JP2020150363A - Filter and multiplexer - Google Patents

Filter and multiplexer Download PDF

Info

Publication number
JP2020150363A
JP2020150363A JP2019044797A JP2019044797A JP2020150363A JP 2020150363 A JP2020150363 A JP 2020150363A JP 2019044797 A JP2019044797 A JP 2019044797A JP 2019044797 A JP2019044797 A JP 2019044797A JP 2020150363 A JP2020150363 A JP 2020150363A
Authority
JP
Japan
Prior art keywords
elastic wave
wave resonator
filter
pass band
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019044797A
Other languages
Japanese (ja)
Inventor
昊成 秋
Hosung Choo
昊成 秋
井上 真
Makoto Inoue
真 井上
英行 関根
Hideyuki Sekine
英行 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2019044797A priority Critical patent/JP2020150363A/en
Publication of JP2020150363A publication Critical patent/JP2020150363A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filters And Equalizers (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

To improve steepness of an attenuation amount.SOLUTION: A filter 11 comprises: a first element that is connected in series between an input terminal T1 and an output terminal T2, and that is any one of a capacitor and an inductor; a second element that is connected in parallel with the first element between the input terminal and the output terminal, and that is the other being different from the first element, of the capacitor and the inductor; a third element that is connected in parallel with the first element and in series with the second element between the input terminal and the output terminal, and that is the other being different from the first element, of the capacitor and the inductor; a first acoustic wave resonator R1 in which one end is connected to a node N3 between the second element and the third element and the other end is grounded; and a resonance circuit 15 that includes a second acoustic wave resonator R2 which is connected in series with the second element and the third element between the input terminal and the output terminal.SELECTED DRAWING: Figure 4

Description

本発明は、フィルタおよびマルチプレクサに関し、例えば弾性波共振器を有するフィルタおよびマルチプレクサに関する。 The present invention relates to filters and multiplexers, for example, filters and multiplexers having elastic wave resonators.

キャパシタおよびインダクタにより形成されたLC回路に、弾性波共振器を設けるフィルタが知られている(例えば特許文献1、2)。 A filter in which an elastic wave resonator is provided in an LC circuit formed by a capacitor and an inductor is known (for example, Patent Documents 1 and 2).

特開2018−129680号公報JP-A-2018-129680 特開2018−129683号公報JP-A-2018-129683

しかしながら、特許文献1および2のフィルタでは、通過帯域と阻止帯域との間の遷移領域における減衰量の急峻性が十分ではない。 However, in the filters of Patent Documents 1 and 2, the steepness of the amount of attenuation in the transition region between the pass band and the stop band is not sufficient.

本発明は、上記課題に鑑みなされたものであり、減衰量の急峻性を向上させることを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to improve the steepness of the attenuation amount.

本発明は、入力端子と出力端子との間に直列に接続され、キャパシタおよびインダクタのいずれか一方である第1素子と、前記入力端子と前記出力端子との間に前記第1素子と並列に接続され、キャパシタおよびインダクタのうち前記第1素子と異なる他方である第2素子と、前記入力端子と前記出力端子との間に前記第1素子と並列にかつ前記第2素子と直列に接続され、キャパシタおよびインダクタのうち前記第1素子と異なる他方である第3素子と、一端が前記第2素子と前記第3素子との間のノードに接続され、他端が接地された第1弾性波共振器と、前記入力端子と前記出力端子との間において前記第2素子および前記第3素子と直列に接続された第2弾性波共振器を含む共振回路と、を備えるフィルタである。 In the present invention, the first element, which is connected in series between the input terminal and the output terminal and is either a capacitor or an inductor, and the first element in parallel between the input terminal and the output terminal. The second element, which is the other capacitor and inductor different from the first element, is connected between the input terminal and the output terminal in parallel with the first element and in series with the second element. The first elastic wave, which is the other of the capacitors and inductors, which is different from the first element, and one end connected to the node between the second element and the third element and the other end grounded. It is a filter including a resonator and a resonance circuit including a second elastic wave resonator connected in series with the second element and the third element between the input terminal and the output terminal.

上記構成において、前記第1素子、前記第2素子および前記第3素子が主に形成する第1減衰極は、前記フィルタの通過帯域より高く、前記第1弾性波共振器が主に形成する第2減衰極は前記通過帯域と前記第1減衰極との間に位置し、前記共振回路が主に形成する第3減衰極は前記通過帯域と前記第2減衰極との間に位置する構成とすることができる。 In the above configuration, the first attenuation pole mainly formed by the first element, the second element, and the third element is higher than the pass band of the filter, and the first elastic wave resonator mainly forms the first attenuation pole. The two attenuation poles are located between the passband and the first attenuation pole, and the third attenuation pole mainly formed by the resonance circuit is located between the passband and the second attenuation pole. can do.

上記構成において、前記第1素子、前記第2素子および前記第3素子が主に形成する第1減衰極は、前記フィルタの通過帯域より高く、前記第1弾性波共振器が主に形成する第2減衰極は前記通過帯域と前記第1減衰極との間に位置し、前記共振回路の***振周波数は前記第1弾性波共振器の単体の***振周波数の1.05倍以下である構成とすることができる。 In the above configuration, the first attenuation pole mainly formed by the first element, the second element, and the third element is higher than the passing band of the filter, and the first elastic wave resonator mainly forms the first attenuation pole. The two attenuation poles are located between the passing band and the first attenuation pole, and the anti-resonance frequency of the resonance circuit is 1.05 times or less the anti-resonance frequency of the first elastic wave resonator alone. Can be.

上記構成において、前記共振回路は、前記第1素子と並列接続され、前記第1素子、前記第2素子および前記第3素子が主に形成する第1減衰極は、前記フィルタの通過帯域より高く、前記第1弾性波共振器が主に形成する第2減衰極は前記通過帯域と前記第1減衰極との間に位置し、前記共振回路の***振周波数は前記第1弾性波共振器の単体の***振周波数より低い構成とすることができる。 In the above configuration, the resonance circuit is connected in parallel with the first element, and the first attenuation pole formed mainly by the first element, the second element, and the third element is higher than the pass band of the filter. The second attenuation pole mainly formed by the first elastic wave resonator is located between the passing band and the first attenuation pole, and the anti-resonance frequency of the resonance circuit is the anti-resonance frequency of the first elastic wave resonator. The configuration can be lower than the anti-resonant frequency of a single unit.

