JP2020147464A - Manufacturing method of metal nitride film - Google Patents

Manufacturing method of metal nitride film Download PDF

Info

Publication number
JP2020147464A
JP2020147464A JP2019046446A JP2019046446A JP2020147464A JP 2020147464 A JP2020147464 A JP 2020147464A JP 2019046446 A JP2019046446 A JP 2019046446A JP 2019046446 A JP2019046446 A JP 2019046446A JP 2020147464 A JP2020147464 A JP 2020147464A
Authority
JP
Japan
Prior art keywords
mist
film
solution
raw material
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019046446A
Other languages
Japanese (ja)
Other versions
JP7258339B2 (en
Inventor
昌幸 中村
Masayuki Nakamura
昌幸 中村
貴之 小林
Takayuki Kobayashi
貴之 小林
利明 立田
Toshiaki Tatsuta
利明 立田
慎一 本山
Shinichi Motoyama
慎一 本山
理 辻
Osamu Tsuji
理 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samco Inc
Original Assignee
Samco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samco Inc filed Critical Samco Inc
Priority to JP2019046446A priority Critical patent/JP7258339B2/en
Publication of JP2020147464A publication Critical patent/JP2020147464A/en
Application granted granted Critical
Publication of JP7258339B2 publication Critical patent/JP7258339B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a mist CVD method capable of manufacturing a nitride film, although the mist CVD method in the past was mainly used to deposit an oxide thin film and difficult to manufacture a nitride thin film.SOLUTION: A solution is prepared by dissolving or dispersing a first raw material containing metal and a second raw material containing nitrogen in a solvent. The solution is subjected to supersonic vibration to generate solution mist, which is transferred by a carrier gas onto a substrate heated to a predetermined temperature or higher. The mist is evaporated on the substrate and the metal and the nitrogen in the mist are reacted to manufacture a metal nitride film on the substrate. The second raw material may be melamine, ammonium chloride, ammonium sulfide, ammonia, hydrazine, or the like.SELECTED DRAWING: Figure 1

Description

本発明は、GaN等の窒化物半導体の製造方法に関する。 The present invention relates to a method for producing a nitride semiconductor such as GaN.

窒化ガリウム(GaN)、窒化インジウム(InN)、窒化アルミニウム (AlN)等のIII族元素窒化物半導体は、従来のシリコン半導体と比較してバンドギャップが大きく、また、III族元素であるガリウム、インジウム等の濃度を変化させることによりバンドギャップを大きく変化させることができる。そして、化学的に安定していることや高い絶縁耐圧を持つことから、損失の低い電子デバイス或いはパワー電子デバイスの実現が可能であるという特長を持つ。 Group III element nitride semiconductors such as gallium nitride (GaN), indium nitride (InN), and aluminum nitride (AlN) have a larger bandgap than conventional silicon semiconductors, and are group III elements such as gallium and indium. The band gap can be greatly changed by changing the concentration such as. Further, since it is chemically stable and has a high dielectric strength, it has a feature that it is possible to realize an electronic device or a power electronic device with low loss.

窒化物半導体の電子デバイスを作製するには、多くの場合、基板上に窒化物半導体の薄膜を作製し、該薄膜に電子回路を形成する。基板上に窒化物半導体の薄膜を作製する方法の一つにMOCVD法(有機金属気相成長法:Metal Organic Chemical Vapor Deposition)がある。MOCVD法はCVD法(化学気相成長法:Chemical Vapor Deposition)の一種で、基板表面近傍にGa等の金属元素を含む有機金属ガスと窒素(N)を含むガスをそれぞれ導入し、化学反応を利用することによってその基板上にGaNやInNなどの窒化物半導体を結晶成長させる(特許文献1、特許文献2等参照)。 In order to manufacture an electronic device of a nitride semiconductor, in many cases, a thin film of the nitride semiconductor is formed on a substrate, and an electronic circuit is formed on the thin film. The MOCVD method (Metal Organic Chemical Vapor Deposition) is one of the methods for forming a thin film of a nitride semiconductor on a substrate. The MOCVD method is a type of CVD method (Chemical Vapor Deposition), in which an organometallic gas containing a metal element such as Ga and a gas containing nitrogen (N) are introduced near the surface of the substrate to carry out a chemical reaction. Nitride semiconductors such as GaN and InN are crystal-grown on the substrate by using the substrate (see Patent Document 1, Patent Document 2, etc.).

しかし、MOCVD法で用いる有機金属原料は、蒸気圧は高いが、高価で発火性がある。MOCVD法ではそれを加熱して使用することから、ランニングコストや安全性の点で課題がある。また、窒素源として使用されるアンモニアも人体に有害であり、環境負荷が大きい。 However, the organometallic raw material used in the MOCVD method has a high vapor pressure, but is expensive and ignitable. Since the MOCVD method uses it by heating it, there are problems in terms of running cost and safety. Ammonia, which is used as a nitrogen source, is also harmful to the human body and has a large environmental load.

