JP2020129111A - 斜角における色抑制のために調整された厚さプロファイルを有する単一パケット反射型偏光子 - Google Patents

斜角における色抑制のために調整された厚さプロファイルを有する単一パケット反射型偏光子 Download PDF

Info

Publication number
JP2020129111A
JP2020129111A JP2020066350A JP2020066350A JP2020129111A JP 2020129111 A JP2020129111 A JP 2020129111A JP 2020066350 A JP2020066350 A JP 2020066350A JP 2020066350 A JP2020066350 A JP 2020066350A JP 2020129111 A JP2020129111 A JP 2020129111A
Authority
JP
Japan
Prior art keywords
oru
polarizer
thickness profile
reflective polarizer
orus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020066350A
Other languages
English (en)
Other versions
JP7012113B2 (ja
Inventor
ジェイ. ネビット,ティモシー
Timothy J Nevitt
ジェイ. ネビット,ティモシー
エー. ストバー,カール
A Stover Carl
エー. ストバー,カール
ジェイ. ブノワ,ジル
j benoit Gilles
ジェイ. ブノワ,ジル
ジェイ. ダークス,クリストファー
J Darks Christopher
ジェイ. ダークス,クリストファー
ヤン,ジャオフイ
Zhaohui Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of JP2020129111A publication Critical patent/JP2020129111A/ja
Application granted granted Critical
Publication of JP7012113B2 publication Critical patent/JP7012113B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3475Displays, monitors, TV-sets, computer screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/244All polymers belonging to those covered by group B32B27/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】LCディスプレイにおいて、ディスプレイの後方吸収型偏光子に積層された「オン・ガラス」構成で、適切な性能を提供することができる多層光学フィルム反射型偏光子を提供する。。【解決手段】反射型偏光子220は、ミクロ層のただ1つのパケット224を有し、フィルム内の複屈折ミクロ層が2軸複屈折性となるように配向されている、テンタード・ワン・パケット多層フィルムである。ミクロ層パケットにおける光繰り返し単位(ORU)の厚さプロファイルは、垂直角及び斜角における過度の知覚色を回避するように調整され、ディスプレイの白状態におけるかなり斜角での色が、厚肉のORUを吸収型偏光子の近くに位置決めすることによって、低減される。【選択図】図2

Description

本発明は概して、多層光学フィルム反射型偏光フィルム、及び一部が2軸複屈折性である、交互になったポリマーミクロ層のただ1つのパケット又はスタックを有するようなフィルムへの特定の応用と、このような反射型偏光子がディスプレイにおける使用のために吸収型偏光子に接着されている積層体と、に関する。本発明はまた、関連する物品、システム、及び方法にも関する。
液晶(liquid crystal、LC)ディスプレイ及びディスプレイシステムの輝度を向上させるために、反射型偏光子が一般的に用いられている。LCディスプレイシステムは通例、LCパネルを含み、LCパネルの背後に、LCパネルに光を提供するための照明アセンブリ又はバックライトが配置されている。輝度の向上は、反射型偏光子によって、光リサイクリングプロセスの結果としてもたらされる:(光の偏光状態のゆえに)ディスプレイ出力に寄与することができない光は反射型偏光子によってバックライト内へ逆反射され、そこで、光の一部は、ディスプレイ出力に寄与することができ、反射型偏光子を通過してユーザ又は観察者へ向かう異なる偏光状態で反射型偏光子へ向けて再反射される。