上記構成において、前記第1素子、前記第2素子および前記第3素子が主に形成する減衰極は、前記フィルタの通過帯域より高く、前記第1弾性波共振器の単体の***振周波数および前記第2弾性波共振器の単体の***振周波数は、前記フィルタの通過帯域より高く、前記減衰極より低い構成とすることができる。 In the above configuration, the attenuation poles mainly formed by the first element, the second element, and the third element are higher than the passing band of the filter, and the anti-resonance frequency of the first elastic wave resonator and the said The anti-resonance frequency of the second elastic wave resonator alone may be higher than the pass band of the filter and lower than the attenuation pole.

上記構成において、前記第1弾性波共振器の単体の共振周波数および前記第2弾性波共振器の単体の共振周波数は、前記フィルタの通過帯域内に位置する構成とすることができる。 In the above configuration, the resonance frequency of the first elastic wave resonator and the resonance frequency of the second elastic wave resonator can be located within the pass band of the filter.

上記構成において、前記共振回路は、前記第2弾性波共振器単体である構成とすることができる。 In the above configuration, the resonance circuit may be configured to be the second elastic wave resonator alone.

上記構成において、前記共振回路は、前記第2弾性波共振器に並列にかつ前記第2素子および前記第3素子に直列に接続されたキャパシタを備える構成とすることができる。 In the above configuration, the resonance circuit may include a capacitor connected in parallel with the second elastic wave resonator and in series with the second element and the third element.

上記構成において、前記第1素子はインダクタであり、前記第2素子および前記第3素子はキャパシタである構成とすることができる。 In the above configuration, the first element may be an inductor, and the second element and the third element may be capacitors.

本発明は、上記フィルタを含むマルチプレクサである。 The present invention is a multiplexer including the above filter.

本発明によれば、減衰量の急峻性を向上させることができる。 According to the present invention, the steepness of the attenuation amount can be improved.

図1(a)は、比較例および実施例に用いられる弾性表面波共振器の平面図であり、図1(b)は、比較例および実施例に用いられる圧電薄膜共振器の断面図である。FIG. 1A is a plan view of the surface acoustic wave resonator used in Comparative Examples and Examples, and FIG. 1B is a cross-sectional view of the piezoelectric thin film resonator used in Comparative Examples and Examples. .. 図2は、比較例1に係るフィルタの回路図である。FIG. 2 is a circuit diagram of the filter according to Comparative Example 1. 図3は、比較例1に係るフィルタの通過特性を示す図である。FIG. 3 is a diagram showing the passing characteristics of the filter according to Comparative Example 1. 図4は、実施例1に係るフィルタの回路図である。FIG. 4 is a circuit diagram of the filter according to the first embodiment. 図5は、実施例1に係るフィルタの通過特性を示す図である。FIG. 5 is a diagram showing the passing characteristics of the filter according to the first embodiment. 図6は、実施例1の変形例1に係るフィルタの回路図である。FIG. 6 is a circuit diagram of the filter according to the first modification of the first embodiment. 図7は、実施例1の変形例1に係るフィルタの通過特性を示す図である。FIG. 7 is a diagram showing the passing characteristics of the filter according to the first modification of the first embodiment. 図8は、実施例1の変形例2に係るフィルタの回路図である。FIG. 8 is a circuit diagram of the filter according to the second modification of the first embodiment. 図9は、実施例1の変形例2に係るフィルタの通過特性を示す図である。FIG. 9 is a diagram showing the passing characteristics of the filter according to the second modification of the first embodiment. 図10は、実施例1の変形例3に係るフィルタの回路図である。FIG. 10 is a circuit diagram of the filter according to the third modification of the first embodiment. 図11は、実施例2に係るダイプレクサの回路図である。FIG. 11 is a circuit diagram of the diplexer according to the second embodiment.

まず、比較例および実施例に用いられる弾性波共振器について説明する。図1(a)は、比較例および実施例に用いられる弾性表面波共振器の平面図である。図1(a)に示すように、圧電基板20の上面にIDT(Interdigital Transducer)25と反射器26が設けられている。IDT25は、互いに対向する1対の櫛型電極24を有する。櫛型電極24は、複数の電極指22と複数の電極指22を接続するバスバー23とを有する。反射器26は、IDT25の電極指22の配列する方向における両側に設けられている。IDT25が圧電基板20に弾性表面波を励振する。弾性表面波共振器は、1ポート共振器として構成される。圧電基板20は、例えば、タンタル酸リチウム基板、ニオブ酸リチウム基板または水晶基板である。圧電基板20は、例えばサファイア基板、スピネル基板、アルミナ基板、水晶基板またはシリコン基板等の支持基板上に接合されていてもよい。さらに、圧電基板20と支持基板との間に酸化シリコンまたは窒化アルミニウム等の絶縁体層を設けてもよい。IDT25および反射器26は例えばアルミニウム膜、銅膜またはモリブデン膜により形成される。圧電基板20上にIDT25および反射器26を覆うように保護膜または温度補償膜が設けられていてもよい。 First, elastic wave resonators used in Comparative Examples and Examples will be described. FIG. 1A is a plan view of a surface acoustic wave resonator used in Comparative Examples and Examples. As shown in FIG. 1A, an IDT (Interdigital Transducer) 25 and a reflector 26 are provided on the upper surface of the piezoelectric substrate 20. The IDT 25 has a pair of comb-shaped electrodes 24 facing each other. The comb-shaped electrode 24 has a plurality of electrode fingers 22 and a bus bar 23 for connecting the plurality of electrode fingers 22. Reflectors 26 are provided on both sides of the IDT 25 in the direction in which the electrode fingers 22 are arranged. The IDT 25 excites a surface acoustic wave on the piezoelectric substrate 20. The surface acoustic wave resonator is configured as a one-port resonator. The piezoelectric substrate 20 is, for example, a lithium tantalate substrate, a lithium niobate substrate, or a quartz substrate. The piezoelectric substrate 20 may be bonded on a support substrate such as a sapphire substrate, a spinel substrate, an alumina substrate, a crystal substrate, or a silicon substrate. Further, an insulator layer such as silicon oxide or aluminum nitride may be provided between the piezoelectric substrate 20 and the support substrate. The IDT 25 and the reflector 26 are formed of, for example, an aluminum film, a copper film or a molybdenum film. A protective film or a temperature compensation film may be provided on the piezoelectric substrate 20 so as to cover the IDT 25 and the reflector 26.