特開平08-162417号公報Japanese Patent Application Laid-Open No. 08-162417 特開2018-168001号公報JP-A-2018-168001 特開2012-062527号公報Japanese Unexamined Patent Publication No. 2012-062527 特開2017-112345号公報JP-A-2017-112345 特開2017-128492号公報Japanese Unexamined Patent Publication No. 2017-128492

CVD法による安価で安全な成膜手法として、ミストCVD法が知られている。ミストCVD法は原料を溶解させた溶液を超音波振動子等を用いて細かいミストとし、加熱した基板上に送給して、そこで薄膜を作製する手法であり、蒸気圧の低い原料であっても大気圧で成膜することができる。蒸気圧の低い物質を使用することができるため、安価で安全な原料を使用することができ、ランニングコストや環境負荷を小さくすることができる。 The mist CVD method is known as an inexpensive and safe film formation method by the CVD method. The mist CVD method is a method in which a solution in which a raw material is dissolved is made into a fine mist using an ultrasonic vibrator or the like and fed onto a heated substrate to form a thin film there, which is a raw material having a low vapor pressure. Can also be deposited at atmospheric pressure. Since a substance having a low vapor pressure can be used, an inexpensive and safe raw material can be used, and the running cost and the environmental load can be reduced.

しかしながら、これまでミストCVD法は主に酸化物薄膜の成膜に使用され(特許文献3、特許文献4、特許文献5等)、窒化物薄膜を作製することは難しかった。
本発明は、窒化物膜を作製することのできるミストCVD法を提供する。
However, until now, the mist CVD method has been mainly used for forming an oxide thin film (Patent Document 3, Patent Document 4, Patent Document 5, etc.), and it has been difficult to produce a nitride thin film.
The present invention provides a mist CVD method capable of producing a nitride film.

上記課題を解決するために成された本発明に係る金属窒化物膜製造方法は、
金属を含む第1原料と、窒素を含む第2原料とを溶媒に溶解又は分散させた溶液を用意し、
前記溶液をミスト化することにより溶液ミストを生成し、
所定温度以上に加熱した基板上に前記溶液ミストをキャリアガスで運ぶことにより、前記基板上で前記ミストを気化させ、且つ、前記ミスト内の前記金属と窒素を反応させることにより前記基板上に金属窒化物膜を作製する
ことを特徴とする。
The method for producing a metal nitride film according to the present invention, which has been made to solve the above problems, is
Prepare a solution in which the first raw material containing metal and the second raw material containing nitrogen are dissolved or dispersed in a solvent.
By converting the solution into a mist, a solution mist is generated.
By carrying the solution mist on a substrate heated to a predetermined temperature or higher with a carrier gas, the mist is vaporized on the substrate, and the metal in the mist is reacted with nitrogen to cause a metal on the substrate. It is characterized by producing a nitride film.

第1原料の金属としては、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、シリコン(Si)、チタン(Ti)、タンタル(Ta)、タングステン(W)、ボロン(B)、リチウム(Li)、鉄(Fe)、亜鉛(Zn)のいずれか1つ又はそれらのうちの複数の組み合わせとすることができる。 As the first raw material metal, aluminum (Al), gallium (Ga), indium (In), silicon (Si), titanium (Ti), tantalum (Ta), tungsten (W), boron (B), lithium ( It can be any one of Li), iron (Fe), zinc (Zn), or a plurality of combinations thereof.

金属がガリウム(Ga)である場合、第1原料としては、水に溶解するガリウム化合物であれば特に限定されないが、例えば、臭化ガリウム、ヨウ化ガリウム、塩化ガリウム、硝酸ガリウム、ガリウムアセチルアセトナート等のアンモニウム塩を用いることができる。 When the metal is gallium (Ga), the first raw material is not particularly limited as long as it is a gallium compound soluble in water, but for example, gallium bromide, gallium iodide, gallium chloride, gallium nitrate, gallium acetylacetonate. And other ammonium salts can be used.

窒素を含む第2原料としては、メラミン、塩化アンモニウム、硫化アンモニウム等を用いることができる。また、アンモニアやヒドラジンを用いてもよい。 As the second raw material containing nitrogen, melamine, ammonium chloride, ammonium sulfide and the like can be used. Further, ammonia or hydrazine may be used.

これら第1原料又は第2原料は気体、液体、固体のいずれであっても良い。また、液体または固体の場合、溶媒への溶解度が小さいものであっても良い。第1原料又は第2原料が固体であり、溶媒への溶解度が小さい場合は、粒径が10μm以下好ましくは1μm以下の粉体としておくことが望ましい。
なお、第2原料が固体であり溶媒への溶解度が小さい場合やほとんど溶解しない場合は、飽和溶解度を超えた分が溶媒中に残留することになり、この場合の溶液は、第2原料を溶媒に分散させた状態となる。
The first raw material or the second raw material may be a gas, a liquid, or a solid. Further, in the case of a liquid or a solid, the solubility in a solvent may be small. When the first raw material or the second raw material is a solid and has a low solubility in a solvent, it is desirable to prepare a powder having a particle size of 10 μm or less, preferably 1 μm or less.
If the second raw material is a solid and has low solubility in a solvent or is hardly dissolved, a portion exceeding the saturated solubility will remain in the solvent. In this case, the solution uses the second raw material as a solvent. It will be in a dispersed state.

それらを溶解又は分散させる溶媒としては、水またはアルコールを用いることが望ましいが、第1原料及び第2原料の種類によってはその他の溶媒を用いることができる。 Water or alcohol is preferably used as the solvent for dissolving or dispersing them, but other solvents may be used depending on the types of the first raw material and the second raw material.

