JP2020145838A - Charge control device of secondary battery - Google Patents

Charge control device of secondary battery Download PDF

Info

Publication number
JP2020145838A
JP2020145838A JP2019040512A JP2019040512A JP2020145838A JP 2020145838 A JP2020145838 A JP 2020145838A JP 2019040512 A JP2019040512 A JP 2019040512A JP 2019040512 A JP2019040512 A JP 2019040512A JP 2020145838 A JP2020145838 A JP 2020145838A
Authority
JP
Japan
Prior art keywords
secondary battery
charging
control device
control
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019040512A
Other languages
Japanese (ja)
Inventor
啓太 小宮山
Keita Komiyama
啓太 小宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019040512A priority Critical patent/JP2020145838A/en
Publication of JP2020145838A publication Critical patent/JP2020145838A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a charge control device of a secondary battery which can more efficiently utilize performance of the secondary battery while suppressing deterioration of the secondary battery.SOLUTION: A plurality of control conditions which are the ones for restricting an allowance of charging current to the secondary battery are stored in a storage device according to recharge time in which charging to the secondary battery is continued and temperature of the secondary battery when the charging is performed. A charge control device calculates change amounts of the control conditions based at least on capacity deterioration of the secondary battery which is estimated from information of the temperature of the secondary battery (S1 to S7). The charge control device changes a control condition with the highest frequency of use when the charging is performed to the secondary battery within a fixed period among the plurality of control conditions on the basis of the change amounts (S8 to S15).SELECTED DRAWING: Figure 3

Description

本発明は、二次電池の充電制御装置に関する。 The present invention relates to a charge control device for a secondary battery.

二次電池は、パソコンや携帯端末等のポータブル電源、あるいはEV(電気自動車)、HV(ハイブリッド自動車)、PHV(プラグインハイブリッド自動車)等の車両駆動用電源として広く用いられている。リチウムイオン電池等の二次電池の容量は、大きな電流での充電が繰り返し実行されると劣化する。従って、二次電池に対する充電電流の許容値を一定の制御条件に基づいて制限することで、二次電池の容量の劣化を抑制することが望ましい。例えば、特許文献1に記載されている制御装置は、二次電池の充放電電流に基づいて、二次電池の劣化評価値を算出し、劣化評価値が所定の閾値に到達した場合に、充電電流の許容値を減少させる。 The secondary battery is widely used as a portable power source for personal computers and mobile terminals, or as a vehicle drive power source for EVs (electric vehicles), HVs (hybrid vehicles), PHVs (plug-in hybrid vehicles), and the like. The capacity of a secondary battery such as a lithium-ion battery deteriorates when charging with a large current is repeatedly executed. Therefore, it is desirable to suppress the deterioration of the capacity of the secondary battery by limiting the allowable value of the charging current for the secondary battery based on a certain control condition. For example, the control device described in Patent Document 1 calculates a deterioration evaluation value of a secondary battery based on the charge / discharge current of the secondary battery, and charges the battery when the deterioration evaluation value reaches a predetermined threshold value. Reduce the current tolerance.

特開2017−50981号公報Japanese Unexamined Patent Publication No. 2017-50981

二次電池の劣化の程度は、二次電池への充電が継続される充電時間、および、充電が行われる際の二次電池の温度に応じて変化する。従って、充電時間および温度に応じて、二次電池に対する充電電流の許容値を制限する際の制御条件を複数定めておくことが考えられる。 The degree of deterioration of the secondary battery varies depending on the charging time during which the secondary battery continues to be charged and the temperature of the secondary battery when charging is performed. Therefore, it is conceivable to set a plurality of control conditions for limiting the allowable value of the charging current for the secondary battery according to the charging time and the temperature.

また、二次電池の劣化の程度が小さいにも関わらず、充電電流の許容値を大幅に制限すると、二次電池の性能が十分に活用されないので効率が悪い。一方で、二次電池の劣化が進んでいる場合に、大きな電流で充電が行われると、二次電池の劣化はさらに進行する。従って、二次電池の劣化の程度に応じて、充電電流の許容値を制限するための制御条件を変更することが望ましい。 Further, if the allowable value of the charging current is significantly limited even though the degree of deterioration of the secondary battery is small, the performance of the secondary battery is not fully utilized, resulting in poor efficiency. On the other hand, when the secondary battery is deteriorating and charging is performed with a large current, the deterioration of the secondary battery further progresses. Therefore, it is desirable to change the control conditions for limiting the allowable value of the charging current according to the degree of deterioration of the secondary battery.