図1(b)は、比較例および実施例に用いられる圧電薄膜共振器の断面図である。図1(b)に示すように、基板30上に圧電膜34が設けられている。圧電膜34を挟むように下部電極32および上部電極36が設けられている。下部電極32と基板30との間に空隙38が形成されている。圧電膜34の少なくとも一部を挟み下部電極32と上部電極36とが対向する領域が共振領域35である。共振領域35内の下部電極32および上部電極36は圧電膜34内に、厚み縦振動モードの弾性波を励振する。圧電薄膜共振器は、1ポート共振器として構成される。基板30は、例えばサファイア基板、スピネル基板、アルミナ基板、ガラス基板、水晶基板またはシリコン基板である。下部電極32および上部電極36は例えばルテニウム膜等の金属膜である。圧電膜34は例えば窒化アルミニウム膜である。空隙38の代わりに弾性波を反射する音響反射膜が設けられていてもよい。 FIG. 1B is a cross-sectional view of the piezoelectric thin film resonator used in Comparative Examples and Examples. As shown in FIG. 1 (b), the piezoelectric film 34 is provided on the substrate 30. The lower electrode 32 and the upper electrode 36 are provided so as to sandwich the piezoelectric film 34. A gap 38 is formed between the lower electrode 32 and the substrate 30. The region where the lower electrode 32 and the upper electrode 36 face each other with at least a part of the piezoelectric film 34 sandwiched is the resonance region 35. The lower electrode 32 and the upper electrode 36 in the resonance region 35 excite elastic waves in the thickness longitudinal vibration mode in the piezoelectric film 34. The piezoelectric thin film resonator is configured as a 1-port resonator. The substrate 30 is, for example, a sapphire substrate, a spinel substrate, an alumina substrate, a glass substrate, a crystal substrate, or a silicon substrate. The lower electrode 32 and the upper electrode 36 are metal films such as a ruthenium film. The piezoelectric film 34 is, for example, an aluminum nitride film. An acoustic reflection film that reflects elastic waves may be provided instead of the void 38.

[比較例1]
図2は、比較例1に係るフィルタの回路図である。図2に示すように、フィルタ10はキャパシタC1、C2、インダクタL1、L2および弾性波共振器R1を備えている。キャパシタC1およびC2は端子T1とT2との間に直列に接続されている。インダクタL1は端子T1とキャパシタC1の間のノードN1と端子T2とキャパシタC2との間のノードN2との間においてキャパシタC1およびC2と並列接続されている。弾性波共振器R1の一端はインダクタL2を介しキャパシタC1とC2との間のノードN3に接続され、他端はグランド端子Tgに接続されている。インダクタL2は配線のインダクタンスに相当する。
[Comparative Example 1]
FIG. 2 is a circuit diagram of the filter according to Comparative Example 1. As shown in FIG. 2, the filter 10 includes capacitors C1 and C2, inductors L1 and L2, and elastic wave resonator R1. Capacitors C1 and C2 are connected in series between terminals T1 and T2. The inductor L1 is connected in parallel with the capacitors C1 and C2 between the node N1 between the terminal T1 and the capacitor C1 and the node N2 between the terminal T2 and the capacitor C2. One end of the elastic wave resonator R1 is connected to the node N3 between the capacitors C1 and C2 via the inductor L2, and the other end is connected to the ground terminal Tg. The inductor L2 corresponds to the inductance of the wiring.

比較例1のフィルタ10の端子T1とT2との間の通過特性をシミュレーションした。シミュレーション条件は以下である。
キャパシタC1、C2のキャパシタンス
C1:0.68pF
C2:0.75pF
インダクタL1、L2のインダクタンス
L1:2.9nH
L2:0.1nH
弾性波共振器R1の構造:図1(b)で示した圧電薄膜共振器
基板30:シリコン基板
下部電極32:ルテニウム膜
圧電膜34:窒化アルミニウム膜
上部電極36:ルテニウム膜
弾性波共振器R1の特性
共振周波数fr1:4987MHz
***振周波数fa1:5151MHz
共振周波数frが約5000MHzとなる下部電極32、圧電膜34および上部電極36の厚さは、例えばそれぞれ60nm、400nmおよび60nmである。
The passing characteristics between the terminals T1 and T2 of the filter 10 of Comparative Example 1 were simulated. The simulation conditions are as follows.
Capacitance of capacitors C1 and C2 C1: 0.68pF
C2: 0.75pF
Inductances of inductors L1 and L2 L1: 2.9nH
L2: 0.1nH
Structure of elastic wave resonator R1: Piezoelectric thin film resonator substrate 30: silicon substrate Lower electrode 32: ruthenium film Piezoelectric film 34: aluminum nitride film Upper electrode 36: ruthenium film Elastic wave resonator R1 Characteristics Resonance frequency fr1: 4987MHz
Antiresonance frequency fa1: 5151MHz
The thicknesses of the lower electrode 32, the piezoelectric film 34, and the upper electrode 36 having a resonance frequency fr of about 5000 MHz are, for example, 60 nm, 400 nm, and 60 nm, respectively.

