JP2020145406A - Manufacturing method for quaternary ammonium hydroxide organic solvent solution - Google Patents

Manufacturing method for quaternary ammonium hydroxide organic solvent solution Download PDF

Info

Publication number
JP2020145406A
JP2020145406A JP2019216889A JP2019216889A JP2020145406A JP 2020145406 A JP2020145406 A JP 2020145406A JP 2019216889 A JP2019216889 A JP 2019216889A JP 2019216889 A JP2019216889 A JP 2019216889A JP 2020145406 A JP2020145406 A JP 2020145406A
Authority
JP
Japan
Prior art keywords
organic solvent
quaternary ammonium
solution
ammonium hydroxide
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019216889A
Other languages
Japanese (ja)
Other versions
JP7482621B2 (en
Inventor
橘 昇二
Shoji Tachibana
昇二 橘
義晶 山下
Yoshiaki Yamashita
義晶 山下
誠司 東野
Seiji Tono
誠司 東野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Publication of JP2020145406A publication Critical patent/JP2020145406A/en
Application granted granted Critical
Publication of JP7482621B2 publication Critical patent/JP7482621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

To provide a manufacturing method for quaternary ammonium hydroxide organic solvent solution having a high level of purity useful for semiconductor manufacturing process applications.SOLUTION: A manufacturing method for a quaternary ammonium hydroxide organic solvent solution includes a step (a) of thin-film distillation of a raw material mixture using a flow-down film type thin-film distillation apparatus, the raw material mixture contains quaternary ammonium hydroxide, water, and a water-soluble organic solvent having a plurality of hydroxy groups, and the thin-film distillation apparatus includes an evaporation container and a first flow path that introduces the raw material mixture into the evaporation container, the raw material mixture becomes a liquid film and flows down along the inner wall surface of the evaporation container, the thin-film distillation apparatus further includes a heating surface for heating the liquid film, and the thin-film distillation has a first temperature of the raw material mixture, which is 70°C or less, the temperature of the heating surface is 60 to 140°C, which is a second temperature higher than the first temperature, and the degree of vacuum in the evaporation container is 600 Pa or less.SELECTED DRAWING: Figure 2

Description

本発明は、水酸化第4級アンモニウムの有機溶媒溶液の製造方法、および、半導体製造用処理液組成物の製造方法に関する。 The present invention relates to a method for producing an organic solvent solution of quaternary ammonium hydroxide and a method for producing a treatment liquid composition for semiconductor production.

水酸化第4級アンモニウムを含有する溶液は、半導体素子、液晶表示装置等の製造工程において、フォトレジスト(単に「レジスト」ということがある。)の現像液、変性フォトレジスト(例えばイオン注入プロセス後のフォトレジスト、アッシング後のフォトレジスト等。)の剥離液および洗浄液、シリコンエッチング液等として用いられている。 A solution containing quaternary ammonium hydroxide is a developing solution of a photoresist (sometimes simply referred to as "resist") or a modified photoresist (for example, after an ion injection process) in the manufacturing process of semiconductor devices, liquid crystal display devices, and the like. It is used as a stripping solution, a cleaning solution, a silicon etching solution, etc. of the photoresist, the photoresist after ashing, etc.).

例えば、フォトレジストの現像プロセスにおいては、基板表面に例えばノボラック樹脂、ポリスチレン樹脂等の樹脂を含有するネガ型又はポジ型のフォトレジストを塗布し、塗布したフォトレジストに対してパターン形成用のフォトマスクを介して光を照射することにより、光照射を受けたフォトレジストを硬化または可溶化させ、未硬化の又は可溶化したフォトレジストを現像液を用いて除去することにより、フォトレジストのパターンが形成される。 For example, in the photoresist development process, a negative or positive photoresist containing a resin such as novolak resin or polystyrene resin is applied to the surface of the substrate, and a photoresist for pattern formation is applied to the coated photoresist. A photoresist pattern is formed by curing or solubilizing the light-irradiated photoresist by irradiating it with light and removing the uncured or solubilized photoresist with a developing solution. Will be done.

形成されたフォトレジストのパターンは、その後のプロセス(例えばエッチング、ドーピング、イオン注入等。)において、フォトレジストのパターンで被覆されていない箇所が選択的に処理されるようにする役割を果たす。その後、不要となったフォトレジストパターンは、必要に応じてアッシング処理を経た後、レジスト剥離液により基板表面から除去される。必要に応じて、レジスト残渣を除去するため、基板は洗浄液でさらに洗浄される。 The photoresist pattern formed serves to selectively process areas not covered by the photoresist pattern in subsequent processes (eg etching, doping, ion implantation, etc.). After that, the unnecessary photoresist pattern is subjected to an ashing treatment as necessary, and then removed from the substrate surface by a resist stripping solution. If necessary, the substrate is further washed with a wash solution to remove the resist residue.

これらの用途には従来、水酸化第4級アンモニウムの水溶液が用いられてきた。しかしながら、フォトレジストパターンがイオン注入等のプロセスを経ると、フォトレジストパターンが変質し、その表面に炭素質のクラストが形成される。表面にクラストが形成された変性フォトレジストは、従来の水酸化第4級アンモニウム水溶液では除去することが容易でない。またフォトレジストパターンのアッシング残渣も炭素質に近い性質を有しており、従来の水酸化第4級アンモニウム水溶液では除去することが容易でない。 Conventionally, an aqueous solution of quaternary ammonium hydroxide has been used for these purposes. However, when the photoresist pattern undergoes a process such as ion implantation, the photoresist pattern is altered and a carbonaceous crust is formed on its surface. The modified photoresist having a crust formed on its surface is not easy to remove with a conventional quaternary ammonium hydroxide aqueous solution. Further, the ashing residue of the photoresist pattern also has properties close to carbonaceous, and it is not easy to remove it with a conventional quaternary ammonium hydroxide aqueous solution.

そこで、このような変性フォトレジスト又はフォトレジストのアッシング残渣をより効果的に除去することを目的として、水酸化第4級アンモニウムの水溶液に代えて、水酸化第4級アンモニウムの有機溶媒溶液を用いることが提案されている。水酸化第4級アンモニウムの有機溶媒溶液は、水溶液に比較して、配線に用いられる金属材料、及び、Si、SiO、SiN、Al、TiN、W、Ta等の無機質基体材料を腐食させにくい点においても有利である。 Therefore, for the purpose of more effectively removing such a modified photoresist or the ashing residue of the photoresist, an organic solvent solution of quaternary ammonium hydroxide is used instead of the aqueous solution of quaternary ammonium hydroxide. Has been proposed. The organic solvent solution of quaternary ammonium hydroxide corrodes the metal material used for wiring and the inorganic substrate material such as Si, SiO x , SiN x , Al, TiN, W, and Ta as compared with the aqueous solution. It is also advantageous in that it is difficult.

特許第4673935号公報Japanese Patent No. 4673935 特許第4224651号公報Japanese Patent No. 4224651 特許第4678673号公報Japanese Patent No. 4678673 特許第6165442号公報Japanese Patent No. 6165442 国際公開2016/163384号パンフレットInternational Publication 2016/163384 Pamphlet 国際公開2017/169832号パンフレットInternational Publication 2017/169832 Pamphlet

変性フォトレジスト又はフォトレジストのアッシング残渣に対する除去能力を高める観点、及び、金属材料および無機質基体材料に対する適合性の観点からは、水酸化第4級アンモニウムの有機溶媒溶液中の水分量は低いことが望ましい。また、半導体素子の製造歩留りを高める観点からは、水酸化第4級アンモニウムの有機溶媒溶液中の金属不純物の含有量は低いことが望ましい。 From the viewpoint of enhancing the ability of the modified photoresist or photoresist to remove ashing residues, and from the viewpoint of compatibility with metal materials and inorganic substrate materials, the water content of quaternary ammonium hydroxide in the organic solvent solution is low. desirable. Further, from the viewpoint of increasing the manufacturing yield of the semiconductor device, it is desirable that the content of metal impurities in the organic solvent solution of quaternary ammonium hydroxide is low.

しかしながら例えば、水酸化第4級アンモニウムの一種である水酸化テトラメチルアンモニウム(TMAH)は、濃度2.38〜25質量%の水溶液、又はTMAH・5水和物の結晶性固体(純度97〜98質量%程度)として商業的に入手可能であるが、実質的に水分を含まない無水のTMAHは商業的に流通していない。 However, for example, tetramethylammonium hydroxide (TMAH), which is a kind of quaternary ammonium hydroxide, is an aqueous solution having a concentration of 2.38 to 25% by mass, or a crystalline solid of TMAH / pentahydrate (purity 97 to 98). Although it is commercially available as (about mass%), anhydrous TMAH, which is substantially free of water, is not commercially available.

一般に水酸化第4級アンモニウムは、塩化テトラメチルアンモニウム(TMAC)等の、第4級アンモニウムハライドの水溶液を電気分解することにより製造される(電解法)。この電気分解により、第4級アンモニウムイオンの対イオンであるハライドイオンが水酸化物イオンに交換され、水酸化第4級アンモニウムの水溶液が製造される。例えば電解法により製造されるTMAH水溶液の濃度は通常20〜25質量%程度である。電解法によれば、金属不純物の含有量が各金属について概ね0.1質量ppm以下の高純度な水酸化第4級アンモニウム水溶液が製造可能であり、特にTMAHについては金属不純物の含有量が各金属について0.001質量ppm以下(すなわち1質量ppb以下)の高純度な水酸化第4級アンモニウム水溶液が製造可能である。 Generally, quaternary ammonium hydroxide is produced by electrolyzing an aqueous solution of quaternary ammonium halide such as tetramethylammonium chloride (TMAC) (electrolysis method). By this electrolysis, halide ions, which are counterions of quaternary ammonium ions, are exchanged with hydroxide ions to produce an aqueous solution of quaternary ammonium hydroxide. For example, the concentration of the TMAH aqueous solution produced by the electrolytic method is usually about 20 to 25% by mass. According to the electrolytic method, it is possible to produce a high-purity quaternary ammonium hydroxide aqueous solution having a metal impurity content of about 0.1 mass ppm or less for each metal, and particularly for TMAH, each metal impurity content is high. A high-purity quaternary ammonium hydroxide aqueous solution of 0.001 mass ppm or less (that is, 1 mass ppb or less) can be produced for a metal.

しかしながら、水酸化第4級アンモニウム水溶液から無水の水酸化第4級アンモニウムを得ることは極めて困難である。例えばTMAH水溶液の濃度が高くなると、TMAH・5水和物(TMAH含有量:約50質量%)の結晶性固体が析出する。TMAH・5水和物の結晶性固体を加熱しても、TMAH・3水和物(TMAH含有量:約63質量%)が生成することはあっても同時にTMAHの分解(トリメチルアミンの発生及び遊離)が進行してしまう。 However, it is extremely difficult to obtain anhydrous quaternary ammonium hydroxide from an aqueous solution of quaternary ammonium hydroxide. For example, when the concentration of the TMAH aqueous solution becomes high, a crystalline solid of TMAH / pentahydrate (TMAH content: about 50% by mass) is precipitated. Even if the crystalline solid of TMAH / pentahydrate is heated, TMAH / trihydrate (TMAH content: about 63% by mass) may be produced, but at the same time, decomposition of TMAH (generation and release of trimethylamine) ) Will progress.

水酸化第4級アンモニウムの有機溶媒溶液を製造する方法として、塩交換法が知られている。例えばメタノール中で塩化テトラメチルアンモニウム(TMAC)と水酸化カリウム(KOH)とを混合することにより、TMAH及び塩化カリウム(KCl)が生成するとともに、メタノール中の溶解度が低いKClが析出する。析出したKClを濾別することにより、TMAHメタノール溶液が得られる。塩交換法によれば水分量の比較的低いTMAHメタノール溶液を得ることは可能であるが、該溶液には0.5〜数質量%程度のKCl及び水等の不純物が含まれる。このように塩交換法では、半導体の製造プロセスにおいて有用な高純度のTMAHメタノール溶液を得ることはできない。 A salt exchange method is known as a method for producing an organic solvent solution of quaternary ammonium hydroxide. For example, by mixing tetramethylammonium chloride (TMAC) and potassium hydroxide (KOH) in methanol, TMAH and potassium chloride (KCl) are produced, and KCl having low solubility in methanol is precipitated. A TMAH methanol solution is obtained by filtering the precipitated KCl. According to the salt exchange method, it is possible to obtain a TMAH methanol solution having a relatively low water content, but the solution contains impurities such as KCl and water in an amount of about 0.5 to several mass%. As described above, the salt exchange method cannot obtain a high-purity TMAH methanol solution useful in the semiconductor manufacturing process.

水酸化第4級アンモニウムの有機溶媒溶液の他の製造方法として、特許文献1には、水酸化第4級アンモニウムの濃縮液の製造方法であって、含水結晶又は水溶液の形態の水酸化第4級アンモニウムと、グリコールエーテル類、グリコール類、及びトリオール類からなる群から選択される水溶性有機溶剤とを混合して混合液を調製し、その混合液を減圧下に薄膜蒸留して留出物を留去することを特徴とする製造方法が記載されている。特許文献1には、例えば、25質量%TMAH水溶液を出発物質として用いて、薄膜蒸留によりTMAHのプロピレングリコール溶液(TMAH含有量12.6質量%、含水量2.0質量%)を得た旨が記載されている。 As another method for producing an organic solvent solution of quaternary ammonium hydroxide, Patent Document 1 describes a method for producing a concentrated solution of quaternary ammonium hydroxide, which is a fourth hydroxide in the form of a hydrous crystal or an aqueous solution. A mixed solution is prepared by mixing quaternary ammonium with a water-soluble organic solvent selected from the group consisting of glycol ethers, glycols, and triols, and the mixed solution is thin-film distilled under reduced pressure to produce a distillate. A manufacturing method characterized by distilling off the solvent is described. Patent Document 1 states that, for example, a propylene glycol solution of TMAH (TMAH content 12.6% by mass, water content 2.0% by mass) was obtained by thin film distillation using a 25% by mass TMAH aqueous solution as a starting material. Is described.

しかしながら、本発明者らが、高純度の水酸化第4級アンモニウム水溶液を出発物質として用いて、特許文献1に記載の方法を追試したところ、薄膜蒸留により得られた水酸化第4級アンモニウムの有機溶媒溶液からは、0.1質量ppmを大幅に上回る金属不純物が検出された。半導体素子の製造プロセスに用いる観点からは、水酸化第4級アンモニウムの有機溶媒溶液中の金属不純物含有量は、少なくとも各金属について0.1質量ppm以下であることが望ましい。 However, when the present inventors retested the method described in Patent Document 1 using a high-purity quaternary ammonium hydroxide aqueous solution as a starting material, the quaternary ammonium hydroxide obtained by thin film distillation was found. Metal impurities significantly exceeding 0.1% by mass ppm were detected in the organic solvent solution. From the viewpoint of use in the manufacturing process of semiconductor devices, it is desirable that the content of metal impurities in the organic solvent solution of quaternary ammonium hydroxide is at least 0.1 mass ppm or less for each metal.

このように、半導体製造プロセス用途の観点から見て十分高い純度を有する水酸化第4級アンモニウム有機溶媒溶液は、未だ得られていない。 As described above, a quaternary ammonium hydroxide organic solvent solution having sufficiently high purity from the viewpoint of semiconductor manufacturing process applications has not yet been obtained.

本発明は、半導体製造プロセス用途に有用な水準の高い純度を有する、水酸化第4級アンモニウムの有機溶媒溶液の製造方法を提供することを課題とする。また、半導体製造用処理液組成物の製造方法を提供する。 An object of the present invention is to provide a method for producing an organic solvent solution of quaternary ammonium hydroxide having a high level of purity useful for semiconductor manufacturing process applications. Further, a method for producing a processing liquid composition for semiconductor production is provided.

本発明は、下記[1]〜[8]の形態を包含する。
[1] 水酸化第4級アンモニウムの有機溶媒溶液を製造する方法であって、
(a)原料混合液を、流下膜式の薄膜蒸留装置を用いて薄膜蒸留する工程
を含み、
前記原料混合液は、水酸化第4級アンモニウム、水、及び、前記水酸化第4級アンモニウムを溶解する第1の有機溶媒を含み、
前記第1の有機溶媒は、ヒドロキシ基を複数個有する水溶性有機溶媒であり、
前記薄膜蒸留装置が、
蒸発容器と、
前記蒸発容器の上部から前記蒸発容器に前記原料混合液を導入する、第1の流路と、
を備え、
前記第1の流路から前記蒸発容器に導入された前記原料混合液は、液膜となって前記蒸発容器の内壁面に沿って流下し、
前記薄膜蒸留装置はさらに、
前記内壁面に沿って流下する前記液膜を加熱する、前記内壁面に配置された加熱面と、
前記蒸発容器の内部に配置され、前記液膜から発生した蒸気を冷却して液化させる、凝縮器と、
前記凝縮器によって液化された留出液を前記蒸発容器から回収する、第2の流路と、
前記加熱面で蒸発せずに前記加熱面から流下した残渣液を前記蒸発容器から回収する、第3の流路と
を備え、
前記薄膜蒸留が、
原料混合液の、前記蒸留容器に入る直前の温度が、70℃以下の第1の温度であり、
前記加熱面の温度が、60〜140℃の第2の温度であり、前記第2の温度は前記第1の温度より高温であり、
前記蒸発容器内の真空度が、600Pa以下である
条件で行われることを特徴とする、水酸化第4級アンモニウムの有機溶媒溶液の製造方法。
The present invention includes the following forms [1] to [8].
[1] A method for producing an organic solvent solution of quaternary ammonium hydroxide.
(A) The step of thin-film distilling the raw material mixture using a flow-down membrane type thin-film distillation apparatus is included.
The raw material mixture contains quaternary ammonium hydroxide, water, and a first organic solvent that dissolves the quaternary ammonium hydroxide.
The first organic solvent is a water-soluble organic solvent having a plurality of hydroxy groups.
The thin film distillation apparatus
Evaporation vessel and
A first flow path for introducing the raw material mixture into the evaporation container from the upper part of the evaporation container, and
With
The raw material mixed liquid introduced into the evaporation container from the first flow path becomes a liquid film and flows down along the inner wall surface of the evaporation container.
The thin film distillation apparatus further
A heating surface arranged on the inner wall surface, which heats the liquid film flowing down along the inner wall surface,
A condenser, which is placed inside the evaporation vessel and cools and liquefies the vapor generated from the liquid film,
A second flow path for collecting the distillate liquefied by the condenser from the evaporation container, and
It is provided with a third flow path for recovering the residual liquid that has flowed down from the heated surface without evaporating on the heated surface from the evaporation container.
The thin film distillation
The temperature of the raw material mixture immediately before entering the distillation vessel is the first temperature of 70 ° C. or lower.
The temperature of the heating surface is a second temperature of 60 to 140 ° C., and the second temperature is higher than the first temperature.
A method for producing an organic solvent solution of quaternary ammonium hydroxide, which is carried out under the condition that the degree of vacuum in the evaporation container is 600 Pa or less.

本明細書において、薄膜蒸留装置の「加熱面の温度」とは、液膜が熱せられる熱源の温度を意味する。 In the present specification, the "temperature of the heating surface" of the thin film distillation apparatus means the temperature of the heat source at which the liquid film is heated.

[2] 前記薄膜蒸留装置が、
前記蒸発容器内に配置され、前記内壁面に沿って回転するワイパー
をさらに備え、
前記第1の流路から前記蒸発容器内に導入された前記原料混合液が、前記ワイパーによって前記内壁面に塗布されて前記液膜を形成する
ことを特徴とする、[1]に記載の水酸化第4級アンモニウムの有機溶媒溶液の製造方法。
[2] The thin film distillation apparatus
Further provided with a wiper disposed in the evaporation vessel and rotating along the inner wall surface.
The water according to [1], wherein the raw material mixed solution introduced into the evaporation container from the first flow path is applied to the inner wall surface by the wiper to form the liquid film. A method for producing an organic solvent solution of quaternary ammonium oxide.

[3] 前記第1の有機溶媒が、炭素原子、水素原子、及び酸素原子からなる沸点150〜300℃の2価アルコール及び3価アルコールから選ばれる1種以上の有機溶媒である、[1]又は[2]に記載の水酸化第4級アンモニウムの有機溶媒溶液の製造方法。 [3] The first organic solvent is one or more organic solvents selected from dihydric alcohols and trihydric alcohols having a boiling point of 150 to 300 ° C., which consist of carbon atoms, hydrogen atoms, and oxygen atoms. [1] Alternatively, the method for producing an organic solvent solution of quaternary ammonium hydroxide according to [2].

[4] 前記原料混合液が、該混合液の全量を基準として、
前記第1の有機溶媒を、40〜85質量%と、
前記水酸化第4級アンモニウムを、2.0〜30質量%と、
前記水を、10〜30質量%と
を含む、[1]〜[3]のいずれかに記載の水酸化第4級アンモニウムの有機溶媒溶液の製造方法。
[4] The raw material mixed solution is based on the total amount of the mixed solution.
The first organic solvent was added to 40 to 85% by mass.
The quaternary ammonium hydroxide was added to 2.0 to 30% by mass.
The method for producing an organic solvent solution of quaternary ammonium hydroxide according to any one of [1] to [3], which comprises 10 to 30% by mass of the water.

[5] 前記原料混合液中のNa、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、及びZnの含有量が、原料混合液全量基準でそれぞれ50ppb以下であり、
前記原料混合液中のClの含有量が、原料混合液全量基準で50ppb以下である、[1]〜[4]のいずれかに記載の水酸化第4級アンモニウムの有機溶媒溶液の製造方法。
[5] The contents of Na, Mg, Al, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, and Zn in the raw material mixture are 50 ppb or less based on the total amount of the raw material mixture.
The method for producing an organic solvent solution of quaternary ammonium hydroxide according to any one of [1] to [4], wherein the content of Cl in the raw material mixed solution is 50 ppb or less based on the total amount of the raw material mixed solution.

[6] 半導体製造用処理液組成物の製造方法であって、
(i)[1]〜[5]のいずれかに記載の方法で水酸化第4級アンモニウムの有機溶媒溶液を得る工程、
(ii)前記有機溶媒溶液中の水酸化第4級アンモニウムの濃度を把握する工程、及び
(iii)溶媒全量基準で、水分含有量が1.0質量%以下、Na、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、及びZnの含有量がそれぞれ100質量ppb以下、かつClの含有量が100質量ppb以下である有機溶媒を前記有機溶媒溶液に加えることにより、前記有機溶媒溶液中の前記水酸化第4級アンモニウムの濃度を調整する工程
を含み、
前記組成物は、前記水酸化第4級アンモニウムと、前記第1の有機溶媒とを含み、
前記組成物中の水分含有量が、組成物全量基準で1.0質量%以下であり、
前記組成物中のNa、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、及びZnの含有量が、組成物全量基準でそれぞれ100質量ppb以下であり、
前記組成物中のClの含有量が、組成物全量基準で100質量ppb以下である、半導体製造用処理液組成物の製造方法。
[6] A method for producing a treatment liquid composition for semiconductor production.
(I) A step of obtaining an organic solvent solution of quaternary ammonium hydroxide by the method according to any one of [1] to [5].
(Ii) The step of grasping the concentration of quaternary ammonium hydroxide in the organic solvent solution, and (iii) the water content is 1.0% by mass or less based on the total amount of the solvent, Na, Mg, Al, K, By adding an organic solvent having a Ca, Ti, Cr, Mn, Fe, Ni, Cu, and Zn content of 100 mass ppb or less and a Cl content of 100 mass ppb or less to the organic solvent solution. Including the step of adjusting the concentration of the quaternary ammonium hydroxide in the organic solvent solution.
The composition comprises the quaternary ammonium hydroxide and the first organic solvent.
The water content in the composition is 1.0% by mass or less based on the total amount of the composition.
The contents of Na, Mg, Al, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, and Zn in the composition are 100 mass ppb or less based on the total amount of the composition.
A method for producing a treatment liquid composition for semiconductor production, wherein the content of Cl in the composition is 100 mass ppb or less based on the total amount of the composition.

[7] 前記工程(iii)において、前記有機溶媒溶液中の前記水酸化第4級アンモニウムの含有量が、溶液全量基準で5.0質量%以上に調整される、[6]に記載の半導体製造用処理液組成物の製造方法。 [7] The semiconductor according to [6], wherein in the step (iii), the content of the quaternary ammonium hydroxide in the organic solvent solution is adjusted to 5.0% by mass or more based on the total amount of the solution. A method for producing a treatment liquid composition for production.

[8] 前記工程(iii)において、前記有機溶媒溶液中の前記水酸化第4級アンモニウムの含有量が、溶液全量基準で2.38〜25.0質量%に調整される、[6]に記載の半導体製造用処理液組成物の製造方法。 [8] In the step (iii), the content of the quaternary ammonium hydroxide in the organic solvent solution is adjusted to 2.38 to 25.0% by mass based on the total amount of the solution, according to [6]. The method for producing a treatment liquid composition for semiconductor production according to the above method.

本発明の第1の態様に係る水酸化第4級アンモニウムの有機溶媒溶液の製造方法によれば、半導体製造プロセス用途に有用な水準の高い純度を有する、水酸化第4級アンモニウムの有機溶媒溶液を製造することができる。 According to the method for producing an organic solvent solution of quaternary ammonium hydroxide according to the first aspect of the present invention, an organic solvent solution of quaternary ammonium hydroxide having a high level of purity useful for semiconductor production process applications. Can be manufactured.

本発明の第2の態様に係る半導体製造用処理液組成物の製造方法によれば、半導体製造プロセス用途に有用な水準の高い純度を有する、水酸化第4級アンモニウム有機溶媒溶液系の半導体製造用処理液組成物を製造することができる。 According to the method for producing a treatment liquid composition for semiconductor production according to the second aspect of the present invention, semiconductor production of a quaternary ammonium hydroxide organic solvent solution system having a high level of purity useful for semiconductor production process applications. A treatment liquid composition for use can be produced.

一の実施形態に係る薄膜蒸留装置10Aを模式的に説明する図である。It is a figure which schematically explains the thin film distillation apparatus 10A which concerns on one Embodiment. 装置10Aにおける蒸発容器37の詳細を模式的に説明する断面図である。FIG. 5 is a cross-sectional view schematically illustrating the details of the evaporation vessel 37 in the apparatus 10A. 他の実施形態に係る薄膜蒸留装置10Bを模式的に説明する図である。It is a figure which schematically explains the thin film distillation apparatus 10B which concerns on another embodiment. 他の実施形態に係る薄膜蒸留装置10Cを模式的に説明する図である。It is a figure which schematically explains the thin film distillation apparatus 10C which concerns on other embodiment.

