JP2020146668A - Operation method of vacuum desorption type volatile organic compound recovery device - Google Patents

Operation method of vacuum desorption type volatile organic compound recovery device Download PDF

Info

Publication number
JP2020146668A
JP2020146668A JP2019048665A JP2019048665A JP2020146668A JP 2020146668 A JP2020146668 A JP 2020146668A JP 2019048665 A JP2019048665 A JP 2019048665A JP 2019048665 A JP2019048665 A JP 2019048665A JP 2020146668 A JP2020146668 A JP 2020146668A
Authority
JP
Japan
Prior art keywords
volatile organic
organic compound
route
passing air
air volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019048665A
Other languages
Japanese (ja)
Other versions
JP7236888B2 (en
Inventor
彰夫 松岡
Akio Matsuoka
彰夫 松岡
晃弘 塔本
Akihiro Tomoto
晃弘 塔本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2019048665A priority Critical patent/JP7236888B2/en
Publication of JP2020146668A publication Critical patent/JP2020146668A/en
Application granted granted Critical
Publication of JP7236888B2 publication Critical patent/JP7236888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Abstract

To reduce a load of a condenser for sucking and then condensing, in a volatile organic compound treatment device for allowing an adsorbent in an adsorption tower to adsorb a volatile organic compound, and then vacuum sucking by a vacuum pump and desorbing it.SOLUTION: A parallel section having two or more routes having each different passing air volume is provided between an adsorption tower 11 and a vacuum pump 17, and each route has operable valves 23, 24 independently. When starting desorption, after opening a valve 24 of the route having a comparatively small passing air volume, a valve 23 of the route having a comparatively large passing air volume is opened.SELECTED DRAWING: Figure 1

Description

この発明は、揮発性有機化合物を含むガスを排出する前に、ガスから揮発性有機化合物を処理する装置に関する。 The present invention relates to an apparatus for treating a volatile organic compound from the gas before discharging the gas containing the volatile organic compound.

工場から発生する排ガスには、そのまま大気中に排出すると問題を起こす溶剤などの揮発性有機化合物が含まれる場合がある。この場合、排ガスを大気中に排出する前に、含有している揮発性有機化合物を処理しなければならない。その方法として、活性炭等の吸着剤を内蔵した吸着塔で、排ガス中に含まれる揮発性有機化合物を吸着剤に吸着させ、ガス中の濃度を低減させて大気へ排出する。 Exhaust gas generated from factories may contain volatile organic compounds such as solvents that cause problems if they are discharged into the atmosphere as they are. In this case, the volatile organic compounds contained must be treated before the exhaust gas is discharged into the atmosphere. As a method, a volatile organic compound contained in the exhaust gas is adsorbed on the adsorbent by an adsorbent tower containing an adsorbent such as activated carbon, the concentration in the gas is reduced, and the gas is discharged to the atmosphere.

その後、吸着剤に吸着された揮発性有機化合物を脱離させて、吸着塔を再利用可能にする。この脱離作業をしている間は当然に吸着ができないため、通常は複数の吸着塔を並列に設置し、一つの吸着塔が吸着をしている間に、他の吸着塔で脱離を行うという工程を循環して運用する。 After that, the volatile organic compounds adsorbed on the adsorbent are desorbed to make the adsorption tower reusable. Naturally, adsorption is not possible during this desorption work, so normally multiple adsorption towers are installed in parallel, and while one adsorption tower is adsorbing, desorption is performed by another adsorption tower. Operate by circulating the process of performing.

吸着剤から揮発性有機化合物を脱離させる方法としては、加熱した水蒸気を接触して脱離させる方法や(例えば特許文献1)、吸着塔を真空吸引して脱離させる方法(例えば特許文献2)などがある。 Examples of the method for desorbing the volatile organic compound from the adsorbent include a method of contacting and desorbing heated steam (for example, Patent Document 1) and a method of vacuum-sucking the adsorption tower for desorption (for example, Patent Document 2). )and so on.

吸着塔の吸着剤に吸着させた揮発性有機化合物を真空吸引により脱着させる場合の運用例を図4を用いて説明する。吸着塔11a、11b(まとめて11という)が二基並列に設けられ、それぞれの内部には揮発性有機化合物である溶剤を吸着する吸着剤が充填された吸着剤収容部12a,12b(まとめて12という)が設けられている。吸着塔11a,11bの上部には、内部へ揮発性有機化合物含有ガスAを導入する導入口バルブ21a,21bと、塔内の気体を真空吸引するための吸引口バルブ23a,23bが設けられている。一方、吸着塔11a,11bの下部には、溶剤を吸着された後の処理後ガスBが排出される排出口バルブ22a,22bが設けてある。排出口バルブ22a,22bの先には原ガスブロワ16が設けてある。原ガスブロワ16によって生じた圧力により、揮発性有機化合物含有ガスAは吸着塔11a、11bに導入され、処理後ガスBが排出される。一方、吸引口バルブ23a,23bの先には真空ポンプ17が設けてあり、脱離された溶剤のガスを含む減圧された有機化合物同伴ガスDが真空吸引される。真空吸引されて大気圧に戻された高濃度ガスEは、コンデンサ18bで冷却水Gにより冷却される。これにより、高濃度ガスEに含まれた溶剤は液化した回収有機化合物Fとして回収される。 An operation example in which the volatile organic compound adsorbed on the adsorbent of the adsorption tower is desorbed by vacuum suction will be described with reference to FIG. Two adsorption towers 11a and 11b (collectively referred to as 11) are provided in parallel, and the adsorbent accommodating portions 12a and 12b (collectively referred to as 11) are filled with an adsorbent for adsorbing a solvent which is a volatile organic compound. 12) is provided. Introductory valves 21a and 21b for introducing the volatile organic compound-containing gas A into the suction towers 11a and 11b, and suction port valves 23a and 23b for vacuum-sucking the gas in the tower are provided. There is. On the other hand, discharge port valves 22a and 22b are provided below the adsorption towers 11a and 11b to discharge the treated gas B after the solvent is adsorbed. A raw gas blower 16 is provided at the tip of the outlet valves 22a and 22b. Due to the pressure generated by the raw gas blower 16, the volatile organic compound-containing gas A is introduced into the adsorption towers 11a and 11b, and the treated gas B is discharged. On the other hand, a vacuum pump 17 is provided at the tip of the suction port valves 23a and 23b, and the decompressed organic compound-accompanied gas D containing the desorbed solvent gas is vacuum-sucked. The high-concentration gas E that has been evacuated and returned to atmospheric pressure is cooled by the cooling water G in the condenser 18b. As a result, the solvent contained in the high-concentration gas E is recovered as the liquefied recovered organic compound F.