図3は、比較例1に係るフィルタの通過特性を示す図である。フィルタ10の通過特性、および弾性波共振器R1をシャント接続したときの通過特性である。図3に示すように、キャパシタC1、C2およびインダクタL1の並列共振回路が主に形成する減衰極A1の周波数は通過帯域Passより高い。通過帯域Passの高周波端は例えば減衰量の極大の周波数である。弾性波共振器R1が主に形成する減衰極A2は通過帯域Passと減衰極A1との間に位置する。減衰極A2のボトム周波数は5157MHzである。減衰極A2により通過帯域と阻止帯域との間の遷移領域における減衰量を急峻に変化させることができる。急峻性として減衰量が−5dBと−20dBとの間の周波数間隔を定義する。図3では、急峻性は約52.3MHzである。しかしながら、比較例1における急峻性は十分でない。以下、急峻性を高くできる実施例について説明する。 FIG. 3 is a diagram showing the passing characteristics of the filter according to Comparative Example 1. These are the pass characteristics of the filter 10 and the pass characteristics when the elastic wave resonator R1 is shunted. As shown in FIG. 3, the frequency of the attenuation pole A1 mainly formed by the parallel resonant circuit of the capacitors C1 and C2 and the inductor L1 is higher than the pass band Pass. The high frequency end of the pass band Pass is, for example, the frequency at which the attenuation is maximized. The attenuation pole A2 mainly formed by the elastic wave resonator R1 is located between the pass band Pass and the attenuation pole A1. The bottom frequency of the attenuation pole A2 is 5157 MHz. The attenuation pole A2 can sharply change the amount of attenuation in the transition region between the pass band and the stop band. As steepness, a frequency interval with an attenuation of -5 dB and -20 dB is defined. In FIG. 3, the steepness is about 52.3 MHz. However, the steepness in Comparative Example 1 is not sufficient. Hereinafter, examples in which steepness can be increased will be described.

図4は、実施例1に係るフィルタの回路図である。図4に示すように、実施例1のフィルタ11では、共振回路15として弾性波共振器R2が設けられている。弾性波共振器R2の一端はノードN1に他端はキャパシタC2に接続されている。その他の構成は比較例1と同じある。 FIG. 4 is a circuit diagram of the filter according to the first embodiment. As shown in FIG. 4, in the filter 11 of the first embodiment, the elastic wave resonator R2 is provided as the resonance circuit 15. One end of the elastic wave resonator R2 is connected to the node N1 and the other end is connected to the capacitor C2. Other configurations are the same as in Comparative Example 1.

実施例1のフィルタ11のシミュレーション条件は以下である。
キャパシタC1、C2のキャパシタンス
C1:0.60pF
C2:0.95pF
インダクタL1、L2のインダクタンス
L1:3.5nH
L2:0.1nH
弾性波共振器R1の特性
共振周波数fr1:4987MHz
***振周波数fa1:5151MHz
弾性波共振器R2の特性
共振周波数fr2:4923MHz
***振周波数fa2:5104MHz
The simulation conditions of the filter 11 of the first embodiment are as follows.
Capacitance of capacitors C1 and C2 C1: 0.60pF
C2: 0.95pF
Inductances of inductors L1 and L2 L1: 3.5nH
L2: 0.1nH
Characteristics of elastic wave resonator R1 Resonance frequency fr1: 4987MHz
Antiresonance frequency fa1: 5151MHz
Characteristics of elastic wave resonator R2 Resonance frequency fr2: 4923 MHz
Antiresonance frequency fa2: 5104MHz

図5は、実施例1に係るフィルタの通過特性を示す図である。フィルタ11の通過特性、弾性波共振器R1およびR2をシャント接続したときの通過特性である。図5に示すように、弾性波共振器R1が主に形成する減衰極A2と通過帯域Passとの間に、共振回路15が主に形成する減衰極A3が位置している。すなわち、減衰極A2およびA3は極小(ボトム)を有し、減衰極A3の極小は通過帯域と減衰極A2の極小との間に位置する。減衰極A2のボトム周波数は5157MHzである。比較例1の図3と比較し、減衰極A3により通過帯域と阻止帯域との間の減衰量をより急峻に変化させることができる。急峻性は約27.9MHzである。 FIG. 5 is a diagram showing the passing characteristics of the filter according to the first embodiment. It is the passing characteristic of the filter 11 and the passing characteristic when the elastic wave resonators R1 and R2 are shunted. As shown in FIG. 5, the attenuation pole A3 mainly formed by the resonance circuit 15 is located between the attenuation pole A2 mainly formed by the elastic wave resonator R1 and the pass band Pass. That is, the attenuation poles A2 and A3 have a minimum (bottom), and the minimum of the attenuation pole A3 is located between the pass band and the minimum of the attenuation pole A2. The bottom frequency of the attenuation pole A2 is 5157 MHz. Compared with FIG. 3 of Comparative Example 1, the amount of attenuation between the pass band and the blocking band can be changed more steeply by the attenuation pole A3. The steepness is about 27.9 MHz.

[実施例1の変形例1]
図6は、実施例1の変形例1に係るフィルタの回路図である。図6に示すように、実施例1の変形例1のフィルタ12では、共振回路15として弾性波共振器R2とキャパシタC3が設けられている。キャパシタC3は、ノードN3とキャパシタC2との間において弾性波共振器R2に並列接続されている。その他の構成は実施例1と同じある。
[Modification 1 of Example 1]
FIG. 6 is a circuit diagram of the filter according to the first modification of the first embodiment. As shown in FIG. 6, in the filter 12 of the modification 1 of the first embodiment, the elastic wave resonator R2 and the capacitor C3 are provided as the resonance circuit 15. The capacitor C3 is connected in parallel to the elastic wave resonator R2 between the node N3 and the capacitor C2. Other configurations are the same as those in the first embodiment.

