JP2020153247A - Cooling water flow control tool, internal combustion engine, and automobile - Google Patents

Cooling water flow control tool, internal combustion engine, and automobile Download PDF

Info

Publication number
JP2020153247A
JP2020153247A JP2019049946A JP2019049946A JP2020153247A JP 2020153247 A JP2020153247 A JP 2020153247A JP 2019049946 A JP2019049946 A JP 2019049946A JP 2019049946 A JP2019049946 A JP 2019049946A JP 2020153247 A JP2020153247 A JP 2020153247A
Authority
JP
Japan
Prior art keywords
cooling water
water flow
rubber
groove
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019049946A
Other languages
Japanese (ja)
Inventor
佐藤 絢也
Junya Sato
絢也 佐藤
辰徳 片岡
Tatsunori Kataoka
辰徳 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2019049946A priority Critical patent/JP2020153247A/en
Publication of JP2020153247A publication Critical patent/JP2020153247A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

To provide a control tool of cooling water flow capable of dividing a groove-like cooling water flow channel.SOLUTION: A cooling water flow control tool disposed in a groove-like cooling water flow channel of a cylinder block of an internal combustion engine having a cylinder bore for damming flow of cooling water flowing in the groove-like cooling water flow channel, is composed of a base member to which a rubber member is fixed, and the rubber member having a rubber material inner portion fixed to the base member and closing a clearance between the base member and a cylinder bore wall, a rubber material outer portion closing a clearance between the base member and an opposed wall of the cylinder bore wall, a rubber material upper portion closing a clearance between the base member and the cylinder head, and a rubber material bottom side portion closing a clearance between the base member and a bottom surface of the groove-like cooling water flow channel.SELECTED DRAWING: Figure 4

Description

本発明は、内燃機関のシリンダブロックの溝状冷却水流路を流れる冷却水の流れを制御するための冷却水流れ制御具及びそれを備える内燃機関並びに該内燃機関を有する自動車に関する。 The present invention relates to a cooling water flow controller for controlling the flow of cooling water flowing through a groove-shaped cooling water flow path of a cylinder block of an internal combustion engine, an internal combustion engine provided with the cooling water flow controller, and an automobile having the internal combustion engine.

内燃機関では、シリンダボア壁を冷却する冷却水を流すために、シリンダブロックには、溝状冷却水流路が設けられている。そして、通常、内燃機関のエキゾースト側は、インテーク側に比べ、温度が高くなるため、インテーク側とエキゾースト側の溝状冷却水流路に、同じように冷却水を流したのでは、インテーク側が冷却され過ぎたり、あるいは、エキゾースト側の冷却が不十分となることが起こる。 In an internal combustion engine, a groove-shaped cooling water flow path is provided in the cylinder block in order to allow cooling water for cooling the cylinder bore wall to flow. Normally, the temperature of the exhaust side of the internal combustion engine is higher than that of the intake side. Therefore, if the cooling water is similarly passed through the groove-shaped cooling water flow paths on the intake side and the exhaust side, the intake side is cooled. It may happen that the exhaust side is too cool or the exhaust side is not sufficiently cooled.

内燃機関に、このような冷却度合の差が生じると、シリンダボア壁の熱変形量に違いが生じ、その結果、ピストンのシリンダボア壁との摩擦抵抗が大きくなり、これが、燃費を下げる要因となっている。そのため、インテーク側とエキゾースト側との冷却水による冷却度合の差を少なくすることが求められている。 When such a difference in the degree of cooling occurs in the internal combustion engine, a difference in the amount of thermal deformation of the cylinder bore wall occurs, and as a result, the frictional resistance of the piston with the cylinder bore wall increases, which causes a decrease in fuel consumption. There is. Therefore, it is required to reduce the difference in the degree of cooling due to the cooling water between the intake side and the exhaust side.

そこで、従来より、インテーク側とエキゾースト側との内燃機関の冷却度合を調節するための試みが行われている。それらのうちの一つの手法として、溝状冷却水流路を流れる冷却水の流れ方向を制御すること等が行われている。例えば、特許文献1には、シリンダブロックのウォータジャケット内に、シリンダボア壁温を均一化するためのスペーサが配置されたシリンダブロックの冷却構造において、シリンダブロックの冷却水入口部または出口部に配置されたスペーサ部分が、流れ抵抗を低減する構造とされていることを特徴とするシリンダブロックの冷却構造が開示されている。また、特許文献2には、シリンダブロックのウォータジャケット内にスペーサを配置したシリンダブロックの冷却構造であって、ウォータジャケット上部のメインの冷却通路の通路断面積が下流側の方が広くならないようにしながら、前記メインの冷却通路のシリンダボア壁との接触面積が下流側ほど大きくなるように、スペーサの断面形状を冷却水循環方向に変化させたシリンダブロックの冷却構造が開示されている。また、特許文献3には、内燃機関のシリンダ壁を冷却するウォータジャケット部を有するシリンダブロックと、前記ウォータジャケット部に挿入され、成形されて上限を仕切る仕切り板とを備え、気筒間に上下を貫通する貫通路となる凹部が設けられ、前記仕切り板には、流水遮蔽板が位置している、シリンダブロックの冷却構造が開示されている。 Therefore, conventionally, attempts have been made to adjust the degree of cooling of the internal combustion engine on the intake side and the exhaust side. As one of the methods, control of the flow direction of the cooling water flowing through the groove-shaped cooling water flow path is performed. For example, in Patent Document 1, in a cylinder block cooling structure in which a spacer for equalizing the cylinder bore wall temperature is arranged in a water jacket of the cylinder block, it is arranged at a cooling water inlet portion or an outlet portion of the cylinder block. A cooling structure for a cylinder block is disclosed, wherein the spacer portion has a structure for reducing flow resistance. Further, Patent Document 2 has a cylinder block cooling structure in which a spacer is arranged in the water jacket of the cylinder block so that the cross-sectional area of the main cooling passage at the upper part of the water jacket does not become wider on the downstream side. However, a cooling structure of a cylinder block in which the cross-sectional shape of the spacer is changed in the cooling water circulation direction is disclosed so that the contact area of the main cooling passage with the cylinder bore wall becomes larger toward the downstream side. Further, Patent Document 3 includes a cylinder block having a water jacket portion for cooling a cylinder wall of an internal combustion engine, and a partition plate inserted into the water jacket portion and molded to partition an upper limit, and upper and lower parts are separated between cylinders. A cooling structure of a cylinder block is disclosed in which a recess serving as a through-passage is provided and a running water shielding plate is located in the partition plate.

特開2002−13440号公報(特許請求の範囲)JP-A-2002-13440 (Claims) 特開2005−113764号公報(特許請求の範囲)Japanese Unexamined Patent Publication No. 2005-113764 (Claims) 特開2005−315118号公報(特許請求の範囲)JP-A-2005-315118 (Claims)

ここで、シリンダボア壁を囲むように繋がって形成されている溝状冷却水流路を、いくつかの部分に、例えば、2つに分けて、それぞれの部分に異なる冷却水の流れをつくることができれば、これまでとは異なったシリンダボア壁の保温又は冷却度合の調節が可能となる。 Here, if the groove-shaped cooling water flow path formed by connecting so as to surround the cylinder bore wall can be divided into several parts, for example, two, and different cooling water flows can be created in each part. , It is possible to adjust the heat retention or cooling degree of the cylinder bore wall different from the conventional one.

従って、本発明の課題は、溝状冷却水流路を分割することが可能な冷却水流れの制御具を提供することにある。 Therefore, an object of the present invention is to provide a cooling water flow controller capable of dividing the groove-shaped cooling water flow path.

上記課題は、以下の本発明により解決される。
すなわち、本発明(1)は、シリンダボアを有する内燃機関のシリンダブロックの溝状冷却水流路に設置され、該溝状冷却水流路を流れてくる冷却水の流れをせき止めるための冷却水流れ制御具であり、
ゴム部材が固定される基体部材と、
該基体部材に固定され、該基体部材とシリンダボア壁との隙間を塞ぐためのゴム材内側部と、該基体部材とシリンダボア壁の対壁との隙間を塞ぐためのゴム材外側部と、該基体部材とシリンダヘッドとの隙間を塞ぐためのゴム材上側部と、該基体部材と溝状冷却水流路の底面との隙間を塞ぐためのゴム材底側部と、を有するゴム部材と、
からなることを特徴とする冷却水流れ制御具を提供するものである。
The above problem is solved by the following invention.
That is, the present invention (1) is a cooling water flow controller which is installed in a groove-shaped cooling water flow path of a cylinder block of an internal combustion engine having a cylinder bore and for damming the flow of cooling water flowing through the groove-shaped cooling water flow path. And
The base member to which the rubber member is fixed and the base member
An inner portion of the rubber material fixed to the substrate member and for closing the gap between the substrate member and the cylinder bore wall, an outer portion of the rubber material for closing the gap between the substrate member and the opposite wall of the cylinder bore wall, and the substrate. A rubber member having a rubber material upper surface portion for closing the gap between the member and the cylinder head, and a rubber material bottom side portion for closing the gap between the base member and the bottom surface of the groove-shaped cooling water flow path.
The present invention provides a cooling water flow controller characterized by being composed of.

