosure, it is possible to suppress an excessive drop in low pressure in the refrigerant circuit (RC) during the dehumidifying operation by the heating cycle.

また、本開示の1つの態様に係る空気調和機では、
上記室外熱交換器(23)に送風する室外ファン(26)と、
上記制御部(100)は、上記室内熱交換器(11)を凝縮域とする暖房運転から暖房サイクルにより除湿運転をする運転モードに変更する場合、環境負荷に応じて、上記圧縮機(21)の運転周波数と上記室外ファン(26)の回転数と上記膨張機構(24)の開度のうちの少なくとも1つを制御する。
Further, in the air conditioner according to one aspect of the present disclosure,
An outdoor fan (26) that blows air to the outdoor heat exchanger (23),
When the control unit (100) changes from the heating operation in which the indoor heat exchanger (11) is the condensing area to the operation mode in which the dehumidifying operation is performed by the heating cycle, the compressor (21) responds to the environmental load. At least one of the operating frequency of the outdoor fan (26), the rotation speed of the outdoor fan (26), and the opening degree of the expansion mechanism (24) is controlled.

ここで、環境負荷とは、室内温度、室内湿度、室外温度、顕熱比、床面温度や壁面温度などの躯体温度の少なくとも1つを用いた空調負荷である。 Here, the environmental load is an air conditioning load using at least one of the skeleton temperatures such as indoor temperature, indoor humidity, outdoor temperature, sensible heat ratio, floor surface temperature and wall surface temperature.

1…室内機
2…室外機
10…ケーシング
10a…吹出口
11…室内熱交換器
11a…第1主熱交換部
11b…第2主熱交換部
11c…第3主熱交換部
11d…第1補助熱交換部
11e…第2補助熱交換部
12…室内ファン
13…電磁弁(制御弁)
14,15…分岐部
16…ドレンパン
21…圧縮機
22…四路切換弁
23…室外熱交換器
24…膨張弁(膨張機構)
25…アキュムレータ
26…室外ファン
51…室内熱交換器温度センサ
52…室内温度センサ
53…室内湿度センサ
54…室外熱交換器温度センサ
55…外気温度センサ
56…冷媒温度センサ
100…制御装置(制御部)
100a…第1運転制御部
100b…第2運転制御部
100c…第3運転制御部
L1〜L7,L21,L22,L23…冷媒配管
1 ... Indoor unit 2 ... Outdoor unit 10 ... Casing 10a ... Outlet 11 ... Indoor heat exchanger 11a ... 1st main heat exchange unit 11b ... 2nd main heat exchange unit 11c ... 3rd main heat exchange unit 11d ... 1st auxiliary Heat exchange unit 11e ... 2nd auxiliary heat exchange unit 12 ... Indoor fan 13 ... Electromagnetic valve (control valve)
14, 15 ... Branch 16 ... Drain pan 21 ... Compressor 22 ... Four-way switching valve 23 ... Outdoor heat exchanger 24 ... Expansion valve (expansion mechanism)
25 ... Accumulator 26 ... Outdoor fan 51 ... Indoor heat exchanger temperature sensor 52 ... Indoor temperature sensor 53 ... Indoor humidity sensor 54 ... Outdoor heat exchanger temperature sensor 55 ... Outside air temperature sensor 56 ... Refrigerator temperature sensor 100 ... Control device (control unit) )
100a ... 1st operation control unit 100b ... 2nd operation control unit 100c ... 3rd operation control unit L1 to L7, L21, L22, L23 ... Refrigerant piping

Claims (6)