LCパネルは、ガラスパネルプレートの間に配置された液晶材料層を含む。更に、LCパネルは、2つの吸収型偏光子フィルム:LCパネルの前面ガラスプレートに取り付けられた前方吸収型偏光子と、後方ガラスプレートに取り付けられた後方吸収型偏光子との間に挟み込まれている。輝度向上反射型偏光子は、LCパネルの背後、及び後方吸収型偏光子の背後のどこかに配置される。
実際には、反射型偏光子の設計詳細が、反射型偏光子が、最適な、又は少なくとも許容可能な光学性能をもたらすために、ディスプレイシステム内において正確にどこに配置され得るのかに影響を与える。いくつかの種類の反射型偏光子は、後方吸収型偏光子の露出した裏面に直接積層され得る。当業者は、これらの種類の反射型偏光子は、垂直入射角(ディスプレイシステムの光軸に沿って伝搬する光)及びかなり斜めの入射角の両方における偏光の通過状態に対して、非常に低い知覚色を有することが必要であると考えている。反射型偏光子が後方吸収型偏光子に取り付けられており、後方吸収型偏光子が、今度は、一般的に、LCパネルの後方ガラスプレートに取り付けられているため、これは反射型偏光子の「オン・ガラス」構成と呼ばれる。オン・ガラス構成で現在用いられている1つの反射型偏光子は、以下において更に説明される、放物線状延伸反射型偏光子である。オン・ガラス構成で用いられている別の反射型偏光子は、同様に後述される、多パケット反射型偏光子である。
当業者によって、斜め入射光に対する通過偏光状態について過度の知覚色を有すると現在のところ考えられる、他の種類の反射型偏光子は、反射型偏光子に関連付けられる(望ましくない)色が、吸収型偏光子を通し、LCディスプレイを通してユーザに見えることになるであろうから、ディスプレイの後方吸収型偏光子には積層されない。その代わりに、これらの後者の種類の反射型偏光子(ミクロ層のただ1つのパケットが存在する交互になったポリマー層の多層光学フィルム反射型偏光子であって、ミクロ層パケットが広帯域反射を提供するための厚さ勾配又はプロファイルを有し、多層光学フィルムが標準的テンターを用いてフィルムの複屈折層が2軸複屈折性となるように配向されており、このようなフィルムが本明細書においてテンタード・ワン・パケット(Tentered−One−Packet、「TOP」)フィルム又はTOP反射型偏光子と呼ばれる、交互になったポリマー層の多層光学フィルム反射型偏光子)は、ディスプレイシステム内において、少なくとも1つの空気間隙によって後方吸収型偏光子から分離され、反射型偏光子と後方吸収型偏光子との間に配置された光拡散フィルム又は層に取り付けられた独立型フィルムとして用いられる。光拡散層は、ユーザ又は観察者の視点からTOP反射型偏光子に関連付けられる色を低減又は解消するべく、反射型偏光子を異なる方向に通過する光線を効果的に結合するために有意なヘイズ値を有する。
米国特許第7,791,687号(Weberら)は、ディスプレイパネルが、第1の吸収型偏光子とTOP反射型偏光子との組み合わせであって、これらの2つの偏光子が互いに整列された、組み合わせを一方の側に有し、ディスプレイパネルの他方の側には、第1の吸収型偏光子と交差した(第1の吸収型偏光子に対して90度に配向された)第2の吸収型偏光子がある実施形態を開示することによって、上記の主流の見解に反対しているようである。しかしながら、このWeber‘687特許は、第1の吸収型偏光子が低コントラスト吸収型偏光子である特別な場合に言及している(例えば、第2欄1〜15行及び第3欄22〜39行を参照されたい)。実施例では、第1の吸収型偏光子のコントラスト比は約5しかない(例えば、第1の吸収型偏光子の遮断状態透過率が20%として報告されている、実施例2を参照されたい)。Weber‘687特許では、第1の吸収型偏光子が低コントラストの偏光子であるこれらの場合に、反射型偏光板の光学特性が、ディスプレイのコントラストを維持するためにより重要になることが述べられている(第3欄22〜39行を参照されたい)。実施例で示されているように、次いで、Weber‘687特許は、ディスプレイの遮断状態(暗状態)性能を評価することによって、ディスプレイのコントラストを評価している。