JP2020139589A - Flow rate regulating valve - Google Patents

Flow rate regulating valve Download PDF

Info

Publication number
JP2020139589A
JP2020139589A JP2019036952A JP2019036952A JP2020139589A JP 2020139589 A JP2020139589 A JP 2020139589A JP 2019036952 A JP2019036952 A JP 2019036952A JP 2019036952 A JP2019036952 A JP 2019036952A JP 2020139589 A JP2020139589 A JP 2020139589A
Authority
JP
Japan
Prior art keywords
port
valve body
pressure
valve
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019036952A
Other languages
Japanese (ja)
Other versions
JP7204532B2 (en
Inventor
太田 淳
Atsushi Ota
淳 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiden Co Inc
Original Assignee
Daiden Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiden Co Inc filed Critical Daiden Co Inc
Priority to JP2019036952A priority Critical patent/JP7204532B2/en
Publication of JP2020139589A publication Critical patent/JP2020139589A/en
Application granted granted Critical
Publication of JP7204532B2 publication Critical patent/JP7204532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Safety Valves (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

To provide a flow rate regulating valve which can be adapted to any of a series circuit and a parallel circuit by only a recombination of a valve body even if a connection relation between a plurality of fluid circuits being application objects is either of the series circuit and the parallel circuit, and can be expected in cost reduction by component communization.SOLUTION: Three ports 15, 16 and 17 are formed at a hole part 11d in which valve bodies in a casing 11 of a valve device pass, a combination of two ports for adjusting an opening of communication between the ports by the valve bodies is selected from two kinds of combinations in response to connection states of fluid pressure circuits, the two ports being objects of the adjustment can be selected by only a recombination of the two valve bodies, thus, one kind of the casing 11 which is common to the respective connection states of the fluid pressure circuits is made to be adaptable by making a function of a pressure compensation by the movement of the vehicle bodies properly exerted, a use of a dedicated casing is dispensed with at each of the fluid pressure circuits, a proper flow passage connection state can be obtained by only the recombination of the valve bodies, thus, manufacturing and installation become easy, and a cost on the valve device can be suppressed.SELECTED DRAWING: Figure 1

Description

本発明は、流体圧回路に用いられる圧力補償付きの流量調整弁に関する。 The present invention relates to a flow control valve with pressure compensation used in a fluid pressure circuit.

油圧アクチュエータ、特に、ウインチ等の駆動源として用いられる油圧モータは、その正逆転の切換や停止状態への移行を、方向切換弁等を備えた油圧回路により油圧モータに対する油圧供給状態を変化させることで実現しているのが一般的である。 A hydraulic actuator, particularly a hydraulic motor used as a drive source for a winch or the like, changes the hydraulic supply state to the hydraulic motor by a hydraulic circuit equipped with a direction switching valve or the like for switching between forward and reverse rotation and shifting to a stopped state. It is generally realized by.

こうした油圧モータ用の油圧回路を備えた装置において、油圧を発生させる圧力源(ポンプ)から供給される作動油をそのまま方向切換弁に導入して油圧モータの作動を制御する場合、油圧モータの負荷の変動によって、油圧モータに向かう作動油の圧力も変化し、油圧モータへの作動油供給量が変化する、例えば、高負荷状態では、作動油の圧力が高くなるのに伴って作動油の流量が少なくなり、油圧モータの作動速度が低下する、という問題があった。 In a device equipped with a hydraulic circuit for such a hydraulic motor, when hydraulic oil supplied from a pressure source (pump) that generates hydraulic pressure is directly introduced into a direction switching valve to control the operation of the hydraulic motor, the load of the hydraulic motor The pressure of the hydraulic oil toward the hydraulic motor also changes due to the fluctuation of the hydraulic oil, and the amount of hydraulic oil supplied to the hydraulic motor changes. For example, in a high load state, the flow rate of the hydraulic oil increases as the pressure of the hydraulic oil increases. There is a problem that the operating speed of the hydraulic motor is reduced.

このため、方向切換弁の前段側に圧力補償付き流量調整弁を設けて、油圧モータの負荷(作動油圧力)が変化しても、油圧モータに供給される作動油の流量が方向切換弁による設定値から変化せず一定となる仕組みが導入されている。
このような圧力補償付き流量調整弁の一例として、特開平11−63250号公報に開示されるものがある。
Therefore, a flow rate adjusting valve with pressure compensation is provided on the front stage side of the direction switching valve, and even if the load (hydraulic oil pressure) of the hydraulic motor changes, the flow rate of the hydraulic oil supplied to the hydraulic motor depends on the direction switching valve. A mechanism has been introduced that does not change from the set value and remains constant.
As an example of such a flow rate adjusting valve with pressure compensation, there is one disclosed in Japanese Patent Application Laid-Open No. 11-63250.

特開平11−63250号公報Japanese Unexamined Patent Publication No. 11-63250

従来の圧力補償付き流量調整弁は以上のように構成されており、負荷(圧力)の変化に関係なく、後段側のアクチュエータ等に供給される作動油の流量を設定値から変化させず一定にできるものであった。 The conventional flow rate control valve with pressure compensation is configured as described above, and the flow rate of hydraulic oil supplied to the actuator etc. on the rear stage side is kept constant without changing from the set value regardless of the change in load (pressure). It was possible.

一方、こうした流量調整弁や方向切換弁でアクチュエータを制御するアクチュエータ回路は、アクチュエータを複数設けてそれぞれ使用する場合、アクチュエータごとに設けられるのが一般的であるが、設置場所やコストの制約等から、圧力源(ポンプ)を共通の一つのみとすることがあった。 On the other hand, when a plurality of actuators are provided and used, the actuator circuit for controlling the actuator with such a flow rate adjusting valve or a direction switching valve is generally provided for each actuator, but due to restrictions on the installation location and cost, etc. , There was a case where only one pressure source (pump) was used in common.

そして、一つの圧力源を用いて複数のアクチュエータを適切に作動させるために、複数のアクチュエータ回路を相互に接続する回路方式としては、用途に応じて、シリーズ回路やパラレル回路が用いられてきた。 Then, in order to appropriately operate a plurality of actuators using one pressure source, a series circuit or a parallel circuit has been used as a circuit method for connecting a plurality of actuator circuits to each other, depending on the application.

シリーズ回路では、複数のアクチュエータ回路が直列に接続され、圧力源からの油圧は最も上流側の回路に導入され、上流側回路の戻り油を下流側回路の送り油路に供給する仕組みである。また、パラレル回路では、複数のアクチュエータ回路が並列に接続され、圧力源からの油圧は各アクチュエータ回路に並列に導入される仕組みである。 In the series circuit, a plurality of actuator circuits are connected in series, hydraulic pressure from the pressure source is introduced into the most upstream circuit, and the return oil of the upstream circuit is supplied to the feed oil passage of the downstream circuit. Further, in the parallel circuit, a plurality of actuator circuits are connected in parallel, and the hydraulic pressure from the pressure source is introduced in parallel to each actuator circuit.

こうしたシリーズ回路やパラレル回路とされる複数のアクチュエータ回路に、それぞれ流量調整弁を設ける場合、アクチュエータ回路同士の接続がシリーズ回路とパラレル回路とでは大きく回路構成が異なることから、流量調整弁もその弁体やケーシングをシリーズ回路用とパラレル回路用にそれぞれ対応した専用の構造とされていた。 When a flow rate adjusting valve is provided in each of a plurality of actuator circuits, such as a series circuit or a parallel circuit, the connection between the actuator circuits differs greatly between the series circuit and the parallel circuit. Therefore, the flow rate adjusting valve is also the valve. The body and casing had a dedicated structure corresponding to the series circuit and the parallel circuit respectively.

このように、アクチュエータ回路において流量調整を適切に行う流量調整弁の機能は同じであるにも拘わらず、複数のアクチュエータ回路の接続方式がシリーズ回路かパラレル回路かにより、異なる構造の流量調整弁を適用していたことから、部品数などの点で流量調整弁の製造には無駄な点が多く、改善が望まれていた。 In this way, although the function of the flow rate adjusting valve that appropriately adjusts the flow rate in the actuator circuit is the same, the flow rate adjusting valve having a different structure depends on whether the connection method of the plurality of actuator circuits is a series circuit or a parallel circuit. Since it was applied, there were many wasteful points in the manufacture of the flow control valve in terms of the number of parts and the like, and improvement was desired.

本発明は前記課題を解消するためになされたもので、弁装置を適用しようとする複数の流体圧回路の接続関係がシリーズ回路とパラレル回路のいずれであっても、弁体の組み替えのみで対応でき、部品共通化によるコストダウンが期待できる、流量調整弁を提供することを目的とする。 The present invention has been made to solve the above problems, and regardless of whether the connection relationship of a plurality of fluid pressure circuits to which the valve device is applied is a series circuit or a parallel circuit, it can be handled only by rearranging the valve body. The purpose is to provide a flow control valve that can be used and can be expected to reduce costs by standardizing parts.

本発明に係る流量調整弁は、流体の入口部及び出口部、並びに当該入口部と出口部に通じる孔部を有するケーシングと、当該ケーシングの孔部に孔部連続方向へ摺動可能に嵌挿される弁体とを備え、流体圧回路における流体の圧力差に基づいて弁体を移動させ、入口部から出口部へ向かう流体の流量を調整する、圧力補償付の流量調整弁において、前記ケーシングの出口部が、流体圧回路の送り側流路に接続される第一の出口部と、流体圧回路の戻り側流路に接続される第二の出口部とからなり、前記ケーシングが、前記孔部と入口部とを連通させる第一ポートと、当該第一のポートに対し前記孔部における前記弁体の一の移動方向側に設けられ、孔部と第一の出口部とを連通させる第二ポートと、前記第一ポートに対し前記孔部における前記弁体の他の移動方向側に設けられ、孔部と前記第二の出口部とを連通させる第三ポートとを有し、さらに、ケーシングは、前記第一の出口部に連通する前記流体圧回路の送り側流路における第一の所定箇所の流体圧力を、前記弁体に対し前記一の移動方向へ弁体を押すように付加可能として形成され、且つ、前記送り側流路における第一の所定箇所から所定の絞り機構を隔てた第二の所定箇所の流体圧力を、弁体に対し前記他の移動方向へ弁体を押すように付加可能として形成され、前記弁体が、前記第一ポートと前記第二ポートとを常に連通状態とする一の溝又は凹部を設けられると共に、第一ポートと第三ポートとを連通可能としつつ、弁体が前記一の移動方向に移動すると第一ポートと第三ポート間の連通の開度を大きくし、前記他の移動方向に移動すると第一ポートと第三ポート間の連通の開度を小さくする、他の溝又は凹部を設けられてなるシリーズ回路用弁体、又は、前記第一ポートと第二ポートとを連通可能としつつ、前記一の移動方向に移動すると前記第一ポートと第二ポート間の連通の開度を小さくし、且つ他の移動方向に移動すると第一ポートと第二ポート間の連通の開度を大きくする、溝又は凹部を設けられてなるパラレル回路用弁体、とされるものである。 The flow control valve according to the present invention is slidably fitted into a casing having a fluid inlet and outlet, and a hole communicating with the inlet and outlet, and a hole in the casing in a continuous direction of the hole. In a flow control valve with pressure compensation, which is provided with a valve body, the valve body is moved based on the pressure difference of the fluid in the fluid pressure circuit, and the flow rate of the fluid from the inlet portion to the outlet portion is adjusted. The outlet portion is composed of a first outlet portion connected to the feed side flow path of the fluid pressure circuit and a second outlet portion connected to the return side flow path of the fluid pressure circuit, and the casing is the hole. A first port that communicates the portion and the inlet portion, and a first port that is provided on the moving direction side of one of the valve bodies in the hole portion with respect to the first port and communicates the hole portion and the first outlet portion. It has two ports and a third port provided on the other side of the valve body in the hole portion in a moving direction with respect to the first port to communicate the hole portion and the second outlet portion, and further. The casing applies the fluid pressure at the first predetermined position in the feed side flow path of the fluid pressure circuit communicating with the first outlet portion so as to push the valve body in the one moving direction with respect to the valve body. It is formed as possible, and the fluid pressure at the second predetermined location separated from the first predetermined location in the feed side flow path by the predetermined throttle mechanism is applied to the valve body in the other moving direction. The valve body is provided with one groove or recess that keeps the first port and the second port in communication with each other, and can communicate with the first port and the third port. However, when the valve body moves in the one moving direction, the opening degree of communication between the first port and the third port is increased, and when the valve body moves in the other moving direction, the communication between the first port and the third port is increased. A series circuit valve body provided with another groove or recess that reduces the opening degree, or the first port and the second port can be communicated with each other and moved in the one moving direction. A parallel circuit provided with a groove or recess that reduces the opening of communication between the port and the second port and increases the opening of communication between the first port and the second port when moving in another moving direction. It is said to be a fluid.

このように本発明によれば、弁装置のケーシングにおける弁体の通る孔部に三つのポートを設けて、流体圧回路の接続状態に対応して、弁体でポート間の連通の開度を調整する二つのポートの組合せを、二通りの組合せの中から選択するようにすると共に、その調整対象の二つのポートを、二つの弁体の組み替えのみで選択決定可能として、流体圧回路の接続状態のそれぞれで、適合する弁体の移動による圧力補償の機能が正しく発揮されるようにすることにより、流体圧回路の各接続状態に共通の一種類のケーシングで対応でき、流体圧回路の接続状態に対応する専用のケーシングを用いずに済む上、弁体の組み替え作業のみで、複数流体圧回路の各接続状態に対応した流路接続状態が得られ、製造や設置も容易であり、弁装置に係るコストを抑えられる。 As described above, according to the present invention, three ports are provided in the holes through which the valve body passes in the casing of the valve device, and the opening degree of communication between the ports in the valve body is adjusted according to the connection state of the fluid pressure circuit. The combination of the two ports to be adjusted can be selected from the two combinations, and the two ports to be adjusted can be selected and determined only by rearranging the two valve bodies, so that the fluid pressure circuit can be connected. By ensuring that the pressure compensation function by moving the matching valve body is correctly exerted in each state, it is possible to deal with each connection state of the fluid pressure circuit with one type of casing common to each connection state of the fluid pressure circuit. It is not necessary to use a dedicated casing corresponding to the state, and the flow path connection state corresponding to each connection state of multiple fluid pressure circuits can be obtained only by rearranging the valve body, and it is easy to manufacture and install, and the valve. The cost of the device can be reduced.

また、本発明に係る流量調整弁は必要に応じて、前記パラレル回路用弁体が、前記第一ポートと前記第三ポートとを常に非連通状態とする、溝又は凹部のない所定領域を設定されて形成されるものである。 Further, in the flow rate adjusting valve according to the present invention, if necessary, the valve body for the parallel circuit sets a predetermined area without grooves or recesses so that the first port and the third port are always in a non-communication state. It is formed by being formed.

このように本発明によれば、弁体に溝又は凹部のない領域を設けて、弁体で第一ポートと第三ポート間を非連通とすることにより、第二の出口部や流体圧回路の戻り側流路に、入口部から流入する流体が一部向かうことで生じる影響を排除する状態を、弁体構造のみで十分に確保でき、弁装置の構成を簡略化できる As described above, according to the present invention, the valve body is provided with a region having no groove or recess, and the valve body is made non-communication between the first port and the third port, whereby the second outlet portion and the fluid pressure circuit are formed. It is possible to sufficiently secure a state in which the influence caused by a part of the fluid flowing in from the inlet portion heading to the return side flow path of the valve body structure alone, and the configuration of the valve device can be simplified.

また、本発明に係る流量調整弁は必要に応じて、前記ケーシングが、前記第二の出口部を流体圧回路の戻り側流路に対し閉塞して非連通状態とする、閉塞部材を取り付けられるものである。 Further, the flow rate adjusting valve according to the present invention is provided with a closing member, if necessary, in which the casing closes the second outlet portion with respect to the return side flow path of the fluid pressure circuit to make it in a non-communication state. It is a thing.

このように本発明によれば、ケーシングに閉塞部材を取り付けて、この閉塞部材で第二の出口部を流体圧回路の戻り側流路に対し非連通とすることにより、入口部から流入する流体が第一ポートと第三ポート及び第二の出口部を経て、戻り側流路に一部向かうことで生じる影響を排除する状態を、閉塞部材の配置のみで十分に確保でき、弁装置の構成を簡略化できる。 As described above, according to the present invention, the fluid flowing in from the inlet portion is formed by attaching a closing member to the casing and making the second outlet portion non-communication with the return side flow path of the fluid pressure circuit by the closing member. A state in which the influence caused by partially heading toward the return side flow path through the first port, the third port, and the second outlet can be sufficiently ensured only by arranging the closing member, and the valve device configuration. Can be simplified.