それぞれの導入口バルブ21a,21b(まとめて21という)、排出口バルブ22a,22b(まとめて22という)、吸引口バルブ23a,23b(まとめて23という)は、独立して開閉可能である。これらを、吸着を行う吸着塔11と、脱離を行う吸着塔11とで切り替える。吸着を担当する方の吸着塔11では、導入口バルブ21と排出口バルブ22とが開放され、吸引口バルブ23が閉鎖される。導入口21から導入された揮発性有機化合物含有ガスAは吸着剤収容部12の吸着剤に溶剤を吸収されて、溶剤含有量を抑制され、原ガスブロワ16から大気へ放出される。一方、脱離して再生させている方の吸着塔11では、導入口バルブ21と排出口バルブ22とが閉鎖され、吸引口バルブ23が開放される。吸着塔11内は減圧されて、吸着剤収容部12の吸着剤に吸着していた溶剤が脱離されて吸引され、コンデンサ18bで凝縮されて回収される。 The inlet valves 21a and 21b (collectively referred to as 21), the outlet valves 22a and 22b (collectively referred to as 22), and the suction port valves 23a and 23b (collectively referred to as 23) can be opened and closed independently. These are switched between the adsorption tower 11 for adsorption and the adsorption tower 11 for desorption. In the suction tower 11 which is in charge of suction, the introduction port valve 21 and the discharge port valve 22 are opened, and the suction port valve 23 is closed. The volatile organic compound-containing gas A introduced from the introduction port 21 is absorbed by the adsorbent in the adsorbent accommodating portion 12, the solvent content is suppressed, and the gas A is released from the raw gas blower 16 into the atmosphere. On the other hand, in the suction tower 11 that is detached and regenerated, the introduction port valve 21 and the discharge port valve 22 are closed, and the suction port valve 23 is opened. The pressure inside the adsorption tower 11 is reduced, the solvent adsorbed on the adsorbent in the adsorbent accommodating portion 12 is desorbed and sucked, and the solvent is condensed and recovered by the capacitor 18b.

当然のことながら、吸着塔11の吸着能力を十全に再生させるためには、十分に揮発性有機化合物を脱離させる必要がある。そのためには減圧させる真空ポンプ17には十分な能力が求められる。 As a matter of course, in order to fully regenerate the adsorption capacity of the adsorption tower 11, it is necessary to sufficiently desorb the volatile organic compounds. For that purpose, the vacuum pump 17 for depressurizing is required to have sufficient capacity.

特開2014−168741号公報Japanese Unexamined Patent Publication No. 2014-168741 特開平6−63350号公報Japanese Unexamined Patent Publication No. 6-63350

しかしながら、脱離開始時には吸着塔内の圧力は大気圧であり、真空ポンプから排気されるガス量は開始直後に極端に大きくなる。このピークのガス量を処理可能とするには、処理能力が特に大きなコンデンサを設置しなければならなかった。だが、ピークを経過した後はそれほど大きな処理能力を必要としないため、コンデンサの運用能力には無駄が多かった。 However, at the start of desorption, the pressure inside the adsorption tower is atmospheric pressure, and the amount of gas exhausted from the vacuum pump becomes extremely large immediately after the start. In order to be able to process this peak gas volume, it was necessary to install a capacitor with a particularly large processing capacity. However, after the peak, the operating capacity of the capacitor was wasteful because it did not require so much processing power.

そこでこの発明は、減圧によって脱離させる揮発性有機化合物の処理装置において、処理に必要な負荷を低減させることを目的とする。 Therefore, an object of the present invention is to reduce the load required for treatment in a volatile organic compound processing apparatus that is desorbed by reduced pressure.

この発明は、
揮発性有機化合物を吸着する活性炭を充填する吸着剤収容部を有する吸着塔により、揮発性有機化合物含有ガスの揮発性有機化合物濃度を前記活性炭に吸着させることで減少させ、
吸着後は前記吸着塔内の気体を真空ポンプにより吸引して減圧させることで前記活性炭から前記揮発性有機化合物を脱離させる揮発性有機化合物処理装置を運用するにあたり、
前記吸着塔と前記真空ポンプとの間に、通過風量が異なる二本以上のルートを有する並列区間を設け、
それぞれのルートには独立して動作可能な弁を有し、
前記脱離を開始する際に、比較的通過風量が小さな前記ルートの弁を開放させた後に、比較的通過風量が大きな前記ルートの弁を開放させる運用方法により、上記の課題を解決したのである。
This invention
The concentration of volatile organic compounds in the volatile organic compound-containing gas is reduced by adsorbing the volatile organic compounds on the activated carbon by means of an adsorption tower having an adsorbent accommodating portion filled with activated carbon that adsorbs volatile organic compounds.
In operating a volatile organic compound processing apparatus that desorbs the volatile organic compound from the activated carbon by sucking the gas in the adsorption tower with a vacuum pump and reducing the pressure after adsorption.
A parallel section having two or more routes having different passing air volumes is provided between the suction tower and the vacuum pump.
Each route has a valve that can operate independently
At the start of the desorption, the above problem was solved by an operation method in which the valve of the route having a relatively small passing air volume was opened and then the valve of the route having a relatively large passing air volume was opened. ..