本発明の上記した作用および利得は、以下に説明する発明を実施するための形態から明らかにされる。以下、図面を参照しつつ、本発明の実施の形態について説明する。ただし、本発明はこれらの形態に限定されるものではない。なお、図面は必ずしも正確な寸法を反映したものではない。また図では、一部の符号およびハッチングを省略することがある。本明細書においては特に断らない限り、数値A及びBについて「A〜B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。また「又は」及び「若しくは」の語は、特に断りのない限り論理和を意味するものとする。また要素E及びEについて「E及び/又はE」という表記は「E若しくはE、又はそれらの組み合わせ」を意味するものとし、要素E、…、E(Nは3以上の整数)について「E、…、EN−1、及び/又はE」という表記は「E、…、EN−1、若しくはE、又はそれらの組み合わせ」を意味するものとする。 The above-mentioned actions and gains of the present invention will be clarified from the embodiments for carrying out the invention described below. Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to these forms. The drawings do not necessarily reflect the exact dimensions. Further, in the figure, some symbols and hatching may be omitted. Unless otherwise specified in the present specification, the notation "A to B" for the numerical values A and B shall mean "A or more and B or less". When a unit is attached only to the numerical value B in such a notation, the unit shall be applied to the numerical value A as well. The terms "or" and "or" shall mean OR unless otherwise specified. The notation for elements E 1 and E 2 as "E 1 and / or E 2" is intended to mean "E 1 or E 2, or combinations thereof", elements E 1, ..., E N (N is 3 for more integer) "E 1, ..., E N-1, and / or E N" notation is a means "E 1, ..., E N-1, or E N or combinations thereof," To do.

<1.水酸化第4級アンモニウムの有機溶媒溶液の製造方法>
本発明の第1の態様に係る水酸化第4級アンモニウムの有機溶媒溶液の製造方法(以下において「溶液製造方法」ということがある。)は、(a)原料混合液を、流下膜式の薄膜蒸留装置を用いて薄膜蒸留する工程(以下において「工程(a)ということがある。)を含む。
<1. Method for Producing Quaternary Ammonium Hydroxide Organic Solvent Solution>
The method for producing an organic solvent solution of quaternary ammonium hydroxide according to the first aspect of the present invention (hereinafter, may be referred to as "solution production method") is a method of (a) a flow-down film type mixed solution of raw materials. It includes a step of thin film distillation using a thin film distillation apparatus (hereinafter, may be referred to as “step (a))).

(1.1 原料混合液)
原料混合液は、水酸化第4級アンモニウム(以下において「QAH」ということがある。)、水、及び、該水酸化第4級アンモニウムを溶解する第1の有機溶媒を含む。第1の有機溶媒は、ヒドロキシ基を複数個有する水溶性有機溶媒(以下において「水溶性有機溶媒」ということがある。)である。
(1.1 Raw material mixture)
The raw material mixture contains quaternary ammonium hydroxide (hereinafter sometimes referred to as "QAH"), water, and a first organic solvent that dissolves the quaternary ammonium hydroxide. The first organic solvent is a water-soluble organic solvent having a plurality of hydroxy groups (hereinafter, may be referred to as "water-soluble organic solvent").

(1.1.1 水酸化第4級アンモニウム)
水酸化第4級アンモニウムは、窒素原子に4つの有機基が結合したアンモニウムカチオンと、水酸化物イオン(アニオン)とから構成されるイオン性化合物である。原料混合液は水酸化第4級アンモニウムを1種のみ含んでいてもよく、2種以上の水酸化第4級アンモニウムを含んでいてもよい。水酸化第4級アンモニウムの例としては、下記一般式(1)で表される化合物を挙げることができる。
(1.1.1 Quaternary Ammonium Hydroxide)
Quaternary ammonium hydroxide is an ionic compound composed of an ammonium cation in which four organic groups are bonded to a nitrogen atom and a hydroxide ion (anion). The raw material mixture may contain only one type of quaternary ammonium hydroxide, or may contain two or more types of quaternary ammonium hydroxide. As an example of the quaternary ammonium hydroxide, a compound represented by the following general formula (1) can be mentioned.

一般式(1)において、R〜Rはそれぞれ独立に、ヒドロキシ基を有していてもよい炭化水素基であり、好ましくはヒドロキシ基を有していてもよいアルキル基である。レジスト及び変性レジストの除去性能及びエッチング性能等の観点からは、R〜Rは特に好ましくはヒドロキシ基を有していてもよい炭素数1〜4のアルキル基である。R〜Rの具体例としては、メチル基、エチル基、プロピル基、ブチル基、2−ヒドロキシエチル基等を挙げることができる。 In the general formula (1), R 1 to R 4 are each independently a hydrocarbon group which may have a hydroxy group, and preferably an alkyl group which may have a hydroxy group. From the viewpoint of the removing performance and etching performance of the resist and the modified resist, R 1 to R 4 are particularly preferably alkyl groups having 1 to 4 carbon atoms which may have a hydroxy group. Specific examples of R 1 to R 4 include a methyl group, an ethyl group, a propyl group, a butyl group, a 2-hydroxyethyl group and the like.

一般式(1)において、R〜Rは同一であってもよく、相互に異なっていてもよい。一の実施形態において、R〜Rは同一の基、好ましくは炭素数1〜4のアルキル基であり得る。他の実施形態において、R〜Rが同一の基(第1の基)であり、RがR〜Rと異なる基(第2の基)であり得る。一の実施形態において、第1の基および第2の基はそれぞれ独立に炭素数1〜4のアルキル基であり得る。他の実施形態において、第1の基は炭素数1〜4のアルキル基であり、第2の基は炭素数1〜4のヒドロキシアルキル基であり得る。 In the general formula (1), R 1 to R 4 may be the same or different from each other. In one embodiment, R 1 to R 4 can be the same group, preferably an alkyl group having 1 to 4 carbon atoms. In other embodiments, R 1 to R 3 may be the same group (first group) and R 4 may be a different group (second group) from R 1 to R 3 . In one embodiment, the first group and the second group can each independently be an alkyl group having 1 to 4 carbon atoms. In other embodiments, the first group may be an alkyl group having 1 to 4 carbon atoms and the second group may be a hydroxyalkyl group having 1 to 4 carbon atoms.

水酸化第4級アンモニウムの具体例としては、水酸化テトラメチルアンモニウム(TMAH)、水酸化テトラエチルアンモニウム(TEAH)、水酸化テトラプロピルアンモニウム(TPAH)、水酸化テトラブチルアンモニウム(TBAH)、トリメチル−2−ヒドロキシエチルアンモニウムハイドロオキサイド(別名:水酸化コリン)等を挙げることができる。 Specific examples of the quaternary ammonium hydroxide are tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), tetrapropylammonium hydroxide (TPAH), tetrabutylammonium hydroxide (TBAH), and trimethyl-2. -Hydroxyethylammonium hydroxide (also known as choline hydroxide) and the like can be mentioned.

これらの中でもTMAHは、レジスト及び変性レジストの除去性能、エッチング性能等が特に優れ、安価で用途が広いため、特に好ましい。またTMAHのメチル基の一部または全部をエチル基、プロピル基、ブチル基等の他の基に置換した化合物、即ち上記TEAH、TPAH、TBAH、水酸化コリン等は、レジスト及び変性レジストの除去性能、エッチング性能等はTMAHには劣るものの、毒物ではないこと、及び、用いられるレジスト材料との相性の観点から、半導体素子の製造現場で好まれる場合もある。 Among these, TMAH is particularly preferable because it has particularly excellent resist and modified resist removal performance, etching performance, etc., is inexpensive, and has a wide range of uses. In addition, compounds in which part or all of the methyl group of TMAH is replaced with other groups such as ethyl group, propyl group and butyl group, that is, TEAH, TPAH, TBAH, choline hydroxide and the like, have the ability to remove resists and modified resists. Although the etching performance is inferior to that of TMAH, it may be preferred at the manufacturing site of semiconductor elements from the viewpoint of not being a toxic substance and compatibility with the resist material used.

(1.1.2 第1の有機溶媒)
第1の有機溶媒は、ヒドロキシ基を複数個有する水溶性有機溶媒である。原料混合液において、第1の有機溶媒としては、1種の溶媒を単独で用いてもよく、2種以上の溶媒を組み合わせて用いてもよい。
(1.1.2 First organic solvent)
The first organic solvent is a water-soluble organic solvent having a plurality of hydroxy groups. In the raw material mixed solution, as the first organic solvent, one kind of solvent may be used alone, or two or more kinds of solvents may be used in combination.

ヒドロキシ基を2つ以上有する水溶性有機溶媒は水よりも高沸点であるため、組成物から水を留去することにより組成物中の水分量を低減することが可能である。圧力0.1MPaにおける第1の有機溶媒の沸点は好ましくは150〜300℃、より好ましくは150〜200℃である。第1の有機溶媒の沸点が150℃以上であることにより、水分を留去する際に第1の有機溶媒が留出しにくいため、組成物中の水分量を低減することが容易になる。また沸点が上記上限値以下である第1の有機溶媒は、粘度がそれほど高くないため、水分を留去する際の効率を高めることが可能である。 Since a water-soluble organic solvent having two or more hydroxy groups has a higher boiling point than water, it is possible to reduce the amount of water in the composition by distilling water from the composition. The boiling point of the first organic solvent at a pressure of 0.1 MPa is preferably 150 to 300 ° C, more preferably 150 to 200 ° C. When the boiling point of the first organic solvent is 150 ° C. or higher, it is difficult for the first organic solvent to be distilled off when the water is distilled off, so that it becomes easy to reduce the amount of water in the composition. Further, since the first organic solvent having a boiling point of not more than the above upper limit has a viscosity not so high, it is possible to improve the efficiency when distilling off water.

第1の有機溶媒としては、炭素原子、水素原子、及び酸素原子からなる沸点150〜300℃の2価又は3価アルコール、より好ましくは2価又は3価の脂肪族アルコールから選ばれる1種以上のアルコールを好ましく用いることができる。第1の有機溶媒の融点は好ましくは25℃以下、より好ましくは20℃以下である。 As the first organic solvent, one or more selected from a dihydric or trihydric alcohol having a boiling point of 150 to 300 ° C. consisting of a carbon atom, a hydrogen atom and an oxygen atom, and more preferably a divalent or trivalent aliphatic alcohol. Alcohol can be preferably used. The melting point of the first organic solvent is preferably 25 ° C. or lower, more preferably 20 ° C. or lower.

好ましい第1の有機溶媒の具体例としては、エチレングリコール(沸点197℃)、プロピレングリコール(沸点188℃)、ジエチレングリコール(沸点244℃)、ジプロピレングリコール(沸点232℃)、トリプロピレングリコール(沸点267℃)、ヘキシレングリコール(2−メチル−2,4−ペンタンジオール)(沸点198℃)等の2価アルコール;及び、グリセリン(沸点290℃)等の3価アルコール;並びにそれらの組み合わせを挙げることができる。 Specific examples of the preferred first organic solvent include ethylene glycol (boiling point 197 ° C.), propylene glycol (boiling point 188 ° C.), diethylene glycol (boiling point 244 ° C.), dipropylene glycol (boiling point 232 ° C.), and tripropylene glycol (boiling point 267 ° C.). ° C.), dihydric alcohols such as hexylene glycol (2-methyl-2,4-pentanediol) (boiling point 198 ° C.); and trihydric alcohols such as glycerin (boiling point 290 ° C.); and combinations thereof. Can be done.

これらの中でも、組成物の保存安定性の観点から、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ヘキシレングリコール等の、第2級又は第3級炭素原子に結合したヒドロキシ基を有するアルコールを第1の有機溶媒として好ましく用いることができる。なかでもプロピレングリコール及びヘキシレングリコールは、上記説明した沸点及び組成物の保存安定性の観点から特に好ましく、さらには入手可能性及びコストの観点からも好ましい。 Among these, alcohols having a hydroxy group bonded to a secondary or tertiary carbon atom such as propylene glycol, dipropylene glycol, tripropylene glycol, and hexylene glycol are used from the viewpoint of storage stability of the composition. It can be preferably used as the organic solvent of 1. Among them, propylene glycol and hexylene glycol are particularly preferable from the viewpoint of the boiling point and storage stability of the composition described above, and further preferable from the viewpoint of availability and cost.

(1.1.3 原料混合液の組成)
原料混合液における上記3成分の割合は特に限定されるものではないが、水は可能な範囲で少ないことが望ましい。現在工業的な規模で商業的に入手可能な水酸化第4級アンモニウムは、通常、電解法によって製造されており、しばしば水溶液の形態で流通している。例えば現在商業的に入手可能なTMAHの濃厚水溶液のTMAH濃度は、典型的には20〜25質量%程度である。また例えば、現在商業的に入手可能なTEAH、TPAH、TBAH、及び水酸化コリンの濃厚水溶液の濃度は、典型的には10〜55質量%程度である。原料混合液は例えば、水酸化第4級アンモニウム水溶液と、上記水溶性有機溶媒とを混合することにより調製することができる。そのように調製された原料混合液中の水酸化第4級アンモニウムと水との混合比は、用いた水酸化第4級アンモニウム水溶液の濃度を反映する。薄膜蒸留において留去すべき水の量を低減する観点からは、原料混合液の調製に用いる水酸化第4級アンモニウム水溶液の濃度は高いことが望ましい。例えばTMAH・5水和物等の結晶性固体を水溶性有機溶媒に溶解して用いることもできるが、高濃度の水酸化第4級アンモニウム水溶液や結晶性固体はしばしば高価である。原料混合液中の水分量は、水酸化第4級アンモニウム水溶液や結晶性固体の入手コスト、不純物含有量等を考慮して決めることができる。
(1.1.3 Composition of raw material mixture)
The ratio of the above three components in the raw material mixture is not particularly limited, but it is desirable that the amount of water is as small as possible. Quaternary ammonium hydroxides, which are currently commercially available on an industrial scale, are usually produced by electrolysis and are often distributed in the form of aqueous solutions. For example, the TMAH concentration of a concentrated aqueous solution of TMAH currently commercially available is typically about 20 to 25% by mass. Further, for example, the concentration of a concentrated aqueous solution of TEAH, TPAH, TBAH, and choline hydroxide currently commercially available is typically about 10 to 55% by mass. The raw material mixture can be prepared, for example, by mixing a quaternary ammonium hydroxide aqueous solution and the above-mentioned water-soluble organic solvent. The mixing ratio of the quaternary ammonium hydroxide and water in the raw material mixture thus prepared reflects the concentration of the quaternary ammonium hydroxide aqueous solution used. From the viewpoint of reducing the amount of water to be distilled off in thin film distillation, it is desirable that the concentration of the quaternary ammonium hydroxide aqueous solution used for preparing the raw material mixture is high. For example, a crystalline solid such as TMAH / pentahydrate can be used by dissolving it in a water-soluble organic solvent, but a high-concentration quaternary ammonium hydroxide aqueous solution or a crystalline solid is often expensive. The amount of water in the raw material mixture can be determined in consideration of the acquisition cost of the quaternary ammonium hydroxide aqueous solution and the crystalline solid, the impurity content, and the like.

原料混合液中の第1の有機溶媒の含有量は、原料混合液全量基準で例えば好ましくは30〜85質量%、より好ましくは40〜85質量%、さらに好ましくは40〜80質量%、特に好ましくは60〜80質量%であり得る。 The content of the first organic solvent in the raw material mixture is, for example, preferably 30 to 85% by mass, more preferably 40 to 85% by mass, still more preferably 40 to 80% by mass, particularly preferably, based on the total amount of the raw material mixture. Can be 60-80% by weight.

原料混合液中の水酸化第4級アンモニウムの含有量は、原料混合液全量基準で例えば好ましくは2.0〜40質量%、より好ましくは2.0〜30質量%、さらに好ましくは2.0〜25%、特に好ましくは5.0〜10質量%であり得る。原料混合液中の水分量は、原料混合液全量基準で例えば好ましくは10〜30質量%、より好ましくは15〜30質量%であり得る。 The content of quaternary ammonium hydroxide in the raw material mixture is, for example, preferably 2.0 to 40% by mass, more preferably 2.0 to 30% by mass, still more preferably 2.0, based on the total amount of the raw material mixture. It can be ~ 25%, particularly preferably 5.0-10% by weight. The water content in the raw material mixed solution may be, for example, preferably 10 to 30% by mass, more preferably 15 to 30% by mass, based on the total amount of the raw material mixed solution.

原料混合液中の不純物量は少ないことが望ましい。特に金属不純物、及び塩化物イオンや炭酸イオン、硝酸イオン、硫酸イオン等の不揮発性の不純物は、薄膜蒸留によって取り除くことが難しいので、少ないことが望ましい。 It is desirable that the amount of impurities in the raw material mixture is small. In particular, metal impurities and non-volatile impurities such as chloride ion, carbonate ion, nitrate ion, and sulfate ion are difficult to remove by thin film distillation, so it is desirable that they are small.

金属不純物は、溶液中ではイオン又は微粒子として存在する。本明細書において金属不純物とは金属イオンおよび金属粒子の両方を包含する。上記説明した高純度の組成物を得る観点からは、原料混合液中の各金属不純物の含有量は、Na、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、及びZnのそれぞれについて、原料混合液全量基準で、例えば好ましくは50質量ppb以下、より好ましくは20質量ppb以下、更に好ましくは10質量ppb以下であり得る。 Metal impurities are present in solution as ions or fine particles. As used herein, metal impurities include both metal ions and metal particles. From the viewpoint of obtaining the high-purity composition described above, the content of each metal impurity in the raw material mixture is Na, Mg, Al, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, and For each of Zn, it may be, for example, preferably 50 mass ppb or less, more preferably 20 mass ppb or less, still more preferably 10 mass ppb or less, based on the total amount of the raw material mixture.

原料混合液中の塩素不純物の含有量は、原料混合液全量基準で、例えば好ましくは50質量ppb以下、より好ましくは30質量ppb以下、更に好ましくは20質量ppb以下であり得る。 The content of chlorine impurities in the raw material mixed solution may be, for example, preferably 50 mass ppb or less, more preferably 30 mass ppb or less, still more preferably 20 mass ppb or less, based on the total amount of the raw material mixed solution.

原料混合液の調製に用いる水酸化第4級アンモニウム水溶液中の各金属不純物の含有量は、該水溶液全量基準で好ましくは100質量ppb以下、より好ましくは1質量ppb以下である。また水酸化第4級アンモニウム源として水溶液ではなくTMAH・5水和物等の結晶性固体原料を用いる場合も、各金属不純物の含有量が当該結晶性固体原料全量基準で100質量ppb以下であることが好ましい。 The content of each metal impurity in the quaternary ammonium hydroxide aqueous solution used for preparing the raw material mixed solution is preferably 100 mass ppb or less, more preferably 1 mass ppb or less based on the total amount of the aqueous solution. Further, when a crystalline solid raw material such as TMAH / pentahydrate is used as the quaternary ammonium hydroxide source instead of an aqueous solution, the content of each metal impurity is 100 mass ppb or less based on the total amount of the crystalline solid raw material. Is preferable.

原料混合液の調製に用いる第1の有機溶媒中の各金属不純物の含有量は、第1の有機溶媒全量基準で好ましくは50質量ppb以下、より好ましくは10質量ppb以下である。商業的に入手可能な第1の有機溶媒中の不純物含有量が多い場合には、当該第1の有機溶媒を単独で蒸留することにより純度を高めることができる。 The content of each metal impurity in the first organic solvent used for preparing the raw material mixture is preferably 50% by mass or less, more preferably 10% by mass or less based on the total amount of the first organic solvent. When the content of impurities in the commercially available first organic solvent is high, the purity can be increased by distilling the first organic solvent alone.

原料混合液の調製に用いる第1の有機溶媒は無水溶媒でなくてもよいが、薄膜蒸留の効率を高める観点からは、原料混合液の調製に用いる第1の有機溶媒中の水分量は、第1の有機溶媒全量基準で好ましくは1質量%以下、より好ましくは0.5質量%以下である。 The first organic solvent used for preparing the raw material mixture does not have to be an anhydrous solvent, but from the viewpoint of increasing the efficiency of thin film distillation, the water content in the first organic solvent used for preparing the raw material mixture is determined. It is preferably 1% by mass or less, more preferably 0.5% by mass or less based on the total amount of the first organic solvent.

(1.2 工程(a):薄膜蒸留)
工程(a)においては、上記説明した原料混合液を、流下膜式の薄膜蒸留装置を用いて薄膜蒸留する。薄膜蒸留とは、減圧下で、原料液の薄膜を形成し、該薄膜を加熱し、原料液に含まれる成分の蒸気圧に応じてその一部を蒸発させるとともに蒸気を冷却して凝縮させ、留出液と残渣液(溶解物も含む)とに分離する方法である。上記説明した原料混合液を薄膜蒸留に供することにより、原料混合液から水を留去し、水酸化第4級アンモニウムの有機溶媒溶液を残渣液として回収することができる。水とともに有機溶媒の一部が留去されてもよい。原料混合液から留去された水(及び有機溶媒の一部)は留出液として回収される。薄膜蒸留によれば、水酸化第4級アンモニウムの熱分解を抑制しながら水を留去することが可能である。
(1.2 Step (a): Thin film distillation)
In the step (a), the raw material mixture described above is thin-film distilled using a flow-down film type thin-film distillation apparatus. In thin film distillation, a thin film of a raw material liquid is formed under reduced pressure, the thin film is heated, a part of the thin film is evaporated according to the vapor pressure of the components contained in the raw material liquid, and the vapor is cooled and condensed. This is a method of separating the distillate and the residue (including the solution). By subjecting the raw material mixed solution described above to thin film distillation, water can be distilled off from the raw material mixed solution, and an organic solvent solution of quaternary ammonium hydroxide can be recovered as a residual solution. A part of the organic solvent may be distilled off together with water. The water (and a part of the organic solvent) distilled off from the raw material mixture is recovered as a distillate. According to the thin film distillation, it is possible to distill off water while suppressing the thermal decomposition of the quaternary ammonium hydroxide.

(1.2.1 薄膜蒸留装置)
図1は、工程(a)において用いることが可能な、一の実施形態に係る流下膜式の薄膜蒸留装置10A(以下において「薄膜蒸留装置10A」又は単に「装置10A」ということがある。)を模式的に説明する図である。装置10Aは流下膜式の短行程式薄膜蒸留装置である。
(1.2.1 Thin film distillation equipment)
FIG. 1 shows a flow-down membrane type thin film distillation apparatus 10A according to an embodiment that can be used in the step (a) (hereinafter, may be referred to as “thin film distillation apparatus 10A” or simply “device 10A”). Is a figure schematically explaining. The device 10A is a flow-down film type short-stroke thin film distillation device.

薄膜蒸留装置10Aは、原料混合液を貯留する原料容器31と、実際に蒸留が行われる蒸発容器(蒸発缶)37と、原料容器31から蒸発容器37に原料混合液を移送する原料配管33とを備える。図1に示すように、原料配管33の途中には、ニードルバルブ32が設けられている。装置10Aはさらに、蒸発容器37に接続され蒸留残渣液を受け容れる残渣液回収容器12と、蒸発容器37に接続され留出液を受け容れる留出液回収容器13と、蒸発容器37から蒸留残渣を残渣液回収容器12に導く流路の途中に設けられた流量確認用ガラス配管8及び(残渣液側)ギアポンプ(送液ポンプ)10と、蒸発容器37から留出液を留出液回収容器13に導く流路の途中に設けられた流量確認用ガラス配管9及び(留出液側)ギアポンプ(送液ポンプ)11と、蒸発容器37の内部を減圧する真空ポンプ15と、蒸発容器37から真空ポンプ15に至る流路の途中に設けられたコールドトラップ14と、を備えている。 The thin film distillation apparatus 10A includes a raw material container 31 for storing the raw material mixture, an evaporation container (evaporation can) 37 for which distillation is actually performed, and a raw material pipe 33 for transferring the raw material mixture from the raw material container 31 to the evaporation container 37. To be equipped. As shown in FIG. 1, a needle valve 32 is provided in the middle of the raw material pipe 33. The apparatus 10A further includes a residue liquid recovery container 12 connected to the evaporation container 37 to receive the distillation residue liquid, a distillate recovery container 13 connected to the evaporation container 37 to receive the distillate, and a distillation residue from the evaporation container 37. The distillate is collected from the flow rate confirmation glass pipe 8 and the (residual liquid side) gear pump (liquid feeding pump) 10 provided in the middle of the flow path leading to the residual liquid recovery container 12, and the evaporation container 37. From the flow rate confirmation glass pipe 9 and (distillate side) gear pump (liquid feed pump) 11 provided in the middle of the flow path leading to 13, the vacuum pump 15 for depressurizing the inside of the evaporation container 37, and the evaporation container 37. It is provided with a cold trap 14 provided in the middle of the flow path leading to the vacuum pump 15.

原料混合液は、原料容器31を出て、ニードルバルブ32及び原料配管33を通り、蒸発容器(蒸発缶)37に流入する。真空ポンプ15、ニードルバルブ32、並びに(残渣液側および留出液側)ギアポンプ(送液ポンプ)10、11の作用により、蒸発容器37を含む系内が一定の真空度に保たれる。原料容器31内の原料混合液は、系内の真空度と大気圧との差圧によって、ニードルバルブ32を介して原料配管33内に自発的に流入する。 The raw material mixed liquid exits the raw material container 31, passes through the needle valve 32 and the raw material pipe 33, and flows into the evaporation container (evaporation can) 37. By the action of the vacuum pump 15, the needle valve 32, and the gear pumps (liquid feed pumps) 10 and 11 (residue liquid side and distillate liquid side), the inside of the system including the evaporation container 37 is maintained at a constant degree of vacuum. The raw material mixed liquid in the raw material container 31 spontaneously flows into the raw material pipe 33 via the needle valve 32 due to the difference pressure between the degree of vacuum in the system and the atmospheric pressure.