つまり、同特許は、TOP反射型偏光子/(低コントラストであり、TOP偏光子と整列した)第1の吸収型偏光子の結合体を高コントラストの第2の吸収型偏光子と交差させた交差偏光子システムのスペクトル透過率を計算し、比較している。これらの透過率スペクトルは、様々な斜めの極角θ及び45度の方位角φについて計算される。計算されたこのような交差偏光子システムの透過率は、ディスプレイの暗状態を表し、よって、試験した角度では、可視波長領域の全体にわたって極めて低い、即ち、実施例の全てにおいて透過率は4%未満であり、一部においては1%を大きく下回る。実施例は、TOP反射型偏光子が異なる仕方で方向付けられているシステム、即ち、TOP反射型偏光子の厚さプロファイルが1つの仕方で方向付けられている場合と、その反対の仕方で方向付けられている場合とで、それらの計算された透過率スペクトルを比較することにより、それらのシステムを比較している。この解析により、Weber‘687特許の研究者らは、より小さい光学的厚さを有する層の大半がより大きい光学的厚さを有する層よりもディスプレイパネルに近接して配置されるように、TOP反射型偏光子の厚さプロファイルを方向付けるべきであると結論するに至った。このことは、TOP反射型偏光子/低コントラスト吸収型偏光子の結合体がディスプレイパネルの(前方ではなく)背後に配置される実施形態において、TOP偏光子の厚さプロファイルは、より薄い層が前方を向く、即ちユーザの方に向き、より厚い層が後方を向く、即ちユーザに背を向け、バックライトの方を向くように方向付けられるべきであることを意味する。
高い斜め入射角ではディスプレイシステムの通過状態(白状態)において、かなりの色が従来のTOP偏光子によって生成されるので、TOP反射型偏光子は、LCディスプレイパネルの前方及び後方の両方に高コントラスト吸収型偏光子を使用する最新のディスプレイシステムにおけるオン・ガラス用途に適していないという、現在の主流の見解に照らして、我々は、これらの用途に関するTOP反射型偏光子の適合性を再検討した。手短に要約すると、我々は、このようなディスプレイシステムにおいて、オン・ガラス構成で、即ちディスプレイパネルの後方の高コントラスト吸収型偏光子に積層させて、TOP反射型偏光子を使用することが実際に可能であることを見出した。我々は、TOP偏光子を適切に方向付けることにより、かつミクロ層パケットの厚肉のミクロ層端部に関連付けられた層の厚さプロファイルを適切に調整することにより、ディスプレイの白状態における高い斜角での望ましくない可視色を許容可能なレベルまで実質的に減少させることができることを更に見出した。興味深いことに、我々が最適であると見出した、より厚いミクロ層(より正確には、より厚い光学繰り返し単位(ORU))をディスプレイ(及び吸収型偏光子)の前方に向かせ、かつより薄いミクロ層(より正確には、より薄いORU)をディスプレイの後方に向かせた、TOP偏光子の方向付けは、Weberらの‘687特許で教示された方向付けとは反対であった。
適切に設計され方向付けられたTOP反射型偏光子は、LCディスプレイにおいて、オン・ガラス構成で、空気間隙又は高ヘイズ光拡散層を必要とせずに、許容可能な性能を提供することができる。それゆえ、このようなTOP反射型偏光子と高コントラスト吸収型偏光子とを、反射型偏光子と吸収型偏光子との間に空気間隙を有せず、かつ高ヘイズ光拡散層又は光拡散構造体を有せず(かつ場合によっては、有意な光拡散層又は光拡散構造体を全く有せず)組み合わせることによって作製された積層体を、液晶ディスプレイ又は同様のものの内部にうまく利用し、組み込むことができる。この構成のTOP反射型偏光子は、ミクロ層のただ1つのパケットが存在する交互になったポリマー層の多層光学フィルムである。多層光学フィルムは、標準的テンターを用いて、フィルムの複屈折層(ミクロ層を含む)が2軸複屈折性となるように配向されている。パケットにおけるミクロ層、より正確には、パケットにおけるORUは、ディスプレイシステムの通過状態(白状態)での法線方向角及び高い斜角における過度の知覚色を回避するために、厚さプロファイルが適切に調整された状態で設けられている。このようTOP多層光学フィルム反射型偏光子が以下において更に説明される。