これは次のような新たな知見に基づくものである。吸着を終えた吸着塔について脱離を開始するにあたって、まず比較的通過風量が小さな前記ルートの弁を開放させると、吸着塔内が緩やかに減圧され始める。比較的通過風量が小さなとは、後から開放させる比較的通過風量が大きなルートに比べて小さいことをいい、バルブなどで調整する。概ね、比率にして1/3以下に小さいことが望ましい。 This is based on the following new findings. When the adsorption tower that has finished adsorption is started to be desorbed, first, when the valve of the route having a relatively small passing air volume is opened, the inside of the adsorption tower begins to be gradually depressurized. A relatively small passing air volume means that the passing air volume to be opened later is smaller than that of a route having a relatively large passing air volume, and is adjusted with a valve or the like. Generally, it is desirable that the ratio is as small as 1/3 or less.

通過風量が小さなルートのみ開放された場合、通過風量が大きなルートが開放された場合と比べて、脱離開始直後に真空ポンプに導入されるガスの体積は同じでも、吸着塔から供給されるガスの質量は減るので、真空ポンプの出口で大気圧に戻した段階での体積は減少することになる。すると、コンデンサが処理しなければならないガス量を抑制することができる。その上で、吸着塔内の圧力がある程度低下した段階で比較的通過風量が大きな前記ルートの弁を開放させると、真空ポンプに導入されるガスの体積は増大するが、既に圧力が低下しているため、真空ポンプの出口で大気圧に戻すと体積は大幅に縮小することになる。このため、真空ポンプの出口から排出されたコンデンサが処理しなければならないガス量の増加が抑制できる。このタイミングは、コンデンサに入る風量を1/nに抑えようとする場合、圧力が大気圧の1/nまで下がった段階で切り替えるとよい。 When only the route with a small passing air volume is opened, the gas supplied from the adsorption tower is the same as the case where the route with a large passing air volume is opened, even if the volume of gas introduced into the vacuum pump immediately after the start of desorption is the same. Since the mass of the gas is reduced, the volume at the stage of returning to atmospheric pressure at the outlet of the vacuum pump is reduced. Then, the amount of gas that the capacitor must process can be suppressed. Then, when the valve of the route having a relatively large passing air volume is opened when the pressure in the suction tower drops to some extent, the volume of the gas introduced into the vacuum pump increases, but the pressure has already dropped. Therefore, if the pressure is returned to atmospheric pressure at the outlet of the vacuum pump, the volume will be significantly reduced. Therefore, it is possible to suppress an increase in the amount of gas that must be processed by the condenser discharged from the outlet of the vacuum pump. This timing may be switched when the pressure drops to 1 / n of the atmospheric pressure when the air volume entering the condenser is to be suppressed to 1 / n.

単に、従来よりも通過風量が小さなルートのみで吸引すると、コンデンサへの負荷を抑えることができる代わりに、吸着塔内を十分に減圧させるために必要な時間がかかりすぎてしまう。この発明にかかる運用方法では、まず比較的通過風量が小さなルートで吸引して最初にコンデンサが処理する気体のピーク量を抑制する。その後所定の時間が経過した後に、比較的通過風量が大きなルートで吸引することで十分に減圧できるまでにかかる時間を抑制する。また、あらかじめ比較的通過風量が小さなルートで減圧させておくと、比較的通過風量が大きなルートを開放しても、コンデンサに到達するガス量の増大は十分に抑えることができる。 If suction is performed only by a route having a smaller passing air volume than before, the load on the condenser can be suppressed, but it takes too much time to sufficiently reduce the pressure inside the adsorption tower. In the operation method according to the present invention, first, the peak amount of the gas processed by the condenser is suppressed by sucking the gas through a route having a relatively small passing air volume. After a predetermined time has elapsed, the time required for sufficient decompression can be suppressed by sucking the air through a route having a relatively large air flow. Further, if the pressure is reduced in advance by a route having a relatively small passing air volume, an increase in the amount of gas reaching the condenser can be sufficiently suppressed even if the route having a relatively large passing air volume is opened.

コンデンサの入口に供給されるガス量と、コンデンサが有する必要がある伝熱面積とは比例関係にあり、ピーク時の風量を1/nにすれば、コンデンサが必要とする伝熱面積も1/nに抑制することができる。 The amount of gas supplied to the inlet of the condenser is proportional to the heat transfer area that the condenser needs to have, and if the peak air volume is set to 1 / n, the heat transfer area required by the condenser is also 1 / n. It can be suppressed to n.

この発明により、揮発性有機化合物の脱離に必要とするコンデンサの処理能力を抑制でき、運用上の負荷及びコストを下げ、揮発性有機化合物の処理を従来よりも省エネルギーで行うことができる。 According to the present invention, the processing capacity of the capacitor required for desorption of the volatile organic compound can be suppressed, the operational load and cost can be reduced, and the processing of the volatile organic compound can be performed with less energy than before.