薄膜蒸留装置10Aにおいて、原料容器31から蒸発容器37に至るまでの原料混合液の流路における接液部、具体的には、原料容器31の内面の接液部、及び、(ニードルバルブ32の接液部を含む)原料配管33の接液部は、樹脂で構成されていることが好ましい。上記接液部が樹脂で構成されていることにより、該接液部からの金属材料の溶出を抑制することが可能になる。原料として入手可能な水酸化第4級アンモニウムは水を含まざるを得ない。そして一般に金属材料の溶出反応には水が関与する。原料容器31から蒸発容器37に至るまでの原料混合液の流路における接液部が樹脂で構成されていることにより、水酸化第4級アンモニウムと水が共存する原料混合液が金属材料と接触する時間を短縮できるので、当該接液部から金属材料が液中に溶出して液中の金属不純物となる反応を抑制することが可能になる。接液部からの金属材料の溶出をさらに抑制する観点からは、蒸発容器37から残渣液回収容器12に至るまでの流路における接液部も樹脂で構成されていることが好ましい。 In the thin film distillation apparatus 10A, the wetted portion in the flow path of the raw material mixed liquid from the raw material container 31 to the evaporating vessel 37, specifically, the wetted portion on the inner surface of the raw material container 31, and (the needle valve 32 The wetted portion of the raw material pipe 33 (including the wetted portion) is preferably made of resin. Since the wetted portion is made of resin, it is possible to suppress the elution of the metal material from the wetted portion. The quaternary ammonium hydroxide available as a raw material must contain water. In general, water is involved in the elution reaction of metal materials. Since the wetted portion in the flow path of the raw material mixture from the raw material container 31 to the evaporation container 37 is made of resin, the raw material mixture in which quaternary ammonium hydroxide and water coexist come into contact with the metal material. Since the time required for the process can be shortened, it is possible to suppress the reaction in which the metal material is eluted from the wetted portion into the liquid and becomes metal impurities in the liquid. From the viewpoint of further suppressing the elution of the metal material from the wetted portion, it is preferable that the wetted portion in the flow path from the evaporation container 37 to the residual liquid recovery container 12 is also made of resin.

上記接液部を構成する樹脂としては、アルカリ水溶液及び水溶性有機溶媒に対して耐久性を有する樹脂材料を好ましく用いることができる。そのような樹脂材料の例としては、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)、パーフルオロエチレンプロペンコポリマー(FEP)、エチレン−テトラフルオロエチレンコポリマー(ETFE)、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂;ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン樹脂;アクリロニトリル−ブタジエン−スチレン共重合合成樹脂(ABS樹脂)、ナイロン、アクリル樹脂、アセタール樹脂、硬質塩化ビニル等の熱可塑性樹脂;及び、メラミン樹脂、フラン樹脂、エポキシ樹脂等の熱硬化性樹脂、等を挙げることができる。中でも、ポリエチレン、ポリプロピレン、及びフッ素樹脂は、加工が容易であり、また金属不純物の溶出量が少ないため、特に好ましく用いることができる。 As the resin constituting the wetted portion, a resin material having durability against an alkaline aqueous solution and a water-soluble organic solvent can be preferably used. Examples of such resin materials are polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA), perfluoroethylene propene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), polyvinylidene fluoride (PVDF). ) And other fluororesins; polyethylene (PE), polypropylene (PP) and other polyolefin resins; acrylonitrile-butadiene-styrene copolymer synthetic resins (ABS resins), nylons, acrylic resins, acetal resins, hard vinyl chloride and other thermoplastic resins ; And heat-curable resins such as melamine resin, furan resin, and epoxy resin, and the like can be mentioned. Among them, polyethylene, polypropylene, and fluororesin can be particularly preferably used because they are easy to process and the amount of metal impurities eluted is small.

構造材としての強度をそれほど必要としない小口径の配管としては、樹脂のみからなる配管を用いてもよい。その一方で、強度を必要とする大口径の配管や原料容器31においては、構造部材を金属材料(例えばステンレス鋼等。)で構成し、接液部を上記樹脂材料で被覆することが好ましい。接液部の樹脂被覆は、剥がれない程度の厚さを有していればよく、好ましくは例えば0.5〜5mm程度の厚さとすることができる。 As a small-diameter pipe that does not require much strength as a structural material, a pipe made of only resin may be used. On the other hand, in a large-diameter pipe or a raw material container 31 that requires strength, it is preferable that the structural member is made of a metal material (for example, stainless steel or the like) and the wetted portion is covered with the above resin material. The resin coating of the wetted portion may have a thickness such that it does not peel off, and is preferably about 0.5 to 5 mm, for example.

なお、ガラスも化学薬品に侵されにくい材質として知られているが、水酸化第4級アンモニウムのような塩基性の高い物質と水とが共存する原料混合液は、ガラスであっても少しずつ浸食する可能性があるため、上記接液部を構成する材料としてはガラスよりも樹脂を用いることが好ましい。 Glass is also known as a material that is not easily attacked by chemicals, but even if it is glass, the raw material mixture in which a highly basic substance such as quaternary ammonium hydroxide and water coexist is gradually added. Since there is a possibility of erosion, it is preferable to use a resin rather than glass as the material constituting the wetted portion.

樹脂材料が多孔質構造を有する場合には樹脂の内部からも金属不純物が溶出する可能性があるため、上記樹脂材料としては多孔質でない樹脂材料が好ましい。接液部を構成する樹脂材料中の金属不純物の含有量は、Na、Ca、Al、Feのそれぞれについて、樹脂全量基準で好ましくは1質量ppm以下、より好ましくは0.1質量ppm以下である。そのような高純度の樹脂は商業的に入手可能である。 When the resin material has a porous structure, metal impurities may be eluted from the inside of the resin. Therefore, a non-porous resin material is preferable as the resin material. The content of metal impurities in the resin material constituting the wetted part is preferably 1 mass ppm or less, more preferably 0.1 mass ppm or less, based on the total amount of resin, for each of Na, Ca, Al, and Fe. .. Such high purity resins are commercially available.

ここで樹脂中の金属不純物としてNa、Ca、Al、及びFeを挙げた理由は、第1に、これら4種類の金属不純物が樹脂に混入する代表的な不純物であり、これら4種類の金属不純物のそれぞれについて樹脂中の含有量が0.1質量ppm以下であれば、一般には当該樹脂中の他の金属不純物の含有量も大抵の場合0.1質量ppm以下であること、及び、第2に、あらゆる種類の金属不純物についてその含有量を悉く把握することは容易でなく、商業的に入手可能な樹脂においては製造者から十分なデータが得られることが稀であることによる。厳密には、上記説明したNa、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、及びZnのそれぞれについて、樹脂中の含有量が1質量ppm以下であることが好ましく、0.1質量ppm以下であることがより好ましい。 The reason why Na, Ca, Al, and Fe are mentioned as the metal impurities in the resin is that, firstly, these four kinds of metal impurities are typical impurities mixed in the resin, and these four kinds of metal impurities are mixed. If the content of each of the above in the resin is 0.1% by mass or less, the content of other metal impurities in the resin is generally 0.1% by mass or less, and the second In addition, it is not easy to grasp the content of all kinds of metal impurities, and it is rare that sufficient data can be obtained from the manufacturer of commercially available resins. Strictly speaking, the content of each of Na, Mg, Al, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, and Zn described above in the resin is preferably 1 mass ppm or less. , 0.1 mass ppm or less is more preferable.

図2は、装置10Aにおける蒸発容器37の詳細を模式的に説明する断面図である。図2において、図1に既に表れた要素には図1における符号と同一の符号を付し、説明を省略する。装置10Aは、蒸発容器37と、蒸発容器37の上部から蒸発容器37内部に原料混合液を導入する第1の流路(原料配管33)とを備える。第1の流路(原料配管33)から蒸発容器37内部に導入された原料混合液は、液膜となって蒸発容器37の内壁面に沿って流下する。装置10Aはさらに、内壁面に沿って流下する液膜を加熱する、内壁面に配置された加熱面24と、蒸発容器37の内部に配置され、液膜から発生した蒸気を冷却して液化させる凝縮器(内部コンデンサー)22と、凝縮器22によって液化された留出液を蒸発容器37から留出液回収容器13に回収する第2の流路と、加熱面24で蒸発せずに加熱面24から流下した残渣液を蒸発容器37から残渣液回収容器12に回収する第3の流路と、を備えている。装置10Aはまた、蒸発容器37内部に配置され、蒸発容器37の内壁面に沿って回転するワイパー(ローラーワイパー)21を備えている。第1の流路(配管33)から蒸発容器37内部に導入された原料混合液は、回転するワイパー21によって内壁面に塗布されて液膜を形成する。 FIG. 2 is a cross-sectional view schematically illustrating the details of the evaporation vessel 37 in the apparatus 10A. In FIG. 2, the elements already shown in FIG. 1 are designated by the same reference numerals as those in FIG. 1, and the description thereof will be omitted. The device 10A includes an evaporation container 37 and a first flow path (raw material pipe 33) for introducing the raw material mixed solution into the evaporation container 37 from the upper part of the evaporation container 37. The raw material mixed liquid introduced into the evaporation container 37 from the first flow path (raw material pipe 33) becomes a liquid film and flows down along the inner wall surface of the evaporation container 37. The apparatus 10A further heats the liquid film flowing down along the inner wall surface, and is arranged inside the heating surface 24 arranged on the inner wall surface and the evaporation container 37 to cool and liquefy the steam generated from the liquid film. The condenser (internal condenser) 22, the second flow path for collecting the distillate liquefied by the condenser 22 from the evaporation container 37 to the distillate recovery container 13, and the heating surface 24 without evaporating. It is provided with a third flow path for collecting the residual liquid flowing down from 24 from the evaporation container 37 to the residual liquid recovery container 12. The device 10A also includes a wiper (roller wiper) 21 that is arranged inside the evaporation vessel 37 and rotates along the inner wall surface of the evaporation vessel 37. The raw material mixture introduced into the evaporation container 37 from the first flow path (pipe 33) is applied to the inner wall surface by the rotating wiper 21 to form a liquid film.

加熱面24は、循環する熱媒25によって加熱されている。原料混合液23を蒸発容器37に導入する際の流量は、ニードルバルブ32又は流量調節器(不図示)によって調整することができる。ローラーワイパー21により蒸発容器37の内壁に液膜が形成され、蒸発容器37の内壁面に配置された加熱面24において熱交換が行われ、水が蒸発する。通常、これと同時に、有機溶媒の一部も該有機溶媒の蒸気圧に応じて蒸発する。蒸発した水及び有機溶媒は、蒸発容器37の中心部付近に上記液膜から離隔して配置された凝縮器(内部コンデンサー)22で凝縮され、留出液となる。凝縮器22は、循環する冷媒26によって冷却されている。 The heating surface 24 is heated by the circulating heat medium 25. The flow rate when the raw material mixture 23 is introduced into the evaporation container 37 can be adjusted by a needle valve 32 or a flow rate controller (not shown). A liquid film is formed on the inner wall of the evaporation container 37 by the roller wiper 21, heat exchange is performed on the heating surface 24 arranged on the inner wall surface of the evaporation container 37, and water evaporates. Usually, at the same time, a part of the organic solvent also evaporates according to the vapor pressure of the organic solvent. The evaporated water and the organic solvent are condensed by a condenser (internal condenser) 22 arranged apart from the liquid film near the center of the evaporation container 37 to become a distillate. The condenser 22 is cooled by the circulating refrigerant 26.

蒸発容器37の内壁は、耐熱性、耐摩耗性、耐食性、熱伝導性、及び強度等の材料特性の総合的な観点から、一般的にはステンレス鋼等の耐食性の高い金属材料で構成することが好ましい。金属不純物の溶出をさらに抑制する観点からは、蒸発容器37の内壁を樹脂製部材または樹脂被覆された金属製部材で構成することも考えられるが、蒸発容器37の内壁も樹脂製部材または樹脂被覆された部材とした場合には、加熱面24における液膜と熱媒25との熱交換の効率が低下するため、加熱面24の温度をより高温に制御することが必要になり、結果として薄膜蒸留中に水酸化第4級アンモニウムの熱分解が進行するおそれがある。また蒸発容器37内部ではローラーワイパー21が回転するため、蒸発容器37の内壁も樹脂製部材または樹脂被覆された部材の場合には、ローラーワイパー21が蒸発容器37の内壁と接触した際に蒸発容器37の内壁から樹脂が剥落し、回収される残渣液に樹脂片が混入するおそれがある。 The inner wall of the evaporation vessel 37 is generally made of a metal material having high corrosion resistance such as stainless steel from the comprehensive viewpoint of material properties such as heat resistance, abrasion resistance, corrosion resistance, thermal conductivity, and strength. Is preferable. From the viewpoint of further suppressing the elution of metal impurities, it is conceivable that the inner wall of the evaporation container 37 is made of a resin member or a resin-coated metal member, but the inner wall of the evaporation container 37 is also made of a resin member or resin-coated. In the case of the member, the efficiency of heat exchange between the liquid film and the heat medium 25 on the heating surface 24 is lowered, so that it is necessary to control the temperature of the heating surface 24 to a higher temperature, and as a result, the thin film is formed. Thermal decomposition of quaternary ammonium hydroxide may proceed during distillation. Further, since the roller wiper 21 rotates inside the evaporation container 37, if the inner wall of the evaporation container 37 is also a resin member or a resin-coated member, the evaporation container is formed when the roller wiper 21 comes into contact with the inner wall of the evaporation container 37. The resin may peel off from the inner wall of 37, and the resin pieces may be mixed in the recovered residual liquid.

蒸発容器37の内壁を金属材料で構成しても、得られる組成物(残渣液)中の金属不純物の含有量はさほど悪化しない。その理由は完全には理解されていないが、以下の三つが考えられる:(1)蒸発容器の内壁面における液膜の滞在時間が数秒〜数分であり、金属不純物が溶出するには短い時間である;(2)アルカリ液中に金属材料が溶出する反応には水が必要であるが、薄膜蒸留においては短時間で液膜から水がほとんど取り除かれるため、金属不純物が溶出する条件が満たされる時間が非常に短い;(3)本発明の製造方法により得られる組成物は通常、該組成物中の水溶性有機溶媒より高い粘度を有する。また原料混合液は水溶性有機溶媒の粘度および水酸化第4級アンモニウムの濃度に応じて比較的高い粘度を有するが、水が留去されることにより粘度がさらに増大する。すなわち、原料混合液が蒸発容器37の加熱面24を通過する際、加熱面24と液膜との界面では短時間で水のほとんどが失われるとともに液の粘度が増大することによって、液膜内部で液を撹拌する流れが生じにくくなるため、加熱面24に水が接触し難くなり、結果として金属不純物の溶出が抑制されると考えられる。 Even if the inner wall of the evaporation vessel 37 is made of a metal material, the content of metal impurities in the obtained composition (residual liquid) does not deteriorate so much. The reason is not completely understood, but there are three possible reasons: (1) The residence time of the liquid film on the inner wall surface of the evaporation container is several seconds to several minutes, and it takes a short time for metal impurities to elute. (2) Water is required for the reaction in which the metal material evaporates into the alkaline solution, but in thin film distillation, most of the water is removed from the liquid film in a short time, so that the condition for evaporating metal impurities is satisfied. The time required is very short; (3) The composition obtained by the production method of the present invention usually has a higher viscosity than the water-soluble organic solvent in the composition. The raw material mixture has a relatively high viscosity depending on the viscosity of the water-soluble organic solvent and the concentration of the quaternary ammonium hydroxide, but the viscosity is further increased by distilling off water. That is, when the raw material mixture passes through the heating surface 24 of the evaporation container 37, most of the water is lost at the interface between the heating surface 24 and the liquid film in a short time and the viscosity of the liquid increases, so that the inside of the liquid film is increased. It is considered that water is less likely to come into contact with the heating surface 24 because the flow of stirring the liquid is less likely to occur, and as a result, evaporation of metal impurities is suppressed.

ローラーワイパー21としては、樹脂製のものを用いることができるが、ローラーワイパー21を構成する樹脂材料中にはガラス繊維などの強化部材が配合されていないことが好ましい。ローラーワイパー21は薄膜蒸留中に原料混合液および液膜と接触し続けるため、ローラーワイパー21を構成する樹脂中にガラス繊維が含まれていると、ガラス繊維中のAlやCaなどの金属不純物が液中に溶出する可能性がある。また、ローラーワイパー21を構成する樹脂中にガラス繊維が含まれていると、ローラーワイパー21が蒸発容器37内壁面に接触した際に、ガラス繊維の破片や内壁面から発生する微細な粒子が残渣液に混入するおそれがある。 As the roller wiper 21, a resin one can be used, but it is preferable that the resin material constituting the roller wiper 21 does not contain a reinforcing member such as glass fiber. Since the roller wiper 21 keeps in contact with the raw material mixture and the liquid film during thin film distillation, if glass fibers are contained in the resin constituting the roller wiper 21, metal impurities such as Al and Ca in the glass fibers will be present. It may elute in the liquid. Further, when the glass fiber is contained in the resin constituting the roller wiper 21, when the roller wiper 21 comes into contact with the inner wall surface of the evaporation container 37, fragments of the glass fiber and fine particles generated from the inner wall surface remain. May be mixed in the liquid.

ローラーワイパー21を構成する樹脂材料の好ましい例としては、ポリアセタール(POM)、ポリアミド(PA)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m−PPE)、ポリブチレンテレフタレート(PBT)、超高分子量ポリエチレン(UHPE)、シンジオタクチックポリスチレン(SPS)等の汎用エンジニアリングプラスチック;並びに、ポリエーテルエーテルケトン(PEEK)、ポリイミド(PI)、ポリエーテルイミド(PEI)、フッ素樹脂等のスーパーエンジニアリングプラスチック等の、耐熱性を有し比較的高強度の樹脂を挙げることができる。中でもPEEK、PI、フッ素樹脂等は耐熱性、強度、純度等の観点から好ましく用いることができる。 Preferred examples of the resin material constituting the roller wiper 21 include polyacetal (POM), polyamide (PA), polycarbonate (PC), modified polyphenylene ether (m-PPE), polybutylene terephthalate (PBT), and ultrahigh molecular weight polyethylene (PBT). Heat resistance of general-purpose engineering plastics such as UHPE) and syndiotactic polystyrene (SPS); and super engineering plastics such as polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), and fluororesin. A resin having a relatively high strength can be mentioned. Among them, PEEK, PI, fluororesin and the like can be preferably used from the viewpoint of heat resistance, strength, purity and the like.

凝縮器22によって凝縮された留出液は、(留出液側)ギアポンプ(送液ポンプ)11を備える第2の流路を通じて留出液回収容器13へ導かれ回収される。また凝縮されなかった蒸気は、コールドトラップ14で捕捉され、回収される。水が留去されて加熱面24から流下した残渣液は、(残渣液側)ギアポンプ(送液ポンプ)10を備える第3の流路を通じて残渣液回収容器12に導かれ回収される。 The distillate condensed by the condenser 22 is guided to the distillate recovery container 13 through a second flow path provided with the gear pump (liquid feeding pump) 11 (on the distillate side) and collected. The uncondensed steam is captured and recovered by the cold trap 14. The residual liquid from which water is distilled off and flows down from the heating surface 24 is guided to the residual liquid recovery container 12 through a third flow path provided with the gear pump (liquid feeding pump) 10 (on the residual liquid side) and collected.

薄膜蒸留装置10A(図1)においては、蒸留後の液の流れを確認する等の目的で、残渣液を回収する第3の流路に残渣液側流量確認用ガラス配管8(以下において「ガラス配管8」ということがある。)が、及び、留出液を回収する第2の流路に留出液側流量確認用ガラス配管9(以下において「ガラス配管9」ということがある。)が、それぞれ設けられている。しかしながら、ガラス配管8及び9は必ずしも必要ではない。むしろガラス配管8及び9はガラス製であることから汚染源(金属不純物の溶出源)となる可能性がある。製造される組成物(残渣液)中の金属不純物の含有量をさらに低減する観点からは、例えば、薄膜蒸留装置10A(図1)に代えて、薄膜蒸留装置10Aの第3の流路からガラス配管8を取り除いた薄膜蒸留装置10B(図3)を好ましく用いることができる。 In the thin film distillation apparatus 10A (FIG. 1), for the purpose of confirming the flow of the liquid after distillation, a glass pipe 8 for checking the flow rate on the residual liquid side is connected to the third flow path for collecting the residual liquid (hereinafter, “glass”). (Sometimes referred to as “pipe 8”), and a glass pipe 9 for checking the flow rate on the distillate side (hereinafter sometimes referred to as “glass pipe 9”) is provided in the second flow path for collecting the distillate. , Each is provided. However, the glass pipes 8 and 9 are not always necessary. Rather, since the glass pipes 8 and 9 are made of glass, they may become a pollution source (elution source of metal impurities). From the viewpoint of further reducing the content of metal impurities in the produced composition (residual liquid), for example, instead of the thin film distillation apparatus 10A (FIG. 1), glass is used from the third flow path of the thin film distillation apparatus 10A. A thin film distillation apparatus 10B (FIG. 3) from which the pipe 8 is removed can be preferably used.

薄膜蒸留装置10A(図1)は、蒸発容器37内部を含む系内の気密を保つための要素として、蒸発容器37から残渣液回収容器12に残渣液を導く第3の流路の途中に設けられた(残渣液側)ギアポンプ(送液ポンプ)10、及び、蒸発容器37から留出液回収容器13に留出液を導く第2の流路の途中に設けられた(留出液側)ギアポンプ(送液ポンプ)11を備えている。ギアポンプ(送液ポンプ)10及び11は、系内の気密を保ちつつ、残渣液側または留出液側の液を回収容器12又は13に向けて押し出す送液ポンプである。これらの気密を兼ねた送液ポンプの接液部に使用される各部品(ケーシング、歯車など)の材質は、十分な耐食性を有する金属材料(例えばステンレス鋼等。)であってもよい。その理由は、蒸発容器の内壁を樹脂で被覆しなくてよい理由と同様である。すなわち、残渣液側の送液ポンプ10の接液部が接触する残渣液の水含有量は十分低く、且つ残渣液が送液ポンプ10の接液部に接触する時間は十分短いため、送液ポンプ10の接液部が例えばステンレス鋼等の金属材料で構成されていても、送液ポンプ10の接液部から残渣液への金属不純物の溶出はほとんど生じないと考えられる。ただし、製造される組成物中の金属不純物の含有量をさらに低減する観点から、エンジニアリングプラスチック、スーパーエンジニアリングプラスチック等の樹脂製の接液部を有する送液ポンプを残渣液側の送液ポンプ10として用いることも可能である。 The thin film distillation apparatus 10A (FIG. 1) is provided in the middle of the third flow path for guiding the residual liquid from the evaporation container 37 to the residual liquid recovery container 12 as an element for maintaining the airtightness in the system including the inside of the evaporation container 37. (Residual liquid side) gear pump (liquid feed pump) 10 and provided in the middle of the second flow path for guiding the distillate from the evaporation container 37 to the distillate recovery container 13 (distillate side). A gear pump (liquid feeding pump) 11 is provided. The gear pumps (liquid feed pumps) 10 and 11 are liquid feed pumps that push out the liquid on the residual liquid side or the distillate side toward the recovery container 12 or 13 while maintaining the airtightness in the system. The material of each component (casing, gear, etc.) used for the wetted portion of the liquid feed pump having both airtightness may be a metal material having sufficient corrosion resistance (for example, stainless steel, etc.). The reason is the same as the reason why the inner wall of the evaporation container does not have to be coated with resin. That is, the water content of the residual liquid in contact with the wetted portion of the liquid feed pump 10 on the residual liquid side is sufficiently low, and the time for the residual liquid to come into contact with the wetted portion of the liquid feed pump 10 is sufficiently short. Even if the wetted portion of the pump 10 is made of a metal material such as stainless steel, it is considered that the elution of metal impurities from the wetted portion of the liquid feed pump 10 to the residual liquid hardly occurs. However, from the viewpoint of further reducing the content of metal impurities in the produced composition, a liquid feed pump having a resin wetted portion such as engineering plastic or super engineering plastic is used as the liquid feed pump 10 on the residual liquid side. It can also be used.

真空ポンプ15の例としては、油回転式ポンプ(ロータリーポンプ)、油拡散式ポンプ、クライオポンプ、揺動ピストン型真空ポンプ、メカニカルブースターポンプ、ダイアフラムポンプ、ルーツ型ドライポンプ、スクリュー型ドライポンプ、スクロール型ドライポンプ、ベーン型ドライポンプなどの公知の真空ポンプを挙げることができる。真空ポンプ15としては1つの真空ポンプを単独で用いてもよく、複数の真空ポンプを組み合わせて用いてもよい。 Examples of the vacuum pump 15 include an oil rotary pump (rotary pump), an oil diffusion pump, a cryo pump, a swing piston type vacuum pump, a mechanical booster pump, a diaphragm pump, a roots type dry pump, a screw type dry pump, and a scroll. Known vacuum pumps such as a type dry pump and a vane type dry pump can be mentioned. As the vacuum pump 15, one vacuum pump may be used alone, or a plurality of vacuum pumps may be used in combination.

コールドトラップ14は、凝縮器22で凝縮されなかった蒸気を液体または固体に凝縮ないし固化させ、蒸発した水や有機溶媒が真空ポンプ15に達することを防ぐとともに、油回転式ポンプなどの真空ポンプ15から気化したオイル又はオイルミストが蒸発容器37側に流入して系内を汚染することを防ぐ役割を果たす。コールドトラップ14としては、公知のコールドトラップ装置を用いることができる。コールドトラップ14の冷却は例えば、ドライアイス、ドライアイスと有機溶媒(アルコール、アセトン、ヘキサン等)とを混合した冷却剤、液体窒素、循環式の冷媒等を用いて行うことができる。 The cold trap 14 condenses or solidifies the vapor that has not been condensed by the condenser 22 into a liquid or solid to prevent the evaporated water or organic solvent from reaching the vacuum pump 15, and the vacuum pump 15 such as an oil rotary pump. It plays a role of preventing the oil or oil mist vaporized from the vaporized water from flowing into the evaporation container 37 side and contaminating the inside of the system. As the cold trap 14, a known cold trap device can be used. The cold trap 14 can be cooled by using, for example, dry ice, a coolant obtained by mixing dry ice with an organic solvent (alcohol, acetone, hexane, etc.), liquid nitrogen, a circulating refrigerant, or the like.