しかし、例えば、二次電池の劣化の程度が正確に推定されなかった場合等に、制御条件が不適切に変更されることも考えられる。ここで、充電時間および温度に応じて複数の制御条件が定められている場合に、全ての制御条件が不適切に変更されてしまうと、二次電池の劣化、または充電効率の悪化が顕著になる可能性がある。 However, for example, when the degree of deterioration of the secondary battery is not accurately estimated, it is conceivable that the control conditions are changed inappropriately. Here, when a plurality of control conditions are set according to the charging time and temperature, if all the control conditions are improperly changed, the deterioration of the secondary battery or the deterioration of the charging efficiency becomes remarkable. There is a possibility of becoming.

本発明の典型的な目的は、二次電池の劣化を抑制しつつ、より効率良く二次電池の性能を活用することが可能な二次電池の充電制御装置を提供することである。 A typical object of the present invention is to provide a charge control device for a secondary battery, which can utilize the performance of the secondary battery more efficiently while suppressing deterioration of the secondary battery.

かかる目的を実現するべく、ここに開示される一態様の二次電池の充電制御装置は、二次電池に対する充電電流の許容値を制限する条件である制御条件を、上記二次電池への充電が継続される充電時間と、充電が行われる際の上記二次電池の温度とに応じて複数記憶する記憶装置と、制御部と、を備え、上記制御部は、上記二次電池の温度の情報から推定される上記二次電池の容量劣化に少なくとも基づいて、上記制御条件の変更量を算出し、上記複数の制御条件のうち、一定期間内に上記二次電池に対して充電が行われた際に使用された頻度が最も高い制御条件を、上記変更量に基づいて変更することを特徴とする。 In order to realize such an object, the charging control device for a secondary battery of one aspect disclosed herein charges the secondary battery with control conditions that limit the permissible value of the charging current for the secondary battery. The control unit includes a storage device and a control unit that store a plurality of storage devices according to the charging time for which the battery is continuously charged and the temperature of the secondary battery when charging is performed. The amount of change in the control conditions is calculated based on at least the capacity deterioration of the secondary battery estimated from the information, and the secondary battery is charged within a certain period of the plurality of control conditions. The control condition most frequently used at the time is changed based on the above change amount.

上記構成の二次電池の充電制御装置によると、充電電流の許容値を変更する制御条件が変更される際に、複数の制御条件のうち、一定期間内における使用頻度が最も高い制御条件のみが変更される。従って、仮に制御条件が不適切に変更されてしまう場合でも、複数の制御条件の全てが変更されてしまうことが無いので、二次電池の劣化または充電効率の悪化が顕著になり難い。よって、二次電池の劣化が抑制された状態で、より効率良く二次電池の性能が活用される。 According to the charge control device for the secondary battery having the above configuration, when the control condition for changing the allowable value of the charging current is changed, only the control condition most frequently used within a certain period is selected among the plurality of control conditions. Be changed. Therefore, even if the control conditions are improperly changed, all of the plurality of control conditions are not changed, so that the deterioration of the secondary battery or the deterioration of the charging efficiency is unlikely to be remarkable. Therefore, the performance of the secondary battery is utilized more efficiently while the deterioration of the secondary battery is suppressed.

充電制御装置1の概略構成図である。It is a schematic block diagram of the charge control device 1. 充電電流の許容値を制限する際の制御条件30A,30B,30C,30Dを説明するための概念図である。It is a conceptual diagram for demonstrating the control conditions 30A, 30B, 30C, 30D when limiting the permissible value of the charging current. 充電制御装置1が実行する制御条件変更処理のフローチャートである。It is a flowchart of the control condition change process executed by the charge control device 1.

以下、本開示における典型的な実施形態の1つについて、図面を参照しつつ詳細に説明する。本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、各図における寸法関係(長さ、幅、厚み等)は実際の寸法関係を反映するものではない。 Hereinafter, one of the typical embodiments in the present disclosure will be described in detail with reference to the drawings. Matters other than those specifically mentioned in the present specification and necessary for implementation can be grasped as design matters of those skilled in the art based on the prior art in the art. The present invention can be carried out based on the contents disclosed in the present specification and common general technical knowledge in the art. Moreover, the dimensional relations (length, width, thickness, etc.) in each drawing do not reflect the actual dimensional relations.