よって、本明細書において我々は、とりわけ、光学干渉によって光を反射及び透過するミクロ層のただ1つのパケットを有する反射型偏光子であって、ミクロ層のパケットは、第1の通過軸(y)、第1のブロック軸(x)、並びに第1の通過軸及び第1のブロック軸に対して垂直な第1の厚さ軸(z)を規定するように構成されている、反射型偏光子を説明する。ミクロ層のパケットは、第1のミクロ層と第2のミクロ層を交互に含むことができ、少なくとも第1のミクロ層は2軸複屈折性である。第1のミクロ層と第2のミクロ層との隣接する対は、ミクロ層のパケットに沿って光学繰り返し単位(ORU)を形成し、ORUは、第1のブロック軸に沿って偏光された垂直入射光に対して広帯域反射率を提供する勾配を有する物理的厚さプロファイルを規定する。ORUは、物理的厚さプロファイル及び光学的配置の関数としてそれぞれの共振波長を有する。ORUは、パケットの両端に第1のORUと最後のORUとを含む。最後のORUに近接するORUの平均物理的厚さは、第1のORUに近接するORUの平均物理的厚さよりも大きい。物理的厚さプロファイルの固有帯域幅ベースのボックスカー平均により、IB平滑化厚さプロファイルが得られ、IB平滑化厚さプロファイルは、ORUのそれぞれにおいて規定される。ORUは、ORU(450)、ORU(600)、及びORU(645)を含む。ORU(450)は、p偏光の光がx−z平面に80度の極角(θ)で入射する斜めの光学的配置では少なくとも450nmである、IB平滑化厚さプロファイルに関する共振波長を有する。第1のORUを含むORU(450)の側に配置された全てのORUは、斜めの光学的配置では450nm未満である、IB平滑化厚さプロファイルに関する共振波長を有する。ORU(600)及びORU(645)は同様に規定され、同じ斜めの光学的配置において少なくとも600nm及び645nmの共振波長をそれぞれ有する。IB平滑化厚さプロファイルは、ORU(450)〜ORU(600)の範囲にわたって第1の平均傾きを有し、ORU(600)〜ORU(645)の範囲にわたって第2の平均傾きを有し、第1の平均傾きに対する第2の平均傾きの比が1.8以下であるようにパケットの物理的厚さプロファイルは調整される。
この条件を満足することにより、TOP反射型偏光子、及びTOP反射型偏光子の一部である積層体は、このような偏光子又は積層体が組み込まれたディスプレイにおいて、高い斜角で偏光子を通過する白色の光に対して与える色の量を少なくすることができる。そして、そのような高い斜角におけるこのようなディスプレイの白状態で知覚される色は、昼白色又は目標とする白色に許容できる程度に近づく。
我々はまた、このような反射型偏光子が吸収型偏光子と組み合わされた積層体を説明する。吸収型偏光子は、第1の通過軸及び第2のブロック軸を有し、高コントラスト比、例えば少なくとも1000のコントラスト比を有する。吸収型偏光子は、反射型偏光子との間に空気間隙が存在せず、かつ第1の通過軸と第2の通過軸とが実質的に整列するように反射型偏光子に取り付けられる。反射型偏光子は、最後のORUが第1のORUよりも吸収型偏光子に接近するように、吸収型偏光子に対して方向付けられる。
関連する方法、システム、及び物品もまた論じられる。
本出願の上記及び他の態様は、以下の「発明を実施するための形態」から明らかになるであろう。しかしながら、上記の概要は、いかなる場合であっても、特許請求される主題に対する限定として解釈されるべきではなく、その主題は、添付の「特許請求の範囲」によってのみ定義されるものであるが、手続きの過程で補正される場合もある。
液晶ディスプレイシステムの概略側面又は断面図である。 反射型偏光子として構成された単一パケット多層光学フィルムの概略側面又は断面図である。 光学フィルムのウェブの斜視図である。 デカルト座標系による光学フィルム又は積層体の斜視図である。 吸収型偏光子の背後に、それから離間して配置された多層光学フィルム反射型偏光子の概略斜視図である。この反射型偏光子には、観察される色の量を低減するための光拡散層が設けられている。 光拡散層を有しない、多層光学フィルム反射型偏光子及び吸収型偏光子の積層体の概略斜視図である。 図6のものと同様であるが、液晶パネルからのガラス層を更に含み、吸収型偏光子が反射型偏光子とガラス層との間に配置されている積層体の概略斜視図である。 TOP反射型偏光子のミクロ層パケットに関する第1の物理的厚さプロファイル及びボックスカー平滑化厚さプロファイルの例示的な目的のための簡略化されたグラフである。ここではパケットが正確に15のORUを含む。 同実施形態に関する対応する簡略化されたグラフであるが、ボックスカー平滑化厚さプロファイル及び所与の光学的配置に関する共振波長を示すグラフである。 TOP反射型偏光子で使用することのできる8つの物理的厚さプロファイルのグラフである。それら物理的厚さプロファイルは異なるが関連しており、性能が図10A〜図17Cにモデル化され図示されている。 