前記溶液のミスト化は、超音波法、噴霧法等を用いることができる。もちろん、それらを併用してもよい。いずれにせよ、ミスト粒の大きさは50μm以下、できれば10μm以下としておくことが望ましい。 An ultrasonic method, a spray method, or the like can be used to mist the solution. Of course, they may be used together. In any case, it is desirable that the size of the mist grain is 50 μm or less, preferably 10 μm or less.

生成した溶液ミストを基板の上に運ぶキャリアガスとしては、窒素ガス、アンモニアガス、ヒドラジンガス、水蒸気、酸素ガス、オゾンガスのいずれか1つ又はそれらのうちの複数の組み合わせとすることができる。 The carrier gas that carries the generated solution mist onto the substrate may be any one of nitrogen gas, ammonia gas, hydrazine gas, water vapor, oxygen gas, and ozone gas, or a plurality of combinations thereof.

第1原料と第2原料は、それらを一緒にして1つの溶媒で1つの溶液としてもよいし、それぞれ別々に溶液として(この場合の溶媒は、同じであってもよいし異なるものであってもよい)、別々にミスト化して、基板上で一緒になるように運んでもよい。 The first raw material and the second raw material may be combined into one solution with one solvent, or they may be separately used as a solution (the solvent in this case may be the same or different. It may be misted separately and carried together on the substrate.

基板としては、シリコン(Si)、石英(SiO2)、サファイア(Al2O3)、窒化ケイ素(SiC)、窒化ガリウム(GaN)など、様々なものを用いることができる。 As the substrate, various materials such as silicon (Si), quartz (SiO 2 ), sapphire (Al 2 O 3 ), silicon nitride (SiC), and gallium nitride (GaN) can be used.

反応時の基板の温度は、300℃以上、望ましくは500℃以上、より望ましくは1000℃以上とする。 The temperature of the substrate during the reaction is 300 ° C. or higher, preferably 500 ° C. or higher, and more preferably 1000 ° C. or higher.

なお、本発明に係る方法で製造された金属窒化物膜には、酸素が付随的に含まれる酸窒化金属膜も含まれる。 The metal nitride film produced by the method according to the present invention also includes a metal nitride film containing oxygen incidentally.

本発明に係る方法により、ミストCVD法により基板上に金属窒化物膜を作製することができる。 According to the method according to the present invention, a metal nitride film can be produced on a substrate by a mist CVD method.

本発明の実施例で用いたミストCVD装置の概略構成図。The schematic block diagram of the mist CVD apparatus used in the Example of this invention. 実施例1で生成された膜の断面走査電子顕微鏡写真(a)、実施例2で生成された膜の断面走査電子顕微鏡写真(b)、実施例3で生成された膜の断面走査電子顕微鏡写真(c)、及び実施例4で生成された膜の断面走査電子顕微鏡写真(d)。Cross-sectional scanning electron micrograph (a) of the film produced in Example 1, cross-sectional scanning electron micrograph (b) of the film produced in Example 2, cross-sectional scanning electron micrograph of the film produced in Example 3. (c) and a cross-sectional scanning electron micrograph (d) of the film produced in Example 4. 実施例1の結果得られた膜のEDX測定結果の表。Table of EDX measurement results of the membrane obtained as a result of Example 1. 実施例1(500℃)及び実施例2(1200℃)のXRD測定結果の2θ/ωグラフ。2θ / ω graph of XRD measurement results of Example 1 (500 ° C.) and Example 2 (1200 ° C.). 実施例3(500℃)、実施例4(800℃)及び実施例5(1000℃)のXRD測定結果の2θ/ωグラフ。2θ / ω graph of XRD measurement results of Example 3 (500 ° C.), Example 4 (800 ° C.) and Example 5 (1000 ° C.). 図5のグラフの38°付近の拡大図。An enlarged view of the graph of FIG. 5 near 38 °. 実施例5(1000℃)、実施例6(1100℃)及び実施例7(1200℃)のXRD測定結果の2θ/ωグラフ。2θ / ω graph of XRD measurement results of Example 5 (1000 ° C.), Example 6 (1100 ° C.) and Example 7 (1200 ° C.). 図7のグラフの38°付近の拡大図。An enlarged view of the graph of FIG. 7 near 38 °.

以下、本発明の実施例を紹介する。以下に述べる実施例はいずれも、図1に示すミストCVD装置10を用いて、サファイア基板上に成膜を行った。 Hereinafter, examples of the present invention will be introduced. In each of the examples described below, a film was formed on the sapphire substrate using the mist CVD apparatus 10 shown in FIG.

[装置]
まず、用いたミストCVD装置10について説明する。ミストCVD装置10は、処理室11、ミスト生成室12、ミスト送給室13等で構成されている。処理室11内には、ミストが流れるミスト通路15が設けられ、処理室11のほぼ中央のミスト通路15には、一段低くなった箇所に、基板30を載置する基板載置部16が設けられている。処理室11の周囲は断熱材17で囲まれ、基板載置部16の下方には基板載置部16に載置された基板30を加熱するためのヒーター18が設けられている。
[apparatus]
First, the mist CVD apparatus 10 used will be described. The mist CVD apparatus 10 is composed of a processing chamber 11, a mist generation chamber 12, a mist feeding chamber 13, and the like. A mist passage 15 through which mist flows is provided in the processing chamber 11, and a substrate mounting portion 16 on which the substrate 30 is mounted is provided in a mist passage 15 substantially in the center of the processing chamber 11 at a lower position. Has been done. The circumference of the processing chamber 11 is surrounded by a heat insulating material 17, and a heater 18 for heating the substrate 30 mounted on the substrate mounting portion 16 is provided below the substrate mounting portion 16.