また、本発明(2)は、前記基体部材の側部に形成され、冷却水の流れが前記ゴム部材の側部に当たることを防ぐための保護部を有することを特徴とする(1)の冷却水流れ制御具を提供するものである。 Further, the present invention (2) is characterized by having a protective portion formed on the side portion of the base member and for preventing the flow of cooling water from hitting the side portion of the rubber member (1). It provides a water flow controller.

また、本発明(3)は、前記ゴム部材が、ベースフォーム材と、熱可塑性物質と、からなる感熱膨張ゴムであり、該ベースフォーム材が、シリコンゴム、フッ素ゴム、天然ゴム、ブタジエンゴム、エチレンプロピレンジエンゴム又はニトリルブタジエンゴムであり、該熱可塑性物質が、樹脂又は金属材料であることを特徴とする(1)又は(2)の冷却水流れ制御具を提供するものである。 Further, in the present invention (3), the rubber member is a heat-sensitive expansion rubber composed of a base foam material and a thermoplastic substance, and the base foam material is silicon rubber, fluororubber, natural rubber, butadiene rubber. It is an ethylene propylene diene rubber or a nitrile butadiene rubber, and provides a cooling water flow controller according to (1) or (2), wherein the thermoplastic substance is a resin or a metal material.

また、本発明(4)は、前記ゴム部材が、水膨潤ゴムであることを特徴とする(1)又は(2)の冷却水流れ制御具を提供するものである。 Further, the present invention (4) provides the cooling water flow controller according to (1) or (2), wherein the rubber member is a water-swelling rubber.

また、本発明(5)は、溝状冷却水流路が形成されているシリンダブロックを有し、
該溝状冷却水流路内に、(1)〜(4)いずれかの冷却水流れ制御具が少なくとも1つ設置されていること、
を特徴とする内燃機関を提供するものである。
Further, the present invention (5) has a cylinder block in which a groove-shaped cooling water flow path is formed.
At least one cooling water flow controller (1) to (4) is installed in the groove-shaped cooling water flow path.
It provides an internal combustion engine characterized by.

また、本発明(6)は、(5)の内燃機関を有することを特徴とする自動車を提供するものである。 Further, the present invention (6) provides an automobile characterized by having the internal combustion engine of (5).

本発明によれば、溝状冷却水流路を分割することが可能な冷却水流れの制御具を提供することができる。 According to the present invention, it is possible to provide a cooling water flow controller capable of dividing the groove-shaped cooling water flow path.

本発明のシリンダボア壁の保温具が設置されるシリンダブロックの形態例を示す模式的な平面図である。It is a schematic plan view which shows the form example of the cylinder block in which the heat insulator of the cylinder bore wall of this invention is installed. 図1のx−x線断面図である。It is a sectional view taken along line xx of FIG. 図1に示すシリンダブロックの斜視図である。It is a perspective view of the cylinder block shown in FIG. 本発明の冷却水流れ制御具の形態例を示す模式的な斜視図である。It is a schematic perspective view which shows the morphological example of the cooling water flow control tool of this invention. 図4に示す冷却水流れ制御具31を上側から見た図である。FIG. 3 is a view of the cooling water flow controller 31 shown in FIG. 4 as viewed from above. 図4に示す冷却水流れ制御具31を外側から見た図である。FIG. 3 is a view of the cooling water flow controller 31 shown in FIG. 4 as viewed from the outside. 図4に示す冷却水流れ制御具31を内側から見た図である。FIG. 3 is a view of the cooling water flow controller 31 shown in FIG. 4 as viewed from the inside. 図4に示す冷却水流れ制御具31を下側から見た図である。FIG. 3 is a view of the cooling water flow controller 31 shown in FIG. 4 as viewed from below. 図6のy−y線端面図である。It is a yy line end view of FIG. 図1に示すシリンダブロック11に、冷却水流れ制御具31が挿入される様子を示す模式図である。It is a schematic diagram which shows the mode that the cooling water flow control tool 31 is inserted into the cylinder block 11 shown in FIG. 図1に示すシリンダブロック11の溝状冷却水流路14内に、冷却水流れ制御具31を設置した後且つ感熱膨張ゴムが膨張する前の様子を示す模式図である。It is a schematic diagram which shows the state after installing the cooling water flow controller 31 in the groove-shaped cooling water flow path 14 of the cylinder block 11 shown in FIG. 1 and before the thermal expansion rubber expands. 図1に示すシリンダブロック11に、冷却水流れ制御具31が設置されている様子を示す模式図である。It is a schematic diagram which shows the state in which the cooling water flow controller 31 is installed in the cylinder block 11 shown in FIG. 図1に示すシリンダブロック11に、冷却水流れ制御具31が設置されている様子を示す模式図である。It is a schematic diagram which shows the state in which the cooling water flow controller 31 is installed in the cylinder block 11 shown in FIG. 冷却水流れ制御具31が設置されている溝状冷却水流路内を冷却水が流れる様子を示す模式図である。It is a schematic diagram which shows the state that the cooling water flows in the groove-shaped cooling water flow path in which the cooling water flow control tool 31 is installed. 冷却水流れ制御具31が設置されている溝状冷却水流路内を冷却水が流れる様子を示す模式図である。It is a schematic diagram which shows the state that the cooling water flows in the groove-shaped cooling water flow path in which the cooling water flow control tool 31 is installed. 本発明の冷却水流れ制御具の形態例を示す模式図であり、外側から見た図である。It is a schematic diagram which shows the morphological example of the cooling water flow control tool of this invention, and is the figure seen from the outside. 図16に示す冷却水流れ制御具51を上から見た図である。FIG. 16 is a view of the cooling water flow controller 51 shown in FIG. 16 as viewed from above. 図16のz−z線端面図である。It is a zz line end view of FIG.

本発明の第一の形態のシリンダボア壁の保温具及び本発明の内燃機関について、図1〜図15を参照して説明する。図1〜図3は、本発明の冷却水流れ制御具が設置されるシリンダブロックの形態例を示すものであり、図1は、本発明の冷却水流れ制御具が設置されるシリンダブロックを示す模式的な平面図であり、図2は、図1のx−x線断面図であり、図3は、図1に示すシリンダブロックの斜視図である。図4は、本発明の冷却水流れ制御具の形態例を示す模式的な斜視図である。図5は、図4中の冷却水流れ制御具31を上側から見た図である。図6は、図4中の冷却水流れ制御具31を外側から見た図である。図7は、図4中の冷却水流れ制御具31を内側から見た図である。図8は、図4中の冷却水流れ制御具31を下側から見た図である。図9は、図6のy−y線断面図である。図10は、図1に示すシリンダブロック11に、冷却水流れ制御具31が挿入される様子を示す模式図である。図11は、図1に示すシリンダブロック11の溝状冷却水流路14内に、冷却水流れ制御具31を設置した後且つ感熱膨張ゴムが膨張する前の様子を示す模式図である。図12は、図1に示すシリンダブロック11に、冷却水流れ制御具31が設置されている様子を示す模式図であり、溝状冷却水流路内を上から見た図であり、溝状冷却水流路14内に、冷却水流れ制御具31を設置した後且つ感熱膨張ゴムが膨張した後の様子を示す図である。図13は、図1に示すシリンダブロック11に、冷却水流れ制御具31が設置されている様子を示す模式図であり、溝状冷却水流路内を外側から見た図であり、溝状冷却水流路14内に、冷却水流れ制御具31を設置した後且つ感熱膨張ゴムが膨張した後の様子を示す図である。図14は、冷却水流れ制御具31が設置されている溝状冷却水流路内を冷却水が流れる様子を示す模式図であり、溝状冷却水流路内を外側から見た図である。図15は、冷却水流れ制御具31が設置されている溝状冷却水流路内を冷却水が流れる様子を示す模式図であり、溝状冷却水流路内を上から見た図である。 The heat insulating device for the cylinder bore wall of the first aspect of the present invention and the internal combustion engine of the present invention will be described with reference to FIGS. 1 to 15. 1 to 3 show an example of a cylinder block in which the cooling water flow controller of the present invention is installed, and FIG. 1 shows a cylinder block in which the cooling water flow controller of the present invention is installed. It is a schematic plan view, FIG. 2 is a sectional view taken along line xx of FIG. 1, and FIG. 3 is a perspective view of the cylinder block shown in FIG. FIG. 4 is a schematic perspective view showing a morphological example of the cooling water flow controller of the present invention. FIG. 5 is a view of the cooling water flow controller 31 in FIG. 4 as viewed from above. FIG. 6 is a view of the cooling water flow controller 31 in FIG. 4 as viewed from the outside. FIG. 7 is a view of the cooling water flow controller 31 in FIG. 4 as viewed from the inside. FIG. 8 is a view of the cooling water flow controller 31 in FIG. 4 as viewed from below. FIG. 9 is a cross-sectional view taken along the line yy of FIG. FIG. 10 is a schematic view showing how the cooling water flow controller 31 is inserted into the cylinder block 11 shown in FIG. FIG. 11 is a schematic view showing a state after the cooling water flow controller 31 is installed in the groove-shaped cooling water flow path 14 of the cylinder block 11 shown in FIG. 1 and before the thermal expansion rubber expands. FIG. 12 is a schematic view showing a state in which the cooling water flow controller 31 is installed in the cylinder block 11 shown in FIG. 1, and is a view of the inside of the groove-shaped cooling water flow path from above, and is a groove-shaped cooling. It is a figure which shows the state after installing the cooling water flow control tool 31 in the water flow path 14 and after expanding a heat-sensitive expansion rubber. FIG. 13 is a schematic view showing a state in which the cooling water flow controller 31 is installed in the cylinder block 11 shown in FIG. 1, and is a view of the inside of the groove-shaped cooling water flow path from the outside, and is a groove-shaped cooling. It is a figure which shows the state after installing the cooling water flow control tool 31 in the water flow path 14 and after expanding a heat-sensitive expansion rubber. FIG. 14 is a schematic view showing how the cooling water flows in the groove-shaped cooling water flow path in which the cooling water flow controller 31 is installed, and is a view of the inside of the groove-shaped cooling water flow path from the outside. FIG. 15 is a schematic view showing how the cooling water flows in the groove-shaped cooling water flow path in which the cooling water flow controller 31 is installed, and is a view of the inside of the groove-shaped cooling water flow path from above.