上記説明では、蒸発容器37の下流側にのみ送液ポンプ10、11を備える形態の薄膜蒸留装置10A(図1)及び10B(図3)を例に挙げたが、薄膜蒸留装置は蒸発容器37の上流側にも送液ポンプを備えていてもよい。図4は、そのような他の実施形態に係る薄膜蒸留装置10C(以下において単に「装置10C」ということがある。)を模式的に説明する図である。図4において、図1〜3に既に表れた要素には図1〜3における符号と同一の符号を付し、説明を省略する。薄膜蒸留装置10Cは、原料容器31から蒸発容器37に原料混合液を導く原料配管33に代えて原料配管3を有し、原料配管3の途中であってニードルバルブ32下流側に、原料ギアポンプ4、プレヒーター(予備加熱器)5、及びデガッサー(脱ガス装置)6を上流側からこの順にさらに有する点において、薄膜蒸留装置10A(図1)と異なっている。装置10Cにおいて、原料容器31から蒸発容器37に至るまでの原料混合液の流路における接液部、すなわち、(ニードルバルブ32を含む)原料配管3、原料ギアポンプ4、プレヒーター(予備加熱器)5、及びデガッサー(脱ガス装置)6の接液部は、樹脂材料で構成されることが好ましい。ただし、原料ギアポンプ4、プレヒーター(予備加熱器)5、及びデガッサー(脱ガス装置)6の接液部を全て樹脂材料で構成することは一般に装置コストの増大を招くため、上記説明した装置10A及び10Bにおけるように、原料ギアポンプ4、プレヒーター(予備加熱器)5、及びデガッサー(脱ガス装置)6を備えない形態の薄膜蒸留装置を好ましく採用できる。 In the above description, the thin film distillation apparatus 10A (FIG. 1) and 10B (FIG. 3) having the liquid feed pumps 10 and 11 provided only on the downstream side of the evaporation vessel 37 have been given as an example, but the thin film distillation apparatus is the evaporation vessel 37. A liquid feed pump may also be provided on the upstream side of the. FIG. 4 is a diagram schematically illustrating a thin film distillation apparatus 10C (hereinafter, may be simply referred to as “device 10C”) according to such another embodiment. In FIG. 4, the elements already shown in FIGS. 1 to 3 are designated by the same reference numerals as those in FIGS. 1 to 3 and the description thereof will be omitted. The thin film distillation apparatus 10C has a raw material pipe 3 instead of the raw material pipe 33 that guides the raw material mixture from the raw material container 31 to the evaporation container 37, and the raw material gear pump 4 is in the middle of the raw material pipe 3 and downstream of the needle valve 32. It differs from the thin film distillation apparatus 10A (FIG. 1) in that the preheater (preheater) 5 and the degasser (degasser) 6 are further provided in this order from the upstream side. In the apparatus 10C, the wetted portion in the flow path of the raw material mixed liquid from the raw material container 31 to the evaporation container 37, that is, the raw material pipe 3 (including the needle valve 32), the raw material gear pump 4, and the preheater (preheater). The wetted parts of 5 and the degasser (degasser) 6 are preferably made of a resin material. However, since the wetted parts of the raw material gear pump 4, the preheater (preheater) 5, and the degasser (degasser) 6 are generally made of a resin material, the cost of the device generally increases. Therefore, the device 10A described above And 10B, a thin film distillation apparatus not provided with the raw material gear pump 4, the preheater (preheater) 5, and the degasser (degasser) 6 can be preferably adopted.

なお上記説明では、バルブ32としてニードルバルブを備える形態の薄膜蒸留装置10A(図1)、10B(図3)、及び10C(図4)を例に挙げたが、バルブ32は必ずしもニードルバルブである必要はなく、バルブ32としてニードルバルブに代えてダイヤフラムバルブ、バタフライバルブ、ボールバルブ、ゲートバルブ等の他の公知のバルブを採用することも可能である。 In the above description, the thin film distillation apparatus 10A (FIG. 1), 10B (FIG. 3), and 10C (FIG. 4) having a needle valve as the valve 32 are given as an example, but the valve 32 is not necessarily a needle valve. It is not necessary, and other known valves such as a diaphragm valve, a butterfly valve, a ball valve, and a gate valve can be adopted as the valve 32 instead of the needle valve.

工程(a)において用いることのできる商業的に入手可能な薄膜蒸留装置の例としては、短行程式蒸留装置(UIC社製);ワイプレン(登録商標)、エクセバ(登録商標)(いずれも神鋼環境ソリューション社製);コントロ、セブコン(登録商標)(いずれも日立プラントメカニクス社製);ビスコン、フィルムトルーダー(いずれもBuss-SMS-Canzler GmbH製、木村化工機社より入手可能);エバリアクター、Hi−Uブラッシャー、ウォールウェッター(いずれも関西化学機械製作社製);NRH(日南機械社製)、等を挙げることができる。水酸化第4級アンモニウムは長時間加熱されると分解するため、蒸留効率を高める観点から、流下膜式の薄膜蒸留装置の中でも、短行程式の薄膜蒸留装置を好ましく用いることができる。
なお本明細書において、流下膜式の薄膜蒸留装置とは、蒸発容器内部に導入した液の薄膜(液膜)を蒸発容器内部の加熱面に(例えば回転翼等により)形成し、加熱面に沿って液膜を流下させながら蒸留を行う形態の薄膜蒸留装置を意味する。短工程式の薄膜蒸留装置(短工程蒸留装置)は、分子蒸留の技術思想を出発点として、分離性能を高めるように開発されてきた薄膜蒸留装置である。短工程蒸留装置においては、凝縮器の冷却面が蒸発容器の加熱面と向かい合うように、円筒形の蒸発容器の内部に凝縮器が配置されている。短工程蒸留装置を用いた蒸留(短工程蒸留)は、中真空(10−1〜10Paのオーダ)程度の圧力下で行われることが多い。
Examples of commercially available thin-film distillation equipment that can be used in step (a) are short-stroke distillation equipment (manufactured by UIC); Wipren (registered trademark), Exeva (registered trademark) (both from Kobelco Eco-Solutions). Solution Co., Ltd.); Control, Cebucon (registered trademark) (both manufactured by Hitachi Plant Mechanics); Viscon, film trooper (both manufactured by Buss-SMS-Canzler GmbH, available from Kimura Kakoki Co., Ltd.); Evariator, Hi-U brusher, wall wetter (all manufactured by Kansai Chemical Machinery Co., Ltd.); NRH (manufactured by Nichinan Machinery Co., Ltd.), etc. can be mentioned. Since the quaternary ammonium hydroxide decomposes when heated for a long time, a short-stroke type thin film distillation apparatus can be preferably used among the flow-down membrane type thin film distillation apparatus from the viewpoint of increasing the distillation efficiency.
In the present specification, in the flow-down film type thin film distillation apparatus, a thin film (liquid film) of the liquid introduced into the evaporation vessel is formed on the heating surface inside the evaporation vessel (for example, by a rotary blade or the like), and the heating surface is formed. It means a thin film distillation apparatus in which distillation is performed while flowing a liquid film along the surface. The short-process type thin-film distillation apparatus (short-process distillation apparatus) is a thin-film distillation apparatus that has been developed to improve the separation performance, starting from the technical concept of molecular distillation. In the short-process distillation apparatus, the condenser is arranged inside the cylindrical evaporation vessel so that the cooling surface of the condenser faces the heating surface of the evaporation vessel. Distillation using a short-step distillation apparatus (short-step distillation) is often performed under a pressure of about medium vacuum (order of 10 -1 to 10 2 Pa).

なお商業的に入手可能な上記の薄膜蒸留装置を用いるにあたっては、蒸発容器よりも上流側の接液部が樹脂製となるように改変した装置を用いることが好ましい。 When using the commercially available thin-film distillation apparatus, it is preferable to use an apparatus modified so that the wetted portion on the upstream side of the evaporation vessel is made of resin.

(1.2.2 蒸留条件)
薄膜蒸留によって得られる水酸化第4級アンモニウムの有機溶媒溶液の性状は、原料混合液の蒸発容器37に入る直前の温度(第1の温度)、蒸発容器37の加熱面24の温度(第2の温度)、及び系の真空度によって主に影響を受け得る。
(1.2.2 Distillation conditions)
The properties of the organic solvent solution of quaternary ammonium hydroxide obtained by thin film distillation are the temperature immediately before entering the evaporation container 37 of the raw material mixture (first temperature) and the temperature of the heating surface 24 of the evaporation container 37 (second temperature). It can be mainly affected by the temperature of the system) and the degree of vacuum of the system.

原料混合液の蒸発容器37に入る直前の温度(第1の温度)は、70℃以下であることが必要であり、より好ましくは60℃以下である。第1の温度が上記上限値以下であることにより、水分量が多い状態の原料混合液が蒸発容器37の内壁面に触れた際の蒸発容器37からの金属不純物の溶出を低減することが可能になる。また第1の温度は好ましくは5℃以上、より好ましくは15℃以上である。第1の温度が上記下限値以上であることにより、水酸化第4級アンモニウムを含む析出物の生成を抑制するとともに、蒸発効率をさらに高めることが可能になる。 The temperature (first temperature) immediately before entering the evaporation container 37 of the raw material mixture needs to be 70 ° C. or lower, more preferably 60 ° C. or lower. When the first temperature is not more than the above upper limit value, it is possible to reduce the elution of metal impurities from the evaporation container 37 when the raw material mixture in a state of a large amount of water touches the inner wall surface of the evaporation container 37. become. The first temperature is preferably 5 ° C. or higher, more preferably 15 ° C. or higher. When the first temperature is at least the above lower limit value, it is possible to suppress the formation of precipitates containing quaternary ammonium hydroxide and further improve the evaporation efficiency.

加熱面24の温度(第2の温度)は、上記第1の温度より高温であって、60〜140℃であることが必要であり、より好ましくは70〜120℃である。第2の温度が上記下限値以上であることにより、蒸発効率を高め、液膜中の水分量を素早く減少させることができるので、蒸発容器37からの金属不純物の溶出を低減することが可能になる。また第2の温度が上記上限値以下であることにより、有機溶媒の蒸発を低減するとともに、蒸発容器37からの金属不純物の溶出を低減することが可能になる。本明細書において、薄膜蒸留装置の「加熱面の温度」とは、液膜が熱せられる熱源の温度を意味する。 The temperature of the heating surface 24 (second temperature) is higher than the first temperature, and needs to be 60 to 140 ° C., more preferably 70 to 120 ° C. When the second temperature is equal to or higher than the above lower limit value, the evaporation efficiency can be increased and the amount of water in the liquid film can be quickly reduced, so that the elution of metal impurities from the evaporation container 37 can be reduced. Become. Further, when the second temperature is not more than the above upper limit value, it is possible to reduce the evaporation of the organic solvent and reduce the elution of metal impurities from the evaporation container 37. In the present specification, the "temperature of the heating surface" of the thin film distillation apparatus means the temperature of the heat source at which the liquid film is heated.

系の真空度(蒸発容器37内部または蒸発容器37から真空ポンプ手前までの真空度)は、600Pa以下であることが必要であり、好ましくは550Pa以下、より好ましくは400Pa以下であり、一の実施形態において200Pa以下であり得る。系の真空度が上記上限値以下であることにより、蒸発効率を高め、液膜中の水分量を素早く減少させることができるので、蒸発容器37からの金属不純物の溶出を低減することが可能になる。真空度の下限は特に制限されるものではないが、一の実施形態において0.1Pa以上、他の実施形態において1Pa以上であり得る。系の真空度が上記下限値以上であることにより、コールドトラップ14に凝縮ないし凝固する蒸発物による排気系配管の閉塞を避けることが容易になる。系の真空度は、蒸発容器37と真空ポンプ15とを接続する排気系配管の途中に設けられたマノメータ、真空計などの圧力測定器(不図示)を用いて測定することができる。一の実施形態において、圧力測定器はコールドトラップ14と真空ポンプ15との間に設けることができる。 The degree of vacuum of the system (the degree of vacuum inside the evaporation container 37 or from the evaporation container 37 to the front of the vacuum pump) needs to be 600 Pa or less, preferably 550 Pa or less, more preferably 400 Pa or less, and one implementation. It can be 200 Pa or less in the form. When the degree of vacuum of the system is not more than the above upper limit value, the evaporation efficiency can be increased and the amount of water in the liquid film can be quickly reduced, so that the elution of metal impurities from the evaporation container 37 can be reduced. Become. The lower limit of the degree of vacuum is not particularly limited, but may be 0.1 Pa or more in one embodiment and 1 Pa or more in another embodiment. When the degree of vacuum of the system is equal to or higher than the above lower limit value, it becomes easy to avoid clogging of the exhaust system piping due to the evaporation material that condenses or solidifies in the cold trap 14. The degree of vacuum of the system can be measured by using a pressure measuring device (not shown) such as a manometer or a vacuum gauge provided in the middle of the exhaust system piping connecting the evaporation container 37 and the vacuum pump 15. In one embodiment, the pressure gauge can be provided between the cold trap 14 and the vacuum pump 15.

蒸発容器37への原料混合液の好ましい供給量(フィードレート)は、薄膜蒸留装置の規模によって異なり得る。フィードレートが高すぎると蒸発効率が低下し、フィードレートが低すぎると生産性が低下する。加熱面24の温度や蒸発容器37内の真空度等の蒸留条件が同一であれば、薄膜蒸留装置の伝熱面積(加熱面24の面積)が大きいほど、フィードレートを高めることが可能になる。例えば、伝熱面積が0.1mの薄膜蒸留装置を用いる場合、フィードレートは例えば好ましくは1〜10kg/時間とすることができる。原料混合液の蒸発容器37に入る直前の温度(第1の温度)、加熱面24の温度(第2の温度)、及び系の真空度(蒸発容器37内部または蒸発容器37から真空ポンプ手前までの真空度)が上記範囲内である場合には、加熱面24の単位面積あたりのフィードレートを、例えば10〜100kg/時間・mとすることができる。 The preferred feed rate of the raw material mixture to the evaporation vessel 37 may vary depending on the scale of the thin film distillation apparatus. If the feed rate is too high, the evaporation efficiency will decrease, and if the feed rate is too low, the productivity will decrease. If the distillation conditions such as the temperature of the heating surface 24 and the degree of vacuum in the evaporation container 37 are the same, the larger the heat transfer area (area of the heating surface 24) of the thin film distillation apparatus, the higher the feed rate can be. .. For example, when a thin film distillation apparatus having a heat transfer area of 0.1 m 2 is used, the feed rate can be, for example, preferably 1 to 10 kg / hour. The temperature immediately before entering the evaporation container 37 of the raw material mixture (first temperature), the temperature of the heating surface 24 (second temperature), and the degree of vacuum of the system (inside the evaporation container 37 or from the evaporation container 37 to the front of the vacuum pump). When the degree of vacuum) is within the above range, the feed rate per unit area of the heating surface 24 can be set to, for example, 10 to 100 kg / hour · m 2 .

工程(a)を経ることにより、原料混合液から水を蒸発除去して、水酸化第4級アンモニウムの有機溶媒溶液を得ることができる。 By going through the step (a), water can be evaporated and removed from the raw material mixture to obtain an organic solvent solution of quaternary ammonium hydroxide.

(1.3 工程(b):洗浄工程)
一の好ましい実施形態において、本発明の溶液製造方法は、工程(a)の前に予め、原料容器31から蒸発容器37に至るまでの原料混合液の流路における接液部(例えば上記装置10Aにおいては、原料容器31の内面の接液部、及び、(ニードルバルブ32の接液部を含む)原料配管33の接液部。)を洗浄する工程(以下において「工程(b)」ということがある。)をさらに有し得る。工程(b)において当該洗浄に用いる溶液(洗浄液)の好ましい例としては、超純水、純水等の金属不純物が非常に少ない水;及び、原料の一部として用いる水酸化第4級アンモニウム水溶液、原料混合液等の、上記水酸化第4級アンモニウムを含む溶液、を挙げることができる。これらの中でも水酸化第4級アンモニウムを含む溶液を洗浄液として好ましく用いることができ、原料混合液に含まれる水酸化第4級アンモニウムと同一の水酸化第4級アンモニウムを含む溶液を洗浄液として特に好ましく用いることができる。洗浄液中の金属不純物の含有量は、Na、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、及びZnのそれぞれについて、溶液全量基準で好ましくは0.05質量ppm以下、より好ましくは0.02質量ppm以下、更に好ましくは0.01質量ppm以下である。
(1.3 step (b): cleaning step)
In one preferred embodiment, in the solution manufacturing method of the present invention, a wetted portion (for example, the above-mentioned apparatus 10A) in the flow path of the raw material mixed liquid from the raw material container 31 to the evaporating container 37 is previously used before the step (a). In the above, the step of cleaning the wetted portion on the inner surface of the raw material container 31 and the wetted portion of the raw material pipe 33 (including the wetted portion of the needle valve 32) (hereinafter referred to as “step (b)”). There is.). Preferred examples of the solution (cleaning solution) used for the cleaning in the step (b) are water having very little metal impurities such as ultrapure water and pure water; and a quaternary ammonium hydroxide aqueous solution used as a part of the raw material. , A solution containing the above-mentioned quaternary ammonium hydroxide, such as a raw material mixed solution. Among these, a solution containing quaternary ammonium hydroxide can be preferably used as the cleaning solution, and a solution containing the same quaternary ammonium hydroxide contained in the raw material mixture as the quaternary ammonium hydroxide is particularly preferable as the cleaning solution. Can be used. The content of metal impurities in the cleaning liquid is preferably 0.05 mass ppm or less based on the total amount of the solution for each of Na, Mg, Al, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, and Zn. , More preferably 0.02 mass ppm or less, still more preferably 0.01 mass ppm or less.

接液部の洗浄は、例えば、接液部を構成する(例えば樹脂製の)部分に上記洗浄液を10分〜2時間程度流通させる、又は接液部を構成する(例えば樹脂製の)部分に上記洗浄液を溜めて保持する等により行うことができる。工程(a)の前に工程(b)を行うことによって、溶出可能な状態にある金属不純物が接液部を構成する部材の表面から低減ないし除去されるので、薄膜蒸留中に接液部から溶出する金属不純物をさらに低減することが可能になる。一の好ましい実施形態において、水酸化第4級アンモニウム水溶液または原料混合液で接液部を洗浄した後、さらに超純水や純水等の金属不純物含有量が非常に少ない水で接液部を短時間洗浄(リンス)してもよい。かかる形態の工程(b)によれば、工程(a)における接液部からの金属不純物の溶出量をさらに低減することが可能になる。なお、例えば溶出可能な金属不純物が接液部を構成する(例えば樹脂製の)部材表面から既に低減ないし除去されていることが明らかである場合には、工程(b)を行わない形態の水酸化第4級アンモニウムの有機溶媒溶液の製造方法とすることも可能である。 For cleaning the wetted portion, for example, the cleaning liquid is circulated through the portion constituting the wetted portion (for example, made of resin) for about 10 minutes to 2 hours, or the portion constituting the wetted portion (for example, made of resin) is circulated. This can be done by collecting and holding the cleaning liquid. By performing the step (b) before the step (a), metal impurities in an elutionable state are reduced or removed from the surface of the member constituting the wetted portion, so that the metal impurities in the wetted portion are reduced or removed from the wetted portion during the thin film distillation. It becomes possible to further reduce the metal impurities that elute. In one preferred embodiment, the wetted portion is washed with a quaternary ammonium hydroxide aqueous solution or a raw material mixed solution, and then the wetted portion is further treated with water having a very low content of metal impurities such as ultrapure water or pure water. It may be washed (rinsed) for a short time. According to the step (b) of this form, it is possible to further reduce the amount of metal impurities eluted from the wetted portion in the step (a). In addition, for example, when it is clear that the elutionable metal impurities have already been reduced or removed from the surface of the member (for example, made of resin) constituting the wetted portion, the water in the form in which the step (b) is not performed. It is also possible to use it as a method for producing an organic solvent solution of quaternary ammonium oxide.

接液部の洗浄を酸水溶液によって行うことも可能であるが、酸水溶液を接液部に接触させると、酸水溶液中に含まれるアニオンが樹脂表面に残留しやすいため、該アニオンを超純水や純水等で洗浄して除去する処理に時間が掛かる。したがって、接液部の洗浄には酸水溶液を用いないことが好ましく、接液部の洗浄は水酸化第4級アンモニウムを含む溶液、及び/又は、純水や超純水等の金属不純物含有量が非常に少ない水を用いて行うことが好ましい。 It is possible to wash the wetted part with an acid aqueous solution, but when the acid aqueous solution is brought into contact with the wetted part, the anion contained in the acid aqueous solution tends to remain on the resin surface, so the anion is ultrapure water. It takes time to wash and remove with pure water. Therefore, it is preferable not to use an acid aqueous solution for cleaning the wetted part, and for cleaning the wetted part, a solution containing quaternary ammonium hydroxide and / or the content of metal impurities such as pure water and ultrapure water. It is preferable to use very little water.

(1.4 水酸化第4級アンモニウムの有機溶媒溶液の性状)
(1.4.1 水酸化第4級アンモニウム含有量)
一の実施形態において、本発明の溶液製造方法によって得られる水酸化第4級アンモニウムの有機溶媒溶液(以下において単に「有機溶媒溶液」又は単に「溶液」ということがある。)中の水酸化第4級アンモニウムの含有量は、溶液全量基準で好ましくは5.0質量%以上、より好ましくは8.0質量%以上であり得る。溶液中の水酸化第4級アンモニウムの含有量が上記下限値以上であることにより、溶液の流通コストを節約できる。当該含有量の上限値は特に制限されるものではないが、一の実施形態において72質量%以下、他の実施形態において55質量%以下であり得る。溶液中の水酸化第4級アンモニウムの含有量が上記上限値以下であることにより、溶液の高粘度化が抑制されるので、溶液を使用する際のハンドリング、送液、混合等が容易になる。
(1.4 Properties of quaternary ammonium hydroxide organic solvent solution)
(1.4.1 Quaternary Ammonium Hydroxide Content)
In one embodiment, the quaternary ammonium hydroxide obtained by the solution production method of the present invention is in an organic solvent solution (hereinafter, may be simply referred to as "organic solvent solution" or simply "solution"). The content of the quaternary ammonium can be preferably 5.0% by mass or more, more preferably 8.0% by mass or more based on the total amount of the solution. When the content of the quaternary ammonium hydroxide in the solution is at least the above lower limit value, the distribution cost of the solution can be saved. The upper limit of the content is not particularly limited, but may be 72% by mass or less in one embodiment and 55% by mass or less in another embodiment. When the content of quaternary ammonium hydroxide in the solution is not more than the above upper limit value, the increase in viscosity of the solution is suppressed, so that handling, liquid feeding, mixing, etc. when using the solution become easy. ..

溶液中の水酸化第4級アンモニウムの濃度は、電位差滴定装置、液体クロマトグラフィー等によって正確に測定することが可能である。これらの測定手段は単独で用いてもよく、組み合わせて用いてもよい。これらの測定方法は、原料混合液中の水酸化第4級アンモニウムの濃度の測定にも適用できる。 The concentration of quaternary ammonium hydroxide in the solution can be accurately measured by a potentiometric titrator, liquid chromatography or the like. These measuring means may be used alone or in combination. These measuring methods can also be applied to the measurement of the concentration of quaternary ammonium hydroxide in the raw material mixture.

一の実施形態において、溶液中の水酸化第4級アンモニウムの含有量は、溶液全量基準で2.38〜25.0質量%であり得る。一の好ましい実施形態において、水酸化第4級アンモニウムとしてTMAHを用いることができ、溶液中のTMAHの含有量は、溶液全量基準で2.38〜25.0質量%とすることができる。 In one embodiment, the content of quaternary ammonium hydroxide in the solution can be 2.38 to 25.0% by weight based on the total amount of the solution. In one preferred embodiment, TMAH can be used as the quaternary ammonium hydroxide, and the content of TMAH in the solution can be 2.38 to 25.0% by mass based on the total amount of the solution.

(1.4.2 水分含有量)
本発明の溶液製造方法によって得られる有機溶媒溶液中の水分含有量は、組成物全量基準で1.0質量%以下であり、好ましくは0.5質量%以下、より好ましくは0.3質量%以下である。溶液中の水分含有量が上記上限値以下であることにより、変性フォトレジスト及びフォトレジストのアッシング残渣の除去性能を高めるとともに、金属材料および無機質基体材料に対する腐食性を低減することが可能になる。溶液中の水分含有量の下限は特に制限されるものではないが、例えば0.05質量%以上であり得る。
(14.2 Moisture content)
The water content in the organic solvent solution obtained by the solution production method of the present invention is 1.0% by mass or less, preferably 0.5% by mass or less, and more preferably 0.3% by mass based on the total amount of the composition. It is as follows. When the water content in the solution is not more than the above upper limit value, it is possible to improve the removing performance of the modified photoresist and the ashing residue of the photoresist and reduce the corrosiveness to the metal material and the inorganic substrate material. The lower limit of the water content in the solution is not particularly limited, but may be, for example, 0.05% by mass or more.

有機溶媒溶液中の水分量は、ガスクロマトグラフィーによって測定できるほか、カールフィッシャー法(以下において「カールフィッシャー滴定」ということがある。)を用いたカールフィッシャー水分計と、ガスクロマトグラフィーとを組み合わせることによっても測定可能である。カールフィッシャー水分計によれば簡単な操作で測定が可能であるが、カールフィッシャー滴定による測定値はアルカリ存在下では妨害反応による誤差を含み得る。他方、ガスクロマトグラフィーによれば、アルカリの存在の有無に関わらず水分量の正確な測定が可能であるが、測定操作は必ずしも簡便ではない。当該有機溶媒溶液と同程度のアルカリ濃度を有する溶液について、カールフィッシャー水分計による水分量測定値を縦軸に、ガスクロマトグラフィーによる水分量測定値を横軸に、それぞれプロットした検量線を予め作成し、カールフィッシャー水分計による測定値を該検量線を用いて補正することで、水分量を簡単な操作で正確に定量することが可能である。なお、ガスクロマトグラフィー及びカールフィッシャー水分計としては商業的に入手可能な装置をそれぞれ用いることができる。 The amount of water in the organic solvent solution can be measured by gas chromatography, and a combination of a Karl Fischer titer using the Karl Fischer method (hereinafter sometimes referred to as "Karl Fischer titration") and gas chromatography. It can also be measured by. Although the measurement can be performed by a simple operation according to the Karl Fischer titration meter, the measured value by the Karl Fischer titration may include an error due to a disturbing reaction in the presence of alkali. On the other hand, according to gas chromatography, it is possible to accurately measure the water content regardless of the presence or absence of alkali, but the measurement operation is not always simple. For a solution having an alkali concentration similar to that of the organic solvent solution, a calibration curve is prepared in advance by plotting the water content measurement value by the Karl Fisher moisture meter on the vertical axis and the water content measurement value by gas chromatography on the horizontal axis. However, by correcting the value measured by the Carl Fisher Moisture Analyzer using the calibration curve, it is possible to accurately quantify the water content with a simple operation. Commercially available devices can be used for gas chromatography and curl fisher moisture meter.