この発明にかかる運用方法を実行する揮発性有機化合物処理装置の構成例図Configuration example diagram of a volatile organic compound processing apparatus that executes the operation method according to the present invention. 2基の吸着塔でこの発明にかかる運用方法を実行する吸着と脱着の状態遷移図State transition diagram of adsorption and desorption in which the operation method according to the present invention is executed by two adsorption towers. (a)脱離開始時点の吸引口付近の構成図、(b)メイン側吸引口を開いた時点の構成図(A) Configuration diagram near the suction port at the start of desorption, (b) Configuration diagram at the time when the main suction port is opened 従来の真空吸引による脱離を実行する揮発性有機化合物処理装置の構成例図Configuration example diagram of a volatile organic compound processing device that performs desorption by conventional vacuum suction

以下、この発明の実施形態を説明する。この発明は、揮発性有機化合物含有ガスの濃度を低減させて大気中へ排出可能とし、その分の揮発性有機化合物を吸着剤に吸着させる揮発性有機化合物の処理装置10の運用方法である。この処理装置10で吸着を行う吸着塔11は吸着剤として活性炭を有し、吸着された揮発性有機化合物は真空ポンプ17で減圧されることで吸着剤から脱離させて、吸着剤を繰り返し利用できる。脱離させた揮発性有機化合物は凝縮して回収する。図1はこれらの一連のサイクルを行う処理装置10の全体像の例を示す。 Hereinafter, embodiments of the present invention will be described. The present invention is an operation method of a volatile organic compound processing apparatus 10 that reduces the concentration of a volatile organic compound-containing gas so that it can be discharged into the atmosphere and adsorbs the volatile organic compound to the adsorbent. The adsorption tower 11 that adsorbs with this processing device 10 has activated carbon as an adsorbent, and the adsorbed volatile organic compounds are desorbed from the adsorbent by being depressurized by the vacuum pump 17, and the adsorbent is repeatedly used. it can. The desorbed volatile organic compounds are condensed and recovered. FIG. 1 shows an example of an overall image of the processing apparatus 10 that performs these series of cycles.

この発明にかかる運用方法で運用する処理装置で処理する揮発性有機化合物とは、常圧で加熱することで気体になり得る有機化合物であり、特に常温で液体であるものが吸着処理しやすい。例えば、メタノール、エタノール、イソプロピルアルコール等の炭素数が1〜8程度のアルコール、トルエン、ベンゼンなどの芳香族有機化合物などの、炭化水素系の溶剤が挙げられる。 The volatile organic compound processed by the processing apparatus operated by the operation method according to the present invention is an organic compound that can be turned into a gas by heating at normal pressure, and a compound that is liquid at room temperature is particularly easy to be adsorbed. Examples thereof include hydrocarbon solvents such as alcohols having about 1 to 8 carbon atoms such as methanol, ethanol and isopropyl alcohol, and aromatic organic compounds such as toluene and benzene.

個々の吸着塔11(11a,11b)は角形又は円筒形であり、装置内部には、揮発性有機化合物を吸着し、真空吸引にて脱着できる吸着剤を充填させた吸着剤収容部12を設けてある。この吸着剤としては、粒状活性炭を用いることができる。吸着塔11の内部を上下方向に通過するためには、必ず吸着剤収容部12を通過しなければならない。吸着剤収容部12の底面と上面はどちらも吸着塔11内に格納されている。このような吸着塔11が並列に複数基設けられている。図1の例では2基の吸着塔11a,11bを記載しているが、2基に限定されるものではなく、3基以上でもよい。 The individual adsorption towers 11 (11a, 11b) are square or cylindrical, and an adsorbent accommodating portion 12 filled with an adsorbent that adsorbs volatile organic compounds and can be desorbed by vacuum suction is provided inside the apparatus. There is. Granular activated carbon can be used as the adsorbent. In order to pass through the inside of the adsorption tower 11 in the vertical direction, it must pass through the adsorbent accommodating portion 12. Both the bottom surface and the top surface of the adsorbent accommodating portion 12 are stored in the adsorbent tower 11. A plurality of such adsorption towers 11 are provided in parallel. In the example of FIG. 1, two adsorption towers 11a and 11b are described, but the number is not limited to two, and may be three or more.

吸着塔11の吸着剤収容部12より上端側には、揮発性有機化合物含有ガスAの導入口13が設けてあり、原ガスブロワ16によって生じた圧力によって揮発性有機化合物含有ガスAが導入される。吸着剤収容部12より下端側には、揮発性有機化合物が吸着剤に吸着されることでその濃度が低下した処理後ガスBの排出口14が設けてある。排出口14は大気中へ放出するものである。 An introduction port 13 for the volatile organic compound-containing gas A is provided on the upper end side of the adsorbent accommodating portion 12 of the adsorption tower 11, and the volatile organic compound-containing gas A is introduced by the pressure generated by the raw gas blower 16. .. On the lower end side of the adsorbent accommodating portion 12, a discharge port 14 for the treated gas B whose concentration is reduced by adsorbing the volatile organic compound by the adsorbent is provided. The discharge port 14 discharges into the atmosphere.

また、揮発性有機化合物を脱着した有機化合物同伴ガスDを減圧吸引するための吸引口15が、吸着剤収容部12の上端よりも上端側に設けてある。この吸引口15から有機化合物同伴ガスDが搬送される。 Further, a suction port 15 for sucking the organic compound-accompanied gas D to which the volatile organic compound has been desorbed under reduced pressure is provided on the upper end side of the adsorbent accommodating portion 12. The gas D accompanying the organic compound is conveyed from the suction port 15.

有機化合物同伴ガスDは、真空ポンプ17によって吸引されることで、減圧した状態で真空ポンプ17に到達する。真空ポンプ17の出口からは大気圧に戻って容積が小さくなった高濃度ガスEが排出される。この高濃度ガスEはコンデンサ18aに供給されて冷却水Gにより冷却される。冷却により有機化合物同伴ガスDに含まれていた揮発性有機化合物を分離回収する(回収有機化合物F)。 The gas D accompanied by the organic compound reaches the vacuum pump 17 in a reduced pressure state by being sucked by the vacuum pump 17. High-concentration gas E, which has returned to atmospheric pressure and has a reduced volume, is discharged from the outlet of the vacuum pump 17. This high-concentration gas E is supplied to the condenser 18a and cooled by the cooling water G. The volatile organic compound contained in the gas D accompanying the organic compound is separated and recovered by cooling (recovered organic compound F).