本明細書において、「電池」とは、電気エネルギーを取り出し可能な蓄電デバイス一般を指す用語であって、一次電池および二次電池を含む概念である。「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池等のいわゆる蓄電池(すなわち化学電池)の他、電気二重層キャパシタ等のキャパシタ(すなわち物理電池)を包含する。以下、二次電池の一種であるリチウムイオン二次電池の充電制御装置を例示して、本開示に係る充電制御装置について詳細に説明する。ただし、本開示に係る二次電池の充電制御装置を、以下の実施形態に記載されたものに限定することを意図したものではない。例えば、リチウムイオン二次電池以外の二次電池(例えば、ニッケル水素電池等)の充電を制御する充電制御装置に、本開示で例示した技術の少なくとも一部を適用することも可能である。 As used herein, the term "battery" refers to a general storage device capable of extracting electrical energy, and is a concept including a primary battery and a secondary battery. "Secondary battery" refers to a general storage device that can be charged and discharged repeatedly, and includes so-called storage batteries (that is, chemical batteries) such as lithium ion secondary batteries, nickel hydrogen batteries, and nickel cadmium batteries, as well as electric double-layer capacitors and the like. Includes capacitors (ie physical batteries). Hereinafter, the charge control device according to the present disclosure will be described in detail by exemplifying a charge control device for a lithium ion secondary battery, which is a type of secondary battery. However, it is not intended that the charge control device for the secondary battery according to the present disclosure is limited to those described in the following embodiments. For example, it is possible to apply at least a part of the techniques exemplified in the present disclosure to a charge control device that controls charging of a secondary battery (for example, a nickel hydrogen battery or the like) other than a lithium ion secondary battery.

図1を参照して、充電制御装置1の構成の一例について概略的に説明する。前述したように、本実施形態の充電制御装置1が充電を制御する二次電池20は、リチウムイオン二次電池である。充電制御装置1は、CPU21および記憶装置22を備える。CPU21は、二次電池20の充電制御等の各種制御を司る。記憶装置22には、後述する制御条件等の各種情報、およびプログラム等が記憶されている。充電制御装置1には、各種デバイス(例えば、車両に搭載される電子制御システム(ECU)等)を使用できる。 An example of the configuration of the charge control device 1 will be schematically described with reference to FIG. As described above, the secondary battery 20 in which the charge control device 1 of the present embodiment controls charging is a lithium ion secondary battery. The charge control device 1 includes a CPU 21 and a storage device 22. The CPU 21 controls various controls such as charge control of the secondary battery 20. The storage device 22 stores various information such as control conditions described later, a program, and the like. Various devices (for example, an electronic control system (ECU) mounted on a vehicle) can be used as the charge control device 1.

二次電池20の正極端子と負極端子には、入力装置(例えば、発電機)3と、出力装置(例えば、出力先の外部装置)4とが、それぞれ並列に接続されている。一例として、本実施形態の入力装置3は、車両の制動時に発生する運動エネルギーを電力に変換して、二次電池20に充電電力を供給する。また、本実施形態の出力装置4は、二次電池20から供給される電力によって、車両を駆動する。 An input device (for example, a generator) 3 and an output device (for example, an external device for output destination) 4 are connected in parallel to the positive electrode terminal and the negative electrode terminal of the secondary battery 20, respectively. As an example, the input device 3 of the present embodiment converts kinetic energy generated when the vehicle is braked into electric power, and supplies charging electric power to the secondary battery 20. Further, the output device 4 of the present embodiment drives the vehicle by the electric power supplied from the secondary battery 20.

入力装置3と二次電池20を接続する配線には、スイッチ6が設けられている。スイッチ6がオンとされることで、入力装置3から出力される電力が二次電池20に充電される。また、出力装置4と二次電池20を接続する配線には、スイッチ7が設けられている。スイッチ7がオンとされることで、二次電池20から出力装置4に電力が供給される。 A switch 6 is provided in the wiring connecting the input device 3 and the secondary battery 20. When the switch 6 is turned on, the electric power output from the input device 3 is charged to the secondary battery 20. Further, a switch 7 is provided in the wiring connecting the output device 4 and the secondary battery 20. When the switch 7 is turned on, power is supplied from the secondary battery 20 to the output device 4.

二次電池20には、電圧計9が並列に接続されている。電圧計9は、二次電池20の正負極間の電圧を測定する。また、二次電池20には、電流計10が直列に接続されている。電流計10は、二次電池20に流れた電流を測定する。また、二次電池20には温度センサ11が設けられている。温度センサ11は、二次電池20の温度を検出する。 A voltmeter 9 is connected in parallel to the secondary battery 20. The voltmeter 9 measures the voltage between the positive and negative electrodes of the secondary battery 20. Further, an ammeter 10 is connected in series to the secondary battery 20. The ammeter 10 measures the current flowing through the secondary battery 20. Further, the secondary battery 20 is provided with a temperature sensor 11. The temperature sensor 11 detects the temperature of the secondary battery 20.