カールフィッシャー水分計による水分量測定値を検量線を用いて補正する操作は、次の(1)〜(6)の手順により好ましく行うことができる。
(1)測定すべき溶液中の有機溶媒と同一の有機溶媒中の水分量をカールフィッシャー滴定により測定する。該有機溶媒に水を加えることにより、水分量の異なる、例えば5種類の溶液(以下において「水/有機溶媒溶液」ということがある。)を調製する。有機溶媒に加える水の量は、水/有機溶媒溶液中の水分量の範囲に、測定すべき溶液中の水分量が包含されるように選択する。例えば、測定すべき溶液中の水分量が0.05〜5.0質量%であると考えられる場合には、水/有機溶媒溶液中の水分量が0.05〜5.0質量%の5段階になるように、有機溶媒に加える水の量を決定することができる。なお、調製した5種類の水/有機溶媒溶液中の水分量をカールフィッシャー滴定により測定し、得られた値が有機溶媒中の水分量および加えた水の量から算出される理論値と良好な一致を示すことを確認することが望ましい。
(2)上記(1)で調製した5種類の水/有機溶媒溶液のそれぞれについて、ガスクロマトグラフィー(以下において「GC」ということがある。)により分析を行い、水および有機溶媒のピークを含むGCチャートを得る。得られたGCチャート中の水のピークの面積を縦軸(Y)にとり、水/有機溶媒溶液中の水分量(有機溶媒中の水分量および加えた水の量から算出される理論値)を横軸(X)にとってプロットする。Yを目的変数、Xを説明変数として最小二乗法により回帰直線を算出することにより、GCチャート中の水のピークの面積から水分量を与える検量線(以下において「第1の検量線」ということがある。)を得る。
(3)標準液として、測定すべき溶液中の有機溶媒と同一の有機溶媒に、測定すべき溶液中の水酸化第4級アンモニウム(QAH)と同一のQAHの濃厚水溶液(濃厚水溶液中のQAH濃度は、入手可能な範囲で高ければよく、例えば10〜25質量%とすることができる。)を加えることにより、5種類の混合液を調製する。有機溶媒中の水分量は上記(1)においてカールフィッシャー滴定により正確に測定されている。QAH濃厚水溶液中のQAH濃度は電位差自動滴定装置により正確に測定する。これによりQAH濃厚水溶液中の水分量も同時に決定される。有機溶媒とQAH濃厚水溶液との混合質量比は、混合液中の水分量が上記(1)と同じ5段階となるように選択する。
(4)上記(3)で調製した5種類の標準液をそれぞれガスクロマトグラフィーで分析し、上記(2)で得た第1の検量線を用いて、GCチャート中の水のピークの面積から各標準液中の水分量を得る。一般に、GCによる水分量の測定値は、有機溶媒中の水分量、QAH濃厚水溶液中の水分量、および有機溶媒とQAH濃厚水溶液との混合質量比から算出される標準液中の水分量の理論値と良好な一致を示す。
(5)上記(3)で調製した5種類の標準液について、それぞれカールフィッシャー滴定により水分量を測定する。各標準液について、カールフィッシャー滴定によって測定された水分量を縦軸(Y)にとり、上記(3)でGCにより測定した標準液中の水分量を横軸(X)にとってプロットする。Yを目的変数、Xを説明変数として最小二乗法により回帰直線を算出することにより、QAH及び水を含む有機溶媒溶液についてカールフィッシャー滴定による水分量測定値をGCによる水分量測定値に補正する検量線(以下において「第2の検量線」ということがある。)を得る。
(6)測定すべき実際の溶液の水分量をカールフィッシャー滴定によって測定し、得られた測定値を、上記(5)で得た第2の検量線を用いて、GCによって測定される水分量に補正する。
The operation of correcting the water content measurement value by the Karl Fisher moisture meter using the calibration curve can be preferably performed by the following procedures (1) to (6).
(1) The amount of water in the same organic solvent as the organic solvent in the solution to be measured is measured by Karl Fischer titration. By adding water to the organic solvent, for example, five kinds of solutions having different water contents (hereinafter, may be referred to as "water / organic solvent solution") are prepared. The amount of water added to the organic solvent is selected so that the water content in the water / organic solvent solution includes the water content in the solution to be measured. For example, when the water content in the solution to be measured is considered to be 0.05 to 5.0% by mass, the water content in the water / organic solvent solution is 0.05 to 5.0% by mass, which is 5 The amount of water added to the organic solvent can be determined in a stepwise manner. The water content in the prepared 5 types of water / organic solvent solutions was measured by Karl Fischer titration, and the obtained value was good as the theoretical value calculated from the water content in the organic solvent and the amount of water added. It is desirable to confirm that they show a match.
(2) Each of the five types of water / organic solvent solutions prepared in (1) above is analyzed by gas chromatography (hereinafter sometimes referred to as "GC") and contains peaks of water and organic solvent. Get a GC chart. The area of the peak of water in the obtained GC chart is taken on the vertical axis (Y), and the amount of water in the water / organic solvent solution (theoretical value calculated from the amount of water in the organic solvent and the amount of added water) is calculated. Plot for the horizontal axis (X). A calibration curve that gives the amount of water from the area of the peak of water in the GC chart by calculating the regression line by the least squares method with Y as the objective variable and X as the explanatory variable (hereinafter referred to as the "first calibration curve"). There is.)
(3) As a standard solution, in the same organic solvent as the organic solvent in the solution to be measured, a concentrated aqueous solution of QAH (QAH in the concentrated aqueous solution) having the same QAH as the quaternary ammonium hydroxide (QAH) in the solution to be measured The concentration may be as high as available, for example, 10 to 25% by mass.) To prepare 5 kinds of mixed solutions. The amount of water in the organic solvent is accurately measured by Karl Fischer titration in (1) above. The QAH concentration in the QAH concentrated aqueous solution is accurately measured by a potential difference automatic titrator. As a result, the amount of water in the QAH concentrated aqueous solution is also determined at the same time. The mixing mass ratio of the organic solvent and the QAH concentrated aqueous solution is selected so that the amount of water in the mixed solution has the same five steps as in (1) above.
(4) Each of the five standard solutions prepared in (3) above was analyzed by gas chromatography, and the first calibration curve obtained in (2) above was used to determine the area of the peak water in the GC chart. Obtain the amount of water in each standard solution. In general, the measured value of the water content by GC is the theory of the water content in the standard solution calculated from the water content in the organic solvent, the water content in the QAH concentrated aqueous solution, and the mixed mass ratio of the organic solvent and the QAH concentrated aqueous solution. Shows good agreement with the value.
(5) The water content of each of the five standard solutions prepared in (3) above is measured by Karl Fischer titration. For each standard solution, the water content measured by Karl Fischer titration is plotted on the vertical axis (Y), and the water content in the standard solution measured by GC in (3) above is plotted on the horizontal axis (X). A calibration curve that corrects the water content measurement value by Karl Fischer titration to the water content measurement value by GC for an organic solvent solution containing QAH and water by calculating the regression curve by the least squares method with Y as the objective variable and X as the explanatory variable. A line (hereinafter sometimes referred to as a "second calibration curve") is obtained.
(6) The water content of the actual solution to be measured is measured by Karl Fischer titration, and the obtained measured value is the water content measured by GC using the second calibration curve obtained in (5) above. Correct to.

なお、水酸化アンモニウムの有機溶媒溶液中の水分量をカールフィッシャー滴定により測定することは必須ではない。上記手順(1)〜(2)により得られる第1の検量線を用いれば、アルカリを含む溶液中の水分量をガスクロマトグラフィー分析により正確に測定することができる。上記の測定方法は、原料混合液中の水分量の測定にも適用できる。 It is not essential to measure the water content of ammonium hydroxide in an organic solvent solution by Karl Fischer titration. By using the first calibration curve obtained by the above procedures (1) and (2), the amount of water in the solution containing alkali can be accurately measured by gas chromatography analysis. The above measuring method can also be applied to the measurement of the water content in the raw material mixture.

溶液中の水分含有量(単位:質量%)の、溶液中の水酸化第4級アンモニウム含有量(単位:質量%)に対する比(水分含有量/水酸化第4級アンモニウム含有量)は、好ましくは0.42以下、より好ましくは0.21以下、更に好ましくは0.10以下である。当該比が上記上限値以下であることにより、変性フォトレジスト及びフォトレジストのアッシング残渣の除去性能を維持ないし向上しながら、金属材料および無機質基体材料に対する腐食性をさらに低減することが可能になる。当該比の下限は特に制限されるものではないが、例えば0.0007以上であり得る。 The ratio (water content / quaternary ammonium hydroxide content) of the water content (unit: mass%) in the solution to the quaternary ammonium hydroxide content (unit: mass%) in the solution is preferable. Is 0.42 or less, more preferably 0.21 or less, still more preferably 0.10 or less. When the ratio is not more than the above upper limit value, it becomes possible to further reduce the corrosiveness to the metal material and the inorganic substrate material while maintaining or improving the removing performance of the modified photoresist and the ashing residue of the photoresist. The lower limit of the ratio is not particularly limited, but may be, for example, 0.0007 or more.

(1.4.3 不純物含有量)
本発明の溶液製造方法によって得られる有機溶媒溶液中の金属不純物の含有量は、Na、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、及びZnのそれぞれについて、溶液全量基準で好ましくは100質量ppb以下、より好ましくは50質量ppb以下、さらに好ましくは20質量ppb以下である。本明細書において、溶液中の金属不純物の含有量は、0価の金属であるか金属イオンであるかに関わらず、当該金属元素の総含有量を意味する。
(1.4.3 Impurity content)
The content of metal impurities in the organic solvent solution obtained by the solution production method of the present invention is a solution for each of Na, Mg, Al, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, and Zn. Based on the total amount, it is preferably 100 mass ppb or less, more preferably 50 mass ppb or less, and further preferably 20 mass ppb or less. In the present specification, the content of metal impurities in a solution means the total content of the metal element regardless of whether it is a zero-valent metal or a metal ion.

溶液中の塩素不純物(Cl)の含有量は、溶液全量基準で好ましくは100質量ppb以下、より好ましくは80質量ppb以下、さらに好ましくは50質量ppb以下である。本明細書において、溶液中の塩素不純物の含有量は、塩素元素の総含有量を意味する。なお溶液中において、塩素不純物は通常、塩化物イオン(Cl)の形で存在する。 The content of chlorine impurities (Cl) in the solution is preferably 100 mass ppb or less, more preferably 80 mass ppb or less, and further preferably 50 mass ppb or less based on the total amount of the solution. In the present specification, the content of chlorine impurities in the solution means the total content of chlorine elements. In the solution, chlorine impurities are usually present in the form of chloride ions (Cl ).

溶液中の金属不純物の含有量は、誘導結合プラズマ質量分析計(ICP−MS)等の微量分析装置により測定可能である。また塩素不純物の含有量は、イオンクロマトグラフィー等の微量分析装置により測定可能である。これらの金属不純物および塩素不純物含有量の測定方法は、原料混合液中の金属不純物および塩素不純物含有量の測定にも適用できる。 The content of metal impurities in the solution can be measured by a microanalyzer such as an inductively coupled plasma mass spectrometer (ICP-MS). The content of chlorine impurities can be measured by a trace analyzer such as ion chromatography. These methods for measuring the content of metal impurities and chlorine impurities can also be applied to the measurement of the content of metal impurities and chlorine impurities in the raw material mixture.

溶液中の上記金属不純物の含有量(単位:質量ppb)の、溶液中の水酸化第4級アンモニウム含有量(単位:質量%)に対する比(金属不純物の含有量/水酸化第4級アンモニウム含有量)は、上記金属元素のそれぞれについて好ましくは42以下、より好ましくは21以下、更に好ましくは10以下である。当該比が上記上限値以下であることにより、変性フォトレジスト及びフォトレジストのアッシング残渣の除去性能を維持ないし向上しながら、半導体素子の製造歩留りをさらに高めることが可能になる。当該比の下限は特に制限されるものではなく、低いほど好ましいが、金属不純物の測定装置の定量限界などを考慮すると、例えば0.0001以上であり得る。 The ratio of the content of the above metal impurities in the solution (unit: mass ppb) to the content of quaternary ammonium hydroxide in the solution (unit: mass%) (content of metal impurities / content of quaternary ammonium hydroxide) The amount) is preferably 42 or less, more preferably 21 or less, still more preferably 10 or less for each of the above metal elements. When the ratio is not more than the above upper limit value, it is possible to further increase the manufacturing yield of the semiconductor element while maintaining or improving the removal performance of the modified photoresist and the ashing residue of the photoresist. The lower limit of the ratio is not particularly limited, and the lower the ratio, the more preferable, but it may be 0.0001 or more, for example, in consideration of the quantification limit of the metal impurity measuring device.

溶液中の塩素不純物の含有量(単位:質量ppb)の、溶液中の水酸化第4級アンモニウム含有量(単位:質量%)に対する比(塩素含有量/水酸化第4級アンモニウム含有量)は、好ましくは42以下、より好ましくは34以下、更に好ましくは21以下である。当該比が上記上限値以下であることにより、変性フォトレジスト及びフォトレジストのアッシング残渣の除去性能を維持ないし向上しながら、半導体素子の製造歩留りをさらに高めることが可能になる。当該比の下限は特に制限されるものではなく、低いほど好ましいが、塩素不純物の測定装置の定量限界などを考慮すると、例えば0.001以上であり得る。 The ratio (chlorine content / quaternary ammonium hydroxide content) of the content of chlorine impurities in the solution (unit: mass ppb) to the quaternary ammonium hydroxide content (unit: mass%) in the solution is It is preferably 42 or less, more preferably 34 or less, still more preferably 21 or less. When the ratio is not more than the above upper limit value, it is possible to further increase the manufacturing yield of the semiconductor element while maintaining or improving the removal performance of the modified photoresist and the ashing residue of the photoresist. The lower limit of the ratio is not particularly limited, and the lower the ratio is, the more preferable, but it may be 0.001 or more, for example, in consideration of the quantification limit of the chlorine impurity measuring device.

(1.4.4 用途)
本発明の溶液製造方法により得られる溶液は例えば、半導体素子の製造工程において使用されるフォトレジストの現像液、変性フォトレジストの剥離液及び洗浄液、並びにシリコンエッチング液等の薬液として好ましく用いることができる。加えて、上記薬液を製造するための原料である濃厚液としても好ましく用いることができる。例えば、本発明の溶液製造方法により得られる有機溶媒溶液を、ヒドロキシ基を複数個有する水溶性有機溶媒(第1の有機溶媒)、もしくはヒドロキシ基を複数個有する水溶性有機溶媒以外の有機溶媒(以下において「第2の有機溶媒」ということがある。)、またはそれらの組み合わせで希釈することにより、所望の水酸化第4級アンモニウム濃度を有する薬液を得ることができる。
(14.4 Use)
The solution obtained by the solution manufacturing method of the present invention can be preferably used as, for example, a developing solution for a photoresist used in a manufacturing process of a semiconductor device, a stripping solution and a cleaning solution for a modified photoresist, and a chemical solution such as a silicon etching solution. .. In addition, it can also be preferably used as a concentrated liquid which is a raw material for producing the above-mentioned chemical solution. For example, the organic solvent solution obtained by the solution production method of the present invention is a water-soluble organic solvent having a plurality of hydroxy groups (first organic solvent) or an organic solvent other than the water-soluble organic solvent having a plurality of hydroxy groups ( In the following, it may be referred to as "second organic solvent"), or by diluting with a combination thereof, a chemical solution having a desired quaternary ammonium hydroxide concentration can be obtained.

また、本発明の溶液製造方法により得られる溶液に水を加えることにより、水分含有量が制御された各種薬液を製造することも可能である。すなわち、本発明の溶液製造方法により得られる有機溶媒溶液を、制御された水分含有量を有する薬液を製造するための原料として用いることも可能である。上記1.1.3節において説明したような工業的な規模で商業的に入手可能な水酸化第4級アンモニウム水溶液を有機溶媒で希釈するだけでは、水酸化第4級アンモニウム濃度および有機溶媒濃度が所望の範囲内である組成を有する溶液が得られない場合がある。そのような組成の水酸化第4級アンモニウム溶液を得るための原料として、本発明の溶液製造方法により得られる溶液は有用である。
例えば、シリコンエッチング液などのエッチング液は、水分含有量によってエッチング速度を制御することが求められる場合がある。そのような用途においては、薬液中の水分含有量を厳密に制御することが求められる。本発明の溶液製造方法により得られる溶液に超純水などの高純度の水を添加することにより、厳密に水分含有量が制御された溶液を得ることができる。このような用途における水の添加は、例えば、溶液中の水分含有量が溶液の全量基準で好ましくは1.0〜40質量%、より好ましくは2.0〜30質量%、更に好ましくは3.0〜20質量%となるように行うことができる。水添加後の溶液が有するべき水分含有量は、例えば、所望のエッチング速度によって決定される。水分含有量および水酸化第4級アンモニウムの濃度の両方を調整するために、有機溶媒(ヒドロキシ基を複数個有する水溶性有機溶媒(第1の有機溶媒)、もしくはヒドロキシ基を複数個有する水溶性有機溶媒以外の有機溶媒(第2の有機溶媒)、又はそれらの組み合わせ)を水とともに添加してもよい。
It is also possible to produce various chemicals having a controlled water content by adding water to the solution obtained by the solution production method of the present invention. That is, it is also possible to use the organic solvent solution obtained by the solution production method of the present invention as a raw material for producing a chemical solution having a controlled water content. Simply diluting a quaternary ammonium hydroxide aqueous solution commercially available on an industrial scale as described in Section 1.1.3 above with an organic solvent will result in a quaternary ammonium hydroxide concentration and an organic solvent concentration. In some cases, a solution having a composition within the desired range may not be obtained. The solution obtained by the solution production method of the present invention is useful as a raw material for obtaining a quaternary ammonium hydroxide solution having such a composition.
For example, an etching solution such as a silicon etching solution may be required to control the etching rate depending on the water content. In such applications, it is required to strictly control the water content in the chemical solution. By adding high-purity water such as ultrapure water to the solution obtained by the solution production method of the present invention, a solution having a strictly controlled water content can be obtained. For the addition of water in such applications, for example, the water content in the solution is preferably 1.0 to 40% by mass, more preferably 2.0 to 30% by mass, still more preferably 3. It can be carried out so as to be 0 to 20% by mass. The water content that the solution should have after water addition is determined, for example, by the desired etching rate. To adjust both the water content and the concentration of quaternary ammonium hydroxide, an organic solvent (a water-soluble organic solvent having a plurality of hydroxy groups (first organic solvent), or a water-soluble solvent having a plurality of hydroxy groups). An organic solvent other than the organic solvent (second organic solvent) or a combination thereof) may be added together with water.

<2.半導体製造用処理液組成物の製造方法>
本発明の第2の態様に係る半導体製造用処理液組成物の製造方法(以下において「組成物製造方法」ということがある。)は、水酸化第4級アンモニウム有機溶媒溶液系の半導体製造用処理液組成物(以下において「半導体製造用処理液組成物」又は単に「組成物」ということがある。)を製造する方法である。本発明の組成物製造方法は、(i)上記本発明の第2の態様に係る溶液製造方法により、水酸化第4級アンモニウムの有機溶媒溶液を得る工程(以下において「工程(i)」ということがある。)、(ii)該有機溶媒溶液中の水酸化第4級アンモニウムの濃度を把握する工程(以下において「工程(ii)」ということがある。)、及び、(iii)該有機溶媒溶液に有機溶媒を加えることにより、該有機溶媒溶液中の水酸化第4級アンモニウムの濃度を調整する工程(以下において「工程(iii)」ということがある。)、を含む。
<2. Manufacturing method of processing liquid composition for semiconductor manufacturing>
The method for producing a treatment liquid composition for semiconductor production according to the second aspect of the present invention (hereinafter, may be referred to as "composition production method") is for semiconductor production of a quaternary ammonium hydroxide organic solvent solution system. This is a method for producing a treatment liquid composition (hereinafter, may be referred to as a "treatment liquid composition for semiconductor manufacturing" or simply a "composition"). The composition production method of the present invention is (i) a step of obtaining an organic solvent solution of quaternary ammonium hydroxide by the solution production method according to the second aspect of the present invention (hereinafter referred to as "step (i)"). (Ii), (ii) a step of grasping the concentration of quaternary ammonium hydroxide in the organic solvent solution (hereinafter, may be referred to as "step (ii)"), and (iii) the organic. It includes a step of adjusting the concentration of quaternary ammonium hydroxide in the organic solvent solution by adding an organic solvent to the solvent solution (hereinafter, may be referred to as “step (iii)”).

(2.1 工程(i):溶液製造工程)
工程(i)は、上記本発明の第1の態様に係る溶液製造方法により、水酸化第4級アンモニウムの有機溶媒溶液を得る工程であり、その詳細は上記1.節で説明した通りである。
(2.1 Step (i): Solution manufacturing step)
Step (i) is a step of obtaining an organic solvent solution of quaternary ammonium hydroxide by the solution production method according to the first aspect of the present invention, and the details thereof are as described in 1. above. As explained in the section.

(2.2 工程(ii):濃度把握工程)
工程(ii)は、工程(i)で得られた溶液中の水酸化第4級アンモニウムの濃度を把握する工程である。該溶液中の水酸化第4級アンモニウムの濃度の測定は、上記本発明の第1の態様に係る溶液製造方法に関連して上記1.4.1節で説明した方法と同様の方法により好ましく行うことができる。なお、工程(i)を行った条件と同一の条件(原料混合液の組成および蒸留条件)で本発明の第1の態様に係る溶液製造方法により水酸化第4級アンモニウムの有機溶媒溶液を製造し、得られた溶液中の水酸化第4級アンモニウムの濃度を測定した実績が過去にある場合には、その過去の運転実績で測定された溶液中の水酸化第4級アンモニウム濃度を工程(i)で得られた溶液中の水酸化第4級アンモニウムの濃度とみなしてもよい。
(2.2 step (ii): concentration grasping step)
The step (ii) is a step of grasping the concentration of the quaternary ammonium hydroxide in the solution obtained in the step (i). The measurement of the concentration of quaternary ammonium hydroxide in the solution is preferably carried out by the same method as described in Section 1.4.1 above in relation to the solution production method according to the first aspect of the present invention. It can be carried out. An organic solvent solution of quaternary ammonium hydroxide is produced by the solution production method according to the first aspect of the present invention under the same conditions (composition of raw material mixture and distillation conditions) as in step (i). Then, if there is a record of measuring the concentration of quaternary ammonium hydroxide in the obtained solution in the past, the quaternary ammonium hydroxide concentration in the solution measured in the past operation record is used in the step (. It may be regarded as the concentration of quaternary ammonium hydroxide in the solution obtained in i).

溶液中の水酸化第4級アンモニウムの濃度は、電位差滴定装置、液体クロマトグラフ等の商業的に入手可能な測定装置によって正確に測定することが可能である。これらの測定手段は単独で用いてもよく、組み合わせて用いてもよい。測定に用いる試料としては、溶液から採取した試料をそのまま用いてもよく、溶液から採取した試料を溶媒(例えば水等。)で正確に希釈した希釈試料を用いてもよい。 The concentration of quaternary ammonium hydroxide in the solution can be accurately measured by a commercially available measuring device such as a potentiometric titrator or a liquid chromatograph. These measuring means may be used alone or in combination. As the sample used for the measurement, a sample collected from the solution may be used as it is, or a diluted sample obtained by accurately diluting the sample collected from the solution with a solvent (for example, water or the like) may be used.

電位差滴定装置は、JIS K0113に規定の電位差滴定法により測定を行う装置である。自動で測定を行うことが可能な電位差滴定装置が商業的に入手可能であり、好ましく用いることができる。電位差滴定法は、被滴定溶液中の目的成分の濃度(活量)に応答する指示電極と参照電極との間の電極電位差の変化に基づいて、容量分析の当量点を決定する、電気化学的測定法である。
電位差滴定装置は、被滴定溶液が入れられる滴定槽と、滴定槽に標準溶液を加えるためのビュレットと、溶液中に入れるべき指示電極および参照電極と、両電極間の電位差を測定するための電位差計とを備えてなる。電位差滴定装置を用いた測定は例えば以下のように行われる。被滴定溶液を滴定槽に入れ、適当な指示電極および参照電極をその中に差し入れて、両電極間の電位差を電位差計によって測定する。次に所定量の標準溶液をビュレットから滴定槽中に滴下し、よく撹拌して標準溶液と被滴定溶液とを反応させた後、両極間の電位差を測定する。この操作を繰り返して、標準溶液の添加量に対応する両極間の電位差を記録することにより、電位差−標準溶液添加量曲線(以下において「電位差滴定曲線」ということがある。)が得られる。得られた電位差滴定曲線において、電位差が急変する点に対応する標準溶液添加量を求めることにより、滴定の終点を決定できる。滴定の終点までに滴下した標準溶液の添加量および濃度、ならびに滴定反応の反応モル比などから、被滴定溶液中の目的成分の濃度を算出できる。水酸化第4級アンモニウムの濃度を測定する場合、標準溶液としては通常、硫酸、塩酸などの酸(例えば1.0規定以下)が用いられる。溶液が水酸化第4級アンモニウムを1種類のみ含む場合には、電位差滴定法により溶液中の水酸化第4級アンモニウム濃度(mol/L)を迅速かつ簡便に測定できる。また、溶液が2種以上の水酸化第4級アンモニウムを含む場合であっても、溶液中の水酸化第4級アンモニウムの合計濃度(mol/L)は、電位差滴定法により迅速かつ簡便に測定できる。
The potentiometric titration device is a device that performs measurement by the potentiometric titration method specified in JIS K0113. Potentiometric titrators capable of performing automatic measurements are commercially available and can be preferably used. Potentiometric titration is an electrochemical determination of the equivalent point of volumetric analysis based on the change in electrode potential difference between the reference electrode and the reference electrode in response to the concentration (activity) of the component of interest in the titrated solution. It is a measurement method.
The potentiometric titrator is a titration tank in which the titration solution is placed, a burette for adding a standard solution to the titration tank, an indicator electrode and a reference electrode to be placed in the solution, and a potential difference for measuring the potential difference between the two electrodes. It is equipped with a total. The measurement using the potentiometric titrator is performed as follows, for example. The titration solution is placed in a titration tank, an appropriate reference electrode and reference electrode are inserted therein, and the potential difference between the two electrodes is measured by a potentiometer. Next, a predetermined amount of the standard solution is dropped from the burette into the titration tank, and after stirring well to react the standard solution and the titration solution, the potential difference between the two poles is measured. By repeating this operation and recording the potential difference between the two poles corresponding to the addition amount of the standard solution, a potential difference-standard solution addition amount curve (hereinafter, may be referred to as “potential difference titration curve”) can be obtained. In the obtained potential difference titration curve, the end point of titration can be determined by obtaining the amount of the standard solution added corresponding to the point where the potential difference suddenly changes. The concentration of the target component in the titration solution can be calculated from the addition amount and concentration of the standard solution dropped up to the end point of the titration, the reaction molar ratio of the titration reaction, and the like. When measuring the concentration of quaternary ammonium hydroxide, an acid such as sulfuric acid or hydrochloric acid (for example, 1.0 specified or less) is usually used as the standard solution. When the solution contains only one type of quaternary ammonium hydroxide, the concentration of quaternary ammonium hydroxide (mol / L) in the solution can be measured quickly and easily by the potentiometric titration method. Further, even when the solution contains two or more kinds of quaternary ammonium hydroxide, the total concentration (mol / L) of the quaternary ammonium hydroxide in the solution can be measured quickly and easily by the potentiometric titration method. it can.