ミスト生成室12の底部には超音波発振器19が設けられ、側壁には、ミスト生成室12内にキャリアガスを導入するためのキャリアガス導入路20が設けられている。
ミスト送給室13はミスト生成室12の上部に設けられ、両者の間には両室12、13の内部空間を連結するミスト昇路21が設けられている。ミスト送給室13からは前記ミスト通路15が処理室11に延びており、その反対側の壁面には、希釈ガスをミスト送給室13内に導入するための希釈ガス導入路22が設けられている。
An ultrasonic oscillator 19 is provided at the bottom of the mist generation chamber 12, and a carrier gas introduction path 20 for introducing a carrier gas into the mist generation chamber 12 is provided on the side wall.
The mist supply chamber 13 is provided above the mist generation chamber 12, and a mist ascending path 21 connecting the internal spaces of both chambers 12 and 13 is provided between the two chambers 12. The mist passage 15 extends from the mist feeding chamber 13 to the processing chamber 11, and a dilution gas introduction path 22 for introducing the diluent gas into the mist feeding chamber 13 is provided on the wall surface on the opposite side thereof. ing.

このミストCVD装置10を用いて基板30に成膜を行う手順は次のとおりである。まず、成膜を行う基板20を基板載置部16に置き、原料溶液31をミスト生成室12に入れる。超音波発振器19で超音波を発振し、原料溶液31内に投入することにより原料溶液31をミスト化し、ミスト生成室12の原料溶液31上の空間内にミストを充満させる。このミストは、キャリアガス導入路20から導入されるキャリアガスにより、ミスト昇路21を通じてミスト送給室13に運ばれる。ミストはそこで希釈ガス導入路22から導入される希釈ガスにより微細化され、ミスト通路15に送給される。ミストは希釈ガスにより運ばれて処理室11内に入り、基板載置部16の箇所でヒーター18により加熱される。この加熱により原料溶液31の溶媒が揮発するとともに、原料溶液31に含まれていた金属成分と窒素成分が化合し、基板30上に堆積する。こうして基板30上に成膜が行われる。
以下、各実施例について説明する。
The procedure for forming a film on the substrate 30 using the mist CVD apparatus 10 is as follows. First, the substrate 20 for film formation is placed on the substrate mounting portion 16, and the raw material solution 31 is placed in the mist generation chamber 12. The raw material solution 31 is made into mist by oscillating ultrasonic waves with the ultrasonic oscillator 19 and throwing it into the raw material solution 31, and the space above the raw material solution 31 in the mist generation chamber 12 is filled with mist. This mist is carried to the mist supply chamber 13 through the mist ascending path 21 by the carrier gas introduced from the carrier gas introduction path 20. The mist is refined by the diluting gas introduced from the diluting gas introduction path 22 there, and is sent to the mist passage 15. The mist is carried by the diluting gas, enters the processing chamber 11, and is heated by the heater 18 at the substrate mounting portion 16. By this heating, the solvent of the raw material solution 31 is volatilized, and the metal component and the nitrogen component contained in the raw material solution 31 are combined and deposited on the substrate 30. In this way, film formation is performed on the substrate 30.
Hereinafter, each embodiment will be described.

[実施例1]
本実施例では、成膜を行う基板30として、サファイア基板を用いた。サファイア基板は、c面が上面となるように基板載置部16に置き、c面上に成膜を行うようにした。
原料溶液31は、純水を溶媒とし、金属成分としてGaCl3を、窒素成分としてメラミンを用いた。溶液は、GaCl3及びメラミンがそれぞれ0.1mol/L、0.2mol/Lとなるように調整した。なお、純水100mlに対するメラミンの室温での溶解度は0.32g程度であるので、メラミンは完全には溶解せず、原料溶液31中に分散した状態であった。この原料溶液31をミスト生成室12に入れ、超音波発振器19でミストにしてキャリアガスおよび希釈ガスでミスト通路15に送給した。キャリアガスにはN2を用い、5L/分の流量でミスト生成室12に供給した。希釈ガスにもN2を用い、10L/分の流量でミスト送給室13に供給した。処理室11に導入されたミスト中にはメラミンの微粒子が含まれていた。
[Example 1]
In this embodiment, a sapphire substrate was used as the substrate 30 for forming a film. The sapphire substrate was placed on the substrate mounting portion 16 so that the c-plane was on the upper surface, and a film was formed on the c-plane.
The raw material solution 31 used pure water as a solvent, GaCl 3 as a metal component, and melamine as a nitrogen component. The solution was adjusted so that GaCl 3 and melamine were 0.1 mol / L and 0.2 mol / L, respectively. Since the solubility of melamine in 100 ml of pure water at room temperature was about 0.32 g, the melamine was not completely dissolved and was dispersed in the raw material solution 31. The raw material solution 31 was put into the mist generation chamber 12, made into mist by the ultrasonic oscillator 19, and supplied to the mist passage 15 with carrier gas and dilution gas. N 2 was used as the carrier gas and supplied to the mist generation chamber 12 at a flow rate of 5 L / min. N 2 was also used as the diluent gas and supplied to the mist supply chamber 13 at a flow rate of 10 L / min. The mist introduced into the treatment chamber 11 contained fine particles of melamine.