入力装置3、出力装置4、スイッチ6、スイッチ7、電圧計9、電流計10、および温度センサ11は、充電制御装置1に接続されている。充電制御装置1は、スイッチ6およびスイッチ7のオン・オフの駆動を制御する。また、充電制御装置1は、電圧計9、電流計10、および温度センサ11から入力される情報に基づいて、二次電池20の充電を制御する。 The input device 3, the output device 4, the switch 6, the switch 7, the voltmeter 9, the ammeter 10, and the temperature sensor 11 are connected to the charge control device 1. The charge control device 1 controls the on / off drive of the switch 6 and the switch 7. Further, the charge control device 1 controls the charge of the secondary battery 20 based on the information input from the voltmeter 9, the ammeter 10, and the temperature sensor 11.

図2を参照して、本実施形態の充電制御装置1による二次電池20の充電制御方法について説明する。二次電池20の容量は、大きな電流(ハイレート)での充放電が繰り返されることで劣化する。ハイレートでの充放電による二次電池20の容量の劣化は、ハイレート劣化と言われる場合もある。充電制御装置1は、二次電池20のハイレート劣化を抑制するために、二次電池20に対する充電電流の許容値を、制御条件に従って制限する。制御条件は、記憶装置22に記憶されている。 The charge control method of the secondary battery 20 by the charge control device 1 of the present embodiment will be described with reference to FIG. The capacity of the secondary battery 20 deteriorates due to repeated charging and discharging at a large current (high rate). Deterioration of the capacity of the secondary battery 20 due to charging / discharging at a high rate is sometimes referred to as high rate deterioration. The charge control device 1 limits the permissible value of the charge current for the secondary battery 20 according to the control conditions in order to suppress the high rate deterioration of the secondary battery 20. The control conditions are stored in the storage device 22.

充電電流の許容値を制限する際の制御条件には、種々の条件を適用することが可能である。一例として、本実施形態では、図2に示すように、二次電池20に供給されている充電電流の大きさと、二次電池20への充電が継続される充電時間の長さを充電状態のパラメータとする閾値(図2のグラフに示すライン)が、制御条件30A,30B,30C,30Dとして設定される。充電制御装置1は、充電電流の大きさと充電時間の長さによって定まる電池状態(図2のグラフにおける座標)が閾値未満の場合には、充電電流の許容値を、制限無しの値に設定する。また、充電制御装置1は、充電電流の大きさと充電時間の長さによって定まる電池状態が閾値を超えると、充電電流の許容値を制限する(つまり、許容値を減少させる)。その結果、二次電池20のハイレート劣化が抑制される。 Various conditions can be applied to the control conditions for limiting the allowable value of the charging current. As an example, in the present embodiment, as shown in FIG. 2, the magnitude of the charging current supplied to the secondary battery 20 and the length of the charging time during which the secondary battery 20 is continuously charged are set in the charged state. Threshold values (lines shown in the graph of FIG. 2) as parameters are set as control conditions 30A, 30B, 30C, and 30D. When the battery state (coordinates in the graph of FIG. 2) determined by the magnitude of the charging current and the length of the charging time is less than the threshold value, the charge control device 1 sets the allowable value of the charging current to an unlimited value. .. Further, the charge control device 1 limits the permissible value of the charge current (that is, reduces the permissible value) when the battery state determined by the magnitude of the charge current and the length of the charge time exceeds the threshold value. As a result, high-rate deterioration of the secondary battery 20 is suppressed.

ここで、二次電池20への充電が継続される充電時間とは、二次電池20に対する充電電流の供給が開始された以後の充電中の時間である。本実施形態では、車両の制動が行われている間(つまり、ブレーキがかけられている間)に、回生電流が充電電流として二次電池20に供給される。従って、ブレーキが短時間で強くかけられると、大きな充電電流が短時間で二次電池20に供給される。一方で、ブレーキが長時間で弱くかけられると、小さな充電電流が二次電池20に長時間供給される。 Here, the charging time during which the secondary battery 20 is continuously charged is the time during charging after the supply of the charging current to the secondary battery 20 is started. In the present embodiment, the regenerative current is supplied to the secondary battery 20 as a charging current while the vehicle is being braked (that is, while the brake is being applied). Therefore, when the brake is strongly applied in a short time, a large charging current is supplied to the secondary battery 20 in a short time. On the other hand, when the brake is applied weakly for a long time, a small charging current is supplied to the secondary battery 20 for a long time.