ORU数に対してORU厚さをプロットし、更にORU数に対して共振波長をプロットした複合グラフである。 共振波長の関数としての、図10Aの平均厚さプロファイルの傾きのグラフである。 ある範囲の方位角(φ)及び極角(θ)にわたる、TOP反射型偏光子と高コントラスト吸収型偏光子との積層体を透過した光の計算された色のグラフである。TOP反射型偏光子は、図10Aの厚さプロファイルを有する。 図10Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図10Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図10Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図10Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図10Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図10Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図10Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図10Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 TOP反射型偏光子で使用することのできる8つの物理的厚さプロファイルのグラフである。それら物理的厚さプロファイルは異なるが関連しており、性能が図19A〜図26Cにモデル化され図示されている。 ORU数に対してORU厚さをプロットし、更にORU数に対して共振波長をプロットした複合グラフである。 共振波長の関数としての、図19Aの平均厚さプロファイルの傾きのグラフである。 ある範囲の方位角(φ)及び極角(θ)にわたる、TOP反射型偏光子と高コントラスト吸収型偏光子との積層体を透過した光の計算された色のグラフである。TOP偏光子は、図19Aの厚さプロファイルを有する。 図19Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図19Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図19Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図19Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図19Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図19Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図19Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図19Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 TOP反射型偏光子で使用することのできる3つの物理的厚さプロファイルのグラフである。それら物理的厚さプロファイルは異なるが関連しており、性能が図28A〜図30Cにモデル化され図示されている。 ORU数に対してORU厚さをプロットし、更にORU数に対して共振波長をプロットした複合グラフである。 共振波長の関数としての、図28Aの平均厚さプロファイルの傾きのグラフである。 ある範囲の方位角(φ)及び極角(θ)にわたる、TOP反射型偏光子と高コントラスト吸収型偏光子との積層体を透過した光の計算された色のグラフである。TOP偏光子は、図28Aの厚さプロファイルを有する。 図28Aと同様であるが、他のTOP多層光学フィルム反射型偏光子の実施形態に関する複合グラフである。 図28Aと同様であるが、他のTOP多層光学フィルム反射型偏光子の実施形態に関する複合グラフである。 図28Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図28Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 作製して試験した例示的なTOP多層光学フィルム反射型偏光子に関する測定された物理的厚さプロファイルのグラフである。 ORU数に対してORU厚さをプロットし、更にORU数に対して共振波長をプロットした複合グラフである。 共振波長の関数としての、図32Aの平均厚さプロファイルの傾きのグラフである。 