図1〜図3に示すように、シリンダボア壁の保温具が設置される車両搭載用内燃機関のオープンデッキ型のシリンダブロック11には、ピストンが上下するためのボア12、及び冷却水を流すための溝状冷却水流路14が形成されている。そして、ボア12と溝状冷却水流路14とを区切る壁が、シリンダボア壁13である。また、シリンダブロック11には、溝状冷却水流路11へ冷却水を供給するための冷却水供給口15及び冷却水供給口16が形成されている。 As shown in FIGS. 1 to 3, the bore 12 for the piston to move up and down and the cooling water to flow through the open deck type cylinder block 11 of the internal combustion engine for vehicles on which the heat insulating device on the cylinder bore wall is installed. Groove-shaped cooling water flow path 14 is formed. The wall that separates the bore 12 and the groove-shaped cooling water flow path 14 is the cylinder bore wall 13. Further, the cylinder block 11 is formed with a cooling water supply port 15 and a cooling water supply port 16 for supplying cooling water to the groove-shaped cooling water flow path 11.

このシリンダブロック11には、2つ以上のボア12が直列に並ぶように形成されている。そのため、ボア12には、1つのボアに隣り合っている端ボア12a1、12a2と、2つのボアに挟まれている中間ボア12b1、12b2とがある(なお、シリンダブロックのボアの数が2つの場合は、端ボアのみである。)。直列に並んだボアのうち、端ボア12a1、12a2は両端のボアであり、また、中間ボア12b1、12b2は、一端の端ボア12a1と他端の端ボア12a2の間にあるボアである。端ボア12a1と中間ボア12b1の間の壁、中間ボア12b1と中間ボア12b2の間の壁及び中間ボア12b2と端ボア12a2の間の壁(ボア間壁191)は、2つのボアに挟まれる部分なので、2つのシリンダボアから熱が伝わるため、他の壁に比べ壁温が高くなる。そのため、溝状冷却水流路14のシリンダボア側の壁面17では、ボア間壁191の近傍が、温度が最も高くなるので、溝状冷却水流路14のシリンダボア側の壁面17のうち、各シリンダボアのボア壁の境界192及びその近傍の温度が最も高くなる。 The cylinder block 11 is formed so that two or more bores 12 are arranged in series. Therefore, the bore 12 has end bores 12a1 and 12a2 adjacent to one bore and intermediate bores 12b1 and 12b2 sandwiched between the two bores (note that the number of bores in the cylinder block is two). In the case, only the end bore.). Of the bores arranged in series, the end bores 12a1 and 12a2 are bores at both ends, and the intermediate bores 12b1 and 12b2 are bores between one end bore 12a1 and the other end bore 12a2. The wall between the end bore 12a1 and the intermediate bore 12b1, the wall between the intermediate bore 12b1 and the intermediate bore 12b2, and the wall between the intermediate bore 12b2 and the end bore 12a2 (inter-bore wall 191) is a portion sandwiched between the two bores. Therefore, since heat is transferred from the two cylinder bores, the wall temperature is higher than that of the other walls. Therefore, on the wall surface 17 on the cylinder bore side of the groove-shaped cooling water flow path 14, the temperature is highest in the vicinity of the bore wall 191. Therefore, among the wall surface 17 on the cylinder bore side of the groove-shaped cooling water flow path 14, the bore of each cylinder bore The temperature at and near the wall boundary 192 is highest.

シリンダブロック11の溝状冷却水流路14は、上から見た時に、一方の片側半部の溝状冷却水流路141の端部143から、他方の片側半部の溝状冷却水流路142の端部144まで繋がっており、略シリンダボア壁17を略一周囲むように形成されている。そして、ヘッドボルトフランジ部が、溝状冷却水流路14に対し、凸状に設定されているために、溝状冷却水流路14には、凸部20が形成されている。 When viewed from above, the groove-shaped cooling water flow path 14 of the cylinder block 11 is from the end 143 of the groove-shaped cooling water flow path 141 on one side half to the end of the groove-shaped cooling water flow path 142 on the other side half. It is connected to the portion 144, and is formed so as to substantially surround the cylinder bore wall 17. Since the head bolt flange portion is set to be convex with respect to the groove-shaped cooling water flow path 14, the groove-shaped cooling water flow path 14 is formed with a convex portion 20.

本発明では、溝状冷却水流路14の壁面のうち、シリンダボア13側の壁面を、溝状冷却水流路のシリンダボア壁17と記載し、溝状冷却水流路14の壁面のうち、溝状冷却水流路のシリンダボア壁17とは反対側の壁面を、シリンダボア壁の対壁18と記載する。 In the present invention, the wall surface on the cylinder bore 13 side of the wall surface of the groove-shaped cooling water flow path 14 is described as the cylinder bore wall 17 of the groove-shaped cooling water flow path, and the groove-shaped cooling water flow is described as the wall surface of the groove-shaped cooling water flow path 14. The wall surface opposite to the cylinder bore wall 17 of the road is referred to as the opposite wall 18 of the cylinder bore wall.

また、本発明において、片側半分とは、シリンダブロックをシリンダボアが並んでいる方向で垂直に二分割したときの片側の半分を指す。よって、本発明において、全溝状冷却水流路14のうちの片側半分の溝状冷却水流路とは、全溝状冷却水流路14をシリンダボアが並んでいる方向で垂直に二分割したときの片側の半分の溝状冷却水流路を指す。例えば、図1では、シリンダボアが並んでいる方向で垂直に二分割したときの片側半分の溝状冷却水流路のそれぞれが、全溝状冷却水流路14のうちの片側半分の溝状冷却水流路である。つまり、図1では、紙面で下側半分の溝状冷却水流路が、全溝状冷却水流路14のうちの一方の片側半分の溝状冷却水流路141であり、紙面で上側半分の溝状冷却水流路が、全溝状冷却水流路14のうちの他方の片側半分の溝状冷却水流路142である。 Further, in the present invention, the one-sided half refers to the one-sided half when the cylinder block is vertically divided into two in the direction in which the cylinder bores are lined up. Therefore, in the present invention, the groove-shaped cooling water flow path of one half of the full-groove-shaped cooling water flow path 14 is one side when the full-groove-shaped cooling water flow path 14 is vertically divided into two in the direction in which the cylinder bores are lined up. Refers to the grooved cooling water flow path of half of. For example, in FIG. 1, each of the groove-shaped cooling water flow paths on one side half when vertically divided into two in the direction in which the cylinder bores are lined up is the groove-shaped cooling water flow path on one side of the entire groove-shaped cooling water flow path 14. Is. That is, in FIG. 1, the groove-shaped cooling water flow path in the lower half on the paper surface is the groove-shaped cooling water flow path 141 in one half of the full-groove-shaped cooling water flow path 14, and the groove-like shape in the upper half on the paper surface. The cooling water flow path is the groove-shaped cooling water flow path 142 of the other half of the full groove-shaped cooling water flow path 14.

図4〜図9に示す冷却水流れ制御具31は、溝状冷却水流路を流れる冷却水の流れをせき止めるための制御具である。冷却水流れ制御具31は、合成樹脂製であり且つ感熱膨張ゴム33が固定される基体部材32と、基体部材32に固定されている感熱膨張ゴム33と、からなる。この感熱膨張ゴム33は、リベット37により、基体部材32に固定されている。また、基体部材32は、基体部材32の両側部に形成され、冷却水の流れが感熱膨張ゴム33に強く当たることを防ぐための保護部34a、34bを有する。また、冷却水流れ制御具31では、保護部34a、34bを外側から見た時に、横側中央近傍から上側に向けて上り傾斜の形状を有する傾斜部38a、38bを有する。 The cooling water flow controller 31 shown in FIGS. 4 to 9 is a controller for damming the flow of cooling water flowing through the groove-shaped cooling water flow path. The cooling water flow controller 31 is composed of a base member 32 made of synthetic resin and to which the heat-sensitive expansion rubber 33 is fixed, and a heat-sensitive expansion rubber 33 fixed to the base member 32. The heat-sensitive expansion rubber 33 is fixed to the base member 32 by rivets 37. Further, the base member 32 is formed on both side portions of the base member 32, and has protective portions 34a and 34b for preventing the flow of cooling water from strongly hitting the heat-sensitive expansion rubber 33. Further, the cooling water flow controller 31 has inclined portions 38a and 38b having an upward inclined shape from the vicinity of the center on the lateral side to the upper side when the protective portions 34a and 34b are viewed from the outside.