なお、充電電流の許容値を制限する際の制御条件を変更することも可能である。例えば、充電制御装置1は、二次電池20の充放電電流等に基づいて、二次電池20のハイレート劣化のダメージ量を算出してもよい。充電制御装置1は、算出したダメージ量の積算値を電池状態として制御条件と比較することで、充電電流の許容値を制御してもよい。また、本実施形態の充電制御装置1は、電池状態が閾値を超えるか否かに応じて、充電電流の許容値を制限するか否かを決定する。しかし、充電制御装置1は、電池状態に応じて多段階で許容値を制限してもよいし、電池状態が悪化する程許容値が下がるように許容値を制御してもよい。 It is also possible to change the control conditions when limiting the allowable value of the charging current. For example, the charge control device 1 may calculate the damage amount of the high rate deterioration of the secondary battery 20 based on the charge / discharge current of the secondary battery 20 and the like. The charge control device 1 may control the permissible value of the charge current by comparing the integrated value of the calculated damage amount with the control condition as the battery state. Further, the charge control device 1 of the present embodiment determines whether or not to limit the allowable value of the charge current depending on whether or not the battery state exceeds the threshold value. However, the charge control device 1 may limit the permissible value in multiple stages according to the battery state, or may control the permissible value so that the permissible value decreases as the battery state deteriorates.

また、二次電池20の劣化の程度は、二次電池20への充電が継続される充電時間、および、充電が行われる際の二次電池20の温度に応じて変化する。従って、本実施形態では、図2に示すように、充電電流の許容値を制限する際の制御条件が、充電時間および二次電池20の温度に応じて複数定められて、記憶装置22に記憶されている。一例として、本実施形態では、二次電池20の温度が常温以上であるか否か、および、充電時間が閾値よりも長時間であるか否かに応じて、4つの制御条件30A,30B,30C,30Dが定められている。充電制御装置1は、複数の制御条件30A,30B,30C,30Dのうち、二次電池20への充電が行われた際の充電時間および温度に対応する制御条件を参照して、充電電流の許容値を制御する。 Further, the degree of deterioration of the secondary battery 20 changes depending on the charging time during which the secondary battery 20 is continuously charged and the temperature of the secondary battery 20 when charging is performed. Therefore, in the present embodiment, as shown in FIG. 2, a plurality of control conditions for limiting the allowable value of the charging current are determined according to the charging time and the temperature of the secondary battery 20, and are stored in the storage device 22. Has been done. As an example, in the present embodiment, four control conditions 30A, 30B, depending on whether or not the temperature of the secondary battery 20 is above room temperature and whether or not the charging time is longer than the threshold value. 30C and 30D are defined. The charge control device 1 refers to the control conditions corresponding to the charging time and temperature when the secondary battery 20 is charged among the plurality of control conditions 30A, 30B, 30C, and 30D, and refers to the charging current. Control the tolerance.

なお、充電時間および温度に応じて定められる制御条件の数は、4つに限定されない。例えば、充電時間および温度の少なくとも一方が3つ以上に区分けされたうえで、6つ以上の制御条件が定められていてもよい。 The number of control conditions determined according to the charging time and temperature is not limited to four. For example, at least one of the charging time and the temperature may be divided into three or more, and six or more control conditions may be defined.

図3を参照して、本実施形態の充電制御装置1が実行する制御条件変更処理について説明する。制御条件変更処理では、二次電池20の容量の劣化の程度に応じて、充電電流の許容値を制限する際の制御条件が変更される。充電制御装置1のCPU21は、記憶装置22に記憶されたプログラムに従って、図3に例示する制御条件変更処理を実行する。 The control condition change process executed by the charge control device 1 of the present embodiment will be described with reference to FIG. In the control condition change process, the control condition for limiting the allowable value of the charging current is changed according to the degree of deterioration of the capacity of the secondary battery 20. The CPU 21 of the charge control device 1 executes the control condition change process illustrated in FIG. 3 according to the program stored in the storage device 22.

まず、CPU21は、少なくとも二次電池20の容量劣化量の推定結果に基づいて、制御条件の変更量を算出する(S1〜S7)。制御条件の変更量の算出方法には、種々の方法を適用できる。一例として、本実施形態では、二次電池20の温度の情報から導き出される容量劣化量(S1〜S3)と、主に二次電池20の充放電電流から導き出されるハイレート劣化量(S4,S5)と、二次電池20への水分浸入量(S6)とに基づいて、制御条件の変更量が算出される。 First, the CPU 21 calculates the amount of change in the control conditions based on the estimation result of the capacity deterioration amount of the secondary battery 20 at least (S1 to S7). Various methods can be applied to the method of calculating the amount of change in the control conditions. As an example, in the present embodiment, the capacity deterioration amount (S1 to S3) derived from the temperature information of the secondary battery 20 and the high rate deterioration amount (S4, S5) mainly derived from the charge / discharge current of the secondary battery 20. And the amount of water infiltrated into the secondary battery 20 (S6), the amount of change in the control conditions is calculated.