また、本発明に係る流量調整弁は必要に応じて、前記シリーズ回路用弁体である弁体が、前記一の溝又は凹部と他の溝又は凹部との間に、ケーシングにおける第一ポートと第三ポートとの間の通路部分に摺接可能な中間大径部を有し、弁体が前記一の移動方向に移動するとケーシングにおける第一ポートと第三ポートとの間の通路部分に対し中間大径部が離れ、第一ポートと第三ポート間の連通の開度を大きくし、且つ前記他の移動方向に移動するとケーシングにおける第一ポートと第三ポートとの間の通路部分に対し中間大径部が接近して、第一ポートと第三ポート間の連通の開度を小さくするようにされ、中間大径部の前記他の溝又は凹部に面する端部に、ケーシングに摺接する大径部分から他の溝又は凹部の底面部分に向けて先細状に径変化する曲面状のテーパ部が形成され、弁体の少なくとも前記テーパ部に、弁体の長手方向と直交する向きに第一の貫通孔が穿設され、弁体の少なくとも前記中間大径部に、弁体の長手方向と直交する向きで且つ前記第一の貫通孔より弁体の前記一の溝又は凹部寄りとして第二の貫通孔が穿設され、当該第二の貫通孔が、第一の貫通孔の一部と交差して連通するものである。 Further, in the flow control valve according to the present invention, if necessary, the valve body, which is the valve body for the series circuit, is formed between the one groove or recess and the other groove or recess with the first port in the casing. It has an intermediate large diameter portion that can be slidably contacted with the passage portion between the third port and the passage portion between the first port and the third port in the casing when the valve body moves in the one moving direction. When the intermediate large diameter portion is separated to increase the opening degree of communication between the first port and the third port and move in the other moving direction, the passage portion between the first port and the third port in the casing The intermediate large diameter portion approaches to reduce the opening degree of communication between the first port and the third port, and slides onto the casing at the end of the intermediate large diameter portion facing the other groove or recess. A curved tapered portion whose diameter changes in a tapered shape from the large diameter portion in contact to the bottom surface portion of another groove or recess is formed, and at least the tapered portion of the valve body is oriented in a direction orthogonal to the longitudinal direction of the valve body. A first through hole is formed, and at least in the intermediate large diameter portion of the valve body, in a direction orthogonal to the longitudinal direction of the valve body and closer to the one groove or recess of the valve body than the first through hole. A second through hole is bored, and the second through hole intersects and communicates with a part of the first through hole.

このように本発明によれば、ケーシングの第一ポートと第三ポート間の連通の開度を調整可能として配設される弁体が、中間大径部とこれに連続するテーパ部とを有して、この弁体における少なくともテーパ部を含む所定範囲に第一の貫通孔を設けられ、且つ、中間大径部を中心とする所定範囲に第二の貫通孔を設けられ、第一の貫通孔より弁体の一の溝又は凹部寄りとされる第二の貫通孔が第一の貫通孔と交差して連通し、弁体が第一ポートと第三ポートとの間の流路を閉止しようとする状態で、第一ポートに面する中間大径部にある第二の貫通孔と、第三ポートに通じる他の溝又は凹部に面する第一の貫通孔とを通じて、第一ポートから第三ポート側に流体が流通可能となり、この流通可能な状態が、第二の貫通孔が第一ポートに面する間継続することにより、流路閉止の直前で第一ポートから第三ポート側に流体が流通する向きが、弁体の移動方向とは異なるものとなり、弁体の挙動が流体の影響を受けにくくなり、弁体を圧力補償を正しく実行できるように動かせ、負荷変動に伴う流体圧力の変化によらず流体の流量を一定とする本来の調整機能を正しく発揮できると共に、弁体の不安定な挙動を抑えて、後段側でのハンチング等の異常につながる流体圧力の急激な変化を防止し、流体圧回路の安定性を高められる。 As described above, according to the present invention, the valve body arranged so that the opening degree of communication between the first port and the third port of the casing can be adjusted has an intermediate large-diameter portion and a tapered portion continuous thereto. Then, a first through hole is provided in a predetermined range including at least the tapered portion in the valve body, and a second through hole is provided in a predetermined range centered on the intermediate large diameter portion, and the first through hole is provided. A second through hole, which is closer to one groove or recess of the valve body than the hole, intersects and communicates with the first through hole, and the valve body closes the flow path between the first port and the third port. From the first port through the second through hole in the medium large diameter portion facing the first port and the first through hole facing another groove or recess leading to the third port. The fluid can flow to the third port side, and this flowable state continues while the second through hole faces the first port, so that the first port to the third port side immediately before the flow path is closed. The direction in which the fluid flows is different from the direction in which the valve body moves, the behavior of the valve body is less affected by the fluid, the valve body can be moved so that pressure compensation can be performed correctly, and the fluid that accompanies load fluctuations. The original adjustment function that keeps the fluid flow rate constant regardless of changes in pressure can be correctly exerted, and the unstable behavior of the valve body is suppressed, resulting in sudden changes in fluid pressure that lead to abnormalities such as hunting on the rear stage side. Can be prevented and the stability of the fluid pressure circuit can be improved.

また、弁体の所定箇所に貫通孔を二つ設けるのみで、弁体が第一ポートと第三ポートとの間の流路を閉止しようとする状態での、第一ポートと第三ポートとの間で作動用流体を流通させる適切な通路を形成でき、容易に最適な特性の弁装置を得ることができる。 In addition, the first port and the third port in a state where the valve body tries to close the flow path between the first port and the third port only by providing two through holes at predetermined positions of the valve body. An appropriate passage for circulating the working fluid can be formed between the valves, and a valve device having optimum characteristics can be easily obtained.

また、本発明に係る流量調整弁は必要に応じて、前記パラレル回路用弁体である弁体が、前記溝又は凹部に隣接しつつ、ケーシングにおける第一ポートと第二ポートとの間の通路部分に摺接可能な一の大径部を有し、弁体が前記一の移動方向に移動するとケーシングにおける第一ポートと第二ポートとの間の通路部分に対し一の大径部が接近し、第一ポートと第二ポート間の連通の開度を小さくし、且つ前記他の移動方向に移動するとケーシングにおける第一ポートと第二ポートとの間の通路部分に対し一の大径部が離隔して、第一ポートと第二ポート間の連通の開度を大きくするようにされ、一の大径部の前記溝又は凹部に面する端部に、ケーシングに摺接する大径部分から溝又は凹部の底面部分に向けて先細状に径変化する曲面状のテーパ部が形成され、弁体の少なくとも前記テーパ部に、弁体の長手方向と直交する向きに第一の貫通孔が穿設され、弁体の少なくとも前記溝又は凹部の底面部分に、弁体の長手方向と直交する向きで且つ前記第一の貫通孔より弁体の一の大径部から離れた配置として第二の貫通孔が穿設され、当該第二の貫通孔が、第一の貫通孔の一部と交差して連通するものである。 Further, in the flow control valve according to the present invention, if necessary, the valve body, which is the valve body for the parallel circuit, is adjacent to the groove or the recess, and the passage between the first port and the second port in the casing. It has one large diameter part that can be slidably contacted with the part, and when the valve body moves in the one moving direction, one large diameter part approaches the passage part between the first port and the second port in the casing. Then, when the opening of communication between the first port and the second port is reduced and the movement is made in the other moving direction, one large diameter portion with respect to the passage portion between the first port and the second port in the casing. Are separated from each other to increase the opening degree of communication between the first port and the second port, and the end portion of one large diameter portion facing the groove or recess is slidably contacted with the casing from the large diameter portion. A curved tapered portion whose diameter changes in a tapered shape is formed toward the bottom surface of the groove or recess, and a first through hole is formed in at least the tapered portion of the valve body in a direction orthogonal to the longitudinal direction of the valve body. A second arrangement is provided in at least the bottom surface portion of the groove or recess of the valve body in a direction orthogonal to the longitudinal direction of the valve body and away from one large diameter portion of the valve body from the first through hole. A through hole is formed, and the second through hole intersects and communicates with a part of the first through hole.

このように本発明によれば、ケーシングの第一ポートと第二ポート間の連通の開度を調整可能として配設される弁体が、一の大径部とこれに連続するテーパ部とを有して、この弁体における少なくともテーパ部を含む所定範囲に第一の貫通孔を設けられ、且つ、少なくとも溝又は凹部の底面部分を含む所定範囲に第二の貫通孔を設けられ、第一の貫通孔より一の大径部から離れた位置とされる第二の貫通孔が第一の貫通孔と交差して連通し、弁体が第一ポートと第二ポートとの間の流路を閉止しようとする状態で、第一ポートに面するテーパ部にある第一の貫通孔と、第二ポートに通じる溝又は凹部に面する第二の貫通孔とを通じて、第一ポートから第二ポート側に流体が流通可能となり、この流通可能な状態が第一の貫通孔が第一ポートに面する間継続することにより、閉止直前で第一ポートから第二ポート側に流体が流通する向きが、弁体の移動方向とは異なるものとなり、弁体の挙動が流体の影響を受けにくくなり、弁体を圧力補償を正しく実行できるように動かせ、負荷変動に伴う流体圧力の変化によらず流体の流量を一定とする本来の調整機能を正しく発揮できると共に、弁体の不安定な挙動を抑えて、後段側でのハンチング等の異常につながる流体圧力の急激な変化を防止し、流体圧回路の安定性を高められる。 As described above, according to the present invention, the valve body arranged so that the opening degree of communication between the first port and the second port of the casing can be adjusted has one large-diameter portion and a tapered portion continuous thereto. A first through hole is provided in a predetermined range including at least a tapered portion in the valve body, and a second through hole is provided in a predetermined range including at least a groove or a bottom surface portion of a recess. A second through hole, which is located away from one large diameter portion of the through hole, intersects and communicates with the first through hole, and the valve body communicates with the flow path between the first port and the second port. From the first port to the second through the first through hole in the tapered portion facing the first port and the second through hole facing the groove or recess leading to the second port in a state of closing the The fluid can flow to the port side, and this flowable state continues while the first through hole faces the first port, so that the fluid flows from the first port to the second port side immediately before closing. However, the direction of movement of the valve body is different, the behavior of the valve body is less affected by the fluid, the valve body can be moved so that pressure compensation can be performed correctly, and the fluid pressure changes due to load fluctuations. The original adjustment function that keeps the fluid flow rate constant can be exerted correctly, and the unstable behavior of the valve body is suppressed to prevent sudden changes in fluid pressure that lead to abnormalities such as hunting on the rear stage side, and fluid pressure. The stability of the circuit can be improved.

また、弁体の所定箇所に貫通孔を二つ設けるのみで、弁体が第一ポートと第二ポートとの間の流路を閉止しようとする状態での、第一ポートと第二ポートとの間で作動用流体を流通させる適切な通路を形成でき、容易に最適な特性の弁装置を得ることができる。 In addition, the first port and the second port in a state where the valve body tries to close the flow path between the first port and the second port only by providing two through holes at predetermined positions of the valve body. An appropriate passage for circulating the working fluid can be formed between the valves, and a valve device having optimum characteristics can be easily obtained.

本発明の第1の実施形態に係る流量調整弁を用いた弁装置の概略構成説明図である。It is a schematic configuration explanatory view of the valve device using the flow rate control valve which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る流量調整弁を含む油圧モータ駆動用油圧回路の概略構成図である。It is a schematic block diagram of the hydraulic circuit for driving a hydraulic motor including the flow rate adjustment valve which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る流量調整弁を用いた弁装置をシリーズ回路に適用する場合の回路構成説明図である。It is a circuit configuration explanatory drawing in the case of applying the valve device using the flow rate control valve which concerns on 1st Embodiment of this invention to a series circuit. 本発明の第1の実施形態に係る流量調整弁を用いた弁装置における方向切換弁での圧力ポートと一方の負荷側ポートの連通状態説明図である。It is explanatory drawing of the communication state of the pressure port in the direction switching valve and one load side port in the valve device using the flow rate control valve which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る流量調整弁を用いた弁装置における方向切換弁での圧力ポートと他方の負荷側ポートの連通状態説明図である。It is explanatory drawing of the communication state of the pressure port and the other load side port in the direction switching valve in the valve device using the flow rate control valve which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る流量調整弁における第一ポートと第三ポート間の作動油流通許容状態説明図である。It is explanatory drawing of the hydraulic oil flow permissible state between the 1st port and 3rd port in the flow rate control valve which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る流量調整弁における第一ポートと第三ポート間の連通開度増大状態説明図である。It is explanatory drawing of the communication opening degree increase state between the 1st port and 3rd port in the flow rate adjustment valve which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る流量調整弁の弁体における中間大径部のケーシング内周面への摺接開始状態説明図である。It is explanatory drawing of the sliding contact start state with the inner peripheral surface of the casing of the intermediate large diameter part in the valve body of the flow rate control valve which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る流量調整弁における第一ポートと第三ポート間の非連通状態説明図である。It is explanatory drawing of the non-communication state between the 1st port and 3rd port in the flow rate control valve which concerns on 1st Embodiment of this invention. 本発明の第2の実施形態に係る流量調整弁を用いた弁装置の概略構成説明図である。It is a schematic configuration explanatory view of the valve device using the flow rate control valve which concerns on 2nd Embodiment of this invention. 本発明の第2の実施形態に係る流量調整弁を含む油圧モータ駆動用油圧回路の概略構成図である。It is a schematic block diagram of the hydraulic circuit for driving a hydraulic motor including the flow rate adjustment valve which concerns on 2nd Embodiment of this invention. 本発明の第2の実施形態に係る流量調整弁を用いた弁装置をパラレル回路に適用する場合の回路構成説明図である。It is a circuit configuration explanatory drawing in the case of applying the valve device using the flow rate control valve which concerns on 2nd Embodiment of this invention to a parallel circuit. 本発明の第2の実施形態に係る流量調整弁を用いた弁装置における方向切換弁での圧力ポートと一方の負荷側ポートの連通状態説明図である。It is explanatory drawing of the communication state of the pressure port in the direction switching valve and one load side port in the valve device using the flow rate control valve which concerns on 2nd Embodiment of this invention. 本発明の第2の実施形態に係る流量調整弁を用いた弁装置における方向切換弁での圧力ポートと他方の負荷側ポートの連通状態説明図である。It is explanatory drawing of the communication state of the pressure port and the other load side port in the direction switching valve in the valve device using the flow rate control valve which concerns on 2nd Embodiment of this invention. 本発明の第2の実施形態に係る流量調整弁における第一ポートと第二ポート間の作動油流通許容状態説明図である。It is explanatory drawing of the hydraulic oil flow allowable state between the 1st port and the 2nd port in the flow rate control valve which concerns on 2nd Embodiment of this invention. 本発明の第2の実施形態に係る流量調整弁における第一ポートと第二ポート間の連通開度増大状態説明図である。It is explanatory drawing of the communication opening degree increase state between the 1st port and the 2nd port in the flow rate adjustment valve which concerns on 2nd Embodiment of this invention. 本発明の第2の実施形態に係る流量調整弁のケーシングにおける第一ポートと第二ポート間の内周面への弁体の摺接開始状態説明図である。It is explanatory drawing of the sliding contact start state of the valve body with the inner peripheral surface between the 1st port and the 2nd port in the casing of the flow rate control valve which concerns on 2nd Embodiment of this invention. 本発明の第2の実施形態に係る流量調整弁における第一ポートと第二ポート間の非連通状態説明図である。It is explanatory drawing of the non-communication state between the 1st port and the 2nd port in the flow rate control valve which concerns on 2nd Embodiment of this invention.

(本発明の第1の実施形態)
以下、本発明の第1の実施形態に係る流量調整弁を前記図1ないし図9に基づいて説明する。本実施形態においては、作動油を流通させてアクチュエータを駆動する油圧回路中に設けられて、アクチュエータへの作動油の流通状態を切換えたり調整する方向切換弁を主とする弁装置に適用される圧力補償付き流量調整弁の例について説明する。
(First Embodiment of the present invention)
Hereinafter, the flow rate adjusting valve according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 9. In the present embodiment, it is applied to a valve device mainly provided in a hydraulic circuit for flowing hydraulic oil to drive an actuator and mainly having a direction switching valve for switching or adjusting the flow state of hydraulic oil to the actuator. An example of a flow rate regulating valve with pressure compensation will be described.

前記各図において本実施形態に係る流量調整弁10は、方向切換弁20と組み合わせて一体の弁装置91として用いられるものであり、方向切換弁20と共通のケーシング11と、このケーシング11内に組込まれるシリーズ回路用弁体としての弁体12とを備える構成である。 In each of the drawings, the flow rate adjusting valve 10 according to the present embodiment is used as an integrated valve device 91 in combination with the directional control valve 20, and is contained in a casing 11 common to the directional switching valve 20 and in the casing 11. It is configured to include a valve body 12 as a valve body for a series circuit to be incorporated.

この流量調整弁10において、ケーシング11内に組込まれる弁体12を、後段の絞り機構の前後における作動油の圧力とばね14の弾性力により位置調整し、作動油流路の開度を変えて作動油の圧力を自動的に制御して、後置の方向切換弁20で負荷や圧力源の影響を受けることなくスプール21位置に応じて決る流量の作動油を負荷側へ供給できるようにする、圧力補償に係る基本的な仕組みについては、公知の圧力補償付き流量調整弁と同様のものであり、詳細な説明を省略する。 In the flow rate adjusting valve 10, the valve body 12 incorporated in the casing 11 is position-adjusted by the pressure of the hydraulic oil before and after the throttle mechanism in the subsequent stage and the elastic force of the spring 14, and the opening degree of the hydraulic oil flow path is changed. The pressure of the hydraulic oil is automatically controlled so that the rearward direction switching valve 20 can supply the hydraulic oil at a flow rate determined according to the position of the spool 21 to the load side without being affected by the load or the pressure source. The basic mechanism for pressure compensation is the same as that of a known flow rate control valve with pressure compensation, and detailed description thereof will be omitted.

前記弁装置91は、方向切換弁20と流量調整弁10の組を一体化した構成であり、必要に応じて他の油圧機器、例えばカウンタバランス弁65等と組み合わせた状態で、アクチュエータとしての油圧モータ50や、圧力源30及び低圧部40と接続されて、油圧モータ50の作動制御を行うものである(図2参照)。 The valve device 91 has a configuration in which a set of a direction switching valve 20 and a flow rate adjusting valve 10 is integrated, and is hydraulically used as an actuator in a state where it is combined with other hydraulic equipment such as a counterbalance valve 65 as necessary. It is connected to the motor 50, the pressure source 30, and the low pressure unit 40 to control the operation of the hydraulic motor 50 (see FIG. 2).