図9に示すように、感熱膨張ゴム33は、基体部材の内側、外側、上側及び底側を取り囲むように配置され、冷却水流れ制御具31が溝状冷却水流路14に設置されたときに、基体部材32とシリンダボア壁17との隙間を塞ぐためのゴム材内側部331と、基体部材32とシリンダボア壁の対壁18との隙間を塞ぐためのゴム材外側部332と、基体部材32とシリンダヘッドとの隙間を塞ぐためのゴム材上側部333と、基体部材32と溝状冷却水流路の底面との隙間を塞ぐためのゴム材底側部334と、を有する。 As shown in FIG. 9, the heat-sensitive expansion rubber 33 is arranged so as to surround the inside, the outside, the upper side, and the bottom side of the base member, and when the cooling water flow controller 31 is installed in the groove-shaped cooling water flow path 14. , The rubber material inner portion 331 for closing the gap between the base member 32 and the cylinder bore wall 17, the rubber material outer portion 332 for closing the gap between the base member 32 and the opposite wall 18 of the cylinder bore wall, and the base member 32. It has a rubber material upper side portion 333 for closing the gap with the cylinder head, and a rubber material bottom side portion 334 for closing the gap between the base member 32 and the bottom surface of the groove-shaped cooling water flow path.

冷却水流れ制御具31は、例えば、図1に示すシリンダブロック11の溝状冷却水流路14に設置される。図10に示すように、冷却水流れ制御具31を、シリンダブロック11の溝状冷却水流路14に挿入して、図11に示すように、冷却水流れ制御具31を、溝状冷却水流路14内に設置する。冷却水流れ制御具31が設置される位置は、凸部20が形成されている位置近傍であり、凸部20に、感熱膨張ゴム33が位置するように、冷却水流れ制御具31が設置される。 The cooling water flow controller 31 is installed, for example, in the groove-shaped cooling water flow path 14 of the cylinder block 11 shown in FIG. As shown in FIG. 10, the cooling water flow controller 31 is inserted into the groove-shaped cooling water flow path 14 of the cylinder block 11, and as shown in FIG. 11, the cooling water flow controller 31 is inserted into the groove-shaped cooling water flow path. Install in 14. The position where the cooling water flow controller 31 is installed is near the position where the convex portion 20 is formed, and the cooling water flow controller 31 is installed so that the heat-sensitive expansion rubber 33 is located on the convex portion 20. Ru.

冷却水流れ制御具31を、溝状冷却水流路14に挿入するときには、未だ、感熱膨張ゴム33は、膨張していないので、冷却水流れ制御具31の幅は、溝状冷却水流路14の凸部20の位置の流路幅より小さい。そのため、感熱膨張ゴム33のゴム材内側部331とシリンダボア壁17との間には、隙間41が存在する。また、感熱膨張ゴム33のゴム材外側部332とシリンダボア壁の対壁18との間には、隙間42が存在する。 When the cooling water flow controller 31 is inserted into the groove-shaped cooling water flow path 14, the heat-sensitive expansion rubber 33 has not yet expanded, so that the width of the cooling water flow controller 31 is the groove-shaped cooling water flow path 14. It is smaller than the flow path width at the position of the convex portion 20. Therefore, there is a gap 41 between the rubber material inner portion 331 of the heat-sensitive expansion rubber 33 and the cylinder bore wall 17. Further, there is a gap 42 between the rubber material outer side portion 332 of the heat-sensitive expansion rubber 33 and the opposite wall 18 of the cylinder bore wall.

そして、図12に示すように、冷却水流れ制御具31を、溝状冷却水流路14内に設置した後、溝状冷却水流路14内で感熱膨張ゴム33が加熱されると、感熱膨張ゴム33のゴム材内側部331は、シリンダボア壁17に接触するまで膨張し、また、感熱膨張ゴム33のゴム材外側部332は、シリンダボア壁の対壁18に接触するまで膨張する。このことにより、基体部材32とシリンダボア壁17との隙間41が、ゴム材内側部331により塞がれ、また、基体部材32とシリンダボア壁の対壁18との隙間42が、ゴム材外側部332により塞がれる。また、図13に示すように、溝状冷却水流路14内で感熱膨張ゴム33が加熱されると、感熱膨張ゴム33のゴム材上側部333は、シリンダヘッド10に接触するまで膨張し、また、感熱膨張ゴム33のゴム材底側部334は、溝状冷却水流路14の底面に接触するまで膨張する。このことにより、基体部材32とシリンダヘッド10との隙間43が、ゴム材内側部333により塞がれ、また、基体部材32と溝状冷却水流路14の底面との隙間44が、ゴム材底側部334により塞がれる。 Then, as shown in FIG. 12, when the heat-sensitive expansion rubber 33 is heated in the groove-shaped cooling water flow path 14 after the cooling water flow controller 31 is installed in the groove-shaped cooling water flow path 14, the heat-sensitive expansion rubber The rubber material inner portion 331 of 33 expands until it comes into contact with the cylinder bore wall 17, and the rubber material outer portion 332 of the thermal expansion rubber 33 expands until it comes into contact with the opposite wall 18 of the cylinder bore wall. As a result, the gap 41 between the base member 32 and the cylinder bore wall 17 is closed by the rubber material inner portion 331, and the gap 42 between the base member 32 and the cylinder bore wall opposite wall 18 is closed by the rubber material outer portion 332. Is blocked by. Further, as shown in FIG. 13, when the heat-sensitive expansion rubber 33 is heated in the groove-shaped cooling water flow path 14, the rubber material upper portion 333 of the heat-sensitive expansion rubber 33 expands until it comes into contact with the cylinder head 10. The rubber material bottom side portion 334 of the thermal expansion rubber 33 expands until it comes into contact with the bottom surface of the groove-shaped cooling water flow path 14. As a result, the gap 43 between the base member 32 and the cylinder head 10 is closed by the rubber material inner portion 333, and the gap 44 between the base member 32 and the bottom surface of the groove-shaped cooling water flow path 14 is the rubber material bottom. It is blocked by the side 334.

図12及び図13に示すように、冷却水流れ制御具31が、溝状冷却水流路14内に設置され、感熱膨張ゴム33が加熱されて膨張することにより、溝状冷却水流路14の流れ方向に見た時に、基体部材32の周りの全ての隙間が、感熱膨張ゴム33で塞がれるので、図14に示すように、溝状冷却水流路14を流れてくる冷却水45aの流れは、冷却水流れ制御具31によりせき止められる。そして、シリンダヘッド10には、溝状冷却水流路14に開口するシリンダヘッド側冷却水流路9が、形成されているので、冷却水45aは、シリンダヘッド側冷却水流路9へと流出する。 As shown in FIGS. 12 and 13, the cooling water flow controller 31 is installed in the groove-shaped cooling water flow path 14, and the heat-sensitive expansion rubber 33 is heated and expanded to cause the flow of the groove-shaped cooling water flow path 14. When viewed in the direction, all the gaps around the base member 32 are closed by the heat-sensitive expansion rubber 33, so that the flow of the cooling water 45a flowing through the groove-shaped cooling water flow path 14 is as shown in FIG. , It is dammed by the cooling water flow controller 31. Since the cylinder head 10 is formed with a cylinder head-side cooling water flow path 9 that opens into the groove-shaped cooling water flow path 14, the cooling water 45a flows out to the cylinder head-side cooling water flow path 9.

また、図15に示すように、溝状冷却水流路14を上から見たときに、一方の片側半部の溝状冷却水流路141の端部143から流入した冷却水45aは、一方の片側半部の溝状冷却水流路141を、端部143から冷却水流れ制御具31に向かって流れ、冷却水流れ制御具31により、図15中、符号Aの位置でせき止められる。また、他方の片側半部の溝状冷却水流路142の端部144から流入した冷却水45bは、他方の片側半部の溝状冷却水流路142を、端部144から冷却水流れ制御具31に向かって流れ、冷却水流れ制御具31により、図15中、符号Bの位置でせき止められる。そして、一方の片側半部の溝状冷却水流路141に流入した冷却水45a及び他方の片側半部の溝状冷却水流路142に流入した冷却水45bは、冷却水流れ制御具31の向かって流れるときに、いずれかのシリンダヘッド側冷却水流路9よりシリンダヘッド側に流出する。 Further, as shown in FIG. 15, when the groove-shaped cooling water flow path 14 is viewed from above, the cooling water 45a flowing in from the end portion 143 of the groove-shaped cooling water flow path 141 on one side half is on one side. A half groove-shaped cooling water flow path 141 flows from the end portion 143 toward the cooling water flow controller 31, and is dammed by the cooling water flow controller 31 at the position of reference numeral A in FIG. Further, the cooling water 45b that has flowed in from the end 144 of the groove-shaped cooling water flow path 142 on the other half of the other side allows the groove-shaped cooling water flow path 142 on the other half to flow from the end 144 to the cooling water flow controller 31. It flows toward, and is dammed at the position of reference numeral B in FIG. 15 by the cooling water flow controller 31. Then, the cooling water 45a flowing into the groove-shaped cooling water flow path 141 on one side half and the cooling water 45b flowing into the groove-shaped cooling water flow path 142 on the other side half are directed toward the cooling water flow controller 31. When it flows, it flows out to the cylinder head side from any of the cylinder head side cooling water flow paths 9.