実施例1の変形例1のフィルタ12のシミュレーション条件は以下である。
キャパシタC1、C2のキャパシタンス
C1:1.05pF
C2:1.1pF
C3:2.4pF
インダクタL1、L2のインダクタンス
L1:2.45nH
L2:0.1nH
弾性波共振器R1の特性
共振周波数fr1:4987MHz
***振周波数fa1:5151MHz
弾性波共振器R2の特性
共振周波数fr2:5023MHz
***振周波数fa2:5204MHz
共振回路15の特性
共振周波数:4923MHz
***振周波数:5104MHz
The simulation conditions of the filter 12 of the modification 1 of the first embodiment are as follows.
Capacitance of capacitors C1 and C2 C1: 1.05pF
C2: 1.1pF
C3: 2.4pF
Inductances of inductors L1 and L2 L1: 2.45nH
L2: 0.1nH
Characteristics of elastic wave resonator R1 Resonance frequency fr1: 4987MHz
Antiresonance frequency fa1: 5151MHz
Characteristics of elastic wave resonator R2 Resonance frequency fr2: 5023 MHz
Antiresonance frequency fa2: 5204MHz
Characteristics of resonance circuit 15 Resonance frequency: 4923 MHz
Antiresonance frequency: 5104MHz

図7は、実施例1の変形例1に係るフィルタの通過特性を示す図である。図7に示すように、弾性波共振器R1が主に形成する減衰極A2と通過帯域Passとの間に、共振回路15が主に形成する減衰極A3が位置している。減衰極A2のボトム周波数は5210MHzである。急峻性は約19.4MHzである。 FIG. 7 is a diagram showing the passing characteristics of the filter according to the first modification of the first embodiment. As shown in FIG. 7, the attenuation pole A3 mainly formed by the resonance circuit 15 is located between the attenuation pole A2 mainly formed by the elastic wave resonator R1 and the pass band Pass. The bottom frequency of the attenuation pole A2 is 5210 MHz. The steepness is about 19.4 MHz.

[実施例1の変形例2]
図8は、実施例1の変形例2に係るフィルタの回路図である。図8に示すように、実施例1の変形例2のフィルタ13では、共振回路15は、ノードN2と端子T2との間に接続され、弾性波共振器R2の一端はノードN2に他端は端子T2に接続されている。その他の構成は実施例1と同じある。
[Modification 2 of Example 1]
FIG. 8 is a circuit diagram of the filter according to the second modification of the first embodiment. As shown in FIG. 8, in the filter 13 of the modification 2 of the first embodiment, the resonance circuit 15 is connected between the node N2 and the terminal T2, and one end of the elastic wave resonator R2 is connected to the node N2 and the other end is connected to the node N2. It is connected to terminal T2. Other configurations are the same as those in the first embodiment.

実施例1の変形例2のフィルタ13のシミュレーション条件は以下である。
キャパシタC1、C2のキャパシタンス
C1:2.1pF
C2:1.95pF
インダクタL1、L2のインダクタンス
L1:1.29nH
L2:0.1nH
弾性波共振器R1の特性
共振周波数fr1:4867MHz
***振周波数fa1:5023MHz
弾性波共振器R2の特性
共振周波数fr2:4965MHz
***振周波数fa2:5115MHz
The simulation conditions of the filter 13 of the modification 2 of the first embodiment are as follows.
Capacitance of capacitors C1 and C2 C1: 2.1pF
C2: 1.95pF
Inductances of inductors L1 and L2 L1: 1.29nH
L2: 0.1nH
Characteristics of elastic wave resonator R1 Resonance frequency fr1: 4867MHz
Antiresonance frequency fa1: 5023MHz
Characteristics of elastic wave resonator R2 Resonance frequency fr2: 4965 MHz
Antiresonance frequency fa2: 5115MHz

図9は、実施例1の変形例2に係るフィルタの通過特性を示す図である。図9に示すように、弾性波共振器R1が主に形成する減衰極A2と通過帯域Passとの間に、共振回路15が主に形成する減衰極A3が位置している。減衰極A2のボトム周波数5247MHzである。急峻性は約30.4MHzである。 FIG. 9 is a diagram showing the passing characteristics of the filter according to the second modification of the first embodiment. As shown in FIG. 9, the attenuation pole A3 mainly formed by the resonance circuit 15 is located between the attenuation pole A2 mainly formed by the elastic wave resonator R1 and the pass band Pass. The bottom frequency of the attenuation pole A2 is 5247 MHz. The steepness is about 30.4 MHz.

実施例1およびその変形例によれば、インダクタL1(第1素子)は端子T1(入力端子)と端子T2(出力端子)との間に直列に接続されている。キャパシタC1(第2素子)は端子T1とT2との間にインダクタL1と並列に接続されている。キャパシタC2(第3素子)は、端子T1とT2との間にインダクタL1と並列にかつキャパシタC1と直列に接続されている。弾性波共振器R1(第1弾性波共振器)は、一端がキャパシタC1とC2との間のノードN3に接続され、他端が接地されている。共振回路15は端子T1とT2との間にキャパシタC1およびC2と並列接続された弾性波共振器R2(第2弾性波共振器)を含む。これにより、通過帯域と阻止帯域との間の減衰量の急峻性を高めることができる。 According to the first embodiment and its modifications, the inductor L1 (first element) is connected in series between the terminal T1 (input terminal) and the terminal T2 (output terminal). The capacitor C1 (second element) is connected in parallel with the inductor L1 between the terminals T1 and T2. The capacitor C2 (third element) is connected between the terminals T1 and T2 in parallel with the inductor L1 and in series with the capacitor C1. One end of the elastic wave resonator R1 (first elastic wave resonator) is connected to the node N3 between the capacitors C1 and C2, and the other end is grounded. The resonance circuit 15 includes an elastic wave resonator R2 (second elastic wave resonator) connected in parallel with capacitors C1 and C2 between terminals T1 and T2. As a result, the steepness of the amount of attenuation between the pass band and the blocking band can be increased.