この弁装置91は、流量調整弁10と方向切換弁20でアクチュエータ(油圧モータ50)の駆動を制御する油圧アクチュエータ回路が複数設けられる場合に、それら複数の回路を直列に接続してシリーズ回路とするのに適合した弁装置である。 When a plurality of hydraulic actuator circuits for controlling the drive of the actuator (hydraulic motor 50) by the flow rate adjusting valve 10 and the direction switching valve 20 are provided, the valve device 91 connects the plurality of circuits in series to form a series circuit. It is a valve device suitable for use.

こうした弁装置91と油圧モータ50からなる油圧回路(アクチュエータ回路)を複数設けてシリーズ回路とする場合、図3に示すように、一つの圧力源30、及び低圧部40に対し直列に接続されることはいうまでもない。 When a plurality of hydraulic circuits (actuator circuits) including a valve device 91 and a hydraulic motor 50 are provided to form a series circuit, they are connected in series to one pressure source 30 and a low pressure unit 40 as shown in FIG. Needless to say.

流量調整弁10と組み合わせて用いられる方向切換弁20は、流量調整弁10と共通のケーシング11内に長手方向移動自在に装着される略円筒状のスプール21を備え、レバーによるスプールポジションの手動切換で、ケーシング11に設けられた圧力ポート23及び低圧ポート24、25と、二つの負荷側ポート26、27との接続状態を切換えることで、負荷側の油圧モータ50に対する作動油の給排を切換える公知の弁である。 The direction switching valve 20 used in combination with the flow rate adjusting valve 10 includes a substantially cylindrical spool 21 mounted so as to be movable in the longitudinal direction in a casing 11 common to the flow rate adjusting valve 10, and manually switches the spool position by a lever. By switching the connection state between the pressure ports 23 and the low pressure ports 24 and 25 provided in the casing 11 and the two load side ports 26 and 27, the supply and discharge of hydraulic oil to the load side hydraulic motor 50 is switched. It is a known valve.

方向切換弁20の圧力ポート23は流量調整弁10に、低圧ポート24、25は低圧部40にそれぞれ接続される一方、負荷側ポート26、27は、油圧モータ側回路の正回転側と逆回転側の二つの流路61、62にそれぞれ接続される。 The pressure port 23 of the direction switching valve 20 is connected to the flow rate adjusting valve 10, the low pressure ports 24 and 25 are connected to the low pressure portion 40, respectively, while the load side ports 26 and 27 rotate in the forward and reverse directions of the hydraulic motor side circuit. It is connected to the two flow paths 61 and 62 on the side, respectively.

この方向切換弁20は、スプールポジションの切換で、二つの負荷側ポート26、27がそれぞれ圧力ポート23及び低圧ポート24、25のいずれにも接続しない中立状態と、圧力ポート23が一方の負荷側ポート26に連通し、低圧ポート25が他方の負荷側ポート27に連通して、油圧モータ50を正回転方向に回転作動させる状態と、圧力ポート23が他方の負荷側ポート27に連通し、低圧ポート24が一方の負荷側ポート26に連通して、油圧モータ50を逆回転方向に回転作動させる状態とを切換可能な3ポジションタイプとされる構成である。 The direction switching valve 20 is in a neutral state in which the two load side ports 26 and 27 are not connected to either the pressure port 23 or the low pressure port 24 or 25, respectively, by switching the spool position, and the pressure port 23 is on one load side. A state in which the low pressure port 25 communicates with the port 26 and communicates with the other load side port 27 to rotate the hydraulic motor 50 in the forward rotation direction, and the pressure port 23 communicates with the other load side port 27 to reduce the pressure. The port 24 communicates with one of the load-side ports 26, and is configured to be a three-position type capable of switching between a state in which the hydraulic motor 50 is rotationally operated in the reverse rotation direction.

スプール21のうち、中立状態で圧力ポート23に面する大径部位の両端部分には、凹部21c、21dが穿設されており、方向切換弁20が圧力ポート23と負荷側ポート26、27のいずれかとを連通させる状態では、作動油が圧力ポート23から凹部21cを経て負荷側ポート26に、又は、凹部21dを経て負荷側ポート27に達することとなる。 Recesses 21c and 21d are bored in both ends of the large-diameter portion of the spool 21 facing the pressure port 23 in the neutral state, and the direction switching valve 20 is the pressure port 23 and the load side ports 26 and 27. In the state of communicating with either of them, the hydraulic oil reaches the load side port 26 from the pressure port 23 via the recess 21c, or reaches the load side port 27 via the recess 21d.

前記ケーシング11は、方向切換弁20のケーシングも兼ねるものであり、流量調整弁10に対応する構成として、作動油の入口部11aと、作動油の出口部11b、11cと、これら入口部と出口部に通じる孔部11dとを有するものである。 The casing 11 also serves as a casing for the direction switching valve 20, and as a configuration corresponding to the flow rate adjusting valve 10, the hydraulic oil inlet portions 11a, the hydraulic oil outlet portions 11b and 11c, and these inlet portions and outlets are provided. It has a hole portion 11d leading to the portion.

入口部11aは、ポンプ等の圧力源30と接続されて作動油を導入される。ただし、この弁装置91を用いる油圧回路が、シリーズ回路の二段目以降の油圧回路になる場合は、入口部11aには上流側回路の作動油戻り流路が接続されることとなる。すなわち、上流側回路が同様の油圧回路の場合、上流側回路における方向切換弁20の低圧ポートが、この入口部11aに接続される。 The inlet portion 11a is connected to a pressure source 30 such as a pump to introduce hydraulic oil. However, when the hydraulic circuit using the valve device 91 becomes the hydraulic circuit of the second stage or later of the series circuit, the hydraulic oil return flow path of the upstream circuit is connected to the inlet portion 11a. That is, when the upstream side circuit is a similar hydraulic circuit, the low pressure port of the direction switching valve 20 in the upstream side circuit is connected to the inlet portion 11a.

出口部は、流体圧回路の送り側流路(高圧側流路)としての方向切換弁20の圧力ポート23に接続される第一の出口部11bと、流体圧回路の戻り側流路(低圧側流路)としての方向切換弁の低圧ポート24、25に接続される第二の出口部11cとからなる。
孔部11dは、弁体12を嵌挿させる連続した孔であり、この孔部11cの連続方向へ弁体12が摺動可能とされる。
The outlets are the first outlet 11b connected to the pressure port 23 of the direction switching valve 20 as the feed side flow path (high pressure side flow path) of the fluid pressure circuit, and the return side flow path (low pressure side flow path) of the fluid pressure circuit. It is composed of a second outlet portion 11c connected to the low pressure ports 24 and 25 of the direction switching valve as the side flow path).
The hole portion 11d is a continuous hole into which the valve body 12 is fitted, and the valve body 12 is slidable in the continuous direction of the hole portion 11c.

ケーシング11は、さらに、前記孔部11dと入口部11aとを連通させる第一ポート15と、この第一ポート15に対し孔部11dにおける前記弁体12の一の移動方向側(図1中で上側)に設けられ、孔部11dと第一の出口部11bとを連通させる第二ポート16と、前記第一ポート15に対し孔部11dにおける前記弁体の他の移動方向側(図1中で下側)に設けられ、孔部11dと前記第二の出口部11dとを連通させる第三ポート17とを有する。 The casing 11 further has a first port 15 that communicates the hole portion 11d and the inlet portion 11a, and one of the valve bodies 12 in the hole portion 11d in the hole portion 11d on the moving direction side (in FIG. 1). A second port 16 provided on the upper side) for communicating the hole portion 11d and the first outlet portion 11b, and another moving direction side of the valve body in the hole portion 11d with respect to the first port 15 (in FIG. 1). It is provided on the lower side) and has a third port 17 for communicating the hole portion 11d and the second outlet portion 11d.

また、ケーシング11には、弁体12の一端部に面する第一の受圧部11eと、弁体12の他端部に面する第二の受圧部11fとが設けられる。第一の受圧部11eは第二ポート16及び第一の出口部11bに連通しており、また、第二の受圧部11fは、ケーシング11に設けられる二次圧力通路11gに連通している。 Further, the casing 11 is provided with a first pressure receiving portion 11e facing one end of the valve body 12 and a second pressure receiving portion 11f facing the other end of the valve body 12. The first pressure receiving portion 11e communicates with the second port 16 and the first outlet portion 11b, and the second pressure receiving portion 11f communicates with the secondary pressure passage 11g provided in the casing 11.

こうして、ケーシング11は、前記第一の出口部11bに連通する圧力ポート23の作動油圧力を、第一の受圧部11eから弁体12に前記一の移動方向へ弁体を押すように付加可能とされ、且つ、前記圧力ポート23から取り出した作動油圧力を、その通路上に絞りを設けられてなる二次圧力通路11gを通じて第二の受圧部11fから弁体12に前記他の移動方向へ弁体12を押すように付加可能とされる仕組みである。 In this way, the casing 11 can apply the hydraulic oil pressure of the pressure port 23 communicating with the first outlet portion 11b to the valve body 12 from the first pressure receiving portion 11e so as to push the valve body in the one moving direction. And, the hydraulic oil pressure taken out from the pressure port 23 is passed from the second pressure receiving portion 11f to the valve body 12 in the other moving direction through the secondary pressure passage 11g formed with a throttle on the passage. It is a mechanism that can be added so as to push the valve body 12.

これにより、ケーシング11の第二ポート16(出口部11b)に通じる方向切換弁20の圧力ポート23の作動油圧力が、出口部11bを通じて第一の受圧部11eに導入されると共に、方向切換弁20の圧力ポート23から負荷側ポート26、27に加わろうとする作動油圧力が、絞りのある二次圧力通路11gを経て第二の受圧部11fに導入される仕組みである。そして、二次圧力通路11gの絞りより前段側となる圧力ポート23の圧力を導入された第一の受圧部11eと、二次圧力通路11gの絞りより後段側の圧力を導入された第二の受圧部11fとの間の圧力差とばね14の弾性力との関係が一定に維持されるように弁体12が移動することとなる。 As a result, the hydraulic oil pressure of the pressure port 23 of the direction switching valve 20 leading to the second port 16 (outlet portion 11b) of the casing 11 is introduced into the first pressure receiving portion 11e through the outlet portion 11b, and the direction switching valve The hydraulic oil pressure to be applied from the pressure port 23 of 20 to the load side ports 26 and 27 is introduced into the second pressure receiving portion 11f via the secondary pressure passage 11g having a throttle. Then, the first pressure receiving portion 11e into which the pressure of the pressure port 23, which is on the front stage side of the throttle of the secondary pressure passage 11g, is introduced, and the second pressure on the rear stage side of the throttle of the secondary pressure passage 11g are introduced. The valve body 12 moves so that the relationship between the pressure difference between the pressure receiving portion 11f and the elastic force of the spring 14 is kept constant.

前記弁体12は、シリーズ回路用弁体であり、詳細には、前記第一の受圧部11e側の一端部寄りに位置してケーシング11に摺接する第一の大径部12aと、前記第二の受圧部11f側の他端部寄りに位置してケーシング11に摺接する第二の大径部12bと、第一の大径部12aと第二の大径部12bとの中間に位置してケーシング11に摺接する中間大径部12cと、第一の大径部12aと中間大径部12cとの間に位置する第一の溝部12dと、第二の大径部12bと中間大径部12cとの間に位置する第二の溝部12eとを有する構成である。 The valve body 12 is a valve body for a series circuit, and more specifically, a first large diameter portion 12a located near one end on the first pressure receiving portion 11e side and sliding contact with the casing 11 and the first large diameter portion 12a. It is located between the second large diameter portion 12b, which is located near the other end on the second pressure receiving portion 11f side and is in sliding contact with the casing 11, and the first large diameter portion 12a and the second large diameter portion 12b. An intermediate large diameter portion 12c that is in sliding contact with the casing 11, a first groove portion 12d located between the first large diameter portion 12a and the intermediate large diameter portion 12c, and a second large diameter portion 12b and an intermediate large diameter portion. It is configured to have a second groove portion 12e located between the portion 12c and the portion 12.

弁体12の第二の溝部12eは、仮に弁体12が移動可能範囲内で移動しても、第一ポート15と第二ポート16とを常に連通状態とするように設けられる。弁体12の第一の溝部12dは、ケーシング11の第一ポート15と第三ポート17とを連通可能としつつ、弁体が前記一の移動方向に移動すると第一ポート15と第三ポート17間の連通の開度を大きくし、前記他の移動方向に移動すると第一ポート15と第三ポート17間の連通の開度を小さくするように設けられる。 The second groove portion 12e of the valve body 12 is provided so that the first port 15 and the second port 16 are always in a communicating state even if the valve body 12 moves within the movable range. The first groove portion 12d of the valve body 12 enables communication between the first port 15 and the third port 17 of the casing 11, and when the valve body moves in the one moving direction, the first port 15 and the third port 17 It is provided so that the opening degree of communication between the first port 15 and the third port 17 is reduced when the opening degree of communication between the first port 15 and the third port 17 is increased and the movement is made in the other moving directions.

弁体12の各溝部12d、12eは、弁体12の周方向に連続する溝として設けられ、ポート間を連通させて作動油を流通させる流路とされるが、溝に限られるものでなく、例えば弁体の周方向に溝状に連続しない一又は複数の凹部としてもかまわない。 Each groove portion 12d, 12e of the valve body 12 is provided as a groove continuous in the circumferential direction of the valve body 12, and is a flow path for communicating hydraulic oil through the ports, but the groove portion is not limited to the groove. For example, one or a plurality of recesses that are not continuous in a groove shape in the circumferential direction of the valve body may be used.

中間大径部12cの第一の溝部12dに面する側は、中間大径部12cから溝部12dの底部の小径円柱部分に向けて先細状に径変化する曲面状部分として形成されるテーパ部12fとされる。 The side of the intermediate large diameter portion 12c facing the first groove portion 12d is a tapered portion 12f formed as a curved surface portion whose diameter gradually changes from the intermediate large diameter portion 12c toward the small diameter cylindrical portion at the bottom of the groove portion 12d. It is said that.

弁体12は、ケーシング11に摺動可能に嵌挿されて、第一の受圧部11eに導入される作動油圧力と、第二の受圧部11fに導入される作動油圧力及びばね14の付勢力との力の差に基づいて移動し、入口部11aと第二の出口部11c間の連通の開度を調整し、圧力補償を実行する点については、公知の圧力補償付き流量調整弁と同様であり、詳細な説明を省略する。 The valve body 12 is slidably fitted into the casing 11 and has a hydraulic oil pressure introduced into the first pressure receiving portion 11e, a hydraulic oil pressure introduced into the second pressure receiving portion 11f, and a spring 14. With respect to the point of moving based on the difference in force with the force, adjusting the opening degree of communication between the inlet portion 11a and the second outlet portion 11c, and performing pressure compensation, a flow rate adjusting valve with pressure compensation is known. The same applies, and detailed description thereof will be omitted.

弁体12は、ケーシング11に対し弁体長手方向に摺動して、ケーシング11における第一ポート15と第三ポート17との間の狭い通路部分に対し、中間大径部12cを接近、摺接させたり、離したりすることで、第一ポート15と第三ポート17間の連通の開度を小さくしたり大きくしたりする仕組みである。この弁体12は、第一の受圧部11eからは前記一の移動方向、すなわち、弁体12で第一ポート15と第三ポート17間の連通の開度を大きくする向きに押圧力を受け、第二の受圧部11f及びばね14からは前記他の移動方向、すなわち、弁体12で第一ポート15と第三ポート17間の連通の開度を小さくする向きに押圧力を受けることとなる。 The valve body 12 slides in the longitudinal direction of the valve body with respect to the casing 11 and approaches and slides the intermediate large-diameter portion 12c with respect to the narrow passage portion between the first port 15 and the third port 17 in the casing 11. It is a mechanism for reducing or increasing the opening degree of communication between the first port 15 and the third port 17 by bringing them into contact with each other or separating them from each other. The valve body 12 receives a pressing force from the first pressure receiving portion 11e in the one movement direction, that is, in a direction in which the valve body 12 increases the opening degree of communication between the first port 15 and the third port 17. , The second pressure receiving portion 11f and the spring 14 receive the pressing force in the other moving direction, that is, in the direction of reducing the opening degree of communication between the first port 15 and the third port 17 in the valve body 12. Become.

この弁体12には、弁体中心部で直交して(交差して)互いに連通する二つの貫通孔(第一の貫通孔12g及び第二の貫通孔12h)が穿設される。
前記第一の貫通孔12gは、弁体12の長手方向におけるテーパ部12dと中間大径部12cの一部にわたる所定範囲に、弁体12の長手方向と直交する向きとして穿設される。
The valve body 12 is provided with two through holes (first through hole 12g and second through hole 12h) that communicate with each other at right angles (crossing) at the center of the valve body.
The first through hole 12g is formed in a predetermined range covering a part of the tapered portion 12d and the intermediate large diameter portion 12c in the longitudinal direction of the valve body 12 in a direction orthogonal to the longitudinal direction of the valve body 12.

また、第二の貫通孔12hは、弁体12の長手方向においてテーパ部12dの一部と中間大径部12cの一部にわたり、且つ第一の貫通孔12gの存在する前記所定範囲と一部重なる他の所定範囲に、弁体12の長手方向と直交する向きで穿設される。 Further, the second through hole 12h extends over a part of the tapered portion 12d and a part of the intermediate large diameter portion 12c in the longitudinal direction of the valve body 12, and the predetermined range and a part where the first through hole 12g exists. It is bored in another predetermined range that overlaps in a direction orthogonal to the longitudinal direction of the valve body 12.