このように、溝状冷却水流路14内に、冷却水流れ制御具31を設置することにより、溝状冷却水流路14を2つに分割し、分割された溝状冷却水流路14に、それぞれ別々の供給条件や供給方式で冷却水を流すことが可能となる。 In this way, by installing the cooling water flow controller 31 in the groove-shaped cooling water flow path 14, the groove-shaped cooling water flow path 14 is divided into two, and each of the divided groove-shaped cooling water flow paths 14 is divided into two. It is possible to flow cooling water under different supply conditions and supply methods.

本発明の冷却水流れ制御具は、シリンダボアを有する内燃機関のシリンダブロックの溝状冷却水流路に設置され、該溝状冷却水流路を流れてくる冷却水の流れをせき止めるための冷却水流れ制御具であり、
ゴム部材が固定される基体部材と、
該基体部材に固定され、該基体部材とシリンダボア壁との隙間を塞ぐためのゴム材内側部と、該基体部材とシリンダボア壁の対壁との隙間を塞ぐためのゴム材外側部と、該基体部材とシリンダヘッドとの隙間を塞ぐためのゴム材上側部と、該基体部材と溝状冷却水流路の底面との隙間を塞ぐためのゴム材底側部と、を有するゴム部材と、
からなることを特徴とする冷却水流れ制御具である。
The cooling water flow controller of the present invention is installed in a groove-shaped cooling water flow path of a cylinder block of an internal combustion engine having a cylinder bore, and is used for cooling water flow control for stopping the flow of cooling water flowing through the groove-shaped cooling water flow path. It is an ingredient
The base member to which the rubber member is fixed and the base member
An inner portion of the rubber material fixed to the substrate member and for closing the gap between the substrate member and the cylinder bore wall, an outer portion of the rubber material for closing the gap between the substrate member and the opposite wall of the cylinder bore wall, and the substrate. A rubber member having a rubber material upper surface portion for closing the gap between the member and the cylinder head, and a rubber material bottom side portion for closing the gap between the base member and the bottom surface of the groove-shaped cooling water flow path.
It is a cooling water flow controller characterized by being composed of.

本発明の冷却水流れ制御具は、内燃機関のシリンダブロックの溝状冷却水流路に設置される。本発明の冷却水流れ制御具が設置されるシリンダブロックは、シリンダボアが直列に2つ以上並んで形成されているオープンデッキ型のシリンダブロックである。シリンダブロックが、シリンダボアが直列に2つ並んで形成されているオープンデッキ型のシリンダブロックの場合、シリンダブロックは、2つの端ボアからなるシリンダボアを有している。また、シリンダブロックが、シリンダボアが直列に3つ以上並んで形成されているオープンデッキ型のシリンダブロックの場合、シリンダブロックは、2つの端ボアと1つ以上の中間ボアとからなるシリンダボアを有している。また、シリンダブロックでは、ヘッドボルトフランジ部が、溝状冷却水流路14に対し、凸状に設定されているために、溝状冷却水流路には、凸部20が形成されている。なお、本発明では、直列に並んだシリンダボアのうち、両端のボアを端ボアと呼び、両側が他のシリンダボアで挟まれているボアを中間ボアと呼ぶ。 The cooling water flow controller of the present invention is installed in the groove-shaped cooling water flow path of the cylinder block of the internal combustion engine. The cylinder block in which the cooling water flow controller of the present invention is installed is an open deck type cylinder block in which two or more cylinder bores are formed side by side in series. When the cylinder block is an open deck type cylinder block in which two cylinder bores are formed side by side in series, the cylinder block has a cylinder bore composed of two end bores. Further, when the cylinder block is an open deck type cylinder block in which three or more cylinder bores are formed side by side in series, the cylinder block has a cylinder bore composed of two end bores and one or more intermediate bores. ing. Further, in the cylinder block, since the head bolt flange portion is set to be convex with respect to the groove-shaped cooling water flow path 14, the groove-shaped cooling water flow path is formed with a convex portion 20. In the present invention, among the cylinder bores arranged in series, the bores at both ends are referred to as end bores, and the bores whose both sides are sandwiched between other cylinder bores are referred to as intermediate bores.

本発明の冷却水流れ制御具は、溝状冷却水流路内に設置されることで、溝状冷却水流路を流れる冷却水の流れをせき止めるための冷却水流れの制御具である。そして、本発明の冷却水流れ制御具は、溝状冷却水流路を2以上の部分に分割するための分割位置に設置される。本発明の冷却水流れ制御具は、少なくとも、基体部材と、ゴム部材と、からなる。 The cooling water flow controller of the present invention is a cooling water flow controller for damming the flow of cooling water flowing through the groove-shaped cooling water flow path by being installed in the groove-shaped cooling water flow path. Then, the cooling water flow controller of the present invention is installed at a division position for dividing the groove-shaped cooling water flow path into two or more portions. The cooling water flow controller of the present invention comprises at least a base member and a rubber member.

基体部材は、金属製又は合成樹脂製であり、ゴム部材が固定される基体となる。溝状冷却水流路の幅方向の基体部材の厚みは、本発明の冷却水流れ制御具が設置される位置の溝状冷却水流路の幅より小さい範囲で、適宜選択される。基体部材の高さは、本発明の冷却水流れ制御具が設置される位置の溝状冷却水流路の底面から、シリンダヘッドの下面までの長さより小さい範囲で、適宜選択される。溝状冷却水流路の流れ方向における基体部材の幅は、溝状冷却水流路の流れ方向におけるゴム部材の幅に合わせて、適宜選択される。 The base member is made of metal or synthetic resin, and is a base to which the rubber member is fixed. The thickness of the substrate member in the width direction of the groove-shaped cooling water flow path is appropriately selected within a range smaller than the width of the groove-shaped cooling water flow path at the position where the cooling water flow controller of the present invention is installed. The height of the base member is appropriately selected within a range smaller than the length from the bottom surface of the groove-shaped cooling water flow path at the position where the cooling water flow controller of the present invention is installed to the lower surface of the cylinder head. The width of the base member in the flow direction of the groove-shaped cooling water flow path is appropriately selected according to the width of the rubber member in the flow direction of the groove-shaped cooling water flow path.

基体部材は、ゴム部材に冷却水の流れが強く当たることにより、ゴム部材が千切れたり、劣化が早まったりするのを防ぐことを目的として、本発明の冷却水流れ制御具に向かって流れてくる冷却水の流れが、ゴム部材の側面に強く当たることを防ぐための保護部を有することができる。特に、ゴム部材の材質が、膨張ゴムの場合は、膨張ゴムの側面に冷却水が強く当たることにより、膨張ゴムが千切れ易くなるので、基体部材が保護部を有していることが好ましい。保護部は、基体部材の側部に付設され、且つ、本発明の冷却水流れ制御具を外側から見た時に、ゴム部材の横側に付設される。冷却水の流れ方向に見た時の保護部の形状は、ゴム部材を冷却水の流れから保護する効果が高まる点で、できる限り、シリンダボア壁、シリンダボア壁の対壁、シリンダヘッド及び溝状冷却水流路の底面との隙間が小さくなる形状が好ましい。なお、本発明において、内側とは、本発明の冷却水流れ制御具が溝状冷却水流路内に設置された時に、シリンダボア壁側となる側を指し、また、外側とは、シリンダボア壁の対壁側となる側を指し、また、側部とは、本発明の冷却水流れ制御具を外側から見た時の横側を指す。 The base member flows toward the cooling water flow controller of the present invention for the purpose of preventing the rubber member from being torn or deteriorating due to the strong contact of the cooling water with the rubber member. A protective portion may be provided to prevent the incoming cooling water flow from strongly hitting the side surface of the rubber member. In particular, when the material of the rubber member is expanded rubber, it is preferable that the base member has a protective portion because the expanded rubber is easily torn by the strong contact of the cooling water on the side surface of the expanded rubber. The protective portion is attached to the side portion of the base member, and is attached to the lateral side of the rubber member when the cooling water flow controller of the present invention is viewed from the outside. The shape of the protective part when viewed in the flow direction of the cooling water enhances the effect of protecting the rubber member from the flow of the cooling water, and as much as possible, the cylinder bore wall, the opposite wall of the cylinder bore wall, the cylinder head and the groove-shaped cooling. A shape that reduces the gap with the bottom surface of the water flow path is preferable. In the present invention, the inside refers to the side that becomes the cylinder bore wall side when the cooling water flow controller of the present invention is installed in the groove-shaped cooling water flow path, and the outside refers to the pair of the cylinder bore wall. It refers to the side that becomes the wall side, and the side portion refers to the lateral side when the cooling water flow controller of the present invention is viewed from the outside.

また、保護部には、溝状冷却水流路の凸部の横側に突き出す張り出し部が形成されていてもよい。張り出し部が、溝状冷却水流路の凸部の横側に張り出すことにより、本発明の冷却水流れ制御具が、溝状冷却水流路内で位置ずれを起こし難くなる。 Further, the protective portion may be formed with an overhanging portion protruding to the lateral side of the convex portion of the groove-shaped cooling water flow path. By projecting the overhanging portion to the side of the convex portion of the groove-shaped cooling water flow path, the cooling water flow controller of the present invention is less likely to be misaligned in the groove-shaped cooling water flow path.