2種以上の水酸化第4級アンモニウムを含む溶液中の水酸化第4級アンモニウムの混合比が未知である場合には、液体クロマトグラフィーを用いることにより溶液中の水酸化第4級アンモニウムの混合モル比を正確に測定できる。例えば、それぞれの水酸化第4級アンモニウムについて濃度が既知の標準試料を調製し(標準試料中の水酸化第4級アンモニウム濃度(mol/L)は電位差滴定法により正確に測定できる);標準試料を複数の異なる混合比で混合して得られる混合物のそれぞれについて液体クロマトグラフィーによる測定を行って、クロマトグラム中のピーク強度の比を混合比に対してプロットすることにより検量線を作成し;混合比が未知の2種以上の水酸化第4級アンモニウムを含む水酸化第4級アンモニウムの有機溶媒溶液について、液体クロマトグラフィーによる測定を行い;クロマトグラム中のピーク強度の比から検量線を用いて、溶液中の水酸化第4級アンモニウムの混合モル比を求めることができる。溶液中の水酸化第4級アンモニウムの合計濃度(mol/L)は上記の通り電位差滴定法により測定できるので、電位差滴定法による測定と液体クロマトグラフィーによる測定とを組み合わせることにより、2種以上の水酸化第4級アンモニウムを含む溶液中の各水酸化第4級アンモニウムの濃度を正確に測定することができる。
但し、2種以上の水酸化第4級アンモニウムを含む原料混合液を調製した時点で、原料混合液中の水酸化第4級アンモニウムの混合比はわかっていることが多い。さらに、工程(i)において原料混合液を薄膜蒸留に供しても水酸化第4級アンモニウムは蒸発しない。よって実際には、液体クロマトグラフィーによる測定を行う必要はない場合が多い。
When the mixing ratio of the quaternary ammonium hydroxide in the solution containing two or more kinds of quaternary ammonium hydroxide is unknown, the mixing of the quaternary ammonium hydroxide in the solution is performed by using liquid chromatography. The molar ratio can be measured accurately. For example, prepare a standard sample with a known concentration for each quaternary ammonium hydroxide (the quaternary ammonium hydroxide concentration (mol / L) in the standard sample can be accurately measured by the potential differential titration method); standard sample. Is measured by liquid chromatography for each of the mixtures obtained by mixing at multiple different mixing ratios, and a calibration curve is created by plotting the ratio of peak intensities in the chromatogram to the mixing ratio; Measurements were made by liquid chromatography on organic solvent solutions of quaternary ammonium hydroxide containing two or more quaternary ammonium hydroxides of unknown ratio; using a calibration curve from the ratio of peak intensities in the chromatogram. , The mixed molar ratio of quaternary ammonium hydroxide in the solution can be determined. Since the total concentration (mol / L) of quaternary ammonium hydroxide in the solution can be measured by the potential differential titration method as described above, two or more types can be obtained by combining the measurement by the potential differential titration method and the measurement by liquid chromatography. The concentration of each quaternary ammonium hydroxide in a solution containing quaternary ammonium hydroxide can be accurately measured.
However, when a raw material mixture containing two or more types of quaternary ammonium hydroxide is prepared, the mixing ratio of the quaternary ammonium hydroxide in the raw material mixture is often known. Further, even if the raw material mixture is subjected to thin film distillation in step (i), the quaternary ammonium hydroxide does not evaporate. Therefore, in practice, it is often not necessary to perform measurement by liquid chromatography.

上記説明した測定方法は、本発明の第1の態様に係る組成物中の水酸化第4級アンモニウムの濃度の測定、及び、原料混合液中の水酸化第4級アンモニウムの濃度の測定にも適用できる。 The measuring method described above can also be used for measuring the concentration of quaternary ammonium hydroxide in the composition according to the first aspect of the present invention and measuring the concentration of quaternary ammonium hydroxide in the raw material mixture. Applicable.

(2.3 工程(iii):希釈工程)
工程(iii)は、工程(i)で得られた溶液に有機溶媒を加えることにより、該溶液中の水酸化第4級アンモニウムの濃度を調整する工程である。すなわち、工程(i)で得られた溶液を有機溶媒で希釈する工程である。工程(i)〜(iii)を経ることにより、半導体製造用処理液組成物が製造される。
(2.3 step (iii): dilution step)
Step (iii) is a step of adjusting the concentration of quaternary ammonium hydroxide in the solution by adding an organic solvent to the solution obtained in step (i). That is, it is a step of diluting the solution obtained in the step (i) with an organic solvent. By going through the steps (i) to (iii), a processing liquid composition for semiconductor manufacturing is produced.

(2.3.1 希釈溶媒)
工程(iii)において用いる有機溶媒(以下において「希釈溶媒」ということがある。)としては、上記工程(i)で得られた溶液に含まれる第1の有機溶媒と混合可能な有機溶媒を用いることができる。好ましい希釈溶媒の例としては、本発明の第1の態様に係る溶液製造方法に関連して上記1.1.2節において説明した、ヒドロキシ基を複数個有する水溶性有機溶媒(第1の有機溶媒)を挙げることができ、その好ましい態様についても上記同様である。一の実施形態において、工程(i)で得られた溶液に含まれる第1の有機溶媒と同一の水溶性有機溶媒を、希釈溶媒として特に好ましく用いることができる。
また本発明の第2の態様に係る組成物製造方法により製造される組成物は、溶媒として、ヒドロキシ基を複数個有する水溶性有機溶媒(第1の有機溶媒)に加えて、ヒドロキシ基を複数個有する水溶性有機溶媒以外の有機溶媒(第2の有機溶媒)をさらに含んでいてもよい。このような第2の有機溶媒を含む組成物を得るために、工程(iii)における希釈溶媒として、第1の有機溶媒と、第2の有機溶媒とを組み合わせて用いてもよい。第2の有機溶媒としては、例えば、半導体製造用処理液組成物に配合される有機溶媒として既知の有機溶媒を挙げることができる。第2の有機溶媒の好ましい例としては、メタノール、エタノール、1−プロパノール、2−プロパノール、n−ブタノールなどの、ヒドロキシ基を1個のみ有する水溶性有機溶媒(水溶性1価アルコール)を挙げることができる。これらのヒドロキシ基を1個のみ有する水溶性1価アルコールは、例えば組成物の粘度を調整するために好ましく用いることができる。
(2.3.1 Diluted solvent)
As the organic solvent used in the step (iii) (hereinafter, may be referred to as “diluting solvent”), an organic solvent that can be mixed with the first organic solvent contained in the solution obtained in the above step (i) is used. be able to. As an example of a preferable dilution solvent, a water-soluble organic solvent having a plurality of hydroxy groups (first organic) described in Section 1.1.2 above in relation to the solution production method according to the first aspect of the present invention. The solvent) can be mentioned, and the same applies to the preferred embodiment thereof. In one embodiment, the same water-soluble organic solvent as the first organic solvent contained in the solution obtained in step (i) can be particularly preferably used as the diluting solvent.
Further, the composition produced by the composition production method according to the second aspect of the present invention contains a plurality of hydroxy groups as a solvent in addition to a water-soluble organic solvent having a plurality of hydroxy groups (first organic solvent). An organic solvent other than the water-soluble organic solvent (second organic solvent) may be further contained. In order to obtain a composition containing such a second organic solvent, the first organic solvent and the second organic solvent may be used in combination as the diluting solvent in the step (iii). As the second organic solvent, for example, an organic solvent known as an organic solvent to be blended in a processing liquid composition for semiconductor production can be mentioned. Preferred examples of the second organic solvent include water-soluble organic solvents (water-soluble monohydric alcohols) having only one hydroxy group, such as methanol, ethanol, 1-propanol, 2-propanol, and n-butanol. Can be done. A water-soluble monohydric alcohol having only one of these hydroxy groups can be preferably used, for example, to adjust the viscosity of the composition.

本発明の組成物製造方法により製造される組成物中の全有機溶媒に占める、第1の有機溶媒の割合は、有機溶媒全量基準で50質量%以上であることが好ましく、75質量%以上であることがより好ましく、95質量%以上であることが更に好ましく、実質的に100質量%であることが特に好ましい。ここで、第1の有機溶媒が組成物中の全有機溶媒の「実質的に100質量%」を占めるとは、組成物中の全有機溶媒が上記第1の有機溶媒のみからなるか、又は、組成物中の全有機溶媒が上記第1の有機溶媒と不可避的不純物とからなることを意味する。 The ratio of the first organic solvent to the total organic solvent in the composition produced by the composition production method of the present invention is preferably 50% by mass or more, preferably 75% by mass or more, based on the total amount of the organic solvent. It is more preferably 95% by mass or more, and it is particularly preferable that it is substantially 100% by mass. Here, when the first organic solvent occupies "substantially 100% by mass" of the total organic solvent in the composition, the total organic solvent in the composition is composed of only the first organic solvent, or , Means that the total organic solvent in the composition comprises the first organic solvent and unavoidable impurities.

工程(iii)においては、製造される組成物中の各成分の濃度が所望の範囲内となるように、希釈溶媒を構成する各有機溶媒の添加量を決定することができる。 In the step (iii), the amount of each organic solvent constituting the diluting solvent can be determined so that the concentration of each component in the produced composition is within a desired range.

希釈溶媒中の水分含有量は、希釈溶媒全量基準で1.0質量%以下であり、好ましくは0.5質量%以下、より好ましくは0.3質量%以下である。希釈溶媒中の水分含有量が上記上限値以下であることにより、例えば剥離液や洗浄液の用途においては、得られる組成物の変性フォトレジスト及びフォトレジストのアッシング残渣の除去性能を高めるとともに、金属材料および無機質基体材料に対する腐食性を低減することが可能になる。希釈溶媒中の水分含有量の下限は特に制限されるものではないが、例えば0.05質量%以上であり得る。 The water content in the diluting solvent is 1.0% by mass or less, preferably 0.5% by mass or less, and more preferably 0.3% by mass or less based on the total amount of the diluting solvent. When the water content in the diluting solvent is not more than the above upper limit value, for example, in the use of a stripping solution or a cleaning solution, the performance of removing the modified photoresist of the obtained composition and the ashing residue of the photoresist is improved, and the metal material is used. And it becomes possible to reduce the corrosiveness to the inorganic substrate material. The lower limit of the water content in the diluting solvent is not particularly limited, but may be, for example, 0.05% by mass or more.

希釈溶媒中の金属不純物の含有量は、Na、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、及びZnのそれぞれについて、希釈溶媒全量基準で100質量ppb以下であり、好ましくは50質量ppb以下、より好ましくは20質量ppb以下である。本明細書において、希釈溶媒中の金属不純物の含有量は、0価の金属であるか金属イオンであるかに関わらず、当該金属元素の総含有量を意味する。 The content of metal impurities in the diluting solvent is 100 mass ppb or less based on the total amount of the diluting solvent for each of Na, Mg, Al, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, and Zn. It is preferably 50 mass ppb or less, and more preferably 20 mass ppb or less. In the present specification, the content of metal impurities in the diluting solvent means the total content of the metal element regardless of whether it is a zero-valent metal or a metal ion.

希釈溶媒中のCl(塩素不純物)の含有量は、希釈溶媒全量基準で100質量ppb以下であり、好ましくは80質量ppb以下、より好ましくは50質量ppb以下である。本明細書において、希釈溶媒中の塩素不純物の含有量は、塩素元素の総含有量を意味する。なお希釈溶媒中において、塩素不純物は通常、塩化物イオン(Cl)の形で存在する。 The content of Cl (chlorine impurities) in the diluting solvent is 100 mass ppb or less, preferably 80 mass ppb or less, and more preferably 50 mass ppb or less based on the total amount of the diluted solvent. In the present specification, the content of chlorine impurities in the diluting solvent means the total content of chlorine elements. In the diluting solvent, chlorine impurities are usually present in the form of chloride ions (Cl ).

希釈溶媒中の金属不純物の含有量は、誘導結合プラズマ質量分析計(ICP−MS)等の微量分析装置により測定可能である。また塩素不純物の含有量は、イオンクロマトグラフィー等の微量分析装置により測定可能である。 The content of metal impurities in the diluting solvent can be measured by a microanalyzer such as an inductively coupled plasma mass spectrometer (ICP-MS). The content of chlorine impurities can be measured by a trace analyzer such as ion chromatography.

(2.3.2 希釈条件)
工程(iii)において、工程(i)で得られた溶液に加える希釈溶媒の量は、製造すべき半導体製造用処理液組成物の水酸化第4級アンモニウム濃度と、工程(i)で得られた溶液中の水酸化第4級アンモニウムの濃度とから決定することができる。
(2.3.2 Dilution conditions)
In the step (iii), the amount of the diluting solvent added to the solution obtained in the step (i) is obtained by the concentration of the quaternary ammonium hydroxide of the treatment liquid composition for semiconductor production to be produced and the quaternary ammonium hydroxide concentration in the step (i). It can be determined from the concentration of quaternary ammonium hydroxide in the solution.

(2.4 半導体製造用処理液組成物)
本発明の第2の態様に係る組成物製造方法により製造される半導体製造用処理液組成物は、上記説明した、ヒドロキシ基を複数個有する水溶性有機溶媒、および、水酸化第4級アンモニウムを含んでなる。
(2.4 Processing liquid composition for semiconductor manufacturing)
The treatment liquid composition for semiconductor production produced by the composition production method according to the second aspect of the present invention contains the above-described water-soluble organic solvent having a plurality of hydroxy groups and quaternary ammonium hydroxide. Including.

(2.4.1 水酸化第4級アンモニウム含有量)
一の実施形態において、組成物中の水酸化第4級アンモニウムの含有量は、組成物全量基準で好ましくは5.0質量%以上、より好ましくは8.0質量%以上であり得る。組成物中の水酸化第4級アンモニウムの含有量が上記下限値以上であることにより、組成物の流通コストを節約できる。当該含有量の上限値は特に制限されるものではないが、一の実施形態において72質量%以下、他の実施形態において55質量%以下であり得る。組成物中の水酸化第4級アンモニウムの含有量が上記上限値以下であることにより、組成物の高粘度化が抑制されるので、組成物を使用する際のハンドリング、送液、混合等が容易になる。
(2.4.1 Quaternary ammonium hydroxide content)
In one embodiment, the content of the quaternary ammonium hydroxide in the composition can be preferably 5.0% by mass or more, more preferably 8.0% by mass or more based on the total amount of the composition. When the content of the quaternary ammonium hydroxide in the composition is at least the above lower limit value, the distribution cost of the composition can be saved. The upper limit of the content is not particularly limited, but may be 72% by mass or less in one embodiment and 55% by mass or less in another embodiment. When the content of quaternary ammonium hydroxide in the composition is not more than the above upper limit value, the increase in viscosity of the composition is suppressed, so that handling, liquid feeding, mixing, etc. when using the composition can be performed. It will be easier.

組成物中の水酸化第4級アンモニウムの濃度は、電位差滴定装置、液体クロマトグラフィー等によって正確に測定することが可能である。これらの測定手段は単独で用いてもよく、組み合わせて用いてもよい。 The concentration of quaternary ammonium hydroxide in the composition can be accurately measured by a potentiometric titrator, liquid chromatography or the like. These measuring means may be used alone or in combination.

一の実施形態において、組成物中の水酸化第4級アンモニウムの含有量は、2.38〜25.0質量%であり得る。一の好ましい実施形態において、水酸化第4級アンモニウムとしてTMAHを用いることができ、組成物中のTMAHの含有量は、組成物全量基準で2.38〜25.0質量%とすることができる。 In one embodiment, the content of quaternary ammonium hydroxide in the composition can be 2.38-25.0% by weight. In one preferred embodiment, TMAH can be used as the quaternary ammonium hydroxide, and the content of TMAH in the composition can be 2.38 to 25.0% by mass based on the total amount of the composition. ..

(2.4.2 組成物中の水分含有量)
組成物中の水分含有量は、組成物全量基準で1.0質量%以下であり、好ましくは0.5質量%以下、より好ましくは0.3質量%以下である。組成物中の水分含有量が上記上限値以下であることにより、変性フォトレジスト及びフォトレジストのアッシング残渣の除去性能を高めるとともに、金属材料および無機質基体材料に対する腐食性を低減することが可能になる。組成物中の水分含有量の下限は特に制限されるものではないが、例えば0.05質量%以上であり得る。
(2.4.2 Moisture content in composition)
The water content in the composition is 1.0% by mass or less, preferably 0.5% by mass or less, and more preferably 0.3% by mass or less based on the total amount of the composition. When the water content in the composition is not more than the above upper limit value, it is possible to improve the removal performance of the modified photoresist and the ashing residue of the photoresist and reduce the corrosiveness to the metal material and the inorganic substrate material. .. The lower limit of the water content in the composition is not particularly limited, but may be, for example, 0.05% by mass or more.

組成物中の水分量は、本発明の第1の態様に係る溶液製造方法に関連して上記1.4.2節で説明した方法と同様の方法により好ましく測定できる。 The amount of water in the composition can be preferably measured by the same method as described in Section 1.4.2 above in relation to the solution production method according to the first aspect of the present invention.

組成物中の水分含有量(単位:質量%)の、組成物中の水酸化第4級アンモニウム含有量(単位:質量%)に対する比(水分含有量/水酸化第4級アンモニウム含有量)は、好ましくは0.42以下、より好ましくは0.21以下、更に好ましくは0.10以下である。当該比が上記上限値以下であることにより、変性フォトレジスト及びフォトレジストのアッシング残渣の除去性能を維持ないし向上しながら、金属材料および無機質基体材料に対する腐食性をさらに低減することが可能になる。当該比の下限は特に制限されるものではないが、例えば0.0007以上であり得る。 The ratio (water content / quaternary ammonium hydroxide content) of the water content (unit: mass%) in the composition to the quaternary ammonium hydroxide content (unit: mass%) in the composition is It is preferably 0.42 or less, more preferably 0.21 or less, still more preferably 0.10 or less. When the ratio is not more than the above upper limit value, it becomes possible to further reduce the corrosiveness to the metal material and the inorganic substrate material while maintaining or improving the removing performance of the modified photoresist and the ashing residue of the photoresist. The lower limit of the ratio is not particularly limited, but may be, for example, 0.0007 or more.

(2.4.3 組成物中の不純物)
組成物中の金属不純物の含有量は、Na、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、及びZnのそれぞれについて、組成物全量基準で100質量ppb以下であり、好ましくは50質量ppb以下、より好ましくは20質量ppb以下である。本明細書において、組成物中の金属不純物の含有量は、0価の金属であるか金属イオンであるかに関わらず、当該金属元素の総含有量を意味する。
(2.4.3 Impurities in composition)
The content of metal impurities in the composition is 100 mass ppb or less based on the total amount of the composition for each of Na, Mg, Al, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, and Zn. It is preferably 50 mass ppb or less, and more preferably 20 mass ppb or less. In the present specification, the content of metal impurities in the composition means the total content of the metal element regardless of whether it is a zero-valent metal or a metal ion.

組成物中の塩素不純物(Cl)の含有量は、組成物全量基準で100質量ppb以下であり、好ましくは80質量ppb以下、より好ましくは50質量ppb以下である。本明細書において、組成物中の塩素不純物の含有量は、塩素元素の総含有量を意味する。なお組成物中において、塩素不純物は通常、塩化物イオン(Cl)の形で存在する。 The content of chlorine impurities (Cl) in the composition is 100 mass ppb or less, preferably 80 mass ppb or less, and more preferably 50 mass ppb or less based on the total amount of the composition. In the present specification, the content of chlorine impurities in the composition means the total content of chlorine elements. In the composition, chlorine impurities are usually present in the form of chloride ions (Cl ).

組成物中の金属不純物の含有量は、誘導結合プラズマ質量分析計(ICP−MS)等の微量分析装置により測定可能である。また塩素不純物の含有量は、イオンクロマトグラフィー等の微量分析装置により測定可能である。 The content of metal impurities in the composition can be measured by a microanalyzer such as an inductively coupled plasma mass spectrometer (ICP-MS). The content of chlorine impurities can be measured by a trace analyzer such as ion chromatography.

組成物中の上記金属不純物の含有量(単位:質量ppb)の、組成物中の水酸化第4級アンモニウム含有量(単位:質量%)に対する比(金属不純物の含有量/水酸化第4級アンモニウム含有量)は、上記金属元素のそれぞれについて好ましくは42以下、より好ましくは21以下、更に好ましくは10以下である。当該比が上記上限値以下であることにより、変性フォトレジスト及びフォトレジストのアッシング残渣の除去性能を維持ないし向上しながら、半導体素子の製造歩留りをさらに高めることが可能になる。当該比の下限は特に制限されるものではなく、低いほど好ましいが、金属不純物の測定装置の定量限界などを考慮すると、例えば0.0001以上であり得る。 The ratio of the content of the above metal impurities in the composition (unit: mass ppb) to the content of quaternary ammonium hydroxide (unit: mass%) in the composition (content of metal impurities / quaternary hydroxide). The ammonium content) is preferably 42 or less, more preferably 21 or less, still more preferably 10 or less for each of the above metal elements. When the ratio is not more than the above upper limit value, it is possible to further increase the manufacturing yield of the semiconductor element while maintaining or improving the removal performance of the modified photoresist and the ashing residue of the photoresist. The lower limit of the ratio is not particularly limited, and the lower the ratio, the more preferable, but it may be 0.0001 or more, for example, in consideration of the quantification limit of the metal impurity measuring device.

組成物中の塩素不純物の含有量(単位:質量ppb)の、組成物中の水酸化第4級アンモニウム含有量(単位:質量%)に対する比(塩素含有量/水酸化第4級アンモニウム含有量)は、好ましくは42以下、より好ましくは34以下、更に好ましくは21以下である。当該比が上記上限値以下であることにより、変性フォトレジスト及びフォトレジストのアッシング残渣の除去性能を維持ないし向上しながら、半導体素子の製造歩留りをさらに高めることが可能になる。当該比の下限は特に制限されるものではなく、低いほど好ましいが、塩素不純物の測定装置の定量限界などを考慮すると、例えば0.001以上であり得る。 The ratio (chlorine content / quaternary ammonium hydroxide content) of the content of chlorine impurities in the composition (unit: mass ppb) to the quaternary ammonium hydroxide content (unit: mass%) in the composition. ) Is preferably 42 or less, more preferably 34 or less, still more preferably 21 or less. When the ratio is not more than the above upper limit value, it is possible to further increase the manufacturing yield of the semiconductor element while maintaining or improving the removal performance of the modified photoresist and the ashing residue of the photoresist. The lower limit of the ratio is not particularly limited, and the lower the ratio is, the more preferable, but it may be 0.001 or more, for example, in consideration of the quantification limit of the chlorine impurity measuring device.

(2.4.4 用途)
本発明の組成物製造方法により製造される組成物は例えば、半導体素子の製造工程において使用されるフォトレジストの現像液、変性レジストの剥離液及び洗浄液、並びにシリコンエッチング液等の薬液として好ましく用いることができる。
(2.4.4 use)
The composition produced by the composition manufacturing method of the present invention is preferably used as, for example, a developer of a photoresist used in a manufacturing process of a semiconductor device, a stripping solution and a cleaning solution of a modified resist, and a chemical solution such as a silicon etching solution. Can be done.

なお半導体製造の分野においては、上記各種薬液そのものだけでなく、溶媒等で希釈することにより上記各種薬液を調製するために用いられる濃厚液もまた処理液と称される。本明細書においても、上記各種薬液としてそのまま使用可能な濃度を有する組成物だけでなく、このような希釈を前提とした濃厚液もまた「半導体製造用処理液組成物」に該当するものとする。本発明の組成物製造方法により得られる組成物は、上記濃厚液としても好ましく用いることができる。例えば、本発明の組成物製造方法により得られる組成物を上記第1の有機溶媒、上記第2の有機溶媒、水、もしくは水酸化第4級アンモニウム水溶液、又はそれらの組み合わせによって希釈(濃度調整)することにより、所望の水酸化第4級アンモニウム濃度及び溶媒組成を有する薬液を得ることができる。 In the field of semiconductor manufacturing, not only the above-mentioned various chemicals themselves, but also a concentrated solution used for preparing the above-mentioned various chemicals by diluting with a solvent or the like is also referred to as a treatment solution. Also in the present specification, not only the composition having a concentration that can be used as it is as the above-mentioned various chemical solutions, but also the concentrated solution premised on such dilution also falls under the category of "semiconductor manufacturing processing solution composition". .. The composition obtained by the composition production method of the present invention can also be preferably used as the above-mentioned concentrated liquid. For example, the composition obtained by the composition production method of the present invention is diluted with the first organic solvent, the second organic solvent, water, a quaternary ammonium hydroxide aqueous solution, or a combination thereof (concentration adjustment). By doing so, a chemical solution having a desired quaternary ammonium hydroxide concentration and solvent composition can be obtained.

上記説明した本発明の組成物製造方法は、上記1.4.4節において説明したエッチング液等の、水分含有量が組成物全量基準で1.0質量%を超えるように改変した組成物(薬液)の製造にも応用できる。上記2.3節において説明した工程(iii)(希釈工程)において、必要に応じた量の水(例えば超純水など。)をさらに加えることにより、水分含有量が組成物全量基準で1.0質量%を超えるように改変した組成物を製造することが可能である。かかる改変された形態の製造方法において、工程(iii)(希釈工程)で使用する有機溶媒(希釈溶媒)は、その金属不純物および塩素不純物の濃度が上記2.3.1節で説明した範囲内である限りにおいて、その水分含有量が1.0質量%を超えていてもよい。 The composition manufacturing method of the present invention described above is a composition modified so that the water content exceeds 1.0% by mass based on the total amount of the composition, such as the etching solution described in Section 1.4.4. It can also be applied to the production of chemicals). In the step (iii) (dilution step) described in Section 2.3 above, by further adding an amount of water (for example, ultrapure water) as required, the water content is adjusted based on the total amount of the composition. It is possible to produce a composition modified to exceed 0% by mass. In the production method of such a modified form, the organic solvent (diluting solvent) used in the step (iii) (dilution step) has a concentration of metal impurities and chlorine impurities within the range described in Section 2.3.1 above. As long as it is, the water content may exceed 1.0% by mass.