この第二の貫通孔12hは、その孔のうち中間大径部12cに位置する孔部分をテーパ部12dに位置する孔部分より大きくするように中間大径部12c側に偏らせて穿設され、第一の貫通孔12gより弁体12の他端部寄りに位置するようにされる。そして、この第二の貫通孔12hの断面積は、第一の貫通孔12gの断面積より小さくされる。 The second through hole 12h is formed so as to make the hole portion located in the intermediate large diameter portion 12c larger than the hole portion located in the tapered portion 12d so as to be biased toward the intermediate large diameter portion 12c side. , It is located closer to the other end of the valve body 12 than the first through hole 12g. The cross section of the second through hole 12h is made smaller than the cross section of the first through hole 12g.

次に、前記構成に基づく流量調整弁の圧力補償に係る作動状態について説明する。前提として、流量調整弁10においては、ばね14の付勢力が適切に設定されて、方向切換弁20の中立状態で流量調整弁10の第一ポート15と第三ポート17との間の連通が許容されている状態にあるものとする。 Next, the operating state related to the pressure compensation of the flow rate adjusting valve based on the above configuration will be described. As a premise, in the flow rate adjusting valve 10, the urging force of the spring 14 is appropriately set, and the communication between the first port 15 and the third port 17 of the flow rate adjusting valve 10 is established in the neutral state of the direction switching valve 20. It shall be in an acceptable state.

方向切換弁20の圧力ポート23と油圧モータ側回路に通じる二つの負荷側ポート26、27とが連通せず、作動油供給がなされないことで油圧モータ50が停止している中立状態から、手動操作によるスプール21のポジション切換がなされ、スプール21が一の方向(図1中で下側)にずれ、圧力ポート23が一方の負荷側ポート26と連通し、且つ低圧ポート25が他方の負荷側ポート27に連通した状態(図4参照)になると、圧力源30からの高圧の作動油が、第一ポート15と第二ポート16との間の連通が常時許容された状態にある流量調整弁10を通じて方向切換弁20の圧力ポート23に進み、さらにスプール21の凹部21cを経て、一方の負荷側ポート26に至る。そして、作動油が、一方の負荷側ポート26からカウンタバランス弁65を含む一方の流路61を通じて油圧モータ50に供給されることで、油圧モータ50が正回転方向に駆動される。 Manual from the neutral state where the hydraulic motor 50 is stopped because the pressure port 23 of the direction switching valve 20 and the two load side ports 26 and 27 leading to the hydraulic motor side circuit do not communicate with each other and the hydraulic oil is not supplied. The position of the spool 21 is switched by operation, the spool 21 shifts in one direction (lower side in FIG. 1), the pressure port 23 communicates with one load side port 26, and the low pressure port 25 is on the other load side. When the port 27 is communicated (see FIG. 4), the flow control valve is in a state where the high-pressure hydraulic oil from the pressure source 30 is always allowed to communicate between the first port 15 and the second port 16. It proceeds to the pressure port 23 of the direction switching valve 20 through 10, further passes through the recess 21c of the spool 21, and reaches one load side port 26. Then, the hydraulic oil is supplied from one load-side port 26 to the hydraulic motor 50 through one of the flow paths 61 including the counter balance valve 65, so that the hydraulic motor 50 is driven in the forward rotation direction.

この状態では、方向切換弁20の圧力ポート23の作動油圧力が、第一の出口部11b、第二ポート16を通じて流量調整弁10の第一の受圧部11eに導入されると共に、一方の負荷側ポート26と絞りのある二次圧力通路11gを経て流量調整弁10の第二の受圧部11fに導入される。流量調整弁10では、第一の受圧部11eと第二の受圧部11fとの間の圧力差とばね14の弾性力との関係を一定に維持するように弁体12が移動して、第一ポート15と第三ポート17間の連通の開度を調整する。 In this state, the hydraulic oil pressure of the pressure port 23 of the directional control valve 20 is introduced into the first pressure receiving portion 11e of the flow rate adjusting valve 10 through the first outlet portion 11b and the second port 16, and one of the loads is loaded. It is introduced into the second pressure receiving portion 11f of the flow rate adjusting valve 10 via the side port 26 and the secondary pressure passage 11g having a throttle. In the flow rate adjusting valve 10, the valve body 12 moves so as to maintain a constant relationship between the pressure difference between the first pressure receiving portion 11e and the second pressure receiving portion 11f and the elastic force of the spring 14, and the second The opening degree of communication between the first port 15 and the third port 17 is adjusted.

また、方向切換弁20において、中立状態から手動操作によるスプール21のポジション切換で、スプール21が他の方向(図1中で上側)にずれ、圧力ポート23が他方の負荷側ポート27と連通し、且つ低圧ポート24が一方の負荷側ポート26と連通する状態(図5参照)では、圧力源30からの高圧の作動油が、流量調整弁10を通じて方向切換弁20の圧力ポート23に進み、凹部21dを経て他方の負荷側ポート27に至る。そして、負荷側ポート27から出た作動油が、他方の流路62を通じて油圧モータ50に供給されることで、油圧モータ50は逆回転方向に駆動される。 Further, in the direction switching valve 20, the spool 21 is displaced in the other direction (upper side in FIG. 1) by manually switching the position of the spool 21 from the neutral state, and the pressure port 23 communicates with the other load side port 27. In the state where the low pressure port 24 communicates with one load side port 26 (see FIG. 5), the high pressure hydraulic oil from the pressure source 30 advances to the pressure port 23 of the direction switching valve 20 through the flow rate adjusting valve 10. It reaches the other load side port 27 through the recess 21d. Then, the hydraulic oil discharged from the load side port 27 is supplied to the hydraulic motor 50 through the other flow path 62, so that the hydraulic motor 50 is driven in the reverse rotation direction.

この状態では、方向切換弁20の圧力ポート23の作動油圧力が、第一の出口部11b、第二ポート16を通じて流量調整弁10の第一の受圧部11eに導入されると共に、他方の負荷側ポート27と絞りのある二次圧力通路11gを経て第二の受圧部11fに導入される。流量調整弁10では、油圧モータ50の前記正回転の場合と同様、第一の受圧部11eと第二の受圧部11fとの間の圧力差とばね14の弾性力との関係を一定に維持するように弁体12が移動して、第一ポート15と第三ポート17間の連通の開度を調整する。 In this state, the hydraulic oil pressure of the pressure port 23 of the direction switching valve 20 is introduced into the first pressure receiving portion 11e of the flow rate adjusting valve 10 through the first outlet portion 11b and the second port 16, and the other load. It is introduced into the second pressure receiving portion 11f via the side port 27 and the secondary pressure passage 11g having a throttle. In the flow rate adjusting valve 10, the relationship between the pressure difference between the first pressure receiving portion 11e and the second pressure receiving portion 11f and the elastic force of the spring 14 is kept constant, as in the case of the forward rotation of the hydraulic motor 50. The valve body 12 moves so as to adjust the opening degree of communication between the first port 15 and the third port 17.

流量調整弁10においては、第一ポート15と第二ポート16との間の連通は常に許容されており、第一ポート15に流入した作動油が、第一ポート15に面する弁体12の第二の溝部12eを通って第二ポート16に達する(図6、図7、図8、図9参照)。 In the flow rate adjusting valve 10, communication between the first port 15 and the second port 16 is always allowed, and the hydraulic oil flowing into the first port 15 is the valve body 12 facing the first port 15. It reaches the second port 16 through the second groove 12e (see FIGS. 6, 7, 8 and 9).

一方、第一ポート15と第三ポート17との間の連通が許容されている状態で、第一ポート15に流入した作動油の一部が、第一ポート15に面する中間大径部12cやテーパ部12f周囲の隙間部分や第一の溝部12dを通って第三ポート17に達する(図6、図7、図8参照)。 On the other hand, in a state where communication between the first port 15 and the third port 17 is permitted, a part of the hydraulic oil flowing into the first port 15 faces the first port 15 and has an intermediate large diameter portion 12c. It reaches the third port 17 through the gap portion around the tapered portion 12f and the first groove portion 12d (see FIGS. 6, 7, and 8).

仮に、油圧モータ50の負荷が増大し、油圧モータ50への供給側となる流路における作動油の圧力が大きくなると、方向切換弁20の負荷側ポートと連通する二次圧力通路11gの作動油圧力も増大する。そして、第二の受圧部11fに導入される作動油圧力とばね14の弾性力とで弁体12他端部を押す力が、第一の受圧部11eに導入される作動油圧力で弁体12一端部を押す力を上回るようになることで、弁体12が第一ポート15と第三ポート17間の連通の開度を小さくする向き(図6中で左側)に移動する。具体的には、弁体12が、ケーシング11における第一ポート15と第三ポート17との間の狭い通路部分に対し、中間大径部12cを接近させるように移動し、これに伴って、テーパ部12f周囲の隙間部分を減少させ、第一ポート15と第三ポート17間の連通の開度を小さくする。 If the load on the hydraulic motor 50 increases and the pressure of the hydraulic oil in the flow path on the supply side to the hydraulic motor 50 increases, the hydraulic oil in the secondary pressure passage 11g communicating with the load side port of the direction switching valve 20 The pressure also increases. Then, the force that pushes the other end of the valve body 12 by the hydraulic oil pressure introduced into the second pressure receiving portion 11f and the elastic force of the spring 14 is the hydraulic oil pressure introduced into the first pressure receiving portion 11e. When the force for pushing one end of the 12 portion is exceeded, the valve body 12 moves in the direction of reducing the opening degree of communication between the first port 15 and the third port 17 (left side in FIG. 6). Specifically, the valve body 12 moves so as to bring the intermediate large-diameter portion 12c closer to the narrow passage portion between the first port 15 and the third port 17 in the casing 11. The gap around the tapered portion 12f is reduced, and the opening degree of communication between the first port 15 and the third port 17 is reduced.

こうして弁体12で第一ポート15と第三ポート17間の連通の開度を小さくした分、流量調整弁10の第一ポート15から第三ポート17を経て方向切換弁20の低圧ポート25に向かう作動油の割合(流量)を減らして、第二ポート16から第一の出口部11b及び圧力ポート23に達する作動油の圧力を増やすことができ、第一の受圧部11eに導入される作動油圧力で弁体12一端部を押す力も大きくなる。最終的には、弁体12他端部を押す力と弁体12一端部を押す力とが釣り合って弁体12が停止する平衡状態となり、絞りのある二次圧力通路11gの前段側と後段側との圧力差を一定に保つことで、流量調整弁10から方向切換弁20に流入する作動油の流量を一定にでき、これにより、方向切換弁20を通じて油圧モータ50に供給される作動油の流量を負荷増大によらず一定とすることができる。 In this way, the opening degree of communication between the first port 15 and the third port 17 is reduced in the valve body 12, so that the low pressure port 25 of the direction switching valve 20 passes from the first port 15 of the flow rate adjusting valve 10 through the third port 17. The operation introduced into the first pressure receiving portion 11e can increase the pressure of the hydraulic oil reaching the first outlet portion 11b and the pressure port 23 from the second port 16 by reducing the ratio (flow rate) of the hydraulic oil heading toward it. The force that pushes one end of the valve body 12 with the hydraulic pressure also increases. Eventually, the force pushing the other end of the valve body 12 and the force pushing the one end of the valve body 12 are balanced, and the valve body 12 is in an equilibrium state in which the valve body 12 stops, and the front and rear stages of the secondary pressure passage 11g with a throttle By keeping the pressure difference from the side constant, the flow rate of the hydraulic oil flowing from the flow rate adjusting valve 10 to the direction switching valve 20 can be made constant, whereby the hydraulic oil supplied to the hydraulic motor 50 through the direction switching valve 20 can be made constant. The flow rate can be kept constant regardless of the increase in load.

一方、油圧モータ50の負荷が急減した時や、油圧モータ50の起動時など、流量調整弁10の第一ポート15に流入する作動油の圧力が相対的に大きくなる場合には、流量調整弁10の第二ポート16(出口部11b)の作動油圧力が、後段側の負荷側ポートの作動油圧力に対して増大することとなる。そして、上記の負荷増大の場合とは逆に、第一の受圧部11eに導入される作動油圧力で弁体12一端部を押す力が、第二の受圧部11fに導入される作動油圧力とばね14の弾性力とで弁体12他端部を押す力を上回るようになることで、弁体12が第一ポート15と第三ポート17間の連通の開度を大きくする向き(図6中で右側)に移動する。具体的には、弁体12が、ケーシング11における第一ポート15と第三ポート17との間の狭い通路部分に対し、中間大径部12cを離隔させるように移動し、これに伴って、テーパ部12f周囲の隙間部分を増大させ、第一ポート15と第三ポート17間の連通の開度を大きくする(図7参照)。 On the other hand, when the load of the hydraulic motor 50 suddenly decreases or when the pressure of the hydraulic oil flowing into the first port 15 of the flow rate adjusting valve 10 becomes relatively large, such as when the hydraulic motor 50 is started, the flow rate adjusting valve The hydraulic oil pressure of the second port 16 (outlet portion 11b) of 10 is increased with respect to the hydraulic oil pressure of the load side port on the rear stage side. Then, contrary to the case of the above load increase, the force pushing one end of the valve body 12 with the hydraulic oil pressure introduced into the first pressure receiving portion 11e is the hydraulic oil pressure introduced into the second pressure receiving portion 11f. And the elastic force of the spring 14 exceed the force pushing the other end of the valve body 12, so that the valve body 12 increases the opening degree of communication between the first port 15 and the third port 17 (FIG. Move to the right side in 6). Specifically, the valve body 12 moves so as to separate the intermediate large diameter portion 12c from the narrow passage portion between the first port 15 and the third port 17 in the casing 11. The gap portion around the tapered portion 12f is increased to increase the opening degree of communication between the first port 15 and the third port 17 (see FIG. 7).

こうして弁体12で第一ポート15と第三ポート17間の連通の開度を大きくした分、流量調整弁10の第一ポート15から第三ポート17、第二の出口部11cを経て方向切換弁20の低圧ポート25に向かう作動油の割合(流量)を増やして、第二ポート16から第一の出口部11b及び圧力ポート23に達する作動油の圧力を小さくすることができ、第一の受圧部11eに導入される作動油圧力で弁体12一端部を押す力も小さくなる。最終的には、弁体12他端部を押す力と弁体12一端部を押す力とが釣り合って弁体12が停止する平衡状態となり、絞りのある二次圧力通路11gの前段側と後段側との圧力差を一定に保つことで、流量調整弁10から方向切換弁20に流入する作動油の流量を一定にでき、これにより、方向切換弁20を通じて油圧モータ50に供給される作動油の流量を一定とすることができる。 In this way, the opening degree of communication between the first port 15 and the third port 17 is increased in the valve body 12, and the direction is switched from the first port 15 to the third port 17 and the second outlet portion 11c of the flow rate adjusting valve 10. The ratio (flow rate) of the hydraulic oil toward the low pressure port 25 of the valve 20 can be increased to reduce the pressure of the hydraulic oil reaching the first outlet portion 11b and the pressure port 23 from the second port 16, and the first The force that pushes one end of the valve body 12 with the hydraulic oil pressure introduced into the pressure receiving portion 11e is also reduced. Eventually, the force pushing the other end of the valve body 12 and the force pushing the one end of the valve body 12 are balanced, and the valve body 12 is in an equilibrium state in which the valve body 12 stops. By keeping the pressure difference from the side constant, the flow rate of the hydraulic oil flowing from the flow rate adjusting valve 10 to the direction switching valve 20 can be made constant, whereby the hydraulic oil supplied to the hydraulic motor 50 through the direction switching valve 20 can be made constant. The flow rate of is constant.

なお、油圧モータ50の負荷が急激に増大した時や油圧モータ50の急停止時など、油圧モータ50への供給側となる流路における作動油の圧力が急激に大きくなり、方向切換弁20の負荷側ポートと連通する二次圧力通路11gの作動油圧力が、より前段側の流量調整弁10の第二ポート16や第一の出口部11bの作動油圧力に対して著しく大きくなり、第二の受圧部11fにおいて弁体12他端部を押す力が、第一の受圧部11eにおいて弁体12一端部を押す力を大きく上回るようになる場合、弁体12は第一ポート15と第三ポート17との間の流路を閉止しようとする状態となる。 When the load of the hydraulic motor 50 suddenly increases or when the hydraulic motor 50 suddenly stops, the pressure of the hydraulic oil in the flow path on the supply side to the hydraulic motor 50 suddenly increases, and the direction switching valve 20 The hydraulic pressure of the secondary pressure passage 11g communicating with the load side port becomes significantly higher than the hydraulic pressure of the second port 16 and the first outlet 11b of the flow control valve 10 on the front stage side, and the second When the force pushing the other end of the valve body 12 at the pressure receiving portion 11f of the first pressure receiving portion 11e greatly exceeds the force pushing the one end portion of the valve body 12 at the first pressure receiving portion 11e, the valve body 12 has the first port 15 and the third. The flow path to and from the port 17 is about to be closed.

この場合、弁体12は、ケーシング11における第一ポート15と第三ポート17との間の狭い通路部分に対し、中間大径部12cを接近させ、さらに前記通路部分をなすケーシング内周面に中間大径部12cを摺接させるように移動することとなる。 In this case, the valve body 12 brings the intermediate large diameter portion 12c closer to the narrow passage portion between the first port 15 and the third port 17 in the casing 11, and further brings the intermediate large diameter portion 12c closer to the inner peripheral surface of the casing forming the passage portion. The intermediate large diameter portion 12c is moved so as to be in sliding contact with each other.