実施例1の図5、実施例1の変形例1の図7および実施例1の変形例2の図9のように、キャパシタC1、C2およびインダクタL1が主に形成する減衰極A1(第1減衰極)は、フィルタの通過帯域Passより高い。弾性波共振器R1が主に形成する減衰極A2(第2減衰極)は通過帯域Passと減衰極A1との間に位置する。共振回路15が主に形成する減衰極A3(第3減衰極)が通過帯域Passと減衰極A2との間に位置する。これより、通過帯域と阻止帯域との間の減衰量の急峻性を高めることができる。 As shown in FIG. 5 of the first embodiment, FIG. 7 of the modified example 1 of the first embodiment, and FIG. 9 of the modified example 2 of the first embodiment, the attenuation pole A1 (first) mainly formed by the capacitors C1, C2 and the inductor L1. The decay electrode) is higher than the pass band Pass of the filter. The damping pole A2 (second damping pole) mainly formed by the elastic wave resonator R1 is located between the pass band Pass and the damping pole A1. The attenuation pole A3 (third attenuation pole) mainly formed by the resonance circuit 15 is located between the pass band Pass and the attenuation pole A2. As a result, the steepness of the amount of attenuation between the pass band and the blocking band can be increased.

減衰極A1は通過帯域Passより高く、減衰極A2は通過帯域Passと減衰極A1との間に位置する。共振回路15の***振周波数(実施例1およびその変形例1のとき5104MHz、実施例1の変形例2のとき5115MHz)は弾性波共振器R1の単体の***振周波数fa1(実施例1およびその変形例1のとき5151MHz、実施例1の変形例2のとき5023MHz)の1.05倍以下である。これにより、通過帯域と阻止帯域との間の減衰量の急峻性を高めることができる。共振回路15の***振周波数はfa1の1.04倍以下が好ましく、1.02倍以下がより好ましい。 The attenuation pole A1 is higher than the passband Pass, and the attenuation pole A2 is located between the passband Pass and the attenuation pole A1. The anti-resonance frequency of the resonance circuit 15 (5104 MHz in Example 1 and its modified example 1 and 5115 MHz in modified example 2 of Example 1) is the anti-resonant frequency fa1 of the elastic wave resonator R1 alone (Example 1 and its modification). It is 1.05 times or less of 5151 MHz in the modified example 1 and 5023 MHz in the modified example 2 of the first embodiment). As a result, the steepness of the amount of attenuation between the pass band and the blocking band can be increased. The anti-resonance frequency of the resonance circuit 15 is preferably 1.04 times or less, more preferably 1.02 times or less of fa1.

実施例1およびその変形例1のように、共振回路15がインダクタL1と並列接続されているとき、共振回路15の***振周波数(5104MHz)は弾性波共振器R1の単体の***振周波数fa2(5151MHz)より低い。これにより、通過帯域と阻止帯域との間の減衰量の急峻性を高めることができる。共振回路15の***振周波数は弾性波共振器R1の単体の***振周波数fa2の0.995倍以下が好ましく、0.99倍以下がより好ましい。 When the resonance circuit 15 is connected in parallel with the inductor L1 as in the first embodiment and the first modification thereof, the anti-resonance frequency (5104 MHz) of the resonance circuit 15 is the anti-resonance frequency fa2 (5104 MHz) of the elastic wave resonator R1 alone. It is lower than 5151 MHz). As a result, the steepness of the amount of attenuation between the pass band and the blocking band can be increased. The anti-resonance frequency of the resonance circuit 15 is preferably 0.995 times or less, and more preferably 0.99 times or less, the anti-resonance frequency fa2 of the elastic wave resonator R1 alone.

弾性波共振器R1の単体の***振周波数fa1および弾性波共振器R2の単体の***振周波数fa2は、フィルタの通過帯域Passより高く、減衰極A1より低い。これにより、急峻性をより高くすることができる。***振周波数fa1およびfa2は減衰極A1の0.995倍以下が好ましく、0.99倍以下がより好ましい。 The single antiresonance frequency fa1 of the elastic wave resonator R1 and the single antiresonance frequency fa2 of the elastic wave resonator R2 are higher than the pass band Pass of the filter and lower than the attenuation pole A1. Thereby, the steepness can be made higher. The anti-resonance frequencies fa1 and fa2 are preferably 0.995 times or less, more preferably 0.99 times or less of the attenuation pole A1.

弾性波共振器R1の単体の共振周波数fr1および弾性波共振器R2の単体の共振周波数fr2は、フィルタの通過帯域内に位置する。これにより、急峻性をより高くすることができる。 The single resonance frequency fr1 of the elastic wave resonator R1 and the single resonance frequency fr2 of the elastic wave resonator R2 are located within the pass band of the filter. Thereby, the steepness can be made higher.

なお、弾性波共振器R1の単体および弾性波共振器R2の単体とは、弾性波共振器R1およびR2以外のキャパシタおよびインダクタを含まないことを意味する。 The single elastic wave resonator R1 and the single elastic wave resonator R2 do not include capacitors and inductors other than the elastic wave resonators R1 and R2.

実施例1およびその変形例1のように、共振回路15は弾性波共振器R2単体でもよい。実施例1の変形例2のように、共振回路15は、弾性波共振器R2に並列にかつキャパシタC1およびC2に直列に接続されたキャパシタC3を備えてもよい。共振回路15は、弾性波共振器R2を含めばよい。 As in the first embodiment and the first modification thereof, the resonant circuit 15 may be the elastic wave resonator R2 alone. As in the second modification of the first embodiment, the resonant circuit 15 may include a capacitor C3 connected in parallel with the elastic wave resonator R2 and in series with the capacitors C1 and C2. The resonance circuit 15 may include the elastic wave resonator R2.

弾性波共振器R1およびR2の例として圧電薄膜共振器を説明したが、弾性波共振器R1およびR2は弾性表面波共振器でもよい。 Although the piezoelectric thin film resonator has been described as an example of the surface acoustic wave resonators R1 and R2, the elastic wave resonators R1 and R2 may be elastic surface wave resonators.