以下、実施例及び比較例を用いて本発明についてさらに詳細に説明する。但し、以下の実施例は本発明を説明するための例に過ぎず、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the following examples are merely examples for explaining the present invention, and the present invention is not limited to these examples.

(測定方法)
実施例および比較例において、溶液中の水酸化第4級アンモニウムの濃度は、電位差自動滴定装置AT−610(京都電子工業製)を用いて、電位差滴定により測定した。
(Measuring method)
In Examples and Comparative Examples, the concentration of quaternary ammonium hydroxide in the solution was measured by potentiometric titration using a potentiometric titrator AT-610 (manufactured by Kyoto Electronics Co., Ltd.).

得られた溶液中の水分量は、カールフィッシャー滴定により測定した値を、検量線を用いて補正することにより得た。カールフィッシャー滴定による水分量の測定は、カールフィッシャー水分計MKA−510(京都電子工業製)を用いて行った。ガスクロマトグラフィー(以下において単に「GC」ということがある。)による水分量の測定は、島津製作所製ガスクロマトグラフGC−2014(カラム:DB-WAX(Agilent Technologies社製)、検出器:熱伝導度型検出器)を用いて行った。 The water content in the obtained solution was obtained by correcting the value measured by Karl Fischer titration using a calibration curve. The water content by Karl Fischer titration was measured using a Karl Fischer Moisture Analyzer MKA-510 (manufactured by Kyoto Electronics Industry Co., Ltd.). The measurement of water content by gas chromatography (hereinafter sometimes referred to simply as "GC") is performed by Shimadzu Gas Chromatograph GC-2014 (column: DB-WAX (manufactured by Agilent Technologies), detector: thermal conductivity). This was done using a type detector).

カールフィッシャー滴定による水分量測定値の検量線による補正は、次の(1)〜(6)の手順により行った。
(1)測定すべき溶液中の有機溶媒と同一の有機溶媒(溶液中の有機溶媒がプロピレングリコール(PG)ならプロピレングリコール、溶液中の有機溶媒がヘキシレングリコール(HG)ならヘキシレングリコール。)中の水分量をカールフィッシャー滴定により測定した。続いて、該有機溶媒に少量の水を加えることにより、水分量の異なる5種類の溶液(以下において「水/有機溶媒溶液」ということがある。)を調製した。有機溶媒に加える水の量は、水/有機溶媒溶液中の水分量が0.25〜5.0質量%の5段階(0.25質量%、0.50質量%、1.0質量%、2.0質量%、及び5.0質量%)になるように選択した。調製した5種類の水/有機溶媒溶液中の水分量をカールフィッシャー滴定により測定したところ、得られた値が有機溶媒中の水分量および加えた水の量から算出される理論値と良好な一致を示すことが確認された。
(2)上記(1)で調製した5種類の水/有機溶媒溶液のそれぞれについて、ガスクロマトグラフィー(GC)により分析を行い、水および有機溶媒のピークを含むGCチャートを得た。得られたGCチャート中の水のピークの面積を縦軸(Y)にとり、水/有機溶媒溶液中の水分量(有機溶媒中の水分量および加えた水の量から算出される理論値)を横軸(X)にとってプロットしたところ、両者は直線性の良い相関を示した。Yを目的変数、Xを説明変数として最小二乗法により回帰直線を算出することにより、GCチャート中の水のピークの面積から水分量を与える検量線(第1の検量線)を得た。
(3)標準液として、測定すべき溶液中の有機溶媒と同一の有機溶媒に、測定すべき溶液中の水酸化第4級アンモニウム(QAH)と同一のQAHの濃厚水溶液(溶液中のQAHがTMAHなら25質量%TMAH水溶液、溶液中のQAHがTEAHなら20質量%TEAH水溶液、溶液中のQAHがTPAHなら10質量%TPAH水溶液、溶液中のQAHがTBAHなら10質量%TBAH水溶液。)を少量加えることにより、5種類の混合液を調製した。有機溶媒中の水分量は上記(1)においてカールフィッシャー滴定により正確に測定されている。QAH濃厚水溶液中のQAH濃度は電位差自動滴定装置により正確に測定した(これによりQAH濃厚水溶液中の水分量も同時に決定された。)。有機溶媒とQAH濃厚水溶液との混合質量比は、混合液中の水分量が上記(1)と同じ0.25〜5.0質量%の5段階となるように選択した。
(4)標準液中の水分量をGCにより測定した。すなわち、上記(3)で調製した5種類の標準液をそれぞれガスクロマトグラフィーで分析し、上記(2)で得た第1の検量線を用いて、GCチャート中の水のピークの面積から各標準液中の水分量を得た。このGCによる水分量の測定値は、有機溶媒中の水分量、QAH濃厚水溶液中の水分量、および有機溶媒とQAH濃厚水溶液との混合質量比から算出される標準液中の水分量の理論値と良好な一致を示すことが確認された。
(5)上記(3)で調製した5種類の標準液について、それぞれカールフィッシャー滴定により水分量を測定した。各標準液について、カールフィッシャー滴定によって測定された水分量を縦軸(Y)にとり、上記(3)でGCにより測定した標準液中の水分量を横軸(X)にとってプロットした。Yを目的変数、Xを説明変数として最小二乗法により回帰直線を算出することにより、QAH及び水を含む有機溶媒溶液についてカールフィッシャー滴定による水分量測定値をGCによる水分量測定値に補正する検量線(第2の検量線)を得た。
(6)測定すべき実際の溶液の水分量をカールフィッシャー滴定によって測定し、得られた測定値を、上記(5)で得た第2の検量線を用いて、GCによって測定される水分量に補正した。
The correction of the water content measurement value by Karl Fischer titration by the calibration curve was performed according to the following procedures (1) to (6).
(1) The same organic solvent as the organic solvent in the solution to be measured (propylene glycol if the organic solvent in the solution is propylene glycol (PG), hexylene glycol if the organic solvent in the solution is hexylene glycol (HG)) The amount of water in the solution was measured by Karl Fisher titration. Subsequently, by adding a small amount of water to the organic solvent, five kinds of solutions having different water contents (hereinafter, may be referred to as "water / organic solvent solution") were prepared. The amount of water added to the organic solvent is 5 steps (0.25% by mass, 0.50% by mass, 1.0% by mass) in which the amount of water in the water / organic solvent solution is 0.25 to 5.0% by mass. It was selected to be 2.0% by mass and 5.0% by mass). When the water content in the prepared 5 types of water / organic solvent solutions was measured by Karl Fischer titration, the obtained values were in good agreement with the theoretical values calculated from the water content in the organic solvent and the amount of water added. It was confirmed that
(2) Each of the five types of water / organic solvent solutions prepared in (1) above was analyzed by gas chromatography (GC) to obtain a GC chart containing peaks of water and the organic solvent. The area of the peak of water in the obtained GC chart is taken on the vertical axis (Y), and the amount of water in the water / organic solvent solution (theoretical value calculated from the amount of water in the organic solvent and the amount of added water) is calculated. When plotted on the horizontal axis (X), both showed a good correlation with linearity. By calculating the regression line by the least squares method with Y as the objective variable and X as the explanatory variable, a calibration curve (first calibration curve) giving the amount of water was obtained from the area of the peak of water in the GC chart.
(3) As a standard solution, a concentrated aqueous solution of the same QAH as the quaternary ammonium hydroxide (QAH) in the solution to be measured (QAH in the solution is added to the same organic solvent as the organic solvent in the solution to be measured. 25% by mass TMAH aqueous solution for TMAH, 20% by mass TEAH aqueous solution if QAH in solution is TEAH, 10% by mass TPAH aqueous solution if QAH in solution is TPAH, 10% by mass TBAH aqueous solution if QAH in solution is TBAH) By adding, 5 kinds of mixed solutions were prepared. The amount of water in the organic solvent is accurately measured by Karl Fischer titration in (1) above. The QAH concentration in the QAH concentrated aqueous solution was accurately measured by a potential difference automatic titrator (the water content in the QAH concentrated aqueous solution was also determined at the same time). The mixing mass ratio of the organic solvent and the QAH concentrated aqueous solution was selected so that the amount of water in the mixed solution was 0.25 to 5.0% by mass, which was the same as in (1) above.
(4) The amount of water in the standard solution was measured by GC. That is, each of the five types of standard solutions prepared in (3) above was analyzed by gas chromatography, and the first calibration curve obtained in (2) above was used to determine the area of the peak of water in the GC chart. The amount of water in the standard solution was obtained. The measured value of the water content by GC is the theoretical value of the water content in the standard solution calculated from the water content in the organic solvent, the water content in the QAH concentrated aqueous solution, and the mixed mass ratio of the organic solvent and the QAH concentrated aqueous solution. It was confirmed that a good agreement was shown.
(5) The water content of each of the five standard solutions prepared in (3) above was measured by Karl Fischer titration. For each standard solution, the water content measured by Karl Fischer titration was plotted on the vertical axis (Y), and the water content in the standard solution measured by GC in (3) above was plotted on the horizontal axis (X). A calibration curve that corrects the water content measurement value by Karl Fischer titration to the water content measurement value by GC for an organic solvent solution containing QAH and water by calculating the regression curve by the least squares method with Y as the objective variable and X as the explanatory variable. A line (second calibration curve) was obtained.
(6) The water content of the actual solution to be measured is measured by Karl Fischer titration, and the obtained measured value is the water content measured by GC using the second calibration curve obtained in (5) above. Corrected to.

得られた溶液中の各金属不純物の含有量は、アジレントテクノロジー製ICP−MS 7500cxを用いて、誘導結合プラズマ質量分析法(ICP−MS)により測定した。得られた溶液中の塩化物イオン量は、陽イオン除去用前処理カートリッジを用いて溶液を前処理した後、サーモフィッシャーサイエンティフィック製イオンクロマトグラフィーICS−1100(カラム:Dionex(登録商標)Ionpac(登録商標)AS7陰イオン交換カラム、溶離液:添加剤含有NaOH水溶液、検出器:電気伝導度検出器)を用いて、イオン交換クロマトグラフィーにより測定した。 The content of each metal impurity in the obtained solution was measured by inductively coupled plasma mass spectrometry (ICP-MS) using ICP-MS 7500ccx manufactured by Azilent Technology. The amount of chloride ions in the obtained solution is determined by pretreating the solution using a pretreatment cartridge for removing cations, and then using Thermofisher Scientific Ion Chromatography ICS-1100 (column: Dionex® Ionpac). (Registered trademark) AS7 anion exchange column, eluent: additive-containing NaOH aqueous solution, detector: electrical conductivity detector) was used for measurement by ion exchange chromatography.

(薄膜蒸留装置)
薄膜蒸留装置としては、商業的に入手可能な流下膜式の短行程薄膜蒸留装置(UIC社製、KD−10、伝熱面積0.1m)を購入時の状態のままで又は改造して用いた。各実施例および比較例での装置構成は以下の通りである。
(Thin film distillation equipment)
As a thin film distillation apparatus, a commercially available short-stroke thin-film distillation apparatus (manufactured by UIC, KD-10, heat transfer area 0.1 m 2 ) is used as it was at the time of purchase or modified. Using. The device configurations in each example and comparative example are as follows.

装置C:図4(薄膜蒸留装置10C)に示すように、上流側から順に、原料容器31、バルブ32、配管3、原料ギアポンプ4、プレヒーター5、デガッサー6、蒸発容器(ローラーワイパー21及び内部コンデンサー22を含む)37、(残渣液側及び留出液側)流量確認用ガラス配管8及び9、(残渣液側及び留出液側)ギアポンプ10及び11、残渣液回収容器12、留出液回収容器13、真空ポンプ(ロータリーポンプ及びルーツポンプ)15、コールドトラップ14、並びにそれらを接続する他の配管類及びバルブ等を有する。 Device C: As shown in FIG. 4 (thin film distillation device 10C), the raw material container 31, the valve 32, the pipe 3, the raw material gear pump 4, the preheater 5, the degasser 6, and the evaporation container (roller wiper 21 and the inside) are arranged in this order from the upstream side. 37 (including condenser 22), glass pipes 8 and 9 for checking the flow rate (residual liquid side and distillate side), gear pumps 10 and 11 (residual liquid side and distillate side), residual liquid recovery valve 12, distillate liquid It has a recovery container 13, a vacuum pump (rotary pump and roots pump) 15, a cold trap 14, and other pipes and valves connecting them.

装置Cにおける接液部の材質については、ローラーワイパー21がPTFEとガラス繊維との複合材料により構成され、それ以外の接液部はステンレス鋼(SUS304、SUS316L、SUS316Ti、SUS630又は同等品)で構成され、残渣液回収容器12及び留出液回収容器13はPE製である。加熱面24の面積は0.1mである。 Regarding the material of the wetted part in the apparatus C, the roller wiper 21 is made of a composite material of PTFE and glass fiber, and the other wetted parts are made of stainless steel (SUS304, SUS316L, SUS316Ti, SUS630 or equivalent). The residual liquid recovery container 12 and the distillate recovery container 13 are made of PE. The area of the heating surface 24 is 0.1 m 2 .

装置A:図1(薄膜蒸留装置10A)に示すように、装置Cの構成から原料ギアポンプ4、プレヒーター5、及びデガッサー6を取り除いたほか、バルブ32をニードルバルブに変更した。 Device A: As shown in FIG. 1 (thin film distillation device 10A), the raw material gear pump 4, the preheater 5, and the degasser 6 were removed from the configuration of the device C, and the valve 32 was changed to a needle valve.

装置Aにおける接液部の材質については、原料容器31をPE製、配管33をPFA製、流量調節用のニードルバルブ32をPTFE製とした。また蒸発容器37の内部のローラーワイパー21の材質は、PTFEとガラス繊維との複合材料からPEEK製(ガラス繊維無し)に変更した。 Regarding the material of the wetted portion in the apparatus A, the raw material container 31 was made of PE, the pipe 33 was made of PFA, and the needle valve 32 for adjusting the flow rate was made of PTFE. The material of the roller wiper 21 inside the evaporation container 37 was changed from a composite material of PTFE and glass fiber to PEEK (without glass fiber).

なお装置Aの接液部に用いたPE、PFA、PTFE、及びPEEKの各樹脂から、小片サンプルを切り出し、分解処理して、ICP−MSで各樹脂中のNa、Ca、Al、Feの各金属不純物を測定した結果、いずれも1質量ppm以下であった。 A small sample was cut out from each of the PE, PFA, PTFE, and PEEK resins used for the wetted portion of the apparatus A, decomposed, and Na, Ca, Al, and Fe in each resin were subjected to ICP-MS. As a result of measuring metal impurities, all of them were 1 mass ppm or less.

装置B:図3(薄膜蒸留装置10B)に示すように、装置Aから更に、(残渣液側)流量確認用ガラス配管8を取り除いた。また、蒸発容器37の出口から残渣液回収容器12、留出液回収容器13までの配管38をそれぞれPFA製とした。 Device B: As shown in FIG. 3 (thin film distillation device 10B), the glass pipe 8 for checking the flow rate (on the residual liquid side) was further removed from the device A. Further, the pipes 38 from the outlet of the evaporation container 37 to the residual liquid recovery container 12 and the distillate recovery container 13 are made of PFA, respectively.

装置A〜Cのいずれにおいても、系内の真空度は、コールドトラップ14と真空ポンプ15との間に設けられた真空計(不図示)により測定した。 In any of the devices A to C, the degree of vacuum in the system was measured by a pressure gauge (not shown) provided between the cold trap 14 and the vacuum pump 15.

各実施例、比較例において用いた材料の略号及び入手先は以下の通りである。
25質量%TMAH水溶液:水酸化テトラメチルアンモニウム(TMAH)濃度が25質量%のTMAH水溶液(トクヤマ製)
PG:プロピレングリコール(AGC製)
HG:ヘキシレングリコール(三井化学製)
The abbreviations and sources of the materials used in each example and comparative example are as follows.
25% by mass TMAH aqueous solution: TMAH aqueous solution having a 25% by mass tetramethylammonium hydroxide (TMAH) concentration (manufactured by Tokuyama Corporation)
PG: Propylene glycol (manufactured by AGC)
HG: Hexylene glycol (manufactured by Mitsui Chemicals)

また、TEAH水溶液、TPAH水溶液、及びTBAH水溶液(いずれも和光純薬製)を、水溶液系の2槽型の電解法によってそれぞれ精製し、TEAH濃度が20質量%のTEAH水溶液(20質量%TEAH水溶液)、TPAH濃度が10質量%のTPAH水溶液(10質量%TPAH水溶液)、及びTBAH濃度が10質量%のTBAH水溶液(10質量%TBAH水溶液)をそれぞれ調製して、原料の水酸化第4級アンモニウム水溶液として用いた。また、原料の水酸化第4級アンモニウム水溶液及び水溶性有機溶媒は、室温23℃の部屋に保管し、その後、原料混合液の調製に用いた。 Further, the TEAH aqueous solution, the TPAH aqueous solution, and the TBAH aqueous solution (all manufactured by Wako Pure Chemical Industries, Ltd.) are purified by an aqueous two-tank type electrolytic method, respectively, and the TEAH aqueous solution (20 mass% TEAH aqueous solution) having a TEAH concentration of 20% by mass is purified. ), A TPAH aqueous solution having a TPAH concentration of 10% by mass (10% by mass TPAH aqueous solution), and a TBAH aqueous solution having a TBAH concentration of 10% by mass (10% by mass TBAH aqueous solution) were prepared to prepare quaternary ammonium hydroxide as a raw material. Used as an aqueous solution. The raw material quaternary ammonium hydroxide aqueous solution and the water-soluble organic solvent were stored in a room at room temperature of 23 ° C., and then used for preparing the raw material mixture.

各実施例および比較例において用いた原料混合液の金属不純物の含有量を表1に示す。表1中、「<1」は1質量ppb未満の値であったことを意味する。 Table 1 shows the content of metal impurities in the raw material mixture used in each Example and Comparative Example. In Table 1, "<1" means that the value was less than 1 mass ppb.

<比較例1>
装置C(薄膜蒸留装置10C(図4))を用いて薄膜蒸留を行うことにより、水酸化第4級アンモニウムの有機溶媒溶液を製造した。
<Comparative example 1>
An organic solvent solution of quaternary ammonium hydroxide was produced by performing thin film distillation using apparatus C (thin film distillation apparatus 10C (FIG. 4)).

装置の配管類は、予め分解、洗浄し、組み立てた後、TMAH濃度が25質量%のTMAH水溶液および超純水を交互に2回ずつ流通させることにより洗浄した。 The piping of the apparatus was disassembled, washed and assembled in advance, and then washed by alternately circulating a TMAH aqueous solution having a TMAH concentration of 25% by mass and ultrapure water twice.

25質量%TMAH水溶液4kg、PG20kgをPE製クリーンボトル内で混合して調製した原料混合液を、SUS304製の原料容器に入れた(TMAH水溶液/PG混合質量比=1/5)。プレヒーター温度70℃、蒸留容器に入る直前の原料混合液の温度68℃、蒸発容器の加熱面の温度(熱媒温度)100℃、真空度1900Pa、フィードレート7.0kg/時間(加熱面の単位面積あたりのフィードレート:70kg/時間・m)の条件で薄膜蒸留を行い、残渣液回収容器にTMAHを含むPG溶液(約8kg)を得た。各条件を表2に示す。表2中、原料混合液について「混合比」とは、水酸化第4級アンモニウム水溶液と水溶性有機溶媒との混合質量比(水酸化第4級アンモニウム水溶液/水溶性有機溶媒)を意味する。得られた溶液中のTMAH濃度、水分量、各金属不純物の含有量、及び塩化物イオン量を表3に示す。表3中、「TXAH濃度」とは水酸化第4級アンモニウム濃度を意味し、「<1」は1質量ppb未満の値であったことを意味する。 A raw material mixture prepared by mixing 4 kg of a 25 mass% TMAH aqueous solution and 20 kg of PG in a PE clean bottle was placed in a raw material container made of SUS304 (TMAH aqueous solution / PG mixed mass ratio = 1/5). Preheater temperature 70 ° C, temperature of raw material mixture immediately before entering the distillation vessel 68 ° C, temperature of the heating surface of the evaporation vessel (heat medium temperature) 100 ° C, vacuum degree 1900Pa, feed rate 7.0 kg / hour (of the heating surface) Thin film distillation was performed under the condition of feed rate per unit area: 70 kg / hour · m 2 ) to obtain a PG solution (about 8 kg) containing TMAH in a residual liquid recovery container. Each condition is shown in Table 2. In Table 2, the "mixing ratio" of the raw material mixed solution means the mixed mass ratio of the quaternary ammonium hydroxide aqueous solution and the water-soluble organic solvent (quaternary ammonium hydroxide aqueous solution / water-soluble organic solvent). Table 3 shows the TMAH concentration, the water content, the content of each metal impurity, and the chloride ion content in the obtained solution. In Table 3, "TXAH concentration" means the quaternary ammonium hydroxide concentration, and "<1" means that the value was less than 1 mass ppb.

<実施例1>
装置A(薄膜蒸留装置10A(図1))を用いて薄膜蒸留(工程(a))を行うことにより、水酸化第4級アンモニウムの有機溶媒溶液を製造した。
<Example 1>
A thin film distillation (step (a)) was carried out using the apparatus A (thin film distillation apparatus 10A (FIG. 1)) to produce an organic solvent solution of quaternary ammonium hydroxide.

装置の配管類は、予め分解、洗浄し、組み立てた後、TMAH濃度が25質量%のTMAH水溶液および超純水を交互に2回ずつ流通させることにより洗浄した(工程(b))。 The piping of the apparatus was disassembled, washed in advance, assembled, and then washed by alternately circulating a TMAH aqueous solution having a TMAH concentration of 25% by mass and ultrapure water twice (step (b)).

25質量%TMAH水溶液4kg、PG16kgをPE製クリーンボトル内で混合して調製した原料混合液を、PE製の原料容器に入れた(TMAH水溶液/PG混合質量比=1/4)。蒸留容器に入る直前の原料混合液の温度23℃、蒸発容器の加熱面の温度(熱媒温度)100℃、真空度600Pa、フィードレート10.0kg/時間(加熱面の単位面積あたりのフィードレート:100kg/時間・m)の条件で薄膜蒸留を実施することにより、残渣液回収容器にTMAHを含むPG溶液(約5kg)を得た(工程(a))。条件及び結果を表2及び表3にそれぞれ示す。 A raw material mixture prepared by mixing 4 kg of a 25 mass% TMAH aqueous solution and 16 kg of PG in a clean bottle made of PE was placed in a raw material container made of PE (TMAH aqueous solution / PG mixed mass ratio = 1/4). The temperature of the raw material mixture immediately before entering the distillation vessel is 23 ° C, the temperature of the heating surface of the evaporation vessel (heat medium temperature) is 100 ° C, the degree of vacuum is 600 Pa, and the feed rate is 10.0 kg / hour (feed rate per unit area of the heating surface). A PG solution (about 5 kg) containing TMAH was obtained in a residual liquid recovery container by performing thin film distillation under the condition of 100 kg / hour · m 2 ) (step (a)). The conditions and results are shown in Tables 2 and 3, respectively.

<実施例2>
装置A(薄膜蒸留装置10A(図1))を用いて、実施例1と同様の装置洗浄(工程(b))を行い、その後、薄膜蒸留(工程(a))を行うことにより、水酸化第4級アンモニウムの有機溶媒溶液を製造した。
<Example 2>
Hydroxide is obtained by performing the same device cleaning (step (b)) as in Example 1 using the device A (thin film distillation device 10A (FIG. 1)), and then performing thin film distillation (step (a)). An organic solvent solution of quaternary ammonium was produced.

25質量%TMAH水溶液4kg、PG16kgをPE製クリーンボトル内で混合して調製した原料混合液を、PE製の原料容器に入れた(TMAH水溶液/PG混合質量比=1/4)。蒸留容器に入る直前の原料混合液の温度23℃、蒸発容器の加熱面の温度(熱媒温度)105℃、真空度500Pa、フィードレート7.0kg/時間(加熱面の単位面積あたりのフィードレート:70kg/時間・m)の条件で薄膜蒸留を実施し、残渣液回収容器にTMAHを含むPG溶液(約4kg)を得た。条件及び結果を表2及び表3にそれぞれ示す。 A raw material mixture prepared by mixing 4 kg of a 25 mass% TMAH aqueous solution and 16 kg of PG in a clean bottle made of PE was placed in a raw material container made of PE (TMAH aqueous solution / PG mixed mass ratio = 1/4). The temperature of the raw material mixture immediately before entering the distillation vessel is 23 ° C, the temperature of the heating surface of the evaporation vessel (heat medium temperature) is 105 ° C, the degree of vacuum is 500 Pa, and the feed rate is 7.0 kg / hour (feed rate per unit area of the heating surface). Thin film distillation was carried out under the condition of: 70 kg / hour · m 2 ) to obtain a PG solution (about 4 kg) containing TMAH in a residual liquid recovery container. The conditions and results are shown in Tables 2 and 3, respectively.

<実施例3>
装置B(薄膜蒸留装置10B(図3))を用いて、実施例1と同様の装置洗浄(工程(b))を行い、その後、薄膜蒸留(工程(a))を行うことにより、水酸化第4級アンモニウムの有機溶媒溶液を製造した。
<Example 3>
Hydroxide is obtained by performing the same device cleaning (step (b)) as in Example 1 using the device B (thin film distillation device 10B (FIG. 3)), and then performing thin film distillation (step (a)). An organic solvent solution of quaternary ammonium was produced.

25質量%TMAH水溶液4kg、PG16kgをPE製クリーンボトル内で混合して調製した原料混合液を、PE製の原料容器に入れた(TMAH水溶液/PG混合質量比=1/4)。蒸留容器に入る直前の原料混合液の温度23℃、蒸発容器の加熱面の温度(熱媒温度)105℃、真空度500Pa、フィードレート5.0kg/時間(加熱面の単位面積あたりのフィードレート:50kg/時間・m)の条件で、薄膜蒸留を実施し、残渣液回収容器にTMAHを含むPG溶液(約4kg)を得た。条件及び結果を表2及び表3にそれぞれ示す。 A raw material mixture prepared by mixing 4 kg of a 25 mass% TMAH aqueous solution and 16 kg of PG in a clean bottle made of PE was placed in a raw material container made of PE (TMAH aqueous solution / PG mixed mass ratio = 1/4). The temperature of the raw material mixture immediately before entering the distillation vessel is 23 ° C, the temperature of the heating surface of the evaporation vessel (heat medium temperature) is 105 ° C, the degree of vacuum is 500 Pa, and the feed rate is 5.0 kg / hour (feed rate per unit area of the heating surface). Thin film distillation was carried out under the condition of: 50 kg / hour · m 2 ) to obtain a PG solution (about 4 kg) containing TMAH in a residual liquid recovery container. The conditions and results are shown in Tables 2 and 3, respectively.