それぞれの吸着塔11への入口及び出口にはバルブを設けてある。すなわち、導入口13a,13bには導入口バルブ21a,21bを、排出口14a,14bには排出口バルブ22a,22bを、それぞれ設けてある。 Valves are provided at the inlet and outlet to each suction tower 11. That is, the introduction ports 13a and 13b are provided with the introduction port valves 21a and 21b, and the discharge ports 14a and 14b are provided with the discharge port valves 22a and 22b, respectively.

一方、吸引口15から先は複数本に分岐し、並列区間が設けられ、真空ポンプ17より手前で合流している。並列区間を構成する分岐したそれぞれのルートは、通過する風量が異なるように調整されている。図では吸着塔11a,11bごとに、2本に分岐している。分岐したうち、時間あたりの通過風量が比較的大きな方の経路をメインルート、比較的小さな方の経路をサブルートと呼ぶ。メインルートにはメインルートバルブ23a,23bを設け、サブルートにはサブルートバルブ24a,24bを設けてある。 On the other hand, the suction port 15 is branched into a plurality of lines, a parallel section is provided, and the suction port 15 merges before the vacuum pump 17. Each of the branched routes that make up the parallel section is adjusted so that the amount of air passing through it is different. In the figure, each of the adsorption towers 11a and 11b is branched into two. Of the branches, the route with a relatively large air flow per hour is called the main route, and the route with a relatively small air volume is called the sub route. The main route is provided with main route valves 23a and 23b, and the sub route is provided with sub route valves 24a and 24b.

前記メインルートと前記サブルートの時間あたりの通過風量の比率は20:1〜3:1であることが好ましく、10:1〜5:1であるとより好ましい。3:1よりも比が小さいと、脱離開始直後にピークとなるコンデンサ18aが処理すべき処理量を低減させる効果が十分に発揮されず、コンデンサ18aに要求される処理能力が十分に抑制できない。一方、20:1よりも比が大きいと、前記サブルートを先行して開放させることで吸着塔11内をある程度減圧させるために必要な時間が掛かりすぎてしまい、他方の吸着塔の吸着が終わるまでに脱離が完了しなかったり、減圧が不十分なまま前記メインルートを開放しなければならなくなってコンデンサ18aが処理すべき処理量のピークが十分に低減させられないおそれがある。 The ratio of the passing air volume of the main route to the sub route per hour is preferably 20: 1-3: 1, and more preferably 10: 1 to 5: 1. If the ratio is smaller than 3: 1, the effect of reducing the processing amount to be processed by the capacitor 18a, which peaks immediately after the start of desorption, is not sufficiently exhibited, and the processing capacity required for the capacitor 18a cannot be sufficiently suppressed. .. On the other hand, if the ratio is larger than 20: 1, it takes too much time to reduce the pressure inside the adsorption tower 11 to some extent by opening the subroute in advance, and until the adsorption of the other adsorption tower is completed. There is a possibility that the desorption is not completed or the main route must be opened with insufficient depressurization, so that the peak of the processing amount to be processed by the capacitor 18a cannot be sufficiently reduced.

なお、前記ルートが3本以上に分岐している場合には、後述する開放順に2番目になるルートと1番目になるルートとの通過風量の比率が前記の範囲であると好ましい。 When the route is branched into three or more, it is preferable that the ratio of the passing air volume between the second route and the first route in the opening order described later is in the above range.

上記の通過風量の比率を調整する手法としては、例えば前記サブルートに通過風量を調整できる通過風量調整バルブ25a,25bを設け、これを調整することで上記の範囲に調整することができる。 As a method for adjusting the ratio of the passing air volume, for example, the passing air volume adjusting valves 25a and 25b that can adjust the passing air volume are provided in the sub-route, and the passing air volume can be adjusted within the above range by adjusting the valves.

この発明にかかる揮発性有機化合物処理装置の運用方法について、図2に示すシーケンス図と、図3に示す状態図を用いて説明する。まず、吸着塔11aで吸着を開始する際には(S101)、導入口バルブ21aと、排出口バルブ22aを開放し、吸引口15aのサブルートバルブ24a、メインルートバルブ23aは閉鎖する。吸着が終わったら導入口バルブ21aと、排出口バルブ22aを一旦閉鎖すると同時に、吸着塔11bで吸着を開始する(S102)。次に、吸着塔11aでは脱離を開始する(S103〜)。このとき、まずサブルートバルブ24aを開放し、メインルートバルブ23aは閉鎖したままとする(S103)。このときの状態を図3(a)に示す。サブルートのみ開放されているため、通過風量が制限されており、吸着塔11aの中の減圧は緩やかに進行する。これにより、コンデンサ18aが処理しなければならないガス量も抑制されている。 The operation method of the volatile organic compound processing apparatus according to the present invention will be described with reference to the sequence diagram shown in FIG. 2 and the state diagram shown in FIG. First, when the suction tower 11a starts suction (S101), the introduction port valve 21a and the discharge port valve 22a are opened, and the sub-root valve 24a and the main route valve 23a of the suction port 15a are closed. When the suction is completed, the inlet valve 21a and the discharge valve 22a are temporarily closed, and at the same time, the suction tower 11b starts suction (S102). Next, the adsorption tower 11a starts desorption (S103 to). At this time, first, the sub-route valve 24a is opened, and the main route valve 23a is kept closed (S103). The state at this time is shown in FIG. 3 (a). Since only the sub-route is open, the amount of air passing through is limited, and the decompression in the adsorption tower 11a proceeds slowly. As a result, the amount of gas that the condenser 18a must process is also suppressed.