温度の情報に基づく容量劣化量の算出方法の一例について説明する。本実施形態では、CPU21は、温度センサ11(図1参照)によって検出された二次電池20の温度情報を取得する(S1)。次いで、CPU21は、一定期間内に繰り返し取得された二次電池の温度情報に基づいて、二次電池20の温度頻度分布を算出する(S2)。CPU21は、総時間と温度頻度分布に基づいて、二次電池20の容量劣化量を算出する(S3)。総時間および温度頻度分布と、二次電池20の容量劣化量の関係は、種々の方法で予め対応付けられていればよい。例えば、複数の二次電池20について、総時間および温度頻度分布と、容量劣化量との関係が、予め実験等によって確認されていてもよい。総時間および温度頻度分布と容量劣化量との関係は、例えば、テーブルまたは計算式等によって対応付けられていてもよい。 An example of a method for calculating the amount of capacitance deterioration based on temperature information will be described. In the present embodiment, the CPU 21 acquires the temperature information of the secondary battery 20 detected by the temperature sensor 11 (see FIG. 1) (S1). Next, the CPU 21 calculates the temperature frequency distribution of the secondary battery 20 based on the temperature information of the secondary battery repeatedly acquired within a certain period (S2). The CPU 21 calculates the amount of capacity deterioration of the secondary battery 20 based on the total time and the temperature frequency distribution (S3). The relationship between the total time and temperature frequency distribution and the amount of capacity deterioration of the secondary battery 20 may be associated in advance by various methods. For example, for a plurality of secondary batteries 20, the relationship between the total time and temperature frequency distribution and the amount of capacity deterioration may be confirmed in advance by experiments or the like. The relationship between the total time and temperature frequency distribution and the amount of capacity deterioration may be associated with each other by, for example, a table or a calculation formula.

二次電池20の充放電電流に基づくハイレート劣化量の算出方法の一例について説明する。本実施形態では、CPU21は、電流計10(図1参照)によって検出された二次電池20の充放電電流に基づいて、二次電池20のハイレート劣化のダメージ量を算出する。CPU21は、算出したダメージ量を積算した積算ダメージ量を算出する(S4)。CPU21は、算出した積算ダメージ量から、二次電池20のハイレート劣化量を算出する(S5)。積算ダメージ量およびハイレート劣化量の具体的な算出方法も、適宜選択できる。例えば、前述した特許文献1には、積算ダメージ量およびハイレート劣化量の算出方法の一例が開示されている。 An example of a method for calculating the amount of high-rate deterioration based on the charge / discharge current of the secondary battery 20 will be described. In the present embodiment, the CPU 21 calculates the damage amount of the high rate deterioration of the secondary battery 20 based on the charge / discharge current of the secondary battery 20 detected by the ammeter 10 (see FIG. 1). The CPU 21 calculates the integrated damage amount by accumulating the calculated damage amounts (S4). The CPU 21 calculates the high rate deterioration amount of the secondary battery 20 from the calculated integrated damage amount (S5). A specific calculation method for the cumulative damage amount and the high rate deterioration amount can also be appropriately selected. For example, Patent Document 1 described above discloses an example of a method for calculating an integrated damage amount and a high rate deterioration amount.

二次電池20への水分浸入量の算出方法の一例について説明する。本実施形態では、CPU21は、二次電池20の温度履歴、総時間、環境温度、および水分透過係数に基づいて、水分浸入量の推定値を算出する(S6)。 An example of a method of calculating the amount of water infiltrated into the secondary battery 20 will be described. In the present embodiment, the CPU 21 calculates an estimated value of the amount of water infiltrated based on the temperature history of the secondary battery 20, the total time, the environmental temperature, and the water permeability coefficient (S6).

次いで、CPU21は、S1〜S6で算出された各値に基づいて、制御条件の変更量を算出する(S7)。各算出値と制御条件の変更量との関係は、種々の方法で予め対応付けられていればよい。例えば、複数の二次電池20について、各算出値と適切な制御条件との関係が、予め実験等によって確認されていてもよい。各算出値と適切な制御条件との関係は、例えば、テーブルまたは計算式等によって対応付けられていてもよい。 Next, the CPU 21 calculates the amount of change in the control conditions based on the values calculated in S1 to S6 (S7). The relationship between each calculated value and the amount of change in the control condition may be associated in advance by various methods. For example, for a plurality of secondary batteries 20, the relationship between each calculated value and an appropriate control condition may be confirmed in advance by an experiment or the like. The relationship between each calculated value and an appropriate control condition may be associated with, for example, a table or a calculation formula.