<実施例4>
真空度を300Paとした以外は実施例3と同様にして、薄膜蒸留を行うことにより、残渣液回収容器にTMAHを含むPG溶液(約3kg)を得た。条件及び結果を表2及び表3にそれぞれ示す。
<Example 4>
A PG solution (about 3 kg) containing TMAH was obtained in a residual liquid recovery container by performing thin film distillation in the same manner as in Example 3 except that the degree of vacuum was set to 300 Pa. The conditions and results are shown in Tables 2 and 3, respectively.

<実施例5>
加熱面の温度(熱媒温度)80℃、真空度16Pa、フィードレート2.5kg/時間(加熱面の単位面積あたりのフィードレート:25kg/時間・m)とした以外は実施例3と同様にして、薄膜蒸留を行うことにより、残渣液回収容器にTMAHを含むPG溶液(約4kg)を得た。条件及び結果を表2及び表3にそれぞれ示す。
<Example 5>
Same as Example 3 except that the temperature of the heating surface (heat medium temperature) was 80 ° C., the degree of vacuum was 16 Pa, and the feed rate was 2.5 kg / hour (feed rate per unit area of the heating surface: 25 kg / hour · m 2 ). By performing thin film distillation, a PG solution (about 4 kg) containing TMAH was obtained in a residual liquid recovery container. The conditions and results are shown in Tables 2 and 3, respectively.

<実施例6>
装置B(薄膜蒸留装置10B(図3))を用いて、実施例1と同様の装置洗浄を行い(工程(b))、その後、薄膜蒸留(工程(a))を行うことにより、水酸化第4級アンモニウムの有機溶媒溶液を製造した。
<Example 6>
Hydroxide is obtained by performing the same device cleaning as in Example 1 (step (b)) using the device B (thin film distillation device 10B (FIG. 3)), and then performing thin film distillation (step (a)). An organic solvent solution of quaternary ammonium was produced.

25質量%TMAH水溶液4kg、PG8kgをPE製クリーンボトル内で混合して調製した原料混合液を、PE製の原料容器に入れた(TMAH水溶液/PG混合質量比=1/2)。蒸留容器に入る直前の原料混合液の温度23℃、蒸発容器の加熱面の温度(熱媒温度)105℃、真空度16Pa、フィードレート2.5kg/時間(加熱面の単位面積あたりのフィードレート:25kg/時間・m)の条件で、薄膜蒸留を実施し、残渣液回収容器にTMAHを含むPG溶液(約3kg)を得た。条件及び結果を表2及び表3にそれぞれ示す。 A raw material mixture prepared by mixing 4 kg of 25 mass% TMAH aqueous solution and 8 kg of PG in a clean bottle made of PE was placed in a raw material container made of PE (TMAH aqueous solution / PG mixed mass ratio = 1/2). The temperature of the raw material mixture immediately before entering the distillation vessel is 23 ° C, the temperature of the heating surface of the evaporation vessel (heat medium temperature) is 105 ° C, the degree of vacuum is 16 Pa, and the feed rate is 2.5 kg / hour (feed rate per unit area of the heating surface). Thin film distillation was carried out under the condition of 25 kg / hour · m 2 ) to obtain a PG solution (about 3 kg) containing TMAH in a residual liquid recovery container. The conditions and results are shown in Tables 2 and 3, respectively.

<実施例7>
装置B(薄膜蒸留装置10B(図3))を用いて、実施例1と同様の装置洗浄(工程(b))を行い、その後、薄膜蒸留(工程(a))を行うことにより、水酸化第4級アンモニウムの有機溶媒溶液を製造した。
<Example 7>
Hydroxide is obtained by performing the same device cleaning (step (b)) as in Example 1 using the device B (thin film distillation device 10B (FIG. 3)), and then performing thin film distillation (step (a)). An organic solvent solution of quaternary ammonium was produced.

25質量%TMAH水溶液4kg、HG16kgをPE製クリーンボトル内で混合して調製した原料混合液を、PE製の原料容器に入れた(TMAH水溶液/HG混合質量比=1/4)。蒸留容器に入る直前の原料混合液の温度23℃、蒸発容器の加熱面の温度(熱媒温度)105℃、真空度500Pa、フィードレート7.0kg/時間(加熱面の単位面積あたりのフィードレート:70kg/時間・m)の条件で、薄膜蒸留を実施し、残渣液回収容器にTMAHを含むHG溶液(約4kg)を得た。条件及び結果を表2及び表3にそれぞれ示す。 A raw material mixture prepared by mixing 4 kg of a 25 mass% TMAH aqueous solution and 16 kg of HG in a PE clean bottle was placed in a PE raw material container (TMAH aqueous solution / HG mixed mass ratio = 1/4). The temperature of the raw material mixture immediately before entering the distillation vessel is 23 ° C, the temperature of the heating surface of the evaporation vessel (heat medium temperature) is 105 ° C, the degree of vacuum is 500 Pa, and the feed rate is 7.0 kg / hour (feed rate per unit area of the heating surface). Thin film distillation was carried out under the condition of: 70 kg / hour · m 2 ) to obtain an HG solution (about 4 kg) containing TMAH in a residual liquid recovery container. The conditions and results are shown in Tables 2 and 3, respectively.

<実施例8>
装置B(薄膜蒸留装置10B(図3))を用いて、実施例1と同様の手順で装置洗浄を行った(工程(b))。但し、TMAH水溶液に代えて、20質量%TEAH水溶液を洗浄液として用いた。その後、以下の手順で薄膜蒸留(工程(a))を行うことにより、水酸化第4級アンモニウムの有機溶媒溶液を製造した。
<Example 8>
Using the device B (thin film distillation device 10B (FIG. 3)), the device was washed in the same procedure as in Example 1 (step (b)). However, instead of the TMAH aqueous solution, a 20 mass% TEAH aqueous solution was used as the cleaning solution. Then, a thin film distillation (step (a)) was carried out according to the following procedure to produce an organic solvent solution of quaternary ammonium hydroxide.

20質量%TEAH水溶液4kg、PG16kgをPE製クリーンボトル内で混合して調製した原料混合液を、PE製の原料容器に入れた(TEAH水溶液/PG混合質量比=1/4)。蒸留容器に入る直前の原料混合液の温度23℃、蒸発容器の加熱面の温度(熱媒温度)105℃、真空度100Pa、フィードレート5.0kg/時間(加熱面の単位面積あたりのフィードレート:50kg/時間・m)の条件で、薄膜蒸留を実施し、残渣液回収容器にTEAHを含むPG溶液(約4kg)を得た。条件及び結果を表2及び表3にそれぞれ示す。 A raw material mixture prepared by mixing 4 kg of a 20 mass% TEAH aqueous solution and 16 kg of PG in a PE clean bottle was placed in a PE raw material container (TEAH aqueous solution / PG mixed mass ratio = 1/4). The temperature of the raw material mixture immediately before entering the distillation vessel is 23 ° C, the temperature of the heating surface of the evaporation vessel (heat medium temperature) is 105 ° C, the degree of vacuum is 100 Pa, and the feed rate is 5.0 kg / hour (feed rate per unit area of the heating surface). Thin film distillation was carried out under the condition of: 50 kg / hour · m 2 ) to obtain a PG solution (about 4 kg) containing TEAH in a residual liquid recovery container. The conditions and results are shown in Tables 2 and 3, respectively.

<実施例9、10>
洗浄及び原料混合液の調製に使用したTEAH水溶液を10質量%TPAH水溶液(実施例9)、又は10質量%TBAH水溶液(実施例10)に変更した以外は実施例8と同様にして、それぞれ薄膜蒸留を実施し、残渣液回収容器にTPAHを含むPG溶液(約4kg)、又はTBAHを含むPG溶液(約4kg)を得た。条件及び結果を表2及び表3にそれぞれ示す。
<Examples 9 and 10>
Thin films in the same manner as in Example 8 except that the TEAH aqueous solution used for washing and preparation of the raw material mixture was changed to a 10 mass% TPAH aqueous solution (Example 9) or a 10 mass% TBAH aqueous solution (Example 10). Distillation was carried out to obtain a PG solution containing TPAH (about 4 kg) or a PG solution containing TBAH (about 4 kg) in a residual liquid recovery container. The conditions and results are shown in Tables 2 and 3, respectively.

比較例1において得られたTMAHのPG溶液は、金属不純物であるNa、Ca、Feの含有量が100質量ppbを超えており、また塩素不純物も100質量ppbを超えていた。
実施例1〜10においては、種々の水酸化第4級アンモニウムについて、水分が1.0質量%以下、各金属不純物が100質量ppb以下、且つ塩素不純物が100質量ppb以下の高純度な水酸化第4級アンモニウム有機溶媒溶液が得られた。このような高純度の水酸化第4級アンモニウム有機溶媒溶液は、従来得られていなかったものである。薄膜蒸留の条件により、水分を0.3質量%以下、各金属不純物を20質量ppb以下、塩素不純物を50質量ppb以下とすることも可能であった(実施例5−6)。上記実施例1〜10において得られた水酸化第4級アンモニウム有機溶媒溶液は、そのままで半導体製造用処理液組成物として用いることのできる濃度および純度を有していた。上記実施例1〜10において得られた水酸化第4級アンモニウム有機溶媒溶液に対して、上記説明した本発明の第2の態様に係る組成物製造方法の工程(iii)(上記2.3節参照。)をさらに行うことにより、半導体製造用処理液組成物を得ることも可能である。
The TMAH PG solution obtained in Comparative Example 1 contained metal impurities Na, Ca, and Fe exceeding 100 mass ppb, and chlorine impurities also exceeded 100 mass ppb.
In Examples 1 to 10, high-purity hydroxylation having a water content of 1.0% by mass or less, each metal impurity of 100 mass ppb or less, and a chlorine impurity of 100 mass ppb or less for various quaternary ammonium hydroxides. A quaternary ammonium organic solvent solution was obtained. Such a high-purity quaternary ammonium hydroxide organic solvent solution has not been obtained so far. Depending on the conditions of thin film distillation, it was possible to set the water content to 0.3% by mass or less, each metal impurity to 20% by mass or less, and the chlorine impurity to 50% by mass or less (Example 5-6). The quaternary ammonium hydroxide organic solvent solution obtained in Examples 1 to 10 had a concentration and purity that could be used as it was as a treatment liquid composition for semiconductor production. Step (iii) of the composition manufacturing method according to the second aspect of the present invention described above with respect to the quaternary ammonium hydroxide organic solvent solution obtained in Examples 1 to 10 (Section 2.3 above). It is also possible to obtain a treatment liquid composition for semiconductor manufacturing by further performing (see.).

3、33 原料配管
4 原料ギアポンプ
5 プレヒーター(予備加熱器)
6 デガッサー(脱ガス装置)
8、9 流量確認用ガラス配管
10 送液ポンプ((残渣液側)ギアポンプ)
11 送液ポンプ((留出液側)ギアポンプ)
12 残渣液回収容器
13 留出液回収容器
14 コールドトラップ
15 真空ポンプ
21 ワイパー(ローラーワイパー)
22 凝縮器(内部コンデンサー)
23 原料混合液
24 加熱面
25 (循環する)熱媒
26 (循環する)冷媒
31 原料容器
32 バルブ(ニードルバルブ)
37 蒸発容器
38 配管
3, 33 Raw material piping 4 Raw material gear pump 5 Preheater (preheater)
6 Degasser (degassing device)
8 and 9 Glass piping for flow rate confirmation 10 Liquid feed pump ((residual liquid side) gear pump)
11 Liquid feed pump ((distillate side) gear pump)
12 Residual liquid recovery container 13 Distillate recovery container 14 Cold trap 15 Vacuum pump 21 Wiper (roller wiper)
22 Condenser (internal condenser)
23 Raw material mixture 24 Heating surface 25 (circulating) Heat medium 26 (circulating) Refrigerant 31 Raw material container 32 Valve (needle valve)
37 Evaporation vessel 38 Piping

Claims (8)

水酸化第4級アンモニウムの有機溶媒溶液を製造する方法であって、
(a)原料混合液を、流下膜式の薄膜蒸留装置を用いて薄膜蒸留する工程
を含み、
前記原料混合液は、水酸化第4級アンモニウム、水、及び、前記水酸化第4級アンモニウムを溶解する第1の有機溶媒を含み、
前記第1の有機溶媒は、ヒドロキシ基を複数個有する水溶性有機溶媒であり、
前記薄膜蒸留装置が、
蒸発容器と、
前記蒸発容器の上部から前記蒸発容器に前記原料混合液を導入する、第1の流路と、
を備え、
前記第1の流路から前記蒸発容器に導入された前記原料混合液は、液膜となって前記蒸発容器の内壁面に沿って流下し、
前記薄膜蒸留装置はさらに、
前記内壁面に沿って流下する前記液膜を加熱する、前記内壁面に配置された加熱面と、
前記蒸発容器の内部に配置され、前記液膜から発生した蒸気を冷却して液化させる、凝縮器と、
前記凝縮器によって液化された留出液を前記蒸発容器から回収する、第2の流路と、
前記加熱面で蒸発せずに前記加熱面から流下した残渣液を前記蒸発容器から回収する、第3の流路と
を備え、
前記薄膜蒸留が、
原料混合液の、前記蒸留容器に入る直前の温度が、70℃以下の第1の温度であり、
前記加熱面の温度が、60〜140℃の第2の温度であり、前記第2の温度は前記第1の温度より高温であり、
前記蒸発容器内の真空度が、600Pa以下である
条件で行われることを特徴とする、水酸化第4級アンモニウムの有機溶媒溶液の製造方法。
A method for producing an organic solvent solution of quaternary ammonium hydroxide.
(A) The step of thin-film distilling the raw material mixture using a flow-down membrane type thin-film distillation apparatus is included.
The raw material mixture contains quaternary ammonium hydroxide, water, and a first organic solvent that dissolves the quaternary ammonium hydroxide.
The first organic solvent is a water-soluble organic solvent having a plurality of hydroxy groups.
The thin film distillation apparatus
Evaporation vessel and
A first flow path for introducing the raw material mixture into the evaporation container from the upper part of the evaporation container, and
With
The raw material mixed liquid introduced into the evaporation container from the first flow path becomes a liquid film and flows down along the inner wall surface of the evaporation container.
The thin film distillation apparatus further
A heating surface arranged on the inner wall surface, which heats the liquid film flowing down along the inner wall surface,
A condenser, which is placed inside the evaporation vessel and cools and liquefies the vapor generated from the liquid film,
A second flow path for collecting the distillate liquefied by the condenser from the evaporation container, and
It is provided with a third flow path for recovering the residual liquid that has flowed down from the heated surface without evaporating on the heated surface from the evaporation container.
The thin film distillation
The temperature of the raw material mixture immediately before entering the distillation vessel is the first temperature of 70 ° C. or lower.
The temperature of the heating surface is a second temperature of 60 to 140 ° C., and the second temperature is higher than the first temperature.
A method for producing an organic solvent solution of quaternary ammonium hydroxide, which is carried out under the condition that the degree of vacuum in the evaporation container is 600 Pa or less.
前記薄膜蒸留装置が、
前記蒸発容器内に配置され、前記内壁面に沿って回転するワイパー
をさらに備え、
前記第1の流路から前記蒸発容器内に導入された前記原料混合液が、前記ワイパーによって前記内壁面に塗布されて前記液膜を形成する
ことを特徴とする、請求項1に記載の水酸化第4級アンモニウムの有機溶媒溶液の製造方法。
The thin film distillation apparatus
Further provided with a wiper disposed in the evaporation vessel and rotating along the inner wall surface.
The water according to claim 1, wherein the raw material mixed solution introduced into the evaporation container from the first flow path is applied to the inner wall surface by the wiper to form the liquid film. A method for producing an organic solvent solution of quaternary ammonium oxide.
前記第1の有機溶媒が、炭素原子、水素原子、及び酸素原子からなる沸点150〜300℃の2価アルコール及び3価アルコールから選ばれる1種以上の有機溶媒である、
請求項1又は2に記載の水酸化第4級アンモニウムの有機溶媒溶液の製造方法。
The first organic solvent is one or more organic solvents selected from dihydric alcohols and trihydric alcohols having a boiling point of 150 to 300 ° C. consisting of carbon atoms, hydrogen atoms, and oxygen atoms.
The method for producing an organic solvent solution of quaternary ammonium hydroxide according to claim 1 or 2.
前記原料混合液が、該混合液の全量を基準として、
前記第1の有機溶媒を、40〜85質量%と、
前記水酸化第4級アンモニウムを、2.0〜30質量%と、
前記水を、10〜30質量%と
を含む、請求項1〜3のいずれかに記載の水酸化第4級アンモニウムの有機溶媒溶液の製造方法。
The raw material mixture is based on the total amount of the mixture.
The first organic solvent was added to 40 to 85% by mass.
The quaternary ammonium hydroxide was added to 2.0 to 30% by mass.
The method for producing an organic solvent solution of quaternary ammonium hydroxide according to any one of claims 1 to 3, wherein the water is contained in an amount of 10 to 30% by mass.
前記原料混合液中のNa、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、及びZnの含有量が、原料混合液全量基準でそれぞれ50ppb以下であり、
前記原料混合液中のClの含有量が、原料混合液全量基準で50ppb以下である、
請求項1〜4のいずれかに記載の水酸化第4級アンモニウムの有機溶媒溶液の製造方法。
The contents of Na, Mg, Al, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, and Zn in the raw material mixture are 50 ppb or less based on the total amount of the raw material mixture.
The content of Cl in the raw material mixture is 50 ppb or less based on the total amount of the raw material mixture.
The method for producing an organic solvent solution of quaternary ammonium hydroxide according to any one of claims 1 to 4.
半導体製造用処理液組成物の製造方法であって、
(i)請求項1〜5のいずれかに記載の方法で水酸化第4級アンモニウムの有機溶媒溶液を得る工程、
(ii)前記有機溶媒溶液中の水酸化第4級アンモニウムの濃度を把握する工程、及び
(iii)溶媒全量基準で、水分含有量が1.0質量%以下、Na、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、及びZnの含有量がそれぞれ100質量ppb以下、かつClの含有量が100質量ppb以下である有機溶媒を前記有機溶媒溶液に加えることにより、前記有機溶媒溶液中の前記水酸化第4級アンモニウムの濃度を調整する工程
を含み、
前記組成物は、前記水酸化第4級アンモニウムと、前記第1の有機溶媒とを含み、
前記組成物中の水分含有量が、組成物全量基準で1.0質量%以下であり、
前記組成物中のNa、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、及びZnの含有量が、組成物全量基準でそれぞれ100質量ppb以下であり、
前記組成物中のClの含有量が、組成物全量基準で100質量ppb以下である、
半導体製造用処理液組成物の製造方法。
A method for producing a processing liquid composition for semiconductor production.
(I) A step of obtaining an organic solvent solution of quaternary ammonium hydroxide by the method according to any one of claims 1 to 5.
(Ii) The step of grasping the concentration of quaternary ammonium hydroxide in the organic solvent solution, and (iii) the water content is 1.0% by mass or less based on the total amount of the solvent, Na, Mg, Al, K, By adding an organic solvent having a Ca, Ti, Cr, Mn, Fe, Ni, Cu, and Zn content of 100 mass ppb or less and a Cl content of 100 mass ppb or less to the organic solvent solution. Including the step of adjusting the concentration of the quaternary ammonium hydroxide in the organic solvent solution.
The composition comprises the quaternary ammonium hydroxide and the first organic solvent.
The water content in the composition is 1.0% by mass or less based on the total amount of the composition.
The contents of Na, Mg, Al, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, and Zn in the composition are 100 mass ppb or less based on the total amount of the composition.
The content of Cl in the composition is 100% by mass or less based on the total amount of the composition.
A method for producing a processing liquid composition for semiconductor production.
前記工程(iii)において、前記有機溶媒溶液中の前記水酸化第4級アンモニウムの含有量が、溶液全量基準で5.0質量%以上に調整される、
請求項6に記載の半導体製造用処理液組成物の製造方法。
In the step (iii), the content of the quaternary ammonium hydroxide in the organic solvent solution is adjusted to 5.0% by mass or more based on the total amount of the solution.
The method for producing a treatment liquid composition for semiconductor production according to claim 6.
前記工程(iii)において、前記有機溶媒溶液中の前記水酸化第4級アンモニウムの含有量が、溶液全量基準で2.38〜25.0質量%に調整される、
請求項6に記載の半導体製造用処理液組成物の製造方法。
In the step (iii), the content of the quaternary ammonium hydroxide in the organic solvent solution is adjusted to 2.38 to 25.0% by mass based on the total amount of the solution.
The method for producing a treatment liquid composition for semiconductor production according to claim 6.
JP2019216889A 2019-02-28 2019-11-29 Method for producing a quaternary ammonium hydroxide solution in an organic solvent Active JP7482621B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019035854 2019-02-28
JP2019035854 2019-02-28

Publications (2)

Publication Number Publication Date
JP2020145406A true JP2020145406A (en) 2020-09-10
JP7482621B2 JP7482621B2 (en) 2024-05-14

Family

ID=72353753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019216889A Active JP7482621B2 (en) 2019-02-28 2019-11-29 Method for producing a quaternary ammonium hydroxide solution in an organic solvent

Country Status (1)

Country Link
JP (1) JP7482621B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021116236A (en) * 2020-01-22 2021-08-10 株式会社トクヤマ Production method for low-water-content quaternary ammonium hydroxide solution
CN114832405A (en) * 2021-02-01 2022-08-02 朴然熙 Electric concentration extraction device capable of quickly extracting and concentrating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003466A1 (en) * 1996-07-23 1998-01-29 Tokuyama Corporation Process for the preparation of aqueous solutions of tetraalkylammonium hydroxides
JP2010095463A (en) * 2008-10-15 2010-04-30 Tosoh Corp Method for recovering quaternary ammonium salt
WO2010073430A1 (en) * 2008-12-26 2010-07-01 神戸天然物化学株式会社 Method for producing concentrated solution for photoresist stripper having low water content
WO2017188209A1 (en) * 2016-04-28 2017-11-02 富士フイルム株式会社 Purification device, purification method, manufacturing device, method of manufacturing chemical liquid, container, and chemical liquid housing
JP2018080301A (en) * 2016-11-18 2018-05-24 出光興産株式会社 METHOD FOR PRODUCING α-OLEFIN LOW POLYMER

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003466A1 (en) * 1996-07-23 1998-01-29 Tokuyama Corporation Process for the preparation of aqueous solutions of tetraalkylammonium hydroxides
JP2010095463A (en) * 2008-10-15 2010-04-30 Tosoh Corp Method for recovering quaternary ammonium salt
WO2010073430A1 (en) * 2008-12-26 2010-07-01 神戸天然物化学株式会社 Method for producing concentrated solution for photoresist stripper having low water content
WO2017188209A1 (en) * 2016-04-28 2017-11-02 富士フイルム株式会社 Purification device, purification method, manufacturing device, method of manufacturing chemical liquid, container, and chemical liquid housing
JP2018080301A (en) * 2016-11-18 2018-05-24 出光興産株式会社 METHOD FOR PRODUCING α-OLEFIN LOW POLYMER

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021116236A (en) * 2020-01-22 2021-08-10 株式会社トクヤマ Production method for low-water-content quaternary ammonium hydroxide solution
JP7426836B2 (en) 2020-01-22 2024-02-02 株式会社トクヤマ Method for producing low hydrous quaternary ammonium hydroxide solution
CN114832405A (en) * 2021-02-01 2022-08-02 朴然熙 Electric concentration extraction device capable of quickly extracting and concentrating
CN114832405B (en) * 2021-02-01 2024-01-05 朴然熙 Electric concentrating and extracting device capable of fast extracting and concentrating

Also Published As

Publication number Publication date
JP7482621B2 (en) 2024-05-14

Similar Documents

Publication Publication Date Title
US20240228428A1 (en) Method for producing organic solvent solution of quaternary ammonium hydroxide
JP7482621B2 (en) Method for producing a quaternary ammonium hydroxide solution in an organic solvent
WO2017188209A1 (en) Purification device, purification method, manufacturing device, method of manufacturing chemical liquid, container, and chemical liquid housing
JP5671716B2 (en) Preparation method of ultra high purity sulfuric acid
US11390577B2 (en) Quaternary alkyl ammonium hypochlorite solution, method of producing the same, and method for processing semiconductor wafers
JP2012062300A (en) Method for producing ultra-high purity electronic grade chemical reagent
TWI521098B (en) Electrolysis process
Ershad et al. Polymer inclusion membranes (PIMs) containing purified dinonylnaphthalene sulfonic acid (DNNS): performance and selectivity
WO2019163499A1 (en) Method and apparatus for producing chelate resin, and method for purifying to-be-treated liquid
JP2019509165A (en) Purification process for hydrolysable organic solvents
Zarębska et al. Poly–and perfluoroalkyl substances (PFAS)-recent advances in the aquatic environment analysis
JP7407581B2 (en) Organic solvent solution of quaternary ammonium hydroxide
TW201731762A (en) Method for purifying fluorine gas
JP2020075908A (en) Manufacturing method of organic solvent solution of hydroxylated quaternary ammonium
JP5859287B2 (en) Method for measuring the concentration of trace hydrogen peroxide in ultrapure water
WO2016063581A1 (en) Treatment method and treatment apparatus for ammonia-containing wastewater
JP6885922B2 (en) Methods and systems for purification of hydrogen peroxide solution
JP2010234339A (en) Treatment liquid for refining crude ion exchange resin
JP6601221B2 (en) Method for inhibiting glass corrosion
JP7426836B2 (en) Method for producing low hydrous quaternary ammonium hydroxide solution
CN110869529B (en) Hexavalent chromium-free etching manganese recovery system
JPH07128323A (en) Method for measuring and controlling organic impurities
Umeda et al. Further reduction of trace level ion from ultra pure water and its effect on electrical property of device
JP2007277152A (en) Cleaning method of apparatus for borazine compound and apparatus for borazine compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240430

R150 Certificate of patent or registration of utility model

Ref document number: 7482621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150