次に、サブルートの開放から、吸着塔11a内の気圧が十分に低下したら、メインルートのメインルートバルブ23aを開放し、メインルートとサブルートの両方から吸引を行う(S104)。この状態を図3(b)に示す。メインルートを通過する風量が増えるが、このときまでに既に吸着塔11aの内のガスはある程度抜けているので、コンデンサ18aが処理しなければならないガス量が過度に上がることを抑制している。ここで、S103からS104に切り替えるタイミングは、予め吸着塔11a内の気圧の変動を測定しておき、最適と思われるタイミングになるようにタイマー制御しておいてもよいし、吸着塔11a内に設けた圧力計の値を測定しながら、適切な気圧になった時点で切り替えてもよい。その後、吸着塔11a内の圧力が十分に低下したら脱離を終了する(S105)。 Next, when the air pressure in the suction tower 11a drops sufficiently from the opening of the sub-route, the main route valve 23a of the main route is opened, and suction is performed from both the main route and the sub-route (S104). This state is shown in FIG. 3 (b). Although the amount of air passing through the main route increases, the gas in the adsorption tower 11a has already been released to some extent by this time, so that the amount of gas that the condenser 18a must process is suppressed from increasing excessively. Here, the timing of switching from S103 to S104 may be determined by measuring the fluctuation of the atmospheric pressure in the adsorption tower 11a in advance and controlling the timer so as to be the optimum timing, or in the adsorption tower 11a. While measuring the value of the provided pressure gauge, it may be switched when the appropriate atmospheric pressure is reached. After that, when the pressure in the adsorption tower 11a is sufficiently lowered, the desorption is completed (S105).

メインルートバルブ23a,23bを開放する時点(S103→S104,S106→S107)における吸着塔11a、11b内の圧力は、5kPa以上であると好ましく、10kPa以上であるとより好ましい。なお、5kPaは大気圧の1/20であり、10kPaは大気圧の1/10に相当する。一方、33kPa以下であると好ましく、20kPa以下であるとより好ましい。なお、33kPaは大気圧の1/3であり、20kPaは大気圧の1/5に相当する。5kPa未満までサブルートのみで減圧するには時間が掛かりすぎ、脱離が間に合わなくなるおそれがある。一方、33kPaを超えていると、まだ残存しているガスが多いため、メインルートバルブ23a,23bを開放したときにコンデンサ18aにかかる負荷が大きくなりすぎてしまう。 The pressure in the suction towers 11a and 11b at the time when the main route valves 23a and 23b are opened (S103 → S104, S106 → S107) is preferably 5 kPa or more, and more preferably 10 kPa or more. Note that 5 kPa is 1/20 of the atmospheric pressure, and 10 kPa corresponds to 1/10 of the atmospheric pressure. On the other hand, it is preferably 33 kPa or less, and more preferably 20 kPa or less. 33 kPa is 1/3 of the atmospheric pressure, and 20 kPa is 1/5 of the atmospheric pressure. It takes too much time to reduce the pressure to less than 5 kPa with only the subroute, and there is a risk that desorption will not be in time. On the other hand, if it exceeds 33 kPa, a large amount of gas still remains, so that the load applied to the condenser 18a becomes too large when the main route valves 23a and 23b are opened.

なお、メインルートバルブ23a,23bを開放した後、吸着塔11a,11b内が所定の気圧以下になるまで減圧し、吸着剤から揮発性有機化合物を脱離させる。この減圧停止気圧は、溶剤の種類によって適宜変更してよい値である。なお、この終了タイミングは吸着塔11a、11b内に設けた圧力計を基準にして終了してもよいし、過去の運用時における測定から、目標とする圧力にまで低下したと判断できる時点で終了してもよい。ただし、吸着を続けている吸着塔11bの吸着能力の低下が限界に達する前に終了する必要がある。 After opening the main route valves 23a and 23b, the pressure inside the adsorption towers 11a and 11b is reduced to a predetermined pressure or less to desorb the volatile organic compounds from the adsorbent. This decompression stop pressure is a value that may be appropriately changed depending on the type of solvent. The end timing may be ended based on the pressure gauges provided in the suction towers 11a and 11b, or ends when it can be determined from the measurement in the past operation that the pressure has dropped to the target pressure. You may. However, it is necessary to finish before the decrease in the adsorption capacity of the adsorption tower 11b, which continues to adsorb, reaches the limit.

次に、脱離によって吸着能力を取り戻した吸着塔11aで再度吸着を行う(S106)。このとき、吸着塔11bではまずサブルートバルブ24bのみを開放して、吸引減圧させて脱離を開始させる。その後吸着塔11b内の圧力が上記の範囲となったら、メインルートバルブ23bを開放する(S107)。その後、吸着塔11b内の圧力が十分に低下したら脱離を終了する(S108)。これらのタイミングの基準となる吸着塔11b内の圧力は、吸着塔11aでの脱離の際の基準と同じである。以後(S109〜)、交互に吸着と脱離を繰り返すたびに、脱離の際には先にサブルートを開放し、次いでメインルートを開放する。 Next, adsorption is performed again in the adsorption tower 11a, which has regained its adsorption capacity by desorption (S106). At this time, in the suction tower 11b, only the sub-root valve 24b is first opened, the suction pressure is reduced, and the desorption is started. After that, when the pressure in the suction tower 11b falls within the above range, the main route valve 23b is opened (S107). After that, when the pressure in the adsorption tower 11b is sufficiently lowered, the desorption is completed (S108). The pressure in the adsorption tower 11b, which is the reference for these timings, is the same as the reference for desorption in the adsorption tower 11a. After that (S109 ~), each time the adsorption and desorption are repeated alternately, the sub route is opened first and then the main route is released at the time of desorption.