なお、制御条件の変更量の算出方法を変更することも可能である。例えば、CPU21は、二次電池20の温度の情報から導き出される容量劣化量のみに基づいて、制御条件の変更量を算出してもよい。 It is also possible to change the calculation method of the change amount of the control condition. For example, the CPU 21 may calculate the amount of change in control conditions based only on the amount of capacity deterioration derived from the temperature information of the secondary battery 20.

次いで、CPU21は、複数の制御条件30A,30B,30C,30Dのうち、一定期間内(例えば1週間内)に二次電池20に対して充電が行われた際に使用された頻度が最も高い制御条件(以下、「高頻度条件」という)を、S7で算出された変更量に基づいて変更する(S8〜S15)。前述したように、本実施形態の充電制御装置1は、複数の制御条件30A,30B,30C,30Dのうち、二次電池20への充電が行われた際の充電時間および温度に対応する制御条件を参照して、充電電流の許容値を制御する。また、本実施形態では、充電電流の許容値の制御処理が行われる毎に、制御条件(複数の制御条件30A,30B,30C,30Dのいずれか)を参照した頻度が記憶装置22に記憶される。従って、CPU21は、高頻度条件がいずれであるかを、記憶装置22に記憶されている頻度の情報に基づいて判断することができる。 Next, among the plurality of control conditions 30A, 30B, 30C, and 30D, the CPU 21 is most frequently used when the secondary battery 20 is charged within a certain period (for example, within one week). The control condition (hereinafter referred to as “high frequency condition”) is changed based on the change amount calculated in S7 (S8 to S15). As described above, the charge control device 1 of the present embodiment controls the charging time and temperature when the secondary battery 20 is charged among the plurality of control conditions 30A, 30B, 30C, and 30D. Control the allowable value of the charging current with reference to the conditions. Further, in the present embodiment, the frequency with which the control condition (any of a plurality of control conditions 30A, 30B, 30C, 30D) is referred to is stored in the storage device 22 each time the control processing of the allowable value of the charging current is performed. To. Therefore, the CPU 21 can determine which of the high frequency conditions is based on the frequency information stored in the storage device 22.

まず、CPU21は、これまでに車両の制動の介入があったか否かを判断する(S8)。車両の制動の介入が行われていなければ(S8:NO)、複数の制御条件の各々が参照された頻度は同じである。従って、制御条件は変更されずに、処理はそのままS1〜S6へ戻る。 First, the CPU 21 determines whether or not there has been a vehicle braking intervention so far (S8). Unless the vehicle braking intervention is performed (S8: NO), the frequency with which each of the plurality of control conditions is referred to is the same. Therefore, the control conditions are not changed, and the process returns to S1 to S6 as it is.

車両の制動の介入がある場合(S8:YES)、CPU21は、高頻度条件の温度の分類が常温以上であるか否かを判断する(S9)。常温以上であれば(S9:YES)、CPU21は、高頻度条件の充電時間の分類が長時間であるか否かを判断する(S10)。長時間であれば(S10:YES)、CPU21は、複数の制御条件のうち、常温以上・長時間の制御条件30Aを、S7で算出した変更量に基づいて変更する(S11)。高頻度条件の温度の分類が常温以上であり(S9:YES)、且つ、充電時間の分類が短時間であれば(S10:NO)、CPU21は、常温以上・短時間の制御条件30Bを、S7で算出した変更量に基づいて変更する(S12)。また、温度の分類が低温である場合(S9:NO)、CPU21は、高頻度条件の充電時間の分類が長時間であるか否かを判断する(S13)。長時間であれば(S13:YES)、低温・長時間の制御条件30Cが変更される(S14)。また、短時間であれば(S13:NO)、低温・短時間の制御条件30Dが変更される(S15)。終了指示が入力されるまで(S16:NO)、制御条件変更処理は繰り返される。終了指示が入力されると(S16:YES)、処理は終了する。 When there is a vehicle braking intervention (S8: YES), the CPU 21 determines whether or not the temperature classification under the high frequency condition is at room temperature or higher (S9). If it is above room temperature (S9: YES), the CPU 21 determines whether or not the charging time under the high frequency condition is classified for a long time (S10). If it is a long time (S10: YES), the CPU 21 changes the control condition 30A at room temperature or higher for a long time among the plurality of control conditions based on the change amount calculated in S7 (S11). If the temperature classification of the high frequency condition is normal temperature or higher (S9: YES) and the charging time classification is short (S10: NO), the CPU 21 sets the control condition 30B of normal temperature or higher and short time. The change is made based on the change amount calculated in S7 (S12). Further, when the temperature classification is low temperature (S9: NO), the CPU 21 determines whether or not the charging time classification under the high frequency condition is long (S13). If it is a long time (S13: YES), the low temperature / long time control condition 30C is changed (S14). If the time is short (S13: NO), the low temperature / short time control condition 30D is changed (S15). The control condition change process is repeated until the end instruction is input (S16: NO). When the end instruction is input (S16: YES), the process ends.