[実施例1の変形例3]
図10は、実施例1の変形例3に係るフィルタの回路図である。図10に示すように、実施例1のキャパシタC1、C2およびインダクタL1の代わりにそれぞれインダクタL3、L4およびキャパシタC4が設けられている。その他の構成は実施例1と同じである。実施例1の変形例3においても急峻性を高めることができる。
[Modification 3 of Example 1]
FIG. 10 is a circuit diagram of the filter according to the third modification of the first embodiment. As shown in FIG. 10, inductors L3, L4 and capacitors C4 are provided in place of the capacitors C1, C2 and the inductor L1 of the first embodiment, respectively. Other configurations are the same as in the first embodiment. The steepness can also be increased in the modified example 3 of the first embodiment.

実施例1の変形例3のように、第1素子はキャパシタC4であり、第2素子および第3素子はインダクタL3およびL4でもよい。このように、第1素子はキャパシタおよびインダクタのいずれか一方であり、第2素子および第3素子はキャパシタおよびインダクタのうち第1素子と異なる他方であればよい。 As in the modified example 3 of the first embodiment, the first element may be a capacitor C4, and the second element and the third element may be inductors L3 and L4. As described above, the first element may be either a capacitor or an inductor, and the second element and the third element may be the other of the capacitors and the inductor, which is different from the first element.

図11は、実施例2に係るダイプレクサの回路図である。図11に示すように、共通端子TAと端子THとの間にハイパスフィルタ(HPF)16が接続されている。共通端子TAと端子TLとの間にローパスフィルタ(LPF)18が接続されている。LPF18は、実施例1およびその変形例のフィルタ11から14である。HPF16は、共通端子TAまたは端子THから入力された高周波信号のうち通過帯域の信号を端子THまたは共通端子TAに通過させ、他の周波数の信号を抑圧する。LPF18は、共通端子TAまたは端子TLから入力された高周波信号のうち通過帯域の信号を端子TLまたは共通端子TAに通過させ、他の周波数の信号を抑圧する。HPF16の代わりにBPFが接続されていてもよい。 FIG. 11 is a circuit diagram of the diplexer according to the second embodiment. As shown in FIG. 11, a high-pass filter (HPF) 16 is connected between the common terminal TA and the terminal TH. A low-pass filter (LPF) 18 is connected between the common terminal TA and the terminal TL. LPF18 is filters 11 to 14 of Example 1 and its modifications. The HPF 16 passes a passband signal among the high frequency signals input from the common terminal TA or the terminal TH to the terminal TH or the common terminal TA, and suppresses signals of other frequencies. The LPF 18 passes a passband signal among the high frequency signals input from the common terminal TA or the terminal TL to the terminal TL or the common terminal TA, and suppresses signals of other frequencies. A BPF may be connected instead of the HPF 16.

マルチプレクサとしてダイプレクサを例に説明したがトリプレクサまたはクワッドプレクサでもよい。 Although the diplexer has been described as an example as the multiplexer, a triplexer or a quadplexer may be used.

以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the examples of the present invention have been described in detail above, the present invention is not limited to such specific examples, and various modifications and modifications are made within the scope of the gist of the present invention described in the claims. It can be changed.

10−14 フィルタ
15 共振回路
16 HPF
18 LPF
10-14 Filter 15 Resonant circuit 16 HPF
18 LPF

Claims (10)