以下、この発明の実施例を示す。(株)栗本鐵工所製吸着塔(活性炭層面積:0.1m、活性炭層厚:1.0m)に、通過風速0.16m/sとなるように、トルエン濃度1%となる揮発性有機化合物含有ガスAを導入し、吸着時間10分となるように吸着を行った。 Hereinafter, examples of the present invention will be shown. Volatile with a toluene concentration of 1% so that the passing air velocity is 0.16 m / s in the adsorption tower (activated carbon layer area: 0.1 m 2 , activated carbon layer thickness: 1.0 m) manufactured by Kurimoto, Ltd. The organic compound-containing gas A was introduced, and adsorption was carried out so that the adsorption time was 10 minutes.

メインルート及びサブルートの通過風量の比は5:1であり、真空ポンプの能力は2m/minのものを用いた。コンデンサとしては多管式のもの(伝熱面積:0.2m)を用いた。サブルートで20kPaとなるまで減圧した後に、メインルートを開放したところ、コンデンサは十分にガスを処理可能であった。 The ratio of the passing air volume of the main route and the sub route was 5: 1, and the capacity of the vacuum pump used was 2 m 3 / min. A multi-tube type capacitor (heat transfer area: 0.2 m 2 ) was used. When the main route was opened after the pressure was reduced to 20 kPa on the sub route, the capacitor was able to sufficiently process the gas.

比較例として、サブルートを持たずメインルートのみの装置を用いて、大気圧の時点でメインルートを開放して吸引を行ったところ、実施例のコンデンサでは能力が不足してしまい、伝熱面積が1.0mである多管式コンデンサが必要となった。 As a comparative example, when suction was performed by opening the main route at the time of atmospheric pressure using a device having only the main route without a sub route, the capacity of the capacitor of the embodiment was insufficient and the heat transfer area was increased. A multi-tube capacitor of 1.0 m 2 was required.

10 処理装置
11,11a,11b 吸着塔
12,12a,12b 活性炭(吸着剤収容部)
13,13a,13b 導入口
14,14a,14b 排出口
15,15a,15b 吸引口
16 原ガスブロワ
17 真空ポンプ
18a,18b コンデンサ
21,21a,21b 導入口バルブ
22,22a,22b 排出口バルブ
23,23a,23b メインルートバルブ(吸引口バルブ)
24a,24b サブルートバルブ
25a,25b 通過風量調整バルブ
A 揮発性有機化合物含有ガス
B 処理後ガス
D 有機化合物同伴ガス
E 高濃度ガス
G 冷却水
F 回収有機化合物
10 Processing equipment 11, 11a, 11b Adsorption tower 12, 12a, 12b Activated carbon (adsorbent storage unit)
13, 13a, 13b Introductory port 14, 14a, 14b Outlet port 15, 15a, 15b Suction port 16 Raw gas blower 17 Vacuum pump 18a, 18b Condenser 21, 21a, 21b Introductory port valve 22, 22a, 22b Outlet valve 23, 23a , 23b Main route valve (suction port valve)
24a, 24b Subroot valve 25a, 25b Passing air volume adjustment valve A Volatile organic compound-containing gas B Treated gas D Organic compound companion gas E High concentration gas G Cooling water F Recovered organic compound

Claims (4)

揮発性有機化合物を吸着する活性炭を充填する吸着剤収容部を有する吸着塔により、揮発性有機化合物含有ガスの揮発性有機化合物濃度を前記活性炭に吸着させることで減少させ、
吸着後は前記吸着塔内の気体を真空ポンプにより吸引して減圧させることで前記活性炭から前記揮発性有機化合物を脱離させる揮発性有機化合物処理装置を運用するにあたり、
前記吸着塔と前記真空ポンプとの間に、通過風量が異なる二本以上のルートを有する並列区間を設け、
それぞれのルートには独立して動作可能な弁を有し、
前記脱離を開始する際に、比較的通過風量が小さな前記ルートの弁を開放させた後に、比較的通過風量が大きな前記ルートの弁を開放させる、
揮発性有機化合物処理装置の運用方法。
The concentration of volatile organic compounds in the volatile organic compound-containing gas is reduced by adsorbing the volatile organic compounds on the activated carbon by means of an adsorption tower having an adsorbent accommodating portion filled with activated carbon that adsorbs volatile organic compounds.
In operating a volatile organic compound processing apparatus that desorbs the volatile organic compound from the activated carbon by sucking the gas in the adsorption tower with a vacuum pump and reducing the pressure after adsorption.
A parallel section having two or more routes having different passing air volumes is provided between the suction tower and the vacuum pump.
Each route has a valve that can operate independently
At the start of the desorption, the valve of the route having a relatively small passing air volume is opened, and then the valve of the route having a relatively large passing air volume is opened.
Operation method of volatile organic compound processing equipment.
比較的通過風量が大きな前記ルートと、比較的通過風量が小さな前記ルートとの、通過風量の比が、20:1〜3:1である、請求項1に記載の揮発性有機化合物処理装置の運用方法。 The volatile organic compound processing apparatus according to claim 1, wherein the ratio of the passing air volume between the route having a relatively large passing air volume and the route having a relatively small passing air volume is 20: 1-3: 1. Operation method. 前記真空ポンプから排出された高濃度ガスを冷却するコンデンサを有し、
前記コンデンサにて前記高濃度ガスに含まれる前記揮発性有機化合物を凝縮させる、
請求項1又は2に記載の揮発性有機化合物処理装置の運用方法。
It has a condenser that cools the high-concentration gas discharged from the vacuum pump.
The condenser condenses the volatile organic compound contained in the high-concentration gas.
The method for operating the volatile organic compound processing apparatus according to claim 1 or 2.
揮発性有機化合物を吸着する活性炭を充填する吸着剤収容部を有し、揮発性有機化合物含有ガスの揮発性有機化合物濃度を前記活性炭に吸着させることで減少させることができる吸着塔と、
吸着がされた前記吸着塔内の気体を吸引して減圧させることで前記活性炭から前記揮発性有機化合物を脱離させるための真空ポンプと、を有し、
前記吸着塔と前記真空ポンプとの間に、通過風量が異なる二本以上のルートを有する並列区間を設け、
それぞれのルートには独立して動作可能な弁を有し、
前記脱離を開始する際に、比較的通過風量が小さな前記ルートの弁を開放させた後に、比較的通過風量が大きな前記ルートの弁を開放させる、
揮発性有機化合物処理装置。
An adsorption tower that has an adsorbent accommodating portion filled with activated carbon that adsorbs volatile organic compounds, and can reduce the concentration of volatile organic compounds in the volatile organic compound-containing gas by adsorbing it on the activated carbon.
It has a vacuum pump for desorbing the volatile organic compound from the activated carbon by sucking the adsorbed gas in the adsorption tower and reducing the pressure.
A parallel section having two or more routes having different passing air volumes is provided between the suction tower and the vacuum pump.
Each route has a valve that can operate independently
At the start of the desorption, the valve of the route having a relatively small passing air volume is opened, and then the valve of the route having a relatively large passing air volume is opened.
Volatile organic compound processing equipment.
JP2019048665A 2019-03-15 2019-03-15 Operation method of vacuum desorption type volatile organic compound recovery equipment Active JP7236888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019048665A JP7236888B2 (en) 2019-03-15 2019-03-15 Operation method of vacuum desorption type volatile organic compound recovery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019048665A JP7236888B2 (en) 2019-03-15 2019-03-15 Operation method of vacuum desorption type volatile organic compound recovery equipment