ある範囲の方位角(φ)及び極角(θ)にわたる、TOP反射型偏光子と高コントラスト吸収型偏光子との積層体を透過した光の計算された色のグラフである。TOP偏光子は、図32Aの厚さプロファイルを有する。 比較例(既知)のTOP反射型偏光子に関する測定された物理的厚さプロファイルのグラフである。 ORU数に対してORU厚さをプロットし、更にORU数に対して共振波長をプロットした複合グラフである。 共振波長の関数としての、図34Aの平均厚さプロファイルの傾きのグラフである。 ある範囲の方位角(φ)及び極角(θ)にわたる、TOP反射型偏光子と高コントラスト吸収型偏光子との積層体を透過した光の計算された色のグラフである。TOP偏光子は、図34Aの厚さプロファイルを有する。 別の比較例(既知)のTOP多層光学フィルム反射型偏光子に関する測定された物理的厚さプロファイルのグラフである。 ORU数に対してORU厚さをプロットし、更にORU数に対して共振波長をプロットした複合グラフである。 共振波長の関数としての、図36Aの平均厚さプロファイルの傾きのグラフである。 ある範囲の方位角(φ)及び極角(θ)にわたる、TOP多層光学フィルム反射型偏光子と高コントラスト吸収型偏光子との積層体を透過した光の計算された色のグラフである。TOP偏光子は、図36Aの厚さプロファイルを有する。 これらの図中、同様の参照符号は、同様の要素を指す。
上記のように、我々は、高コントラスト吸収型偏光子と共にオン・ガラス構成で使用するには多すぎる軸外色を有すると通常考えられているTOP(テンタード・ワン・パケット)多層光学フィルム反射型偏光子が、このような液晶ディスプレイにおける構成で適切な性能を実際に提供し得ることを見出した。空気間隙又は高ヘイズ光拡散層は不要(また一部の場合には、光拡散層又は構造体は一切不要)であり、典型的には、TOP反射型偏光子と吸収型偏光子との間、又はこれら2つの偏光子を含む積層体内のどこにも、なにも設けられない。高コントラスト吸収型偏光子は、一般的に、LCディスプレイのLCパネルの背面に配置されており、このディスプレイはまた、LCパネルの前方、並びに上記のように前方及び後方のガラスプレートに、高コントラスト吸収型偏光子を含むことができる。
TOP反射型偏光子はただ1つのミクロ層のパケットを有し、標準的テンターを用いて、フィルム内の複屈折ミクロ層が、テンターの拘束延伸の結果、2軸複屈折性となるように配向されている。更に、単一のパケットにおけるミクロ層、つまり、ミクロ層によって規定される光学繰り返し単位(ORU)は、好適に調整された厚さプロファイルを有する。厚さプロファイルは、ミクロ層パケットにおいて、より厚いORUがより薄いORUよりも吸収型偏光子に近くなるように調整される。厚さプロファイルは、詳しく後述するように更に調整され、積層体において、TOP反射型偏光子(そしてTOP反射型偏光子がその一部である積層体)を高い斜角で透過した光における知覚色の量を驚くほど少なくする。このようにミクロ層パケットの厚さプロファイルを調整することにより、TOP反射型偏光子は、高コントラスト吸収型偏光子と組み合わされた場合に、LCディスプレイにおいて使用するのに許容可能なオン・ガラス積層体を提供することができる。垂直入射及び斜角入射の両方において、最大少なくとも80度の極角(θ)及び0〜90度の中間方位角(φ)で、適切な色性能を実現することができる。
概して、不特定の設計の多層光学フィルム反射型偏光子を与えられた場合には、LCディスプレイシステム内におけるその反射型偏光子の適切な配置は、とりわけ、反射型偏光子の色特性、特に、高い軸外(斜め)光伝搬角度における色特性のいかんによる。垂直入射よりも高い斜角で良好な色性能を実現することが難しい。色特性は、今度は、フィルムが製作された仕方、並びにその結果得られた、フィルムの物理的特徴及び光学的特徴のいかんによる。
例えば、ダイを通して数十、数百、又は数千層の交互になったポリマー層を共押し出しし、任意選択的に、層マルチプライヤデバイス内で流れを分割し、再積層することによって層の数を2倍又は3倍にし、流延成形ホイール上で押し出し物を冷却し、流延フィルムを配向させ(延伸させ)、個々のポリマー層が光学的に薄いミクロ層を形成するようにフィルムの厚さを低減し、ミクロ層の少なくとも一部において複屈折性を誘起することによって、反射型偏光子を製作することが知られている。完成した多層光学フィルム内において、ミクロ層は、隣接するミクロ層間の屈折率差、ミクロ層の隣接する対の光学厚さ、並びにフィルムの厚さ方向若しくは軸に沿ったこのような層の対のスタックの厚さプロファイルに応じて、光学干渉によって光を反射及び透過する。反射型偏光子を作製するために、配向又は延伸が主として1つの面内方向に沿って実施され、それにより、ミクロ層の屈折率が、高反射率のブロック軸、低反射率(かつ高透過率)の通過軸、並びに通過軸及びブロック軸と垂直な厚さ軸を規定する。たとえば、米国特許第5,882,774号(Jonzaら)を参照されたい。