入力端子と出力端子との間に直列に接続され、キャパシタおよびインダクタのいずれか一方である第1素子と、
前記入力端子と前記出力端子との間に前記第1素子と並列に接続され、キャパシタおよびインダクタのうち前記第1素子と異なる他方である第2素子と、
前記入力端子と前記出力端子との間に前記第1素子と並列にかつ前記第2素子と直列に接続され、キャパシタおよびインダクタのうち前記第1素子と異なる他方である第3素子と、
一端が前記第2素子と前記第3素子との間のノードに接続され、他端が接地された第1弾性波共振器と、
前記入力端子と前記出力端子との間において前記第2素子および前記第3素子と直列に接続された第2弾性波共振器を含む共振回路と、
を備えるフィルタ。
The first element, which is connected in series between the input terminal and the output terminal and is either a capacitor or an inductor,
A second element of a capacitor and an inductor, which is connected in parallel with the first element between the input terminal and the output terminal and is different from the first element,
A third element of a capacitor and an inductor, which is connected in parallel with the first element and in series with the second element between the input terminal and the output terminal and is different from the first element.
A first elastic wave resonator having one end connected to a node between the second element and the third element and the other end being grounded.
A resonant circuit including a second elastic wave resonator connected in series with the second element and the third element between the input terminal and the output terminal.
Filter with.
前記第1素子、前記第2素子および前記第3素子が主に形成する第1減衰極は、前記フィルタの通過帯域より高く、
前記第1弾性波共振器が主に形成する第2減衰極は前記通過帯域と前記第1減衰極との間に位置し、
前記共振回路が主に形成する第3減衰極は前記通過帯域と前記第2減衰極との間に位置する請求項1に記載のフィルタ。
The first attenuation pole formed mainly by the first element, the second element, and the third element is higher than the pass band of the filter.
The second damping pole mainly formed by the first elastic wave resonator is located between the pass band and the first damping pole.
The filter according to claim 1, wherein the third attenuation pole mainly formed by the resonance circuit is located between the pass band and the second attenuation pole.
前記第1素子、前記第2素子および前記第3素子が主に形成する第1減衰極は、前記フィルタの通過帯域より高く、
前記第1弾性波共振器が主に形成する第2減衰極は前記通過帯域と前記第1減衰極との間に位置し、
前記共振回路の***振周波数は前記第1弾性波共振器の単体の***振周波数の1.05倍以下である請求項1に記載のフィルタ。
The first attenuation pole formed mainly by the first element, the second element, and the third element is higher than the pass band of the filter.
The second damping pole mainly formed by the first elastic wave resonator is located between the pass band and the first damping pole.
The filter according to claim 1, wherein the anti-resonance frequency of the resonance circuit is 1.05 times or less the anti-resonance frequency of a single unit of the first elastic wave resonator.
前記共振回路は、前記第1素子と並列接続され、
前記第1素子、前記第2素子および前記第3素子が主に形成する第1減衰極は、前記フィルタの通過帯域より高く、
前記第1弾性波共振器が主に形成する第2減衰極は前記通過帯域と前記第1減衰極との間に位置し、
前記共振回路の***振周波数は前記第1弾性波共振器の単体の***振周波数より低い請求項1に記載のフィルタ。
The resonant circuit is connected in parallel with the first element and is connected.
The first attenuation pole formed mainly by the first element, the second element, and the third element is higher than the pass band of the filter.
The second damping pole mainly formed by the first elastic wave resonator is located between the pass band and the first damping pole.
The filter according to claim 1, wherein the anti-resonance frequency of the resonance circuit is lower than the anti-resonance frequency of a single unit of the first elastic wave resonator.
前記第1素子、前記第2素子および前記第3素子が主に形成する減衰極は、前記フィルタの通過帯域より高く、
前記第1弾性波共振器の単体の***振周波数および前記第2弾性波共振器の単体の***振周波数は、前記フィルタの通過帯域より高く、前記減衰極より低い請求項1に記載のフィルタ。
The attenuation poles mainly formed by the first element, the second element, and the third element are higher than the pass band of the filter.
The filter according to claim 1, wherein the anti-resonance frequency of the first elastic wave resonator and the anti-resonance frequency of the second elastic wave resonator are higher than the pass band of the filter and lower than the attenuation pole.
前記第1弾性波共振器の単体の共振周波数および前記第2弾性波共振器の単体の共振周波数は、前記フィルタの通過帯域内に位置する請求項5に記載のフィルタ。 The filter according to claim 5, wherein the resonance frequency of the first elastic wave resonator and the resonance frequency of the second elastic wave resonator are located within the pass band of the filter. 前記共振回路は、前記第2弾性波共振器単体である請求項1から6のいずれか一項に記載のフィルタ。 The filter according to any one of claims 1 to 6, wherein the resonance circuit is a single unit of the second elastic wave resonator. 前記共振回路は、前記第2弾性波共振器に並列にかつ前記第2素子および前記第3素子に直列に接続されたキャパシタを備える請求項1から6のいずれか一項に記載のフィルタ。 The filter according to any one of claims 1 to 6, wherein the resonance circuit includes a capacitor connected in parallel with the second elastic wave resonator and in series with the second element and the third element. 前記第1素子はインダクタであり、前記第2素子および前記第3素子はキャパシタである請求項1から8のいずれか一項に記載のフィルタ。 The filter according to any one of claims 1 to 8, wherein the first element is an inductor, and the second element and the third element are capacitors. 請求項1から9のいずれか一項に記載のフィルタを含むマルチプレクサ。 A multiplexer including the filter according to any one of claims 1 to 9.
JP2019044797A 2019-03-12 2019-03-12 Filter and multiplexer Pending JP2020150363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019044797A JP2020150363A (en) 2019-03-12 2019-03-12 Filter and multiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019044797A JP2020150363A (en) 2019-03-12 2019-03-12 Filter and multiplexer

Publications (1)

Publication Number Publication Date
JP2020150363A true JP2020150363A (en) 2020-09-17

Family

ID=72430898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019044797A Pending JP2020150363A (en) 2019-03-12 2019-03-12 Filter and multiplexer

Country Status (1)

Country Link
JP (1) JP2020150363A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023179089A1 (en) * 2022-03-25 2023-09-28 安徽安努奇科技有限公司 Resonator, filter, and multiplexer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041141A (en) * 2008-07-31 2010-02-18 Fujitsu Ltd Filter, branching filter, and communication apparatus
WO2016190216A1 (en) * 2015-05-22 2016-12-01 京セラ株式会社 Elastic wave device and communication device
JP2018129683A (en) * 2017-02-08 2018-08-16 太陽誘電株式会社 Filter circuit, multiplexer, and module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041141A (en) * 2008-07-31 2010-02-18 Fujitsu Ltd Filter, branching filter, and communication apparatus
WO2016190216A1 (en) * 2015-05-22 2016-12-01 京セラ株式会社 Elastic wave device and communication device
JP2018129683A (en) * 2017-02-08 2018-08-16 太陽誘電株式会社 Filter circuit, multiplexer, and module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023179089A1 (en) * 2022-03-25 2023-09-28 安徽安努奇科技有限公司 Resonator, filter, and multiplexer

Similar Documents

Publication Publication Date Title
US10340887B2 (en) Band pass filter and filter module
JP6481758B2 (en) Elastic wave filter, multiplexer, duplexer, high-frequency front-end circuit, and communication device
JP6323348B2 (en) Filter device
JP6669681B2 (en) Filter circuits, multiplexers and modules
KR20190010452A (en) Multiplexer, high-frequency front end circuit, and communication apparatus
JPWO2013080461A1 (en) Ladder type elastic wave filter and antenna duplexer using the same
JP6909007B2 (en) Filter circuits, multiplexers and modules
CN111587536B (en) Elastic wave device, multiplexer, high frequency front-end circuit and communication device
JP7363952B2 (en) elastic wave filter
US7868716B2 (en) Acoustic wave filter apparatus
US6265808B1 (en) Surface acoustic wave filter
JPH07273597A (en) Surface acoustic wave filter of resonator type
JP2003243966A (en) Filter circuit
JP2020150363A (en) Filter and multiplexer
JP7117200B2 (en) multiplexer
CN114208035A (en) Elastic wave filter
JP2010252254A (en) Surface acoustic wave filter and duplexer
WO2021024762A1 (en) Elastic-wave filter device
JP3402015B2 (en) Surface acoustic wave filter
JP2019016882A (en) Multiplexer
JP2002111443A (en) Coupled surface acoustic wave filter
JP7328751B2 (en) Highpass filters and multiplexers
JP2020027987A (en) Piezoelectric thin film resonator, filter, and multiplexer
JP7215413B2 (en) elastic wave filter
JP2967432B2 (en) Surface acoustic wave filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230711