処理中のヒーター18の温度は500℃とし、処理時間は30分間とした。この処理により基板30(サファイア基板)上に膜が生成した。 The temperature of the heater 18 during the treatment was 500 ° C., and the treatment time was 30 minutes. By this treatment, a film was formed on the substrate 30 (sapphire substrate).

得られた膜の断面を走査電子顕微鏡で撮影した結果を図2(a)に示す。膜の厚さは約700nmであった。
この膜に紫外線を照射したところ、膜から青緑色の発光が確認された。Ga2O3のバンドギャップが4.8〜5.3eVであり、それに相当する波長は紫外領域であることから、生成された膜はGa2O3とは異なる膜であることが示唆された。
The results of photographing the cross section of the obtained film with a scanning electron microscope are shown in FIG. 2 (a). The thickness of the film was about 700 nm.
When this film was irradiated with ultraviolet rays, blue-green light emission was confirmed from the film. The band gap of Ga 2 O 3 is 4.8 to 5.3 eV, and the corresponding wavelength is in the ultraviolet region, suggesting that the produced film is different from Ga 2 O 3 .

次に、生成された膜の組成をエネルギー分散型蛍光X線分析装置(EDX、日本電子株式会社製)を用いて測定した。EDX測定の結果、膜からは炭素、窒素、酸素、アルミニウム及びガリウムが検出された(図3)。このうち、酸素及びアルミニウムはサファイア基板由来のものを含んでいると考えられる。窒素が存在していることから、窒素(N)を含む膜が生成されたことが示唆される。膜中に同程度検出される炭素はメラミンに由来すると考えられる。 Next, the composition of the produced film was measured using an energy dispersive X-ray fluorescence analyzer (EDX, manufactured by JEOL Ltd.). As a result of EDX measurement, carbon, nitrogen, oxygen, aluminum and gallium were detected from the membrane (Fig. 3). Of these, oxygen and aluminum are considered to contain those derived from the sapphire substrate. The presence of nitrogen suggests that a film containing nitrogen (N) was formed. The carbon detected in the membrane to the same extent is considered to be derived from melamine.

この膜をX線回折装置(XRD、リガク社製)により解析した。XRD解析の結果、図4に示すように、GaN(101)に由来するピークが観測されたが、β-Ga2O3とGaONのピークは観測されなかった。これらの結果より、サファイア基板上においてメラミン微粒子はヒータで加熱されて分解され、その窒素の一部がGaと反応してGaNとなり、Ga窒化物膜が成膜されたと考えられる。炭素の一部はGaNに取り込まれていると考えられる。 This film was analyzed by an X-ray diffractometer (XRD, manufactured by Rigaku). As a result of XRD analysis, as shown in FIG. 4, peaks derived from GaN (101) were observed, but peaks of β-Ga 2 O 3 and Ga ON were not observed. From these results, it is considered that the melamine fine particles are heated by a heater and decomposed on the sapphire substrate, and a part of the nitrogen reacts with Ga to form GaN, and a Ga nitride film is formed. It is thought that part of the carbon is incorporated into GaN.

[実施例2]
成膜中のヒーター温度を1200℃とした以外は実施例1と同様の条件で成膜を行った。生成した膜に対し、実施例1と同様にして各測定を行った。
[Example 2]
The film was formed under the same conditions as in Example 1 except that the heater temperature during the film formation was set to 1200 ° C. Each measurement was carried out on the produced film in the same manner as in Example 1.

得られた膜の断面走査電子顕微鏡写真を図2(b)に示す。膜の厚さは300nmであった。
この膜に紫外線を照射したところ、膜からの発光は確認できなかった。また、図4に示すとおり、GaN(101)に由来する位置とβ-Ga2O3(-402)に由来する位置にピークが観測されたが、GaONに由来する位置にはピークは観測されなかった。また、実施例1で得られた膜に比べて実施例2で得られた膜はGaN(101)に由来するピークが強く検出された。このことから、成膜されたものはGaNであり、その結晶性が優れていることが確認できた。
A cross-sectional scanning electron micrograph of the obtained film is shown in FIG. 2 (b). The thickness of the film was 300 nm.
When this film was irradiated with ultraviolet rays, no light emission from the film could be confirmed. In addition, as shown in FIG. 4, peaks were observed at positions derived from GaN (101) and β-Ga 2 O 3 (-402), but peaks were observed at positions derived from GaON. There wasn't. Further, a peak derived from GaN (101) was strongly detected in the film obtained in Example 2 as compared with the film obtained in Example 1. From this, it was confirmed that the film formed was GaN and its crystallinity was excellent.