Publications (2)

Publication Number Publication Date
JP2020146668A true JP2020146668A (en) 2020-09-17
JP7236888B2 JP7236888B2 (en) 2023-03-10

Family

ID=72431343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019048665A Active JP7236888B2 (en) 2019-03-15 2019-03-15 Operation method of vacuum desorption type volatile organic compound recovery equipment

Country Status (1)

Country Link
JP (1) JP7236888B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112275089A (en) * 2020-10-15 2021-01-29 河南中烟工业有限责任公司 Effluent disposal polluted gas purification system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154735A (en) * 1990-03-29 1992-10-13 John Zink Company, A Division Of Koch Engineering Co., Inc. Process for recovering hydrocarbons from air-hydrocarbon vapor mixtures
JPH0663350A (en) * 1992-08-24 1994-03-08 Ebara Corp Method for recovering solvent
JP2012066250A (en) * 2012-01-06 2012-04-05 Jfe Engineering Corp Method for removing and recovering volatile organic compound
WO2014080984A1 (en) * 2012-11-22 2014-05-30 Uji Shigekazu Device for recovering volatile organic compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154735A (en) * 1990-03-29 1992-10-13 John Zink Company, A Division Of Koch Engineering Co., Inc. Process for recovering hydrocarbons from air-hydrocarbon vapor mixtures
JPH0663350A (en) * 1992-08-24 1994-03-08 Ebara Corp Method for recovering solvent
JP2012066250A (en) * 2012-01-06 2012-04-05 Jfe Engineering Corp Method for removing and recovering volatile organic compound
WO2014080984A1 (en) * 2012-11-22 2014-05-30 Uji Shigekazu Device for recovering volatile organic compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112275089A (en) * 2020-10-15 2021-01-29 河南中烟工业有限责任公司 Effluent disposal polluted gas purification system

Also Published As

Publication number Publication date
JP7236888B2 (en) 2023-03-10

Similar Documents

Publication Publication Date Title
JP5506396B2 (en) Ozone concentrator
US20170203249A1 (en) Steam assisted vacuum desorption process for carbon dioxide capture
WO2008053680A1 (en) Inflammable gas concentration device and inflammable gas concentration method
JP3921203B2 (en) Gas separation method and apparatus
JP5990722B2 (en) Volatile organic compound recovery equipment
KR101715826B1 (en) Method for removing organic solvent, and removal device
WO2014136645A1 (en) Method for concentrating methane gas
JP7236888B2 (en) Operation method of vacuum desorption type volatile organic compound recovery equipment
JPWO2020054603A1 (en) Organic solvent recovery system
JP5861177B2 (en) Organic solvent desorption method and organic solvent desorption apparatus
JP2017056383A (en) Carbon dioxide recovery device and carbon dioxide recovery method
TWI403354B (en) Recovery device and method for gas - like hydrocarbon
JP6970631B2 (en) Operation method of volatile organic compound processing equipment
JP2001104738A (en) Oxygen concentrator for medical treatment
JP6067368B2 (en) Adsorbent regeneration device, adsorbent regeneration method, carbon dioxide purification device, and carbon dioxide purification method
JP6067369B2 (en) Adsorbent regeneration device, adsorbent regeneration method, carbon dioxide purification device, and carbon dioxide purification method
JPH0938445A (en) Method for regenerating adsorption tower
JPH05337323A (en) Method for recovering solvent
JP6720599B2 (en) Purification system and purification method
JP2008119570A (en) Voc recovery apparatus and voc recovery method
JP5847978B1 (en) Method for recovering adsorbed volatile organic compounds
JP2001314008A (en) Gas recovering device and method
JP5256252B2 (en) Gas processing method and gas processing equipment
JP3223253B2 (en) CFC regeneration method and apparatus
JPH0342013A (en) Solvent recovery appratus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230228

R150 Certificate of patent or registration of utility model

Ref document number: 7236888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150