この過程において、弁体12の中間大径部12cとテーパ部12fとの境界部分が第一ポート15の端に達するまでは、作動油が第一ポート15に面する弁体12のテーパ部12f周囲の隙間部分と第一の溝部12dを通って第三ポート17に達する流れ状態にあるが、弁体12の前記境界部分が第一ポート15の端に達し、中間大径部12cが第一ポート15と第三ポート17間のケーシング内周面に摺接し始めると(図8参照)、第一ポート15に面する中間大径部12aの第二の貫通孔12hと、テーパ部12dとケーシング11との間の隙間部分及び第一の溝部12dに面する第一の貫通孔12gとを通じて、第一ポート15から第三ポート17に作動油が流通する状態に移行することとなる。 In this process, until the boundary between the intermediate large diameter portion 12c of the valve body 12 and the tapered portion 12f reaches the end of the first port 15, the hydraulic oil faces the tapered portion 12f of the valve body 12. The flow state reaches the third port 17 through the surrounding gap portion and the first groove portion 12d, but the boundary portion of the valve body 12 reaches the end of the first port 15, and the intermediate large diameter portion 12c is the first. When the sliding contact with the inner peripheral surface of the casing between the port 15 and the third port 17 begins (see FIG. 8), the second through hole 12h of the intermediate large diameter portion 12a facing the first port 15 and the tapered portion 12d and the casing Through the gap between the port 11 and the first through hole 12g facing the first groove 12d, the hydraulic oil flows from the first port 15 to the third port 17.

そして、弁体12の移動によって第二の貫通孔12hが第一ポート15に面しない位置に達するのに伴い、第一ポート15と第三ポート17間は全く連通せず作動油が流通しない状態となる(図9参照)。 Then, as the second through hole 12h reaches a position not facing the first port 15 due to the movement of the valve body 12, there is no communication between the first port 15 and the third port 17, and hydraulic oil does not flow. (See FIG. 9).

こうして、弁体12により第一ポート15と第三ポート17間の連通の開度を0とする直前に、第二の貫通孔12hと第一の貫通孔12gを通じて作動油が流通する状態が、第二の貫通孔12hが第一ポート15に面する間継続することで、流路の閉止直前における、弁体12の不安定な挙動を抑えて、後段側でのハンチング等の異常につながる作動油圧力の急激な変化を防止し、油圧回路の安定性を高められる。 In this way, immediately before the opening degree of communication between the first port 15 and the third port 17 is set to 0 by the valve body 12, the hydraulic oil flows through the second through hole 12h and the first through hole 12g. By continuing the second through hole 12h while facing the first port 15, the unstable behavior of the valve body 12 immediately before the flow path is closed is suppressed, and an operation leading to an abnormality such as hunting on the rear stage side is performed. It prevents sudden changes in hydraulic pressure and improves the stability of the hydraulic circuit.

弁体12の移動で、第一ポート15と第三ポート17間の連通が断たれ、第一ポート15から第三ポート17への作動油の流通がなくなると、第二ポート16から第一の出口部11b及び圧力ポート23に達する作動油の圧力は増大することとなり、第一の受圧部11eに導入される作動油圧力で弁体12一端部を押す力も大きくなる。これにより弁体12はあらためて第一ポート15と第三ポート17間の連通の開度を大きくする向き(図6中で右側)に移動し、第一ポート15に第二の貫通孔12hが面して、第二の貫通孔12hと第一の貫通孔12gとを通じて、第一ポート15から第一の溝部12d側へ作動油が流通可能な状態とするか、ケーシング11における第一ポート15と第三ポート17との間の狭い通路部分に対し、中間大径部12cを離隔させることで、第一ポート15と第三ポート17間の連通を再開させる。 When the communication between the first port 15 and the third port 17 is cut off by the movement of the valve body 12 and the hydraulic oil does not flow from the first port 15 to the third port 17, the second port 16 to the first port The pressure of the hydraulic oil reaching the outlet portion 11b and the pressure port 23 increases, and the force for pushing one end of the valve body 12 with the hydraulic oil pressure introduced into the first pressure receiving portion 11e also increases. As a result, the valve body 12 moves in the direction of increasing the opening degree of communication between the first port 15 and the third port 17 (on the right side in FIG. 6), and the second through hole 12h faces the first port 15. Then, the hydraulic oil can flow from the first port 15 to the first groove 12d side through the second through hole 12h and the first through hole 12g, or the first port 15 in the casing 11 By separating the intermediate large diameter portion 12c from the narrow passage portion between the third port 17 and the narrow passage portion, the communication between the first port 15 and the third port 17 is resumed.

最終的には、前記同様、弁体12他端部を押す力と弁体12一端部を押す力とが釣り合って弁体12が停止する平衡状態となり、絞りのある二次圧力通路11gの前段側と後段側との圧力差を一定に保つことで、流量調整弁10から方向切換弁20に流入する作動油の流量を一定にでき、同時に、油圧モータ50に供給される作動油の流量を一定とすることができる。 Finally, as described above, the force pushing the other end of the valve body 12 and the force pushing the one end of the valve body 12 are in equilibrium to stop the valve body 12, and the pre-stage of the secondary pressure passage 11g with a throttle. By keeping the pressure difference between the side and the rear stage side constant, the flow rate of the hydraulic oil flowing from the flow rate adjusting valve 10 to the direction switching valve 20 can be made constant, and at the same time, the flow rate of the hydraulic oil supplied to the hydraulic motor 50 can be increased. It can be constant.

このように、本実施形態に係る流量調整弁は、ケーシング11における弁体12の通る孔部に三つのポート15、16、17を設けて、シリーズ回路の接続状態に対応して、第一ポート15と第三ポート17との間の連通の開度を弁体12で調整するようにすると共に、シリーズ回路に適合する弁体12の形状の特徴のみで、弁体12の移動による圧力補償の機能が正しく発揮される状態を得ていることから、パラレル回路と共通のケーシング11でも圧力補償付の流量調整の機能に対応でき、油圧回路の接続状態に対応する専用のケーシングを用いずに済む上、弁体の組み替え作業のみで、複数油圧回路の各接続状態に対応した流路接続状態が得られ、製造や設置も容易であり、弁装置に係るコストを抑えられる。 As described above, in the flow rate adjusting valve according to the present embodiment, three ports 15, 16 and 17 are provided in the holes through which the valve body 12 passes in the casing 11, and the first port corresponds to the connection state of the series circuit. The opening degree of communication between the 15 and the third port 17 is adjusted by the valve body 12, and the pressure compensation by the movement of the valve body 12 is performed only by the characteristic of the shape of the valve body 12 that fits the series circuit. Since the function is correctly exhibited, the casing 11 common to the parallel circuit can also support the flow rate adjustment function with pressure compensation, and it is not necessary to use a dedicated casing corresponding to the connection state of the hydraulic circuit. In addition, the flow path connection state corresponding to each connection state of the plurality of hydraulic circuits can be obtained only by rearranging the valve body, the manufacturing and installation are easy, and the cost related to the valve device can be suppressed.

また、弁体12の所定範囲に第一の貫通孔12gとこれに交差する第二の貫通孔12hを設け、弁体12が第一ポート15と第三ポート17との間の流路を閉止しようとする状態で、第一ポート15に面する第二の貫通孔12hと、これに連通する第一の貫通孔12gとを通じて、第一ポート15から第三ポート17側に作動油が流通可能となり、この流通可能な状態が、第二の貫通孔12hが入口部11aに面する間継続することから、閉止直前で第一ポート15から第三ポート17側に作動油が流通する向きが、弁体12の移動方向とは異なるものとなり、弁体12の挙動が作動油の流れの影響を受けにくくなり、圧力補償を正しく実行できるように弁体12を動かせ、負荷変動に伴う作動油圧力の変化によらず作動油の流量を一定とする本来の調整機能を正しく発揮できると共に、弁体12の不安定な挙動を抑えて、流量調整弁より後段側でのハンチング等の異常につながる作動油圧力の急激な変化を防止し、油圧回路の安定性を高められる。 Further, a first through hole 12g and a second through hole 12h intersecting the first through hole 12g are provided in a predetermined range of the valve body 12, and the valve body 12 closes the flow path between the first port 15 and the third port 17. Hydraulic oil can flow from the first port 15 to the third port 17 side through the second through hole 12h facing the first port 15 and the first through hole 12g communicating with the second through hole 12h. Since this circulatory state continues while the second through hole 12h faces the inlet portion 11a, the direction in which the hydraulic oil flows from the first port 15 to the third port 17 side immediately before closing is determined. The movement direction of the valve body 12 is different from that of the valve body 12, the behavior of the valve body 12 is less affected by the flow of hydraulic oil, the valve body 12 can be moved so that pressure compensation can be performed correctly, and the hydraulic oil pressure due to load fluctuation. The original adjustment function that keeps the flow rate of hydraulic oil constant regardless of the change in hydraulic oil can be correctly exerted, and the unstable behavior of the valve body 12 is suppressed, which leads to abnormalities such as hunting on the rear stage side of the flow rate adjustment valve. It prevents sudden changes in hydraulic pressure and improves the stability of the hydraulic circuit.

また、弁体12の所定箇所に貫通孔を二つ設けるのみで、弁体12が第一ポート15と第三ポート17との間の流路を閉止しようとする状態での、第一ポート15と第三ポート17との間で作動油を流通させる適切な通路を形成でき、容易に最適な特性の弁装置を得ることができる。 Further, the first port 15 is in a state where the valve body 12 tries to close the flow path between the first port 15 and the third port 17 only by providing two through holes at predetermined positions of the valve body 12. An appropriate passage for circulating hydraulic oil can be formed between the port 17 and the third port 17, and a valve device having optimum characteristics can be easily obtained.

(本発明の第2の実施形態)
本発明の第2の実施形態に係る流量調整弁を前記図10ないし図18に基づいて説明する。
(Second Embodiment of the present invention)
The flow rate adjusting valve according to the second embodiment of the present invention will be described with reference to FIGS. 10 to 18.

前記各図において本実施形態に係る流量調整弁10は、方向切換弁20と組み合わせて一体の弁装置92として用いられるものであり、方向切換弁20と共通のケーシング11と、このケーシング11内に組込まれるパラレル回路用弁体としての弁体13とを備える構成である。 In each of the drawings, the flow rate adjusting valve 10 according to the present embodiment is used as an integrated valve device 92 in combination with the directional control valve 20, and is contained in a casing 11 common to the directional switching valve 20 and in the casing 11. It is configured to include a valve body 13 as a valve body for a parallel circuit to be incorporated.

この流量調整弁10において、ケーシング11内に組込まれる弁体13を、後段の絞り機構の前後における作動油の圧力とばね14の弾性力により位置調整し、作動油流路の開度を変えて作動油の圧力を自動的に制御して、後置の方向切換弁20で負荷や圧力源の影響を受けることなくスプール21位置に応じて決る流量の作動油を負荷側へ供給できるようにする、圧力補償に係る基本的な仕組みについては、公知の圧力補償付き流量調整弁と同様のものであり、詳細な説明を省略する。 In the flow rate adjusting valve 10, the valve body 13 incorporated in the casing 11 is position-adjusted by the pressure of the hydraulic oil before and after the throttle mechanism in the subsequent stage and the elastic force of the spring 14, and the opening degree of the hydraulic oil flow path is changed. The pressure of the hydraulic oil is automatically controlled so that the rearward direction switching valve 20 can supply the hydraulic oil at a flow rate determined according to the position of the spool 21 to the load side without being affected by the load or the pressure source. The basic mechanism for pressure compensation is the same as that of a known flow rate control valve with pressure compensation, and detailed description thereof will be omitted.

前記弁装置92は、方向切換弁20と流量調整弁10の組を一体化した構成であり、必要に応じて他の油圧機器、例えばカウンタバランス弁65等と組み合わせた状態で、アクチュエータとしての油圧モータ50や、圧力源30及び低圧部40と接続されて、油圧モータ50の作動制御を行うものである(図11参照)。 The valve device 92 has a configuration in which a set of a direction switching valve 20 and a flow rate adjusting valve 10 is integrated, and is hydraulically used as an actuator in a state where it is combined with another hydraulic device such as a counterbalance valve 65 as necessary. It is connected to the motor 50, the pressure source 30, and the low pressure unit 40 to control the operation of the hydraulic motor 50 (see FIG. 11).

この弁装置92は、流量調整弁10と方向切換弁20でアクチュエータ(油圧モータ50)の駆動を制御する油圧アクチュエータ回路が複数設けられる場合に、それら複数の回路を並列に接続してパラレル回路とするのに適合した弁装置である。 When a plurality of hydraulic actuator circuits for controlling the drive of the actuator (hydraulic motor 50) by the flow rate adjusting valve 10 and the direction switching valve 20 are provided, the valve device 92 connects the plurality of circuits in parallel to form a parallel circuit. It is a valve device suitable for use.

こうした弁装置92と油圧モータ50からなる油圧回路(アクチュエータ回路)を複数設けてパラレル回路とする場合、図12に示すように、共通の一つの圧力源30及び低圧部40に対しそれぞれ同様に(並列に)接続されることとなる。 When a plurality of hydraulic circuits (actuator circuits) including such a valve device 92 and a hydraulic motor 50 are provided to form a parallel circuit, as shown in FIG. 12, one common pressure source 30 and a low pressure unit 40 are similarly (similarly). It will be connected (in parallel).

流量調整弁10と組み合わせて用いられる方向切換弁20は、流量調整弁10と共通のケーシング11内に長手方向移動自在に装着される略円筒状のスプール21を備え、レバーによるスプールポジションの手動切換で、ケーシング11に設けられた圧力ポート23及び低圧ポート24、25と、二つの負荷側ポート26、27との接続状態を切換えることで、負荷側の油圧モータ50に対する作動油の給排を切換える公知の弁である。 The direction switching valve 20 used in combination with the flow rate adjusting valve 10 includes a substantially cylindrical spool 21 mounted so as to be movable in the longitudinal direction in a casing 11 common to the flow rate adjusting valve 10, and manually switches the spool position by a lever. By switching the connection state between the pressure ports 23 and the low pressure ports 24 and 25 provided in the casing 11 and the two load side ports 26 and 27, the supply and discharge of hydraulic oil to the load side hydraulic motor 50 is switched. It is a known valve.

方向切換弁20の圧力ポート23は流量調整弁10に、低圧ポート24、25は低圧部40にそれぞれ接続される一方、負荷側ポート26、27は、油圧モータ側回路の正回転側と逆回転側の二つの流路61、62にそれぞれ接続される。 The pressure port 23 of the direction switching valve 20 is connected to the flow rate adjusting valve 10, the low pressure ports 24 and 25 are connected to the low pressure portion 40, respectively, while the load side ports 26 and 27 rotate in the forward and reverse directions of the hydraulic motor side circuit. It is connected to the two flow paths 61 and 62 on the side, respectively.

この方向切換弁20は、スプールポジションの切換で、二つの負荷側ポート26、27がそれぞれ圧力ポート23及び低圧ポート24、25のいずれにも接続しない中立状態と、圧力ポート23が一方の負荷側ポート26に連通し、低圧ポート25が他方の負荷側ポート27に連通して、油圧モータ50を正回転方向に回転作動させる状態と、圧力ポート23が他方の負荷側ポート27に連通し、低圧ポート24が一方の負荷側ポート26に連通して、油圧モータ50を逆回転方向に回転作動させる状態とを切換可能な3ポジションタイプとされる構成である。 The direction switching valve 20 is in a neutral state in which the two load side ports 26 and 27 are not connected to either the pressure port 23 or the low pressure port 24 or 25, respectively, by switching the spool position, and the pressure port 23 is on one load side. A state in which the low pressure port 25 communicates with the port 26 and communicates with the other load side port 27 to rotate the hydraulic motor 50 in the forward rotation direction, and the pressure port 23 communicates with the other load side port 27 to reduce the pressure. The port 24 communicates with one of the load-side ports 26, and is configured to be a three-position type capable of switching between a state in which the hydraulic motor 50 is rotated in the reverse rotation direction.

スプール21のうち、中立状態で圧力ポート23に面する大径部位の両端部分には、凹部21c、21dが穿設されており、方向切換弁20が圧力ポート23と負荷側ポート26、27のいずれかとを連通させる状態では、作動油が圧力ポート23から凹部21cを経て負荷側ポート26に、又は、凹部21dを経て負荷側ポート27に達することとなる。 Recesses 21c and 21d are bored in both ends of the large-diameter portion of the spool 21 facing the pressure port 23 in the neutral state, and the direction switching valve 20 is the pressure port 23 and the load side ports 26 and 27. In the state of communicating with either of them, the hydraulic oil reaches the load side port 26 from the pressure port 23 via the recess 21c, or reaches the load side port 27 via the recess 21d.

前記ケーシング11は、前記第1の実施形態同様、方向切換弁20のケーシングも兼ねるものであり、流量調整弁10に対応する構成として、作動油の入口部11aと、作動油の出口部11b、11cと、これら入口部と出口部に通じる孔部11dとを有するものである。 Similar to the first embodiment, the casing 11 also serves as a casing for the direction switching valve 20, and as a configuration corresponding to the flow rate adjusting valve 10, the hydraulic oil inlet portion 11a and the hydraulic oil outlet portion 11b, It has 11c and a hole 11d leading to these inlets and outlets.