[実施例3]
原料溶液31の窒素成分として実施例1、実施例2のメラミンに代えて塩化アンモニウムを用い、塩化アンモニウムの濃度を1.0mol/Lとして成膜を行った。溶液以外の条件は実施例1と同様にして(すなわち、成膜中のヒーター温度は500℃、成膜時間は30分間。)成膜を行った。
[Example 3]
As the nitrogen component of the raw material solution 31, ammonium chloride was used instead of the melamine of Examples 1 and 2, and the film was formed with the concentration of ammonium chloride set to 1.0 mol / L. The film was formed in the same manner as in Example 1 except for the solution (that is, the heater temperature during the film formation was 500 ° C. and the film formation time was 30 minutes).

膜の断面を走査電子顕微鏡で撮影した結果を図2(c)に示す。膜の厚さは約400nmであった。
得られた膜に対して実施例1と同様の各測定を行った。この膜に紫外線を照射したところ、膜からの発光は確認できなかった。XRDを用いて測定したところ、図5、図6に示すとおり、α-Ga2O3(006)に由来する位置とε-Ga2O3(004)に由来する位置にピークが確認された。しかし、GaNの位置にピークは確認されなかった。
これらの結果より、実施例3で得られた膜は結晶状態ではないものの非晶状のGa窒化物薄膜である可能性が考えられる。
The results of photographing the cross section of the film with a scanning electron microscope are shown in FIG. 2 (c). The thickness of the film was about 400 nm.
The same measurements as in Example 1 were performed on the obtained film. When this film was irradiated with ultraviolet rays, no light emission from the film could be confirmed. When measured using XRD, peaks were confirmed at the positions derived from α-Ga 2 O 3 (006) and the positions derived from ε-Ga 2 O 3 (004), as shown in FIGS. 5 and 6. .. However, no peak was confirmed at the position of GaN.
From these results, it is considered that the film obtained in Example 3 may be an amorphous Ga nitride thin film although it is not in a crystalline state.

[実施例4]
成膜中のヒーター温度を800℃とした以外は実施例3と同様にして成膜を行った。膜の厚さは約600nmであった。
得られた膜に対して実施例3と同様にして各測定を行った。XRD測定の結果、図5及び図6に示すように、α-Ga2O3に由来する位置にピークは見られず、β-Ga2O3やε-Ga2O3に由来する位置にピークが確認できた。しかし、GaNの位置にピークは確認されなかった。これらのことより、得られた膜は、結晶状態ではなく、非晶状のGaN窒化物薄膜である可能性が考えられる。
[Example 4]
The film was formed in the same manner as in Example 3 except that the heater temperature during the film formation was set to 800 ° C. The thickness of the film was about 600 nm.
Each measurement was carried out on the obtained film in the same manner as in Example 3. As a result of XRD measurement, as shown in FIGS. 5 and 6, no peak was observed at the position derived from α-Ga 2 O 3, but at the position derived from β-Ga 2 O 3 and ε-Ga 2 O 3. The peak was confirmed. However, no peak was confirmed at the position of GaN. From these facts, it is considered that the obtained film may be an amorphous GaN nitride thin film rather than a crystalline state.

[実施例5]
成膜中のヒーター温度を1000℃とした以外は実施例3と同様にして成膜を行った。膜の断面を走査電子顕微鏡で撮影した結果を図2(d)に示す。膜の厚さは約800nmであった。
[Example 5]
The film was formed in the same manner as in Example 3 except that the heater temperature during the film formation was set to 1000 ° C. The results of photographing the cross section of the film with a scanning electron microscope are shown in FIG. 2 (d). The thickness of the film was about 800 nm.

実施例3と同様にして各測定を行った。膜に紫外線を照射したところ、膜からの発光は確認できなかった。次に、膜にXRD測定を実施したところ、図5及び図6に示すとおり、Ga2O3のβ相(-402)に由来する位置とGaN(101)に由来する位置にピークが確認された。このことから、1000℃以上でGaNの結晶化が始まると考えられる。 Each measurement was carried out in the same manner as in Example 3. When the film was irradiated with ultraviolet rays, no light emission from the film could be confirmed. Next, when XRD measurement was performed on the film, peaks were confirmed at positions derived from the β phase (-402) of Ga 2 O 3 and positions derived from GaN (101), as shown in FIGS. 5 and 6. It was. From this, it is considered that GaN crystallization starts at 1000 ° C. or higher.

[実施例6]
成膜中のヒーター温度を1100℃とした以外は実施例3と同様にして成膜を行った。膜の厚さは約300nmであった。
成膜された膜のXRD測定を行った結果を図7及び図8に示す。
[Example 6]
The film was formed in the same manner as in Example 3 except that the heater temperature during the film formation was set to 1100 ° C. The thickness of the film was about 300 nm.
The results of XRD measurement of the film formed are shown in FIGS. 7 and 8.