また、図4〜図9に示す形態例のように、保護部は、外側から見た時に、横側中央近傍から上側に向けて上り傾斜の形状を有する傾斜部を有していてもよい。 Further, as in the morphological example shown in FIGS. 4 to 9, the protective portion may have an inclined portion having an upward inclined shape from the vicinity of the center of the lateral side toward the upper side when viewed from the outside.

基体部材、及び必要に応じて設けられる保護部、張り出し部は、金属材料又は合成樹脂により形成されている。金属材料としては、SUS等のステンレス鋼や、鉄、鋼、アルミ等に腐食防止のためのコーティングが施されたものなどが挙げられる。合成樹脂としては、ポリテトラフルオロエチレン(PTFE)、ポリアミド(PA)、ポリフタルアミド(PPA)、ポリプロピレン(PP)、66ナイロン(PA66)に補強材としてガラス繊維が配合されたもの等が挙げられる。 The base member, and the protective portion and the overhanging portion provided as needed are formed of a metal material or a synthetic resin. Examples of the metal material include stainless steel such as SUS, iron, steel, aluminum and the like coated for corrosion prevention. Examples of the synthetic resin include polytetrafluoroethylene (PTFE), polyamide (PA), polyphthalamide (PPA), polypropylene (PP), 66 nylon (PA66) mixed with glass fiber as a reinforcing material. ..

ゴム部材は、基体部材に固定されている。ゴム部材を基体部材に固定する方法としては、特に制限されず、例えば、リベット等により固定する方法、基体部材の表面にゴム部材を貼着する方法、ゴム部材を基体部材に融着する方法、二色成形にように、基体部材の成形と同時にゴム部材を接着させる方法等が挙げられる。 The rubber member is fixed to the base member. The method of fixing the rubber member to the base member is not particularly limited, and for example, a method of fixing with a rivet or the like, a method of sticking the rubber member on the surface of the base member, a method of fusing the rubber member to the base member, As in the case of two-color molding, a method of adhering the rubber member at the same time as molding the base member can be mentioned.

ゴム部材は、基体部材とシリンダボア壁との隙間を塞ぐためのゴム材内側部と、基体部材とシリンダボア壁の対壁との隙間を塞ぐためのゴム材外側部と、基体部材とシリンダヘッドとの隙間を塞ぐためのゴム材上側部と、基体部材と溝状冷却水流路の底面との隙間を塞ぐためのゴム材底側部と、を有する。つまり、ゴム部材は、冷却水の流れ方向に見た時に、基体部材の周りを一周囲むように配置されている。 The rubber member includes an inner part of the rubber material for closing the gap between the base member and the cylinder bore wall, an outer part of the rubber material for closing the gap between the base member and the opposite wall of the cylinder bore wall, and the base member and the cylinder head. It has an upper side portion of the rubber material for closing the gap and a bottom side portion of the rubber material for closing the gap between the base member and the bottom surface of the groove-shaped cooling water flow path. That is, the rubber member is arranged so as to surround the base member when viewed in the flow direction of the cooling water.

ゴム部材の厚み、上下方向の長さ及び溝状冷却水方向の幅は、溝状冷却水流路の幅及び深さ、冷却水の圧力、流速等の冷却水の供給条件、ゴム部材の材質、シール性、膨張ゴムの場合は膨張率、他には、ゴムの圧縮復元特性、止水性、へたり等を考慮して、適宜選択される。 The thickness of the rubber member, the length in the vertical direction and the width in the groove-shaped cooling water direction are the width and depth of the groove-shaped cooling water flow path, the cooling water pressure, the cooling water supply conditions such as the flow velocity, the material of the rubber member, and the like. It is appropriately selected in consideration of sealing property, expansion rate in the case of expanded rubber, compression restoration characteristics of rubber, water stopping property, settling and the like.

ゴム部材の材質としては、ソリッドゴム、感熱膨張ゴム、水膨潤ゴム、発砲ゴムが挙げられる。 Examples of the material of the rubber member include solid rubber, heat-sensitive expansion rubber, water-swelling rubber, and foam rubber.

ソリッドゴムの組成としては、天然ゴム、ブタジエンゴム、エチレンプロピレンジエンゴム(EPDM)、ニトリルブタジエンゴム(NBR)、シリコンゴム、フッ素ゴム等が挙げられる。 Examples of the composition of the solid rubber include natural rubber, butadiene rubber, ethylene propylene diene rubber (EPDM), nitrile butadiene rubber (NBR), silicon rubber, and fluororubber.

膨張ゴムとしては、感熱膨張ゴム、水膨潤ゴムが挙げられる。 Examples of the expanding rubber include heat-sensitive expanding rubber and water-swelling rubber.

感熱膨張ゴムは、膨張前は、ベースフォーム材が熱可塑性物質により圧縮されて拘束された状態であり、加熱されることにより、熱可塑性樹脂による拘束が解け、圧縮される前の状態、すなわち、開放状態まで膨張するゴム材である。感熱膨張ゴム(圧縮状態)は、ベースフォーム材にベースフォーム材より融点が低い熱可塑性物質を含浸させ圧縮した複合体であり、常温では少なくともその表層部に存在する熱可塑性物質の硬化物により圧縮状態が保持され、且つ、加熱により熱可塑性物質の硬化物が軟化して圧縮状態が開放される材料である。感熱膨張ゴムとしては、例えば、特開2004−143262号公報に記載の感熱膨張ゴムが挙げられる。 Before expansion, the heat-sensitive expansion rubber is in a state in which the base foam material is compressed and restrained by the thermoplastic substance, and when heated, the restraint by the thermoplastic resin is released and the state before compression, that is, A rubber material that expands to the open state. The heat-sensitive expansion rubber (compressed state) is a composite obtained by impregnating a base foam material with a thermoplastic substance having a lower melting point than the base foam material and compressing it. At room temperature, it is compressed by a cured product of the thermoplastic substance present at least on the surface layer thereof. It is a material that maintains its state and softens the cured product of the thermoplastic substance by heating to release the compressed state. Examples of the heat-sensitive expansion rubber include the heat-sensitive expansion rubber described in JP-A-2004-143262.

感熱膨張ゴムに係るベースフォーム材としては、ゴム、エラストマー、熱可塑性樹脂、熱硬化性樹脂等の各種高分子材料が挙げられ、具体的には、天然ゴム、クロロプロピレンゴム、スチレンブタジエンゴム、ニトリルブタジエンゴム、エチレンプロピレンジエン三元共重合体、シリコンゴム、フッ素ゴム、アクリルゴム等の各種合成ゴム、軟質ウレタン等の各種エラストマー、硬質ウレタン、フェノール樹脂、メラミン樹脂等の各種熱硬化性樹脂が挙げられる。 Examples of the base foam material related to the heat-sensitive expansion rubber include various polymer materials such as rubber, elastomer, thermoplastic resin, and thermosetting resin. Specifically, natural rubber, chloropropylene rubber, styrene-butadiene rubber, and nitrile. Examples include various synthetic rubbers such as butadiene rubber, ethylene propylene diene ternary copolymer, silicon rubber, fluororubber, and acrylic rubber, various elastomers such as soft urethane, and various thermosetting resins such as hard urethane, phenol resin, and melamine resin. Be done.

感熱膨張ゴムに係る熱可塑性物質としては、ガラス転移点、融点又は軟化温度のいずれかが120℃未満であるものが好ましい。感熱膨張ゴムに係る熱可塑性物質としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリアクリル酸エステル、スチレンブタジエン共重合体、塩素化ポリエチレン、ポリフッ化ビニリデン、エチレン酢酸ビニル共重合体、エチレン酢酸ビニル塩化ビニルアクリル酸エステル共重合体、エチレン酢酸ビニルアクリル酸エステル共重合体、エチレン酢酸ビニル塩化ビニル共重合体、ナイロン、アクリロニトリルブタジエン共重合体、ポリアクリロニトリル、ポリ塩化ビニル、ポリクロロプレン、ポリブタジエン、熱可塑性ポリイミド、ポリアセタール、ポリフェニレンサルファイド、ポリカーボネート、熱可塑性ポリウレタン等の熱可塑性樹脂、低融点ガラスフリット、でんぷん、はんだ、ワックス、鋳鉄、ステンレス、アルミニウムなどの金属材料等の各種熱可塑性物質が挙げられる。 As the thermoplastic substance related to the heat-sensitive expansion rubber, those having any one of the glass transition point, the melting point and the softening temperature of less than 120 ° C. are preferable. Examples of the thermoplastic substance related to the heat-sensitive expansion rubber include polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, vinyl acetate, polyacrylic acid ester, styrene-butadiene copolymer, chlorinated polyethylene, polyvinylidene fluoride, and ethylene-acetic acid. Vinyl copolymer, ethylene vinyl acetate vinyl acetate acrylic acid ester copolymer, ethylene vinyl acetate acrylic acid ester copolymer, ethylene vinyl acetate vinyl acetate copolymer, nylon, acrylonitrile butadiene copolymer, polyacrylonitrile, thermoplastic , Polychloroprene, polybutadiene, thermoplastic polyimide, polyacetal, polyphenylene sulfide, polycarbonate, thermoplastic resins such as thermoplastic polyurethane, low melting point glass frit, starch, solder, wax, cast iron, stainless steel, various heats such as metal materials such as aluminum. Examples include thermoplastic substances.