以上、具体的な実施形態を挙げて詳細な説明を行ったが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に記載した実施形態を様々に変形、変更したものが含まれる。 Although the detailed description has been given with reference to specific embodiments, these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the above-described embodiments.

1 充電制御装置
10 電流計
11 温度センサ
20 二次電池
21 CPU
22 記憶装置

1 Charge control device 10 Ammeter 11 Temperature sensor 20 Secondary battery 21 CPU
22 Storage device

Claims (1)

二次電池に対する充電電流の許容値を制限する条件である制御条件を、前記二次電池への充電が継続される充電時間と、充電が行われる際の前記二次電池の温度とに応じて複数記憶する記憶装置と、
制御部と、
を備え、
前記制御部は、
前記二次電池の温度の情報から推定される前記二次電池の容量劣化に少なくとも基づいて、前記制御条件の変更量を算出し、
前記複数の制御条件のうち、前記二次電池に対して過去に充電が行われた際に使用された頻度が最も高い制御条件を、前記変更量に基づいて変更することを特徴とする、二次電池の充電制御装置。

The control condition, which is a condition for limiting the allowable value of the charging current for the secondary battery, is set according to the charging time for continuing charging of the secondary battery and the temperature of the secondary battery when charging is performed. A storage device that stores multiple devices and
Control unit and
With
The control unit
The amount of change in the control conditions is calculated based on at least the capacity deterioration of the secondary battery estimated from the temperature information of the secondary battery.
Among the plurality of control conditions, the control condition most frequently used when the secondary battery has been charged in the past is changed based on the change amount. Rechargeable battery charge control device.

JP2019040512A 2019-03-06 2019-03-06 Charge control device of secondary battery Pending JP2020145838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019040512A JP2020145838A (en) 2019-03-06 2019-03-06 Charge control device of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019040512A JP2020145838A (en) 2019-03-06 2019-03-06 Charge control device of secondary battery

Publications (1)

Publication Number Publication Date
JP2020145838A true JP2020145838A (en) 2020-09-10

Family

ID=72354678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019040512A Pending JP2020145838A (en) 2019-03-06 2019-03-06 Charge control device of secondary battery

Country Status (1)

Country Link
JP (1) JP2020145838A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045364A1 (en) 2020-08-31 2022-03-03 Fujikura Ltd. Optical fiber fusion splicer and optical fiber fusion splicing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050981A (en) * 2015-09-02 2017-03-09 トヨタ自動車株式会社 Battery control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050981A (en) * 2015-09-02 2017-03-09 トヨタ自動車株式会社 Battery control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045364A1 (en) 2020-08-31 2022-03-03 Fujikura Ltd. Optical fiber fusion splicer and optical fiber fusion splicing method

Similar Documents

Publication Publication Date Title
JP5401366B2 (en) Control device for hybrid vehicle
EP3204998B1 (en) Electrical energy storage device
US10254346B2 (en) SOC estimation device for secondary battery
JP6572448B2 (en) Battery state estimation device and power supply device
JP5621818B2 (en) Power storage system and equalization method
US20130241466A1 (en) Regenerative power supply system
JP5623629B2 (en) Remaining life judgment method
JP2015505956A (en) Battery remaining capacity estimation apparatus and method
US10211651B2 (en) Device and method for managing SOC and SOH of parallel-connected battery pack
WO2012073997A1 (en) Degradation estimation device for secondary battery
CN102934314B (en) Power brick
US10367359B2 (en) Power control apparatus and power control system
US10355320B2 (en) Power storage device for a battery group and connection control of capacitor and switching device
EP3081425A1 (en) Vehicle power management device
JP6822358B2 (en) Rechargeable battery system
CN111301219A (en) Electric vehicle battery control method, system, device and readable storage medium
JP6647986B2 (en) Secondary battery deterioration determination device, secondary battery deterioration determination method, and secondary battery control device
JP6184815B2 (en) Secondary battery system, control method thereof, and program
JP2020145838A (en) Charge control device of secondary battery
CN103688438B (en) Accumulating system and the method for the state that differentiates power storage block
KR102020044B1 (en) Battery charging system, and method for controlling maximum capacity charging in battery module using the same
JP2016152718A (en) Charge and discharge controller, mobile and power sharing amount determination method
KR20230050028A (en) Battery management system and method for battery monitoring thereof
JP7174330B2 (en) Secondary battery controller
JP6848775B2 (en) Lithium ion secondary battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230406