圧縮機(21)、室外熱交換器(23)、膨張機構(24)および室内熱交換器(11)が環状に接続され、冷媒が循環する冷媒回路(RC)と、
上記冷媒回路(RC)を制御する制御部(100)と
を備え、
上記室内熱交換器(11)は、冷媒が流れる冷媒経路と、上記冷媒経路の途中に設けられた制御弁(13)とを有し、
上記制御部(100)は、暖房サイクルにより除湿運転をするとき、上記制御弁(13)を制御して、上記室内熱交換器(11)において上記制御弁(13)よりも上流側の部分(11a,11b,11c,11e)が凝縮域となる一方、上記室内熱交換器(11)において上記制御弁(13)よりも下流側の部分(11d)が蒸発域となるように、上記制御弁(13)により冷媒を減圧し、
上記蒸発域の略全部は、上記室内熱交換器(11)の上記凝縮域の風上側の一部に設けられていることを特徴とする空気調和機。
A refrigerant circuit (RC) in which a compressor (21), an outdoor heat exchanger (23), an expansion mechanism (24) and an indoor heat exchanger (11) are connected in a ring shape and a refrigerant circulates.
A control unit (100) for controlling the refrigerant circuit (RC) is provided.
The indoor heat exchanger (11) has a refrigerant path through which the refrigerant flows and a control valve (13) provided in the middle of the refrigerant path.
The control unit (100) controls the control valve (13) when the dehumidifying operation is performed by the heating cycle, and the portion (13) on the upstream side of the control valve (13) in the indoor heat exchanger (11). 11a, 11b, 11c, 11e) is the condensation region, while the portion (11d) downstream of the control valve (13) in the indoor heat exchanger (11) is the evaporation region. Dehumidify the refrigerant according to (13).
An air conditioner characterized in that substantially all of the evaporation region is provided on a part of the windward side of the condensation region of the indoor heat exchanger (11).
請求項1に記載の空気調和機において、
上記室内熱交換器(11)の上記凝縮域の部分(11a,11b,11c,11e)を、上記蒸発域の部分(11d)とドレンパン(16)との間に設けないことを特徴とする空気調和機。
In the air conditioner according to claim 1,
Air characterized in that the condensed region portion (11a, 11b, 11c, 11e) of the indoor heat exchanger (11) is not provided between the evaporation region portion (11d) and the drain pan (16). Harmonizer.
請求項1または2に記載の空気調和機において、
上記室内熱交換器(11)に送風する室内ファン(12)と、
上記室内熱交換器(11)および上記室内ファン(12)を収容すると共に、上記室内ファン(12)からの空気が吹き出す吹出口(10a)を有するケーシング(10)と
を備え、
上記室内ファン(12)は、上記ケーシング(10)内に配置され、
上記室内熱交換器(11)は、前面側熱交換部(11a,11b,11d,11e)と背面側熱交換部(11c)とを有し、
上記室内熱交換器(11)の上記蒸発域の部分(11d)は、上記室内熱交換器(11)の上記前面側熱交換部(11a,11b,11d,11e)側に設けられていることを特徴とする空気調和機。
In the air conditioner according to claim 1 or 2.
An indoor fan (12) that blows air to the indoor heat exchanger (11),
A casing (10) for accommodating the indoor heat exchanger (11) and the indoor fan (12) and having an outlet (10a) for blowing air from the indoor fan (12) is provided.
The indoor fan (12) is arranged in the casing (10).
The indoor heat exchanger (11) has a front side heat exchange section (11a, 11b, 11d, 11e) and a back side heat exchange section (11c).
The evaporation region portion (11d) of the indoor heat exchanger (11) is provided on the front side heat exchange portion (11a, 11b, 11d, 11e) side of the indoor heat exchanger (11). An air conditioner featuring.
請求項1から3までのいずれか一項に記載の空気調和機において、
上記室内熱交換器(11)は、上記蒸発域の部分(11d)と上記凝縮域の部分(11a,11b,11c,11e)とを熱的に分離する手段を有することを特徴とする空気調和機。
In the air conditioner according to any one of claims 1 to 3.
The indoor heat exchanger (11) has a means for thermally separating the portion of the evaporation region (11d) and the portion of the condensation region (11a, 11b, 11c, 11e). Machine.
請求項1から4までのいずれか一項に記載の空気調和機において、
上記制御部(100)は、上記制御弁(13)により冷媒を減圧して暖房サイクルにより除湿運転をするとき、上記膨張機構(24)でも冷媒が減圧されるように、上記膨張機構(24)を制御することを特徴とする空気調和機。
In the air conditioner according to any one of claims 1 to 4.
When the control valve (13) decompresses the refrigerant by the control valve (13) and performs the dehumidifying operation by the heating cycle, the control unit (100) also decompresses the refrigerant by the expansion mechanism (24). An air conditioner characterized by controlling.
請求項1から5までのいずれか一項に記載の空気調和機において、
上記制御弁(13)と上記膨張機構(24)との間を流れる冷媒の温度を検出する冷媒温度センサ(56)を備えることを特徴とする空気調和機。
In the air conditioner according to any one of claims 1 to 5.
An air conditioner including a refrigerant temperature sensor (56) that detects the temperature of the refrigerant flowing between the control valve (13) and the expansion mechanism (24).
JP2019055447A 2019-03-22 2019-03-22 Air conditioner Pending JP2020153646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019055447A JP2020153646A (en) 2019-03-22 2019-03-22 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019055447A JP2020153646A (en) 2019-03-22 2019-03-22 Air conditioner

Publications (1)

Publication Number Publication Date
JP2020153646A true JP2020153646A (en) 2020-09-24

Family

ID=72558594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019055447A Pending JP2020153646A (en) 2019-03-22 2019-03-22 Air conditioner

Country Status (1)

Country Link
JP (1) JP2020153646A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113701250A (en) * 2021-08-24 2021-11-26 青岛海信日立空调***有限公司 Central air-conditioning system
CN113983570A (en) * 2021-11-09 2022-01-28 上海交通大学 Water taking and dehumidifying integrated heat pump system and method based on dehumidifying heat exchanger
WO2022224436A1 (en) * 2021-04-23 2022-10-27 三菱電機株式会社 Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224436A1 (en) * 2021-04-23 2022-10-27 三菱電機株式会社 Air conditioner
CN113701250A (en) * 2021-08-24 2021-11-26 青岛海信日立空调***有限公司 Central air-conditioning system
CN113983570A (en) * 2021-11-09 2022-01-28 上海交通大学 Water taking and dehumidifying integrated heat pump system and method based on dehumidifying heat exchanger

Similar Documents

Publication Publication Date Title
CN105115181B (en) A kind of air-conditioning system
US5337574A (en) Heating and cooling system for a building
JP3925545B2 (en) Refrigeration equipment
CN104949210B (en) The control method of air-conditioning system, air conditioner and air-conditioning system
JP2020153646A (en) Air conditioner
CN111998565B (en) Double-temperature air conditioning system and control method thereof
KR102139084B1 (en) Air conditioner
EP1806542A1 (en) Air conditioner
JP6949130B2 (en) Refrigeration cycle equipment
KR102436706B1 (en) Method for controlling multi-type air conditioner
CN112377986A (en) Air conditioner and control method thereof
JP4647399B2 (en) Ventilation air conditioner
JP6577264B2 (en) Air conditioner
JP2020125855A (en) Air conditioner
JP2017089950A (en) Air Conditioning System
JP5693990B2 (en) Air source heat pump air conditioner
KR20190081866A (en) air-conditioning system
KR100504478B1 (en) Indoor unit for air conditioner
JP2008121997A (en) Air conditioner
KR102418488B1 (en) Method for controlling multi-type air conditioner
JP2016161207A (en) Air conditioner
JP7460899B2 (en) Air Conditioning Equipment
CN212362480U (en) Double-temperature air conditioning system
CN110207417B (en) Air conditioning system
KR20100137050A (en) Refrigeration and air conditioning system