入口部11aは、ポンプ等の圧力源30と接続されて作動油を導入されるものである。出口部は、流体圧回路の送り側流路(高圧側流路)としての方向切換弁20の圧力ポート23に接続される第一の出口部11bと、流体圧回路の戻り側流路(低圧側流路)としての方向切換弁の低圧ポート24、25に接続される第二の出口部11cとからなる。
孔部11dは、弁体13を嵌挿させる連続した孔であり、この孔部11dの連続方向へ弁体13が摺動可能とされる。
The inlet portion 11a is connected to a pressure source 30 such as a pump to introduce hydraulic oil. The outlets are the first outlet 11b connected to the pressure port 23 of the direction switching valve 20 as the feed side flow path (high pressure side flow path) of the fluid pressure circuit, and the return side flow path (low pressure side flow path) of the fluid pressure circuit. It is composed of a second outlet portion 11c connected to the low pressure ports 24 and 25 of the direction switching valve as the side flow path).
The hole portion 11d is a continuous hole into which the valve body 13 is fitted, and the valve body 13 is slidable in the continuous direction of the hole portion 11d.

ケーシング11は、さらに、前記孔部11dと入口部11aとを連通させる第一ポート15と、この第一ポート15に対し孔部11dにおける前記弁体13の一の移動方向側(図10中で上側)に設けられ、孔部11dと第一の出口部11bとを連通させる第二ポート16と、前記第一ポート15に対し孔部11dにおける前記弁体の他の移動方向側(図10中で下側)に設けられ、孔部11dと前記第二の出口部11cとを連通させる第三ポート17とを有する。 The casing 11 further has a first port 15 that communicates the hole portion 11d and the inlet portion 11a, and one of the valve bodies 13 in the hole portion 11d in the hole portion 11d on the moving direction side (in FIG. 10). A second port 16 provided on the upper side) for communicating the hole portion 11d and the first outlet portion 11b, and another moving direction side of the valve body in the hole portion 11d with respect to the first port 15 (in FIG. 10). It is provided on the lower side) and has a third port 17 for communicating the hole portion 11d and the second outlet portion 11c.

また、ケーシング11には、弁体13の一端部に面する第一の受圧部11eと、弁体13の他端部に面する第二の受圧部11fとが設けられる。第一の受圧部11eは第二ポート16及び第一の出口部11bに連通しており、また、第二の受圧部11fは、ケーシング11に設けられる二次圧力通路11gに連通している。 Further, the casing 11 is provided with a first pressure receiving portion 11e facing one end of the valve body 13 and a second pressure receiving portion 11f facing the other end of the valve body 13. The first pressure receiving portion 11e communicates with the second port 16 and the first outlet portion 11b, and the second pressure receiving portion 11f communicates with the secondary pressure passage 11g provided in the casing 11.

こうして、ケーシング11は、前記第一の出口部11bに連通する圧力ポート23の作動油圧力を、第一の受圧部11eから弁体13に前記一の移動方向へ弁体を押すように付加可能とされ、且つ、前記圧力ポート23から取り出した作動油圧力を、その通路上に絞りを設けられてなる二次圧力通路11gを通じて第二の受圧部11fから弁体13に前記他の移動方向へ弁体13を押すように付加可能とされる仕組みである。 In this way, the casing 11 can apply the hydraulic oil pressure of the pressure port 23 communicating with the first outlet portion 11b to the valve body 13 from the first pressure receiving portion 11e so as to push the valve body in the one moving direction. And, the hydraulic oil pressure taken out from the pressure port 23 is passed from the second pressure receiving portion 11f to the valve body 13 in the other moving direction through the secondary pressure passage 11g formed with a throttle on the passage. It is a mechanism that can be added so as to push the valve body 13.

これにより、ケーシング11の第二ポート16(出口部11b)に通じる方向切換弁20の圧力ポート23の作動油圧力が、出口部11bを通じて第一の受圧部11eに導入されると共に、方向切換弁20の圧力ポート23から負荷側ポート26、27に加わろうとする作動油圧力が、絞りのある二次圧力通路11gを経て第二の受圧部11fに導入される仕組みである。そして、二次圧力通路11gの絞りより前段側となる圧力ポート23の圧力を導入された第一の受圧部11eと、二次圧力通路11gの絞りより後段側の圧力を導入された第二の受圧部11fとの間の圧力差とばね14の弾性力との関係が一定に維持されるように弁体13が移動することとなる。 As a result, the hydraulic oil pressure of the pressure port 23 of the direction switching valve 20 leading to the second port 16 (outlet portion 11b) of the casing 11 is introduced into the first pressure receiving portion 11e through the outlet portion 11b, and the direction switching valve The hydraulic oil pressure to be applied from the pressure port 23 of 20 to the load side ports 26 and 27 is introduced into the second pressure receiving portion 11f via the secondary pressure passage 11g having a throttle. Then, the first pressure receiving portion 11e into which the pressure of the pressure port 23, which is on the front stage side of the throttle of the secondary pressure passage 11g, is introduced, and the second pressure on the rear stage side of the throttle of the secondary pressure passage 11g are introduced. The valve body 13 moves so that the relationship between the pressure difference between the pressure receiving portion 11f and the elastic force of the spring 14 is kept constant.

前記弁体13は、パラレル回路用弁体であり、詳細には、前記第一の受圧部11e側の一端部寄りに位置してケーシング11に摺接する第一の大径部13aと、前記第二の受圧部11f側の他端部寄りに位置してケーシング11に摺接する第二の大径部13bと、第一の大径部13aと第二の大径部13bとの間に位置する溝部13cとを有する構成である。 The valve body 13 is a valve body for a parallel circuit, and more specifically, a first large diameter portion 13a located near one end on the first pressure receiving portion 11e side and in sliding contact with the casing 11 and the first large diameter portion 13a. It is located between the second large-diameter portion 13b, which is located near the other end on the second pressure receiving portion 11f side and is in sliding contact with the casing 11, and the first large-diameter portion 13a and the second large-diameter portion 13b. It is configured to have a groove portion 13c.

弁体13の第一の大径部13aは、仮に弁体13が移動可能範囲で移動しても、ケーシング11の第一ポート15と第三ポート17とを常に非連通状態とする、作動油を通す溝又は凹部のない柱状部として形成される。 The first large-diameter portion 13a of the valve body 13 is a hydraulic oil that keeps the first port 15 and the third port 17 of the casing 11 in a non-communication state even if the valve body 13 moves within a movable range. It is formed as a columnar portion without a groove or recess for passing through.

弁体13の溝部13cは、前記一の移動方向に移動すると第一ポート15と第二ポート16間の連通の開度を小さくし、且つ前記他の移動方向に移動すると第一ポート15と第二ポート16間の連通の開度を大きくするように設けられる。 When the groove portion 13c of the valve body 13 moves in the one moving direction, the opening degree of communication between the first port 15 and the second port 16 is reduced, and when the groove portion 13c moves in the other moving direction, the first port 15 and the second port 15 and the second port 16 are opened. It is provided so as to increase the opening degree of communication between the two ports 16.

第一の大径部13aの溝部13cに面する側は、第一の大径部13aから溝部13cの底部の小径円柱部分に向けて先細状に径変化する曲面状部分として形成されるテーパ部13dとされる。 The side of the first large diameter portion 13a facing the groove portion 13c is a tapered portion formed as a curved surface portion whose diameter gradually changes from the first large diameter portion 13a toward the small diameter cylindrical portion at the bottom of the groove portion 13c. It is set to 13d.

弁体13は、ケーシング11に摺動可能に嵌挿されて、第一の受圧部11eに導入される作動油圧力と、第二の受圧部11fに導入される作動油圧力及びばね14の付勢力との力の差に基づいて移動し、入口部11aと第一の出口部11b間の連通の開度を調整し、圧力補償を実行する点については、公知の圧力補償付き流量調整弁と同様であり、詳細な説明を省略する。 The valve body 13 is slidably fitted into the casing 11 and has a hydraulic oil pressure introduced into the first pressure receiving portion 11e, a hydraulic oil pressure introduced into the second pressure receiving portion 11f, and a spring 14. With respect to the point of moving based on the difference in force with the force, adjusting the opening degree of communication between the inlet portion 11a and the first outlet portion 11b, and performing pressure compensation, a flow rate adjusting valve with pressure compensation is known. The same applies, and detailed description thereof will be omitted.

弁体13は、ケーシング11に対し弁体長手方向に摺動して、ケーシング11における第一ポート15と第二ポート16との間の狭い通路部分に対し、第一の大径部13aを接近、摺接させたり、離したりすることで、第一ポート15と第二ポート16間の連通の開度を小さくしたり大きくしたりする仕組みである。この弁体13は、第一の受圧部11eからは弁体13で第一ポート15と第二ポート16間の連通の開度を小さくする向きに押圧力を受け、第二の受圧部11f及びばね14からは弁体13で第一ポート15と第二ポート16間の連通の開度を大きくする向きに押圧力を受けることとなる。 The valve body 13 slides in the longitudinal direction of the valve body with respect to the casing 11 and approaches the first large-diameter portion 13a with respect to the narrow passage portion between the first port 15 and the second port 16 in the casing 11. It is a mechanism for reducing or increasing the opening degree of communication between the first port 15 and the second port 16 by sliding them in contact with each other or separating them from each other. The valve body 13 receives a pressing force from the first pressure receiving portion 11e in the direction of reducing the opening degree of communication between the first port 15 and the second port 16 by the valve body 13, and the second pressure receiving portion 11f and the second pressure receiving portion 11f From the spring 14, the valve body 13 receives a pressing force in a direction that increases the opening degree of communication between the first port 15 and the second port 16.

この弁体13には、弁体中心部で直交して(交差して)互いに連通する二つの貫通孔(第一の貫通孔13g及び第二の貫通孔13h)が穿設される。
前記第一の貫通孔13gは、弁体13の長手方向におけるテーパ部13dを中心として第一の大径部13aと溝部13cの溝底部に及ぶ所定範囲に、弁体13の長手方向と直交する向きとして穿設される。
The valve body 13 is provided with two through holes (first through hole 13g and second through hole 13h) that are orthogonal (crossed) at the center of the valve body and communicate with each other.
The first through hole 13g is orthogonal to the longitudinal direction of the valve body 13 in a predetermined range extending from the tapered portion 13d in the longitudinal direction of the valve body 13 to the groove bottom portion of the first large diameter portion 13a and the groove portion 13c. It is drilled as a direction.

また、第二の貫通孔13hは、弁体13の長手方向においてテーパ部13dの一部と溝部13cの溝底部にわたり、且つ第一の貫通孔13gの存在する前記所定範囲と一部重なる他の所定範囲に、弁体13の長手方向と直交する向きで穿設される。 Further, the second through hole 13h extends over a part of the tapered portion 13d and the groove bottom portion of the groove portion 13c in the longitudinal direction of the valve body 13, and partially overlaps the predetermined range in which the first through hole 13g exists. It is bored in a predetermined range in a direction orthogonal to the longitudinal direction of the valve body 13.

この第二の貫通孔13hは、その孔のうち溝部13cの溝底部に位置する孔部分をテーパ部13dに位置する孔部分より大きくするように溝部13c側に偏らせて穿設され、第一の貫通孔13gより弁体13の他端部寄りに位置するようにされる。そして、この第二の貫通孔13hの断面積は、第一の貫通孔13gの断面積より大きくされる。 The second through hole 13h is formed by biasing the hole portion located at the groove bottom portion of the groove portion 13c to the groove portion 13c side so as to be larger than the hole portion located at the tapered portion 13d. It is located closer to the other end of the valve body 13 than the through hole 13g of the valve body 13. The cross section of the second through hole 13h is made larger than the cross section of the first through hole 13g.

次に、前記構成に基づく流量調整弁の圧力補償に係る作動状態について説明する。前提として、流量調整弁10においては、ばね14の付勢力が適切に設定されて、方向切換弁20の中立状態で流量調整弁10の第一ポート15と第二ポート16との間の連通が許容された状態にあるものとする。 Next, the operating state related to the pressure compensation of the flow rate adjusting valve based on the above configuration will be described. As a premise, in the flow rate adjusting valve 10, the urging force of the spring 14 is appropriately set, and the communication between the first port 15 and the second port 16 of the flow rate adjusting valve 10 is established in the neutral state of the direction switching valve 20. It shall be in an acceptable state.

方向切換弁20の圧力ポート23と油圧モータ側回路に通じる二つの負荷側ポート26、27とが連通せず、作動油供給がなされないことで油圧モータ50が停止している中立状態から、手動操作によるスプール21のポジション切換がなされ、スプール21が一の方向(図10中で下側)にずれ、圧力ポート23が一方の負荷側ポート26と連通し、且つ低圧ポート25が他方の負荷側ポート27に連通した状態(図13参照)になると、圧力源30からの高圧の作動油が、第一ポート15と第二ポート16との間の連通が許容された状態にある流量調整弁10を通じて方向切換弁20の圧力ポート23に進み、さらに凹部21cを経て、一方の負荷側ポート26に至る。そして、作動油が、一方の負荷側ポート16からカウンタバランス弁65を含む一方の流路61を通じて油圧モータ50に供給されることで、油圧モータ50が正回転方向に駆動される。 Manual from the neutral state where the hydraulic motor 50 is stopped because the pressure port 23 of the direction switching valve 20 and the two load side ports 26 and 27 leading to the hydraulic motor side circuit do not communicate with each other and the hydraulic oil is not supplied. The position of the spool 21 is switched by operation, the spool 21 shifts in one direction (lower side in FIG. 10), the pressure port 23 communicates with one load side port 26, and the low pressure port 25 is on the other load side. When the state of communication with the port 27 (see FIG. 13) is reached, the flow control valve 10 is in a state in which the high-pressure hydraulic oil from the pressure source 30 is allowed to communicate between the first port 15 and the second port 16. It proceeds to the pressure port 23 of the direction switching valve 20 through the recess 21c, and then reaches one of the load side ports 26. Then, the hydraulic oil is supplied from one load-side port 16 to the hydraulic motor 50 through one of the flow paths 61 including the counter balance valve 65, so that the hydraulic motor 50 is driven in the forward rotation direction.

この状態では、方向切換弁20の圧力ポート23の作動油圧力が、第一の出口部11b、第二ポート16を通じて流量調整弁10の第一の受圧部11eに導入されると共に、一方の負荷側ポート26と絞りのある二次圧力通路11gを経て流量調整弁10の第二の受圧部11fに導入される。流量調整弁10では、第一の受圧部11eと第二の受圧部11fとの間の圧力差とばね14の弾性力との関係を一定に維持するように弁体13が移動して、第一ポート15と第二ポート16間の連通の開度を調整する。 In this state, the hydraulic oil pressure of the pressure port 23 of the directional control valve 20 is introduced into the first pressure receiving portion 11e of the flow rate adjusting valve 10 through the first outlet portion 11b and the second port 16, and one of the loads is loaded. It is introduced into the second pressure receiving portion 11f of the flow rate adjusting valve 10 via the side port 26 and the secondary pressure passage 11g having a throttle. In the flow rate adjusting valve 10, the valve body 13 moves so as to maintain a constant relationship between the pressure difference between the first pressure receiving portion 11e and the second pressure receiving portion 11f and the elastic force of the spring 14, and the second The opening degree of communication between the first port 15 and the second port 16 is adjusted.

また、方向切換弁20において、中立状態から手動操作によるスプール21のポジション切換で、スプール21が他の方向(図10中で上側)にずれ、圧力ポート23が他方の負荷側ポート27と連通し、且つ低圧ポート24が一方の負荷側ポート26と連通する状態(図14参照)では、圧力源30からの高圧の作動油が、流量調整弁10を通じて方向切換弁20の圧力ポート23に進み、凹部21dを経て他方の負荷側ポート27に至る。そして、負荷側ポート27から出た作動油が、他方の流路62を通じて油圧モータ50に供給されることで、油圧モータ50は逆回転方向に駆動される。 Further, in the direction switching valve 20, the spool 21 is displaced in the other direction (upper side in FIG. 10) by manually switching the position of the spool 21 from the neutral state, and the pressure port 23 communicates with the other load side port 27. In the state where the low pressure port 24 communicates with one load side port 26 (see FIG. 14), the high pressure hydraulic oil from the pressure source 30 advances to the pressure port 23 of the direction switching valve 20 through the flow rate adjusting valve 10. It reaches the other load side port 27 through the recess 21d. Then, the hydraulic oil discharged from the load side port 27 is supplied to the hydraulic motor 50 through the other flow path 62, so that the hydraulic motor 50 is driven in the reverse rotation direction.

この状態では、方向切換弁20の圧力ポート23の作動油圧力が、第一の出口部11b、第二ポート16を通じて流量調整弁10の第一の受圧部11eに導入されると共に、他方の負荷側ポート27と絞りのある二次圧力通路11gを経て第二の受圧部11fに導入される。流量調整弁10では、油圧モータ50の前記正回転の場合と同様、第一の受圧部11eと第二の受圧部11fとの間の圧力差とばね14の弾性力との関係を一定に維持するように弁体13が移動して、第一ポート15と第二ポート16間の連通の開度を調整する。 In this state, the hydraulic oil pressure of the pressure port 23 of the direction switching valve 20 is introduced into the first pressure receiving portion 11e of the flow rate adjusting valve 10 through the first outlet portion 11b and the second port 16, and the other load. It is introduced into the second pressure receiving portion 11f via the side port 27 and the secondary pressure passage 11g having a throttle. In the flow rate adjusting valve 10, the relationship between the pressure difference between the first pressure receiving portion 11e and the second pressure receiving portion 11f and the elastic force of the spring 14 is kept constant, as in the case of the forward rotation of the hydraulic motor 50. The valve body 13 moves so as to adjust the opening degree of communication between the first port 15 and the second port 16.

流量調整弁10においては、第一ポート15と第二ポート16との間の連通が許容されている状態で、第一ポート15に流入した作動油が、第一ポート15に面する弁体13のテーパ部13d周囲の隙間部分と溝部13cを通って第二ポート16に達する(図15、図16参照)。 In the flow rate adjusting valve 10, the hydraulic oil flowing into the first port 15 faces the first port 15 in a state where communication between the first port 15 and the second port 16 is permitted. The second port 16 is reached through the gap portion around the tapered portion 13d and the groove portion 13c (see FIGS. 15 and 16).

仮に、油圧モータ50の負荷が増大し、油圧モータ50への供給側となる流路における作動油の圧力が大きくなると、方向切換弁20の負荷側ポートと連通する二次圧力通路11gの作動油圧力も増大する。そして、第二の受圧部11fに導入される作動油圧力とばね14の弾性力とで弁体13他端部を押す力が、第一の受圧部11eに導入される作動油圧力で弁体13一端部を押す力を上回るようになることで、弁体13が第一ポート15と第二ポート16間の連通の開度を大きくする向き(図15中で左側)に移動する。具体的には、弁体13が、ケーシング11における第一ポート15と第二ポート16との間の狭い通路部分に対し、第一の大径部13aを離隔させるように移動し、これに伴って、テーパ部13d周囲の隙間部分を増大させ、第一ポート15と第二ポート16間の連通の開度を大きくする(図16参照)。 If the load on the hydraulic motor 50 increases and the pressure of the hydraulic oil in the flow path on the supply side to the hydraulic motor 50 increases, the hydraulic oil in the secondary pressure passage 11g communicating with the load side port of the direction switching valve 20 The pressure also increases. Then, the force that pushes the other end of the valve body 13 by the hydraulic oil pressure introduced into the second pressure receiving portion 11f and the elastic force of the spring 14 is the hydraulic oil pressure introduced into the first pressure receiving portion 11e. When the force for pushing one end of 13 is exceeded, the valve body 13 moves in the direction of increasing the opening degree of communication between the first port 15 and the second port 16 (left side in FIG. 15). Specifically, the valve body 13 moves so as to separate the first large-diameter portion 13a from the narrow passage portion between the first port 15 and the second port 16 in the casing 11. Therefore, the gap portion around the tapered portion 13d is increased to increase the opening degree of communication between the first port 15 and the second port 16 (see FIG. 16).

こうして弁体13で第一ポート15と第二ポート16間の連通の開度を大きくした分、流量調整弁10の第一ポート15と第二ポート16間の流通に係る圧力損失を小さくして、第二ポート16から第一の出口部11b及び圧力ポート23に達する作動油の圧力を増やすことができ、第一の受圧部11eに導入される作動油圧力で弁体13一端部を押す力も大きくなる。最終的には、弁体13他端部を押す力と弁体13一端部を押す力とが釣り合って弁体13が停止する平衡状態となり、絞りのある二次圧力通路11gの前段側と後段側との圧力差を一定に保つことで、流量調整弁10から方向切換弁20に流入する作動油の流量を一定にでき、これにより、方向切換弁20を通じて油圧モータ50に供給される作動油の流量を負荷増大によらず一定とすることができる。 In this way, the pressure loss related to the flow between the first port 15 and the second port 16 of the flow rate adjusting valve 10 is reduced by the amount that the opening degree of communication between the first port 15 and the second port 16 is increased in the valve body 13. The pressure of the hydraulic oil reaching the first outlet portion 11b and the pressure port 23 from the second port 16 can be increased, and the hydraulic oil pressure introduced into the first pressure receiving portion 11e also pushes one end of the valve body 13. growing. Eventually, the force pushing the other end of the valve body 13 and the force pushing the one end of the valve body 13 are balanced, and the valve body 13 is in an equilibrium state in which the valve body 13 stops. By keeping the pressure difference from the side constant, the flow rate of the hydraulic oil flowing from the flow rate adjusting valve 10 to the direction switching valve 20 can be made constant, whereby the hydraulic oil supplied to the hydraulic motor 50 through the direction switching valve 20 can be made constant. The flow rate can be kept constant regardless of the increase in load.

一方、油圧モータ50の負荷が急減した時や、油圧モータ50の起動時など、流量調整弁10の第一ポート15に流入する作動油の圧力が相対的に大きくなる場合には、流量調整弁10の第二ポート16(出口部11b)の作動油圧力が、後段側の負荷側ポートの作動油圧力に対して増大することとなる。そして、上記の負荷増大の場合とは逆に、第一の受圧部11eに導入される作動油圧力で弁体13一端部を押す力が、第二の受圧部11fに導入される作動油圧力とばね14の弾性力とで弁体13他端部を押す力を上回るようになることで、弁体13が第一ポート15と第二ポート16間の連通の開度を小さくする向き(図15中で右側)に移動する。具体的には、弁体13が、ケーシング11における第一ポート15と第二ポート16との間の狭い通路部分に対し、第一の大径部13aを接近させるように移動し、これに伴って、テーパ部13d周囲の隙間部分を減少させ、第一ポート15と第二ポート16間の連通の開度を小さくする。 On the other hand, when the load of the hydraulic motor 50 suddenly decreases or when the pressure of the hydraulic oil flowing into the first port 15 of the flow rate adjusting valve 10 becomes relatively large, such as when the hydraulic motor 50 is started, the flow rate adjusting valve The hydraulic oil pressure of the second port 16 (outlet portion 11b) of 10 is increased with respect to the hydraulic oil pressure of the load side port on the rear stage side. Contrary to the case of the load increase described above, the force that pushes one end of the valve body 13 with the hydraulic oil pressure introduced into the first pressure receiving portion 11e is the hydraulic oil pressure introduced into the second pressure receiving portion 11f. And the elastic force of the spring 14 exceed the force pushing the other end of the valve body 13, so that the valve body 13 reduces the opening degree of communication between the first port 15 and the second port 16 (FIG. Move to the right side in 15. Specifically, the valve body 13 moves so as to bring the first large-diameter portion 13a closer to the narrow passage portion between the first port 15 and the second port 16 in the casing 11. Therefore, the gap portion around the tapered portion 13d is reduced, and the opening degree of communication between the first port 15 and the second port 16 is reduced.

こうして弁体13で第一ポート15と第二ポート16間の連通の開度を小さくした分、流量調整弁10の第一ポート15と第二ポート16間の流通に係る圧力損失を大きくして、第一の出口部11b及び圧力ポート23に達する作動油の圧力を小さくすることができ、第一の受圧部11eに導入される作動油圧力で弁体13一端部を押す力も小さくなる。最終的には、弁体13他端部を押す力と弁体13一端部を押す力とが釣り合って弁体13が停止する平衡状態となり、絞りのある二次圧力通路11gの前段側と後段側との圧力差を一定に保つことで、流量調整弁10から方向切換弁20に流入する作動油の流量を一定にでき、これにより、方向切換弁20を通じて油圧モータ50に供給される作動油の流量を一定とすることができる。 In this way, the opening degree of communication between the first port 15 and the second port 16 is reduced in the valve body 13, and the pressure loss related to the flow between the first port 15 and the second port 16 of the flow rate adjusting valve 10 is increased. The pressure of the hydraulic oil reaching the first outlet portion 11b and the pressure port 23 can be reduced, and the force for pushing one end of the valve body 13 with the hydraulic oil pressure introduced into the first pressure receiving portion 11e is also reduced. Eventually, the force pushing the other end of the valve body 13 and the force pushing the one end of the valve body 13 are balanced, and the valve body 13 is in an equilibrium state in which the valve body 13 stops, and the front and rear stages of the secondary pressure passage 11g with a throttle are reached. By keeping the pressure difference from the side constant, the flow rate of the hydraulic oil flowing from the flow rate adjusting valve 10 to the direction switching valve 20 can be made constant, whereby the hydraulic oil supplied to the hydraulic motor 50 through the direction switching valve 20 can be made constant. The flow rate of is constant.

なお、油圧モータ50の起動時等において、流量調整弁10の第一ポート15に流入する作動油の圧力が急激に増大し、連通状態の第二ポート16や第一の出口部11bの作動油圧力が、より後段側の方向切換弁20の負荷側ポートやこれと連通する二次圧力通路11gの作動油圧力に対し著しく大きくなり、第一の受圧部11eにおいて弁体13一端部を押す力が、第二の受圧部11fにおいて弁体13他端部を押す力を大きく上回るようになる場合、弁体13は第一ポート15と第二ポート16との間の流路を閉止しようとする状態となる。 When the hydraulic motor 50 is started, the pressure of the hydraulic oil flowing into the first port 15 of the flow rate adjusting valve 10 suddenly increases, and the hydraulic oil of the second port 16 and the first outlet portion 11b in the communicated state increases. The pressure becomes significantly larger than the hydraulic oil pressure of the load side port of the direction switching valve 20 on the rear stage side and the secondary pressure passage 11g communicating with the port, and the force pushing one end of the valve body 13 at the first pressure receiving portion 11e. However, when the force for pushing the other end of the valve body 13 at the second pressure receiving portion 11f is significantly exceeded, the valve body 13 tries to close the flow path between the first port 15 and the second port 16. It becomes a state.

この場合、弁体13は、ケーシング11における第一ポート15と第二ポート16との間の狭い通路部分に対し、第一の大径部13aを接近させ、さらに第一ポート15と第二ポート16との間のケーシング内周面に第一の大径部13aを摺接させるように移動することとなる。 In this case, the valve body 13 brings the first large diameter portion 13a closer to the narrow passage portion between the first port 15 and the second port 16 in the casing 11, and further, the first port 15 and the second port The first large-diameter portion 13a is moved so as to be in sliding contact with the inner peripheral surface of the casing between the 16 and 16.

この過程において、弁体13の第一の大径部13aとテーパ部13dとの境界部分が第一ポート15の端に達するまでは、作動油が第一ポート15に面する弁体13のテーパ部13d周囲の隙間部分と溝部13cを通って第二ポート16に達する流れ状態にあるが、弁体13の前記境界部分が第一ポート15の端に達し、第一の大径部13aが第一ポート15と第二ポート16との間のケーシング内周面に摺接し始めると(図17参照)、第一ポート15に一部面する第一の貫通孔13gと、テーパ部13dとケーシング11との間の隙間部分及び溝部13cに面する第二の貫通孔13hとを通じて、第一ポート15から第二ポート16に作動油が流通する状態に移行することとなる。 In this process, the hydraulic oil tapers the valve body 13 facing the first port 15 until the boundary between the first large diameter portion 13a and the tapered portion 13d of the valve body 13 reaches the end of the first port 15. The flow state reaches the second port 16 through the gap portion around the portion 13d and the groove portion 13c, but the boundary portion of the valve body 13 reaches the end of the first port 15, and the first large diameter portion 13a is the first. When it begins to slide on the inner peripheral surface of the casing between the first port 15 and the second port 16 (see FIG. 17), the first through hole 13g partially facing the first port 15, the tapered portion 13d, and the casing 11 Through the gap portion between the two and the second through hole 13h facing the groove 13c, the hydraulic oil flows from the first port 15 to the second port 16.

そして、弁体13の移動によって第一の貫通孔13gが第一ポート15に面しない位置に達するのに伴い、第一ポート15と第二ポート16間は全く連通せず作動油が流通しない状態となる(図18参照)。 Then, as the first through hole 13g reaches a position not facing the first port 15 due to the movement of the valve body 13, there is no communication between the first port 15 and the second port 16 and hydraulic oil does not flow. (See FIG. 18).

弁体13により第一ポート15と第二ポート16間の連通の開度を0とする直前に、第一の貫通孔13gと第二の貫通孔13hを通じて作動油が流通する状態が、第一の貫通孔13gが第一ポート15に面する間継続することで、流路の閉止直前における、弁体13の不安定な挙動を抑えて、後段側でのハンチング等の異常につながる作動油圧力の急激な変化を防止し、油圧回路の安定性を高められる。 Immediately before the opening degree of communication between the first port 15 and the second port 16 is set to 0 by the valve body 13, the hydraulic oil flows through the first through hole 13g and the second through hole 13h. By continuing the through hole 13g while facing the first port 15, the unstable behavior of the valve body 13 immediately before closing the flow path is suppressed, and the hydraulic oil pressure leading to abnormalities such as hunting on the rear stage side. The stability of the hydraulic circuit can be improved by preventing sudden changes in the pressure.

弁体13の移動に伴って、第一ポート15と第二ポート16間の連通が断たれ、第一ポート15から第二ポート16への作動油の流通がなくなることで、第二ポート16に通じる第一の受圧部11eにおいて弁体13一端部を押す力も前記同様小さくなり、この力を第二の受圧部11fにおいて弁体13他端部を押す力が相対的に上回る。これにより、弁体13はあらためて第一ポート15と第二ポート16間の連通の開度を大きくする向き(図15中で左側)に移動し、ケーシング11における第一ポート15と第二ポート16との間の狭い通路部分に対し、第一の大径部13aを離隔させ、第一ポート15と第二ポート16間の連通を再開させる。 As the valve body 13 moves, the communication between the first port 15 and the second port 16 is cut off, and the hydraulic oil does not flow from the first port 15 to the second port 16, so that the second port 16 is used. The force for pushing one end of the valve body 13 at the first pressure receiving portion 11e to be communicated is also small as described above, and this force is relatively larger than the force for pushing the other end of the valve body 13 at the second pressure receiving portion 11f. As a result, the valve body 13 moves in the direction of increasing the opening degree of communication between the first port 15 and the second port 16 (left side in FIG. 15), and the first port 15 and the second port 16 in the casing 11 are moved. The first large-diameter portion 13a is separated from the narrow passage portion between the first port 15 and the second port 16 to resume communication.

最終的には、前記同様、弁体13他端部を押す力と弁体13一端部を押す力とが釣り合って弁体13が停止する平衡状態となり、絞り部の前段側と後段側との圧力差を一定に保つことで、流量調整弁10から方向切換弁20に流入する作動油の流量を一定にでき、同時に、油圧モータ50に供給される作動油の流量を一定とすることができる。 Eventually, as described above, the force pushing the other end of the valve body 13 and the force pushing the one end of the valve body 13 are in equilibrium to stop the valve body 13, and the front side and the rear stage side of the throttle portion are in equilibrium. By keeping the pressure difference constant, the flow rate of the hydraulic oil flowing from the flow rate adjusting valve 10 to the direction switching valve 20 can be made constant, and at the same time, the flow rate of the hydraulic oil supplied to the hydraulic motor 50 can be made constant. ..

このように、本実施形態に係る流量調整弁は、ケーシング11における弁体13の通る孔部に三つのポート15、16、17を設けて、パラレル回路の接続状態に対応して、第一ポート15と第二ポート16との間の連通の開度を弁体13で調整するようにすると共に、パラレル回路に適合する弁体13の形状の特徴のみで、弁体13の移動による圧力補償の機能が正しく発揮される状態を得ていることから、シリーズ回路と共通のケーシング11でも圧力補償付の流量調整の機能に対応でき、油圧回路の接続状態に対応する専用のケーシングを用いずに済む上、弁体の組み替え作業のみで、複数油圧回路の各接続状態に対応した流路接続状態が得られ、製造や設置も容易であり、弁装置に係るコストを抑えられる。 As described above, in the flow rate adjusting valve according to the present embodiment, three ports 15, 16 and 17 are provided in the holes through which the valve body 13 passes in the casing 11, and the first port corresponds to the connection state of the parallel circuit. The opening degree of communication between the 15 and the second port 16 is adjusted by the valve body 13, and the pressure compensation by the movement of the valve body 13 is performed only by the characteristic of the shape of the valve body 13 that fits the parallel circuit. Since the function is properly exhibited, the casing 11 common to the series circuit can also support the flow rate adjustment function with pressure compensation, and it is not necessary to use a dedicated casing corresponding to the connection state of the hydraulic circuit. In addition, the flow path connection state corresponding to each connection state of the plurality of hydraulic circuits can be obtained only by rearranging the valve body, the manufacturing and installation are easy, and the cost related to the valve device can be suppressed.

また、弁体13の所定範囲に第一の貫通孔13gとこれに交差する第二の貫通孔13hを設け、弁体13が第一ポート15と第二ポート16との間の流路を閉止しようとする状態で、第一ポート15に面する第一の貫通孔13gと、これに連通する第二の貫通孔13hとを通じて、第一ポート15から第二ポート16側に作動油が流通可能となり、この流通可能な状態が、第一の貫通孔13gが第一ポート15に面する間継続することから、閉止直前で第一ポート15から第二ポート16側に作動油が流通する向きが、弁体13の移動方向とは異なるものとなり、弁体13の挙動が作動油の流れの影響を受けにくくなり、圧力補償を正しく実行できるように弁体13を動かせ、負荷変動に伴う作動油圧力の変化によらず作動油の流量を一定とする本来の調整機能を正しく発揮できると共に、弁体13の不安定な挙動を抑えて、流量調整弁より後段側でのハンチング等の異常につながる作動油圧力の急激な変化を防止し、油圧回路の安定性を高められる。 Further, a first through hole 13g and a second through hole 13h intersecting the first through hole 13g are provided in a predetermined range of the valve body 13, and the valve body 13 closes the flow path between the first port 15 and the second port 16. Hydraulic oil can flow from the first port 15 to the second port 16 side through the first through hole 13g facing the first port 15 and the second through hole 13h communicating with the first through hole 13g. Since this circulatory state continues while the first through hole 13 g faces the first port 15, the direction in which the hydraulic oil flows from the first port 15 to the second port 16 side immediately before closing is , The movement direction of the valve body 13 is different, the behavior of the valve body 13 is less affected by the flow of the hydraulic oil, the valve body 13 can be moved so that the pressure compensation can be performed correctly, and the hydraulic oil due to the load fluctuation. The original adjustment function that keeps the flow rate of hydraulic oil constant regardless of changes in pressure can be correctly exerted, and the unstable behavior of the valve body 13 is suppressed, leading to abnormalities such as hunting on the rear stage side of the flow rate adjustment valve. It prevents sudden changes in hydraulic oil pressure and improves the stability of the hydraulic circuit.