[実施例7]
成膜中のヒーター温度を1200℃とした以外は実施例3と同様にして成膜を行った。膜の厚さは約300nmであった。
実施例3と同様にして膜のXRD測定を実施したところ、図7及び図8に示すように、成膜温度が1000℃(実施例5)では様々な面方位のβ-Ga2O3に由来する小さいピークが観測されたが、成膜温度が上がるにつれてピークは小さくなり、成膜温度が1200℃(本実施例)では見えなくなった。また、成膜温度が1000℃以上ではいずれもGaN(101)に由来する位置とβ-Ga2O3(-402)に由来する位置にピークが確認されたが、成膜温度が高い程GaN(101)由来のピーク強度は強くなり、β-Ga2O3(-402)由来のピーク強度は弱くなった。このことから、成膜温度が高い程GaN結晶の割合が増え、GaNの単相膜に近づくと考えられる。また、GaONの相は確認されなかったが、ミストCVD法を用いたGaNの成膜を確認することができた。
[Example 7]
The film was formed in the same manner as in Example 3 except that the heater temperature during the film formation was set to 1200 ° C. The thickness of the film was about 300 nm.
When the XRD measurement of the film was carried out in the same manner as in Example 3, as shown in FIGS. 7 and 8, when the film formation temperature was 1000 ° C. (Example 5), β-Ga 2 O 3 in various plane orientations was obtained. A small peak derived from the film was observed, but the peak became smaller as the film formation temperature increased, and disappeared when the film formation temperature was 1200 ° C. (this example). In addition, when the film formation temperature was 1000 ° C or higher, peaks were confirmed at the positions derived from GaN (101) and β-Ga 2 O 3 (-402), but the higher the film formation temperature, the more GaN. The peak intensity derived from (101) became stronger, and the peak intensity derived from β-Ga 2 O 3 (-402) became weaker. From this, it is considered that the higher the film formation temperature, the higher the proportion of GaN crystals, and the closer to a GaN single-phase film. Although the GaON phase was not confirmed, the film formation of GaN using the mist CVD method could be confirmed.

10…ミストCVD装置
11…処理室
12…ミスト生成室
13…ミスト送給室
15…ミスト通路
16…基板載置部
17…断熱材
18…ヒーター
19…超音波発振器
20…キャリアガス導入路
21…ミスト昇路
22…希釈ガス導入路
30…基板
31…原料溶液
10 ... Mist CVD equipment 11 ... Processing room 12 ... Mist generation room 13 ... Mist feeding room 15 ... Mist passage 16 ... Board mounting part 17 ... Insulation material 18 ... Heater 19 ... Ultrasonic oscillator 20 ... Carrier gas introduction path 21 ... Mist ascending path 22 ... Diluted gas introduction path 30 ... Substrate 31 ... Raw material solution

Claims (5)

半導体原料となる金属を含む第1原料と、窒素を含む第2原料とを溶媒に溶解又は分散させた溶液を用意し、
前記溶液をミスト化することにより溶液ミストを生成し、
所定温度以上に加熱した基板上に前記溶液ミストをキャリアガスで運ぶことにより、前記基板上で前記ミストを気化させ、且つ、前記ミスト内の前記金属と窒素を反応させることにより前記基板上に金属窒化物膜を作製する金属窒化物膜製造方法。
Prepare a solution in which a first raw material containing a metal as a semiconductor raw material and a second raw material containing nitrogen are dissolved or dispersed in a solvent.
By converting the solution into a mist, a solution mist is generated.
By carrying the solution mist on a substrate heated to a predetermined temperature or higher with a carrier gas, the mist is vaporized on the substrate, and the metal in the mist is reacted with nitrogen to cause a metal on the substrate. A method for producing a metal nitride film for producing a nitride film.
前記金属がアルミニウム(Al)、ガリウム(Ga)、インジウム(In)、シリコン(Si)、チタン(Ti)、タンタル(Ta)、タングステン(W)、ボロン(B)、リチウム(Li)、鉄(Fe)、亜鉛(Zn)のいずれか1つ又はそれらのうちの複数の組み合わせである請求項1に記載の金属窒化物膜製造方法。 The metals are aluminum (Al), gallium (Ga), indium (In), silicon (Si), titanium (Ti), tantalum (Ta), tungsten (W), boron (B), lithium (Li), iron ( The method for producing a metal nitride film according to claim 1, wherein any one of Fe) and zinc (Zn) or a plurality of combinations thereof. 前記第2原料がメラミン、塩化アンモニウム、硫化アンモニウム、アンモニア、ヒドラジンのいずれか1つ又はそれらのうちの複数の組み合わせである請求項1又2に記載の金属窒化物膜製造方法。 The method for producing a metal nitride film according to claim 1 or 2, wherein the second raw material is any one of melamine, ammonium chloride, ammonium sulfide, ammonia, and hydrazine, or a plurality of combinations thereof. 前記溶液のミスト化を、該溶液中に超音波を投入することにより行う請求項1〜3のいずれかに記載の金属窒化物膜製造方法。 The method for producing a metal nitride film according to any one of claims 1 to 3, wherein the mist of the solution is formed by injecting ultrasonic waves into the solution. 前記キャリアガスが、窒素ガス、アンモニアガス、ヒドラジンガス、水蒸気、酸素ガス、オゾンガスのいずれか1つ又はそれらのうちの複数の組み合わせである請求項1〜4のいずれかに記載の金属窒化物膜製造方法。 The metal nitride film according to any one of claims 1 to 4, wherein the carrier gas is any one of nitrogen gas, ammonia gas, hydrazine gas, water vapor, oxygen gas, and ozone gas, or a plurality of combinations thereof. Production method.
JP2019046446A 2019-03-13 2019-03-13 Metal nitride film manufacturing method Active JP7258339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019046446A JP7258339B2 (en) 2019-03-13 2019-03-13 Metal nitride film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019046446A JP7258339B2 (en) 2019-03-13 2019-03-13 Metal nitride film manufacturing method