また、膨張ゴムとしては、水膨潤性ゴムが挙げられる。水膨潤性ゴムは、ゴムに吸水性物質が添加された材料であり、水を吸収して膨潤し、膨張した形状を保持する保形性を有するゴム材である。水膨潤性ゴムとしては、例えば、ポリアクリル酸中和物の架橋物、デンプンアクリル酸グラフト共重合体架橋物、架橋カルボキシメチルセルロース塩、ポリビニルアルコール等の吸水性物質がゴムに添加されたゴム材が挙げられる。また、水膨潤性ゴムとしては、例えば、特開平9−208752号公報に記載されているケチミン化ポリアミド樹脂、グリシジルエーテル化物、吸水性樹脂及びゴムを含有する水膨潤性ゴムが挙げられる。保温用ゴム部材の材質が水膨潤性ゴムの場合は、本発明のシリンダボア壁の保温具が溝状冷却水流路の中下部に設置され冷却水が流されて、水膨潤性ゴムが水を吸収することで、水膨潤性ゴムが膨張して所定の形状に膨張変形する。 Further, examples of the expandable rubber include water-swellable rubber. The water-swellable rubber is a material to which a water-absorbing substance is added to rubber, and is a rubber material having a shape-retaining property that absorbs water, swells, and retains an expanded shape. Examples of the water-swellable rubber include a rubber material in which a water-absorbent substance such as a crosslinked product of a neutralized polyacrylic acid, a crosslinked product of a starch acrylic acid graft copolymer, a crosslinked carboxymethyl cellulose salt, and polyvinyl alcohol is added to the rubber. Can be mentioned. Examples of the water-swellable rubber include a water-swellable rubber containing a ketiminated polyamide resin, a glycidyl etherified product, a water-absorbent resin, and a rubber described in JP-A-9-208752. When the material of the heat-retaining rubber member is water-swellable rubber, the heat-retaining tool for the cylinder bore wall of the present invention is installed in the middle and lower parts of the groove-shaped cooling water flow path to allow cooling water to flow, and the water-swelling rubber absorbs water. By doing so, the water-swellable rubber expands and expands and deforms into a predetermined shape.

発泡ゴムは、多孔質のゴムである。発泡ゴムとしては、連続気泡構造を有するスポンジ状の発泡ゴム、独立気泡構造を有する発泡ゴム、半独立発泡ゴム等があげられる。発泡ゴムの材質としては、具体的には、例えば、エチレンプロピレンジエン三元共重合体、シリコンゴム、ニトリルブタジエン共重合体、フッ素ゴム等が挙げられる。 Foam rubber is a porous rubber. Examples of the foam rubber include a sponge-like foam rubber having an open cell structure, a foam rubber having a closed cell structure, and a semi-independent foam rubber. Specific examples of the foam rubber material include ethylene propylene diene ternary copolymer, silicon rubber, nitrile butadiene copolymer, and fluororubber.

本発明の冷却水流れ制御具は、図4〜図9に示す形態例に限定されるものではなく、例えば、図16〜図18に示す形態例が挙げられる。図16中、冷却水流れ制御具51は、外側から見た時の形状が縦長の矩形状の基体部材52と、外側から見た時の形状が縦長の矩形状の膨張ゴム53と、からなり、基体部材52の両側部には、保護部54a、54bが付設されている。 The cooling water flow controller of the present invention is not limited to the form examples shown in FIGS. 4 to 9, and examples thereof include the form examples shown in FIGS. 16 to 18. In FIG. 16, the cooling water flow controller 51 is composed of a vertically long rectangular base member 52 when viewed from the outside and a vertically long rectangular expanded rubber 53 when viewed from the outside. , Protective portions 54a and 54b are attached to both side portions of the substrate member 52.

本発明の冷却水流れ制御具のゴム部材がソリッドゴム等のように使用前に比べ使用時に大きく膨張しない材質の場合は、本発明の冷却水流れ制御具がシリンダブロックの溝状冷却水流路に設置され、シリンダブロックとシリンダヘッドが組み付けられると、本発明の冷却水流れ制御具のゴム部材により、基体部材の周りの隙間、すなわち、基体部材とシリンダボア壁との隙間、基体部材とシリンダボア壁の対壁との隙間、基体部材とシリンダヘッドとの隙間、及び基体部材と溝状冷却水流路の底面との隙間が、塞がれるので、本発明の冷却水流れ制御具は、内燃機関の運転時に、溝状冷却水流路を流れてくる冷却水の流れをせき止める機能を果たす。 When the rubber member of the cooling water flow controller of the present invention is made of a material such as solid rubber that does not expand significantly during use as compared with before use, the cooling water flow controller of the present invention is placed in the groove-shaped cooling water flow path of the cylinder block. When installed and the cylinder block and cylinder head are assembled, the rubber member of the cooling water flow controller of the present invention provides a gap around the base member, that is, a gap between the base member and the cylinder bore wall, and a gap between the base member and the cylinder bore wall. Since the gap between the facing wall, the gap between the base member and the cylinder head, and the gap between the base member and the bottom surface of the groove-shaped cooling water flow path are closed, the cooling water flow controller of the present invention operates the internal combustion engine. Occasionally, it functions to block the flow of cooling water flowing through the groove-shaped cooling water flow path.

本発明の冷却水流れ制御具のゴム部材が感熱膨張ゴム、水膨潤ゴム、発砲ゴム等の膨張ゴムように、使用時までに溝状冷却水流路内で膨張する材質の場合は、本発明の冷却水流れ制御具がシリンダブロックの溝状冷却水流路に設置され、シリンダブロックとシリンダヘッドが組み付けられた後、膨張ゴムが、内燃機関の運転時までに、加熱され、あるいは、冷却水と接触する等により、膨張することで、本発明の冷却水流れ制御具のゴム部材により、基体部材の周りの隙間、すなわち、基体部材とシリンダボア壁との隙間、基体部材とシリンダボア壁の対壁との隙間、基体部材とシリンダヘッドとの隙間、及び基体部材と溝状冷却水流路の底面との隙間が、塞がれるので、本発明の冷却水流れ制御具は、内燃機関の運転時に、溝状冷却水流路を流れてくる冷却水の流れをせき止める機能を果たす。 When the rubber member of the cooling water flow controller of the present invention is a material that expands in the groove-shaped cooling water flow path by the time of use, such as expansion rubber such as heat-sensitive expansion rubber, water expansion rubber, and foam rubber, the present invention After the cooling water flow controller is installed in the groove-shaped cooling water flow path of the cylinder block and the cylinder block and the cylinder head are assembled, the expansion rubber is heated or comes into contact with the cooling water by the time the internal combustion engine is operated. By expanding due to expansion, the rubber member of the cooling water flow controller of the present invention causes a gap around the base member, that is, a gap between the base member and the cylinder bore wall, and a gap between the base member and the cylinder bore wall. Since the gap, the gap between the base member and the cylinder head, and the gap between the base member and the bottom surface of the groove-shaped cooling water flow path are closed, the cooling water flow controller of the present invention has a groove shape during operation of the internal combustion engine. It functions to block the flow of cooling water flowing through the cooling water flow path.

図10に示す形態例では、冷却水流れ制御具が、溝状冷却水流路の凸部に設置される旨を示しているが、本発明の冷却水流れ制御具が設置される位置は、これに制限されず、本発明の冷却水流れ制御具は、所望の溝状冷却水流路の分割位置に設置可能である。 In the embodiment shown in FIG. 10, it is shown that the cooling water flow controller is installed at the convex portion of the groove-shaped cooling water flow path, but the position where the cooling water flow controller of the present invention is installed is this. The cooling water flow controller of the present invention can be installed at a desired split position of the groove-shaped cooling water flow path without being limited to.

本発明の冷却水流れ制御具が設置されている内燃機関では、本発明の冷却水流れ制御具により、溝状冷却水流路が2以上の部分に分割されている。そのため、本発明の冷却水流れ制御具が設置されている内燃機関では、分割された溝状冷却水流路毎に、冷却水の供給条件や供給方式を選択できる。 In an internal combustion engine in which the cooling water flow controller of the present invention is installed, the groove-shaped cooling water flow path is divided into two or more portions by the cooling water flow controller of the present invention. Therefore, in the internal combustion engine in which the cooling water flow controller of the present invention is installed, the cooling water supply condition and the supply method can be selected for each of the divided groove-shaped cooling water flow paths.

本発明の内燃機関は、溝状冷却水流路が形成されているシリンダブロックを有し、
該溝状冷却水流路内に、本発明の冷却水流れ制御具が設置されていること、
を特徴とする内燃機関である。
The internal combustion engine of the present invention has a cylinder block in which a groove-shaped cooling water flow path is formed.
The cooling water flow controller of the present invention is installed in the groove-shaped cooling water flow path.
It is an internal combustion engine characterized by.

本発明の内燃機関に係るシリンダブロックは、本発明の冷却水流れ制御具に係るシリンダブロックと同様である。 The cylinder block according to the internal combustion engine of the present invention is the same as the cylinder block according to the cooling water flow controller of the present invention.