図1は、典型的なLCディスプレイシステム100内に含まれ得る様々な構成要素、層、及びフィルムを例示するための参照のために提供される。ディスプレイシステム100は、ディスプレイパネル150と、パネル150の背後に、パネル150に光を供給するように位置付けられた照明アセンブリ101と、を含む。ディスプレイパネル150は、任意の好適な種類のディスプレイを含むことができる。図示した実施形態では、ディスプレイパネル150はLCパネルを含む、又はLCパネルである(以後、LCパネル150と呼ぶ)。LCパネル150は、典型的には、パネルプレート154a、154b(まとめて、154)の間に配置された液晶(LC)の層152を含む。プレート154は多くの場合ガラスで構成され、LC層152中の液晶の配向を制御するために、プレートの内面上に電極構造体及びアラインメント層を含むことができる。これら電極構造体は、LCパネル画素、即ち隣接する領域とは独立して液晶の配向を制御できるLC層の領域を画定するように一般的に配置される。また、赤色、緑色、及び青色などの所望の色をLC層の部分画素要素に、及びそれゆえ、LCパネル150によって表示される画像に与えるための色フィルタもプレート152のうちの1つ以上とともに含まれ得る。
LCパネル150は、前方(又は上方)吸収型偏光子156と後方(又は下方)吸収型偏光子158との間に位置付けられている。図示した実施形態では、前方吸収型偏光子156及び後方吸収型偏光子158は、LCパネル150の外部に位置している。多くの場合、吸収型偏光子(156又は158)は、好適な透明接着剤を用いて、その隣り合うガラスパネルプレート(それぞれ154a又は154b)の外側主表面に積層されている。吸収型偏光子156、158とLCパネル150とは組み合わせで、バックライト110からディスプレイシステム100を通して観察者へ至る光の透過を制御する。例えば、吸収型偏光子156、158は、それらの通過軸(透過軸)が互いに垂直になるよう配置され得る。例えば、制御装置104によって、LC層152の異なる画素を選択的に活性化すると、光が特定の所望の位置においてディスプレイシステム100を出て、それにより観察者に見られる画像を形成する。制御装置104は、例えば、コンピュータ、又はテレビ画像を受信して表示するテレビ制御装置を含み得る。
ディスプレイ表面への機械的保護及び/又は環境的保護を提供するために、例えば、前方吸収型偏光子156の近くに1つ以上の任意選択的な層157が設けられていてもよい。層157は、例えば、前方吸収型偏光子156を覆うハードコートを含み得る。
照明アセンブリ101は、バックライト110、及びバックライト110とLCパネル150との間に位置付けられた配列140内の1つ以上の光管理フィルムを含む。バックライト110は好適な設計の任意の周知のバックライトである、又はそれを含むことができる。例えば、バックライト内の光源(単数又は複数)は、バックライトがエッジ照明型又は直接照明型のものになるように位置付けられ得る。光源(単数又は複数)は、冷陰極蛍光ランプ(CCFL)を含む、蛍光電球又はランプと、個々のLED又はLEDのアレイ、典型的には、異なる色のLEDダイチップの組み合わせ(RGBなど)によるものか、白色又は黄色発光蛍光体を照らし励起する青色又はUVのLEDダイによるものかを問わず、名目上白色光を放射するLEDと、のうちの1つ以上を含む、任意の既知の光源を含み得る。
光管理フィルムの配列140は、光管理ユニットと呼ぶこともでき、バックライト110とLCパネル150との間に配置されている。光管理フィルムは、バックライト110から伝搬する照明光に影響を及ぼす。場合によっては、バックライト110が配列140内の光管理フィルムのうちの1つ、一部、又は全てを含むと考えることができる。