Publications (2)

Publication Number Publication Date
JP2020147464A true JP2020147464A (en) 2020-09-17
JP7258339B2 JP7258339B2 (en) 2023-04-17

Family

ID=72430270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019046446A Active JP7258339B2 (en) 2019-03-13 2019-03-13 Metal nitride film manufacturing method

Country Status (1)

Country Link
JP (1) JP7258339B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116288260A (en) * 2023-05-17 2023-06-23 青禾晶元(天津)半导体材料有限公司 Atomization vapor deposition device comprising ultrasonic generator and atomization vapor deposition method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206062A (en) * 1991-09-05 1993-08-13 Micron Technol Inc Method for improved low-pressure chemical vapor deposition for deposition of titanium nitride thin film provided with stable and low electric conductivity
JPH11217673A (en) * 1997-11-28 1999-08-10 Japan Pionics Co Ltd Production of intrided film
JP2007165547A (en) * 2005-12-13 2007-06-28 Rohm Co Ltd Method for producing indium garium-nitride
JP2015017027A (en) * 2013-10-17 2015-01-29 株式会社Flosfia Semiconductor device and method of producing the same, and crystal and method of producing the same
JP2017160106A (en) * 2016-03-03 2017-09-14 国立大学法人東北大学 Production of aluminum nitride crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206062A (en) * 1991-09-05 1993-08-13 Micron Technol Inc Method for improved low-pressure chemical vapor deposition for deposition of titanium nitride thin film provided with stable and low electric conductivity
JPH11217673A (en) * 1997-11-28 1999-08-10 Japan Pionics Co Ltd Production of intrided film
JP2007165547A (en) * 2005-12-13 2007-06-28 Rohm Co Ltd Method for producing indium garium-nitride
JP2015017027A (en) * 2013-10-17 2015-01-29 株式会社Flosfia Semiconductor device and method of producing the same, and crystal and method of producing the same
JP2017160106A (en) * 2016-03-03 2017-09-14 国立大学法人東北大学 Production of aluminum nitride crystal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JEAN-SEBASTIEN M. LEHN ET. AL.: "A new precursor for the chemical vapor deposition of tantalum nitride films", JOURNAL OF MATERIALS CHEMISTRY, vol. volume 14, issue 21, JPN7022005987, 27 September 2004 (2004-09-27), pages 3239 - 3245, ISSN: 0004958485 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116288260A (en) * 2023-05-17 2023-06-23 青禾晶元(天津)半导体材料有限公司 Atomization vapor deposition device comprising ultrasonic generator and atomization vapor deposition method

Also Published As

Publication number Publication date
JP7258339B2 (en) 2023-04-17

Similar Documents

Publication Publication Date Title
JP2822536B2 (en) Method for forming cubic boron nitride thin film
JP6152514B2 (en) Semiconductor device and manufacturing method thereof, and crystal and manufacturing method thereof
US8697479B2 (en) Method for producing nanoparticles
Liu et al. Low-temperature and catalyst-free synthesis of well-aligned ZnO nanorods on Si (100)
US20180226472A1 (en) Semiconductor device and manufacturing method for same, crystal, and manufacturing method for same
EP1885332A2 (en) Use of an artificial sweetener to enhance absorption of nicotine
Bendt et al. Single‐S ource Precursor‐B ased Deposition of Sb2 T e3 Films by MOCVD
JP2000327312A (en) Production of spherical boron nitride and its precursor substance, production facility and product
Uner et al. Nonequilibrium plasma aerotaxy of size controlled GaN nanocrystals
Gao et al. Aqueous synthesis of III–V semiconductor GaP and InP exhibiting pronounced quantum confinement
Chaurasia et al. Preparation and properties of AlN (aluminum nitride) powder/thin films by single source precursor
JP7258339B2 (en) Metal nitride film manufacturing method
Bin et al. Ag–N dual-accept doping for the fabrication of p-type ZnO
Ghosh Chaudhuri et al. A Novel Method of Synthesis of Nanostructured Aluminum Nitride Through Sol‐Gel Route by In Situ Generation of Nitrogen
JP4350484B2 (en) Method for producing aluminum nitride single crystal
Ndione et al. Monitoring the stability of organometallic perovskite thin films
Zeman et al. Facile One‐step Synthesis of Zn1–xMnxSiN2 Nitride Semiconductor Solid Solutions via Solid‐state Metathesis Reaction
US20060288933A1 (en) Chemical vapor deposition reactor
JP7290740B2 (en) α-Ga2O3 semiconductor film
CN103950924A (en) Synthesis method of damascene metal nanoparticle graphene
KR101840534B1 (en) Reactor
JP2007070207A (en) Group 13 nitride crystal particle, method for producing the same, and fluorescent material using the particle
KR101851842B1 (en) Film, manufacturing metohd of the film and light emitting diode comprising thereof
JP2569423B2 (en) Gas phase synthesis of boron nitride
WO2021186779A1 (en) Semiconductor film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190402

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190408

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230329

R150 Certificate of patent or registration of utility model

Ref document number: 7258339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150