本発明の内燃機関において、本発明の冷却水流れ制御具の設置数は、特に制限されず、溝状冷却水流路の形状、溝状冷却水流路の分割数により、適宜選択される。 In the internal combustion engine of the present invention, the number of installations of the cooling water flow controller of the present invention is not particularly limited, and is appropriately selected depending on the shape of the groove-shaped cooling water flow path and the number of divisions of the groove-shaped cooling water flow path.

本発明の内燃機関は、シリンダブロック及びその溝状冷却水流路内に設置されている本発明の冷却水流れ制御具の他に、シリンダヘッド、カムシャフト、バルブ、ピストン、コンロッド、クランクシャフトを有する。 The internal combustion engine of the present invention has a cylinder head, a camshaft, a valve, a piston, a connecting rod, and a crankshaft in addition to the cylinder block and the cooling water flow controller of the present invention installed in the groove-shaped cooling water flow path thereof. ..

本発明の自動車は、本発明の内燃機関を有することを特徴とする自動車である。 The automobile of the present invention is an automobile characterized by having the internal combustion engine of the present invention.

10 シリンダヘッド
11 シリンダブロック
12 ボア
12a1、12a2 端ボア
12b1、12b2 中間ボア
13 シリンダボア壁
14 溝状冷却水流路
15、16 冷却水供給口
17 シリンダボア壁
18 シリンダボア壁の対壁
20 凸部
31、51 冷却水流れ制御具
32、52 基体部材
33、53 感熱膨張ゴム
34a、34b、54a、54b 保護部
37 リベット
38a、38b 傾斜部
41、42、43、44 隙間
141 一方の片側半分の溝状冷却水流路
142 他方の片側半分の溝状冷却水流路
143 一方の片側半分の溝状冷却水流路の端部
144 他方の片側半分の溝状冷却水流路の端部
331 ゴム部材内側部
332 ゴム部材外側部
333 ゴム部材上側部
334 ゴム部材底側部
191 ボア間部
192 溝状冷却水流路のシリンダボア側の壁面の各シリンダボアのボア壁の境界
O シリンダボアの中心軸
10 Cylinder head 11 Cylinder block 12 Bore 12a1, 12a2 End bore 12b1, 12b2 Intermediate bore 13 Cylinder bore wall 14 Grooved cooling water flow path 15, 16 Cooling water supply port 17 Cylinder bore wall 18 Cylinder bore wall opposite wall 20 Convex parts 31, 51 Cooling Water flow controller 32, 52 Base member 33, 53 Heat-sensitive expansion rubber 34a, 34b, 54a, 54b Protective part 37 Rivet 38a, 38b Inclined part 41, 42, 43, 44 Gap 141 One half of the groove-shaped cooling water flow path 142 One half grooved cooling water flow path 143 One side half grooved cooling water flow path end 144 The other one side half grooved cooling water flow path end 331 Rubber member inner part 332 Rubber member outer part 333 Rubber member upper side 334 Rubber member bottom side 191 Between bores 192 Wall surface on the cylinder bore side of the grooved cooling water flow path Boundary of the bore wall of each cylinder bore O Central axis of the cylinder bore

Claims (6)

シリンダボアを有する内燃機関のシリンダブロックの溝状冷却水流路に設置され、該溝状冷却水流路を流れてくる冷却水の流れをせき止めるための冷却水流れ制御具であり、
ゴム部材が固定される基体部材と、
該基体部材に固定され、該基体部材とシリンダボア壁との隙間を塞ぐためのゴム材内側部と、該基体部材とシリンダボア壁の対壁との隙間を塞ぐためのゴム材外側部と、該基体部材とシリンダヘッドとの隙間を塞ぐためのゴム材上側部と、該基体部材と溝状冷却水流路の底面との隙間を塞ぐためのゴム材底側部と、を有するゴム部材と、
からなることを特徴とする冷却水流れ制御具。
It is a cooling water flow controller that is installed in the groove-shaped cooling water flow path of the cylinder block of an internal combustion engine having a cylinder bore and for stopping the flow of cooling water flowing through the groove-shaped cooling water flow path.
The base member to which the rubber member is fixed and the base member
An inner portion of the rubber material fixed to the substrate member and for closing the gap between the substrate member and the cylinder bore wall, an outer portion of the rubber material for closing the gap between the substrate member and the opposite wall of the cylinder bore wall, and the substrate. A rubber member having a rubber material upper surface portion for closing the gap between the member and the cylinder head, and a rubber material bottom side portion for closing the gap between the base member and the bottom surface of the groove-shaped cooling water flow path.
A cooling water flow controller characterized by consisting of.
前記基体部材の側部に形成され、冷却水の流れが前記ゴム部材の側部に当たることを防ぐための保護部を有することを特徴とする請求項1記載の冷却水流れ制御具。 The cooling water flow controller according to claim 1, further comprising a protective portion formed on a side portion of the base member and for preventing the flow of cooling water from hitting the side portion of the rubber member. 前記ゴム部材が、ベースフォーム材と、熱可塑性物質と、からなる感熱膨張ゴムであり、該ベースフォーム材が、シリコンゴム、フッ素ゴム、天然ゴム、ブタジエンゴム、エチレンプロピレンジエンゴム又はニトリルブタジエンゴムであり、該熱可塑性物質が、樹脂又は金属材料であることを特徴とする請求項1又は2記載の冷却水流れ制御具。 The rubber member is a heat-sensitive expansion rubber composed of a base foam material and a thermoplastic substance, and the base foam material is silicon rubber, fluorine rubber, natural rubber, butadiene rubber, ethylene propylene diene rubber or nitrile butadiene rubber. The cooling water flow controller according to claim 1 or 2, wherein the thermoplastic substance is a resin or a metal material. 前記ゴム部材が、水膨潤ゴムであることを特徴とする請求項1又は2記載の冷却水流れ制御具。 The cooling water flow controller according to claim 1 or 2, wherein the rubber member is a water-swelling rubber. 溝状冷却水流路が形成されているシリンダブロックを有し、
該溝状冷却水流路内に、請求項1〜4いずれか1項記載の冷却水流れ制御具が少なくとも1つ設置されていること、
を特徴とする内燃機関。
It has a cylinder block in which a grooved cooling water flow path is formed.
At least one cooling water flow controller according to any one of claims 1 to 4 is installed in the groove-shaped cooling water flow path.
An internal combustion engine characterized by.
請求項5記載の内燃機関を有することを特徴とする自動車。
An automobile comprising the internal combustion engine according to claim 5.
JP2019049946A 2019-03-18 2019-03-18 Cooling water flow control tool, internal combustion engine, and automobile Pending JP2020153247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019049946A JP2020153247A (en) 2019-03-18 2019-03-18 Cooling water flow control tool, internal combustion engine, and automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019049946A JP2020153247A (en) 2019-03-18 2019-03-18 Cooling water flow control tool, internal combustion engine, and automobile

Publications (1)

Publication Number Publication Date
JP2020153247A true JP2020153247A (en) 2020-09-24

Family

ID=72558101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019049946A Pending JP2020153247A (en) 2019-03-18 2019-03-18 Cooling water flow control tool, internal combustion engine, and automobile

Country Status (1)

Country Link
JP (1) JP2020153247A (en)

Similar Documents

Publication Publication Date Title
WO2011162096A1 (en) Heat retention member for cylinder bore wall, internal combustion engine, and automobile
CN107304704B (en) Separate cooling device for internal combustion engine
JP5593136B2 (en) Overcooling prevention member for cylinder bore wall and internal combustion engine
JP6283011B2 (en) Cylinder bore wall insulation, internal combustion engine and automobile
WO2016104443A1 (en) Water jacket spacer, internal combustion engine, and automobile
JP6297393B2 (en) Cylinder bore wall insulation, internal combustion engine and automobile
JP6128294B2 (en) Water jacket spacer
JP5830134B2 (en) Overcooling prevention member for cylinder bore wall and internal combustion engine
US10669967B2 (en) Cylinder bore wall thermal insulator, internal combustion engine, and automobile
JP6283010B2 (en) Cylinder bore wall insulation, internal combustion engine and automobile
JP5588902B2 (en) Cylinder bore wall thermal insulation structure, cylinder bore wall thermal insulation method, internal combustion engine and automobile
JPWO2016104444A1 (en) Water jacket cooling water flow compartment, internal combustion engine and automobile
US20170175613A1 (en) Thermostat stability enhancement via wavy valve plate
JP6297531B2 (en) Cylinder bore wall insulation, internal combustion engine and automobile
JP2020153247A (en) Cooling water flow control tool, internal combustion engine, and automobile
WO2018055993A1 (en) Heat retention tool for cylinder bore wall, internal combustion engine, and automobile
WO2018225735A1 (en) Water jacket spacer, cylinder bore wall insulator, internal combustion engine, and vehicle
WO2018225733A1 (en) Cylinder bore wall warming tool
JP6216731B2 (en) Insulating member for cylinder bore wall, internal combustion engine and automobile
JP5809950B2 (en) Composite materials, internal combustion engines and automobiles
JP6793694B2 (en) Cylinder bore wall warmers, internal combustion engines and automobiles
JP2017067075A (en) Heat insulation member for cylinder bore wall, internal combustion engine, and automobile
JP2020026779A (en) Heat retention tool of cylinder bore wall, internal combustion engine, and motor vehicle
KR20220085410A (en) Thrmostat for vehicle