光管理フィルムの配列140は拡散体148を含み得る。拡散体148はバックライト110から受けた光を散乱又は拡散させるために使用される。拡散体148は任意の好適な拡散体フィルム又はプレートであり得る。例えば、拡散体148は任意の好適な拡散材料又は材料群を含むことができる。いくつかの実施形態では、拡散体148は、ガラス、ポリスチレンビーズ、及びCaCO粒子を含む、様々な分散相を有するポリメチルメタクリレート(PMMA)の高分子マトリックスを含んでもよい。拡散体148はまた、3M Company,St.Paul,Minnesota,USAから入手可能な3M(商標)Scotchcal(商標)拡散体フィルム、タイプ3635−30、3635−70及び3635−100であり得る、又はそれらを含み得る。配列140などの光管理フィルム配列内で用いられるとおりの拡散体148は、通例、BYK−Gardiner,Silver Springs,MDからのHaze Guard Plusヘイズ計を用いて、ASTM D1003に記載されているものなどの好適な手順に従って測定された時に、比較的高いヘイズ、例えば、少なくとも40%を有するであろう。
光管理ユニット140はまた、反射型偏光子142を含み得る。一般的な意味で、反射型偏光子142は、任意の好適な設計のもの、例えば、多層光学フィルム、連続/分散相偏光子などの拡散反射型偏光フィルム(DRPF)、ワイヤグリッド反射型偏光子、又はコレステリック反射型偏光子であり得るが、本出願の目的のために、我々は、反射型偏光子が本明細書の他所において説明されるとおりの、特定の種類の多層光学フィルムである場合に関心がある。例えば、反射型偏光子は、上記のようなTOP反射型偏光子であり得る。当業者は、この種の反射型偏光子を、過度の軸外色を有するがゆえに、ディスプレイシステムの通過状態(白状態)におけるディスプレイシステム100の全体的な知覚色を昼白色又はそのかなり近くに保つために、反射型偏光子142と後方吸収型偏光子158との間の高ヘイズ拡散体及び空気間隙が必要と考えられると見なしていた。
いくつかの実施形態では、四分の一波長遅延層などの、偏光制御層144を拡散体148と反射型偏光子142との間に設けてもよい。偏光制御層144は、反射型偏光子142を透過するリサイクリング光の一部が増えるように反射型偏光子142から反射される光の偏光を変化させるために使用されてもよい。
光管理フィルムの配列140はまた、1つ以上の輝度向上層を含み得る。輝度向上層は、軸外光の向きをディスプレイの軸により近い方向に変化させることができる。これは、LC層152を通して軸上を伝搬する光の量を増加させ、それゆえ、観察者によって見られる画像の輝度を増大させる。輝度向上層の一例は、照明光の向きを屈折と反射を通じて変化させる多数のプリズム***部を有するプリズム輝度向上層である。図1において、第1のプリズム輝度向上層146aは1つの次元における光学利得を提供し、第2のプリズム輝度向上層146bは、層146aのものと直交するように配向されたプリズム構造体を有し、そのため、層146a、146bの組み合わせで、2つの直交する次元におけるディスプレイシステム100の光学利得を増大させる。いくつかの実施形態では、輝度向上層146a、146bは、バックライト110と反射型偏光子142との間に配置され得る。
光管理ユニット140内の様々な層は互いに対して自立していてもよい。代替的に、光管理ユニット140内の層のうちの2つ以上は互いに積層されていてもよい。
LCディスプレイシステム内で用いられるべき多層光学フィルム反射型偏光子の2つの設計側面が本出願に特に関連する:押し出されたフィルムが延伸される仕方(これは、複屈折ミクロ層が1軸複屈折性であるのか、それとも2軸複屈折性であるのかを実効的に決定する)、並びに層マルチプライヤデバイスが製作の間に用いられるのかどうか、若しくは完成した多層光学フィルムがミクロ層の1つを超える別個のスタック又はパケットを有するのかどうか。
我々はまず、押し出されたフィルムを延伸又は配向される仕方について議論する。第1の周知の技法では、ポリマーフィルムの長尺又はウェブが標準的テンター装置を通って連続的に前進する。標準的テンター内において、フィルムは、フィルムの反対の縁部に取り付けられたクリップのセットによってピンと張って保持され、クリップセットはチェーンドライブ又は同様のものの作用を受けてレールに沿って前方へ動く。テンターの1つの区間内では、レールの直線区間が互いに離れていき、それにより、クリップがフィルムをダウンウェブ方向(長手方向とも呼ばれる)に概ね前方へ搬送するのに従い、クリップはフィルムをウェブ交差方向(横断方向とも呼ばれる)に延伸させる。これはフィルムを主としてウェブ交差方向に配向させる。標準的テンター内のクリップは一定のクリップ間間隔を維持し、直線レール区間の長さ全体を通じて一定の速度で動く。これにより、フィルムがダウンウェブ方向に