また、弁体13の所定箇所に貫通孔を二つ設けるのみで、弁体13が第一ポート15と第二ポート16との間の流路を閉止しようとする状態での、第一ポート15と第二ポート16との間で作動油を流通させる適切な通路を形成でき、容易に最適な特性の弁装置を得ることができる。 Further, the first port 15 is in a state where the valve body 13 tries to close the flow path between the first port 15 and the second port 16 only by providing two through holes at predetermined positions of the valve body 13. An appropriate passage for circulating hydraulic oil can be formed between the port 16 and the second port 16, and a valve device having optimum characteristics can be easily obtained.

なお、前記実施形態に係る流量調整弁においては、ケーシング11の第一ポート15と、使用していない第三ポート17との間に、誤って作動油が流通して、弁体13による第一ポート15と第二ポート16との間の連通の開度の調整に影響が及ばないようにするために、弁体13の第一の大径部13aを溝又は凹部のない円柱状の領域として形成して、弁体13が移動しても第一ポート15と第三ポート17との間を連通させるような流路は生じないようにする構成としているが、この他、弁体で第一ポート15と第三ポート17との間の連通を阻止する代わりに、ケーシングにおける、第三ポートに通じる第二の出口部と、流体圧回路の戻り側流路としての、方向切換弁の低圧ポートとの間の所定箇所に、閉塞部材を取り付けて、第二の出口部を低圧ポートに対し閉塞する構成とすることもできる。 In the flow rate adjusting valve according to the embodiment, hydraulic oil is erroneously circulated between the first port 15 of the casing 11 and the unused third port 17, and the first port 13 is used. In order not to affect the adjustment of the opening degree of communication between the port 15 and the second port 16, the first large-diameter portion 13a of the valve body 13 is set as a columnar region without a groove or a recess. It is formed so that even if the valve body 13 moves, a flow path for communicating between the first port 15 and the third port 17 does not occur, but in addition to this, the valve body is the first. Instead of blocking the communication between the port 15 and the third port 17, the second outlet of the casing leading to the third port and the low pressure port of the directional control valve as the return flow path of the fluid pressure circuit. It is also possible to attach a closing member at a predetermined position between the and the second outlet to close the second outlet with respect to the low pressure port.

この場合、閉塞された第二の出口部に通じる第三ポートに対しては、弁体の形状に関わりなく、第一ポート15から作動油が流通しない状態が確実に得られ、弁体とケーシング間の微細な隙間を通じての作動油の戻り側流路側へのリークを厳密に管理する必要はなくなる。 In this case, regardless of the shape of the valve body, a state in which hydraulic oil does not flow from the first port 15 can be reliably obtained for the third port leading to the closed second outlet portion, and the valve body and the casing can be obtained. It is no longer necessary to strictly control the leakage of the hydraulic oil to the return side flow path side through the minute gaps between them.

10 流量調整弁
11 ケーシング
11a 入口部
11b 第一の出口部
11c 第二の出口部
11d 孔部
11e 第一の受圧部
11f 第二の受圧部
11g 二次圧力通路
12、13 弁体
12a 第一の大径部
12b 第二の大径部
12c 中間大径部
12d 第一の溝部
12e 第二の溝部
12f テーパ部
12g 第一の貫通孔
12h 第二の貫通孔
13a 第一の大径部
13b 第二の大径部
13c 溝部
13d テーパ部
13g 第一の貫通孔
13h 第二の貫通孔
14 ばね
15 第一ポート
16 第二ポート
17 第三ポート
20 方向切換弁
21 スプール
21c、21d 凹部
23 圧力ポート
24、25 低圧ポート
26、27 負荷側ポート
30 圧力源
40 低圧部
50 油圧モータ
61、62 流路
65 カウンタバランス弁
91、92 弁装置
10 Flow control valve 11 Casing 11a Inlet 11b First outlet 11c Second outlet 11d Hole 11e First pressure receiving part 11f Second pressure receiving part 11g Secondary pressure passage 12, 13 Valve body 12a First Large diameter part 12b Second large diameter part 12c Intermediate large diameter part 12d First groove part 12e Second groove part 12f Tapered part 12g First through hole 12h Second through hole 13a First large diameter part 13b Second Large diameter part 13c Groove part 13d Tapered part 13g First through hole 13h Second through hole 14 Spring 15 First port 16 Second port 17 Third port 20 Direction switching valve 21 Spool 21c, 21d Recessed 23 Pressure port 24, 25 Low pressure port 26, 27 Load side port 30 Pressure source 40 Low pressure part 50 Hydraulic motor 61, 62 Flow path 65 Counterbalance valve 91, 92 Valve device

Claims (5)

流体の入口部及び出口部、並びに当該入口部と出口部に通じる孔部を有するケーシングと、当該ケーシングの孔部に孔部連続方向へ摺動可能に嵌挿される弁体とを備え、流体圧回路における流体の圧力差に基づいて弁体を移動させ、入口部から出口部へ向かう流体の流量を調整する、圧力補償付の流量調整弁において、
前記ケーシングの出口部が、流体圧回路の送り側流路に接続される第一の出口部と、流体圧回路の戻り側流路に接続される第二の出口部とからなり、
前記ケーシングが、
前記孔部と入口部とを連通させる第一ポートと、
当該第一のポートに対し前記孔部における前記弁体の一の移動方向側に設けられ、孔部と第一の出口部とを連通させる第二ポートと、
前記第一ポートに対し前記孔部における前記弁体の他の移動方向側に設けられ、孔部と前記第二の出口部とを連通させる第三ポートとを有し、
さらに、ケーシングは、前記第一の出口部に連通する前記流体圧回路の送り側流路における第一の所定箇所の流体圧力を、前記弁体に対し前記一の移動方向へ弁体を押すように付加可能として形成され、且つ、前記送り側流路における第一の所定箇所から所定の絞り機構を隔てた第二の所定箇所の流体圧力を、弁体に対し前記他の移動方向へ弁体を押すように付加可能として形成され、
前記弁体が、
前記第一ポートと前記第二ポートとを常に連通状態とする一の溝又は凹部を設けられると共に、第一ポートと第三ポートとを連通可能としつつ、弁体が前記一の移動方向に移動すると第一ポートと第三ポート間の連通の開度を大きくし、前記他の移動方向に移動すると第一ポートと第三ポート間の連通の開度を小さくする、他の溝又は凹部を設けられてなるシリーズ回路用弁体、又は、
前記第一ポートと第二ポートとを連通可能としつつ、前記一の移動方向に移動すると前記第一ポートと第二ポート間の連通の開度を小さくし、且つ他の移動方向に移動すると第一ポートと第二ポート間の連通の開度を大きくする、溝又は凹部を設けられてなるパラレル回路用弁体、とされることを
特徴とする流量調整弁。
It is provided with a fluid inlet and outlet, a casing having holes leading to the inlet and outlet, and a valve body slidably inserted into the holes of the casing in the continuous direction of the holes. In a flow rate adjusting valve with pressure compensation, which moves the valve body based on the pressure difference of the fluid in the circuit and adjusts the flow rate of the fluid from the inlet to the outlet.
The outlet portion of the casing includes a first outlet portion connected to the feed side flow path of the fluid pressure circuit and a second outlet portion connected to the return side flow path of the fluid pressure circuit.
The casing
The first port that communicates the hole and the entrance,
A second port provided on the moving direction side of one of the valve bodies in the hole with respect to the first port and communicating the hole with the first outlet.
It has a third port provided on the other side of the valve body in the hole portion in the other moving direction with respect to the first port and communicating the hole portion with the second outlet portion.
Further, the casing pushes the fluid pressure at the first predetermined position in the feed side flow path of the fluid pressure circuit communicating with the first outlet portion in the one moving direction with respect to the valve body. The fluid pressure at the second predetermined location separated from the first predetermined location in the feed side flow path by the predetermined throttle mechanism is applied to the valve body in the other moving direction. Formed as addable to press
The valve body
A groove or recess is provided so that the first port and the second port are always in communication with each other, and the valve body moves in the one movement direction while allowing communication between the first port and the third port. Then, another groove or recess is provided to increase the opening degree of communication between the first port and the third port and decrease the opening degree of communication between the first port and the third port when moving in the other moving direction. Series circuit valve body or
While enabling communication between the first port and the second port, moving in the one moving direction reduces the opening degree of communication between the first port and the second port, and moving in the other moving direction is the first. A flow rate adjusting valve characterized by being a valve body for a parallel circuit provided with a groove or a recess, which increases the opening degree of communication between the first port and the second port.
前記請求項1に記載の流量調整弁において、
前記パラレル回路用弁体が、前記第一ポートと前記第三ポートとを常に非連通状態とする、溝又は凹部のない所定領域を設定されて形成されることを
特徴とする流量調整弁。
In the flow rate adjusting valve according to claim 1,
A flow rate adjusting valve characterized in that the valve body for a parallel circuit is formed by setting a predetermined region without grooves or recesses so that the first port and the third port are always in a non-communication state.
前記請求項1に記載の流量調整弁において、
前記ケーシングが、前記第二の出口部を流体圧回路の戻り側流路に対し閉塞して非連通状態とする、閉塞部材を取り付けられることを
特徴とする流量調整弁。
In the flow rate adjusting valve according to claim 1,
A flow rate adjusting valve to which a closing member is attached so that the casing closes the second outlet portion with respect to the return side flow path of the fluid pressure circuit to make it in a non-communication state.
前記請求項1に記載の流量調整弁において、
前記シリーズ回路用弁体である弁体が、前記一の溝又は凹部と他の溝又は凹部との間に、ケーシングにおける第一ポートと第三ポートとの間の通路部分に摺接可能な中間大径部を有し、
弁体が前記一の移動方向に移動するとケーシングにおける第一ポートと第三ポートとの間の通路部分に対し中間大径部が離れ、第一ポートと第三ポート間の連通の開度を大きくし、且つ前記他の移動方向に移動するとケーシングにおける第一ポートと第三ポートとの間の通路部分に対し中間大径部が接近して、第一ポートと第三ポート間の連通の開度を小さくするようにされ、
中間大径部の前記他の溝又は凹部に面する端部に、ケーシングに摺接する大径部分から他の溝又は凹部の底面部分に向けて先細状に径変化する曲面状のテーパ部が形成され、
弁体の少なくとも前記テーパ部に、弁体の長手方向と直交する向きに第一の貫通孔が穿設され、
弁体の少なくとも前記中間大径部に、弁体の長手方向と直交する向きで且つ前記第一の貫通孔より弁体の前記一の溝又は凹部寄りとして第二の貫通孔が穿設され、
当該第二の貫通孔が、第一の貫通孔の一部と交差して連通することを
特徴とする流量調整弁。
In the flow rate adjusting valve according to claim 1,
An intermediate in which the valve body, which is a valve body for a series circuit, can be slidably contacted between the one groove or recess and the other groove or recess in the passage portion between the first port and the third port in the casing. Has a large diameter
When the valve body moves in the one movement direction, the intermediate large diameter portion is separated from the passage portion between the first port and the third port in the casing, and the opening degree of communication between the first port and the third port is increased. However, when the casing moves in the other moving direction, the intermediate large diameter portion approaches the passage portion between the first port and the third port in the casing, and the opening degree of communication between the first port and the third port. Made to be smaller
At the end of the intermediate large-diameter portion facing the other groove or recess, a curved tapered portion whose diameter changes in a tapered shape from the large-diameter portion that is in sliding contact with the casing toward the bottom surface portion of the other groove or recess is formed. Being done
A first through hole is formed in at least the tapered portion of the valve body in a direction orthogonal to the longitudinal direction of the valve body.
A second through hole is formed in at least the intermediate large diameter portion of the valve body in a direction orthogonal to the longitudinal direction of the valve body and closer to the one groove or recess of the valve body than the first through hole.
A flow rate adjusting valve characterized in that the second through hole intersects and communicates with a part of the first through hole.
前記請求項1ないし3のいずれかに記載の流量調整弁において、
前記パラレル回路用弁体である弁体が、前記溝又は凹部に隣接しつつ、ケーシングにおける第一ポートと第二ポートとの間の通路部分に摺接可能な一の大径部を有し、
弁体が前記一の移動方向に移動するとケーシングにおける第一ポートと第二ポートとの間の通路部分に対し一の大径部が接近し、第一ポートと第二ポート間の連通の開度を小さくし、且つ前記他の移動方向に移動するとケーシングにおける第一ポートと第二ポートとの間の通路部分に対し一の大径部が離隔して、第一ポートと第二ポート間の連通の開度を大きくするようにされ、
一の大径部の前記溝又は凹部に面する端部に、ケーシングに摺接する大径部分から溝又は凹部の底面部分に向けて先細状に径変化する曲面状のテーパ部が形成され、
弁体の少なくとも前記テーパ部に、弁体の長手方向と直交する向きに第一の貫通孔が穿設され、
弁体の少なくとも前記溝又は凹部の底面部分に、弁体の長手方向と直交する向きで且つ前記第一の貫通孔より弁体の一の大径部から離れた配置として第二の貫通孔が穿設され、
当該第二の貫通孔が、第一の貫通孔の一部と交差して連通することを
特徴とする流量調整弁。
In the flow rate adjusting valve according to any one of claims 1 to 3,
The valve body, which is a valve body for a parallel circuit, has one large-diameter portion that is adjacent to the groove or recess and can be slidably contacted with a passage portion between the first port and the second port in the casing.
When the valve body moves in the one moving direction, one large diameter portion approaches the passage portion between the first port and the second port in the casing, and the opening degree of communication between the first port and the second port. When it is made smaller and moved in the other moving direction, one large diameter portion is separated from the passage portion between the first port and the second port in the casing, and the communication between the first port and the second port is performed. The opening of the
At the end of one large-diameter portion facing the groove or recess, a curved tapered portion whose diameter changes in a tapered shape from the large-diameter portion that is in sliding contact with the casing toward the bottom surface portion of the groove or recess is formed.
A first through hole is formed in at least the tapered portion of the valve body in a direction orthogonal to the longitudinal direction of the valve body.
A second through hole is provided at least in the bottom surface portion of the groove or recess of the valve body in a direction orthogonal to the longitudinal direction of the valve body and away from one large diameter portion of the valve body from the first through hole. Drilled,
A flow rate adjusting valve characterized in that the second through hole intersects and communicates with a part of the first through hole.
JP2019036952A 2019-02-28 2019-02-28 flow control valve Active JP7204532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019036952A JP7204532B2 (en) 2019-02-28 2019-02-28 flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019036952A JP7204532B2 (en) 2019-02-28 2019-02-28 flow control valve

Publications (2)

Publication Number Publication Date
JP2020139589A true JP2020139589A (en) 2020-09-03
JP7204532B2 JP7204532B2 (en) 2023-01-16

Family

ID=72264658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019036952A Active JP7204532B2 (en) 2019-02-28 2019-02-28 flow control valve

Country Status (1)

Country Link
JP (1) JP7204532B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3863448A (en) * 1973-07-11 1975-02-04 Case Co J I Pressure compensated pump
JPS5720355U (en) * 1980-07-11 1982-02-02

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3863448A (en) * 1973-07-11 1975-02-04 Case Co J I Pressure compensated pump
JPS5720355U (en) * 1980-07-11 1982-02-02

Also Published As

Publication number Publication date
JP7204532B2 (en) 2023-01-16

Similar Documents

Publication Publication Date Title
US4020867A (en) Multiple pressure compensated flow control valve device of parallel connection used with fixed displacement pump
US10323762B2 (en) Three-way pressure control and flow regulator valve
EP0921320A4 (en) Hydraulic drive device and direction switchover valve for hydraulic machine
WO2016067887A1 (en) Load-sensing valve device
JP2007506048A (en) Hydraulic control and adjustment system with volume equalization
JP6867862B2 (en) Switching valve device
JPS595165B2 (en) hydraulic control device
EP1375927B1 (en) Hydraulic control device and industrial vehicle with hydraulic control device
JP2008534887A (en) Directional control valve and control device with directional control valve
CN108302222B (en) Valve assembly for dual circuit-summation (Summiruding)
JP2020139589A (en) Flow rate regulating valve
US7870729B2 (en) Hydraulic control device
JP3768566B2 (en) Hydraulic pump discharge flow control device
JP4895595B2 (en) Forklift control circuit
JP3534324B2 (en) Pressure compensating valve
JPH08277806A (en) Hydraulic controlling valve
EP0786598B1 (en) Device for actuating a hydraulic user apparatus with an actuation speed that is independent of the resisting load affecting the hydraulic apparatus
JP3534319B2 (en) Unloading device used for hydraulic circuit
JP2001193704A (en) Hydraulic control circuit
JP3981671B2 (en) Hydraulic control device
JP4778721B2 (en) Forklift control circuit
JP3681709B2 (en) Hydraulic control device
JP2006306507A (en) Control circuit for forklift
JP5092550B2 (en) Hydraulic drive
JP3708725B2 (en) Hydraulic control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221228

R150 Certificate of patent or registration of utility model

Ref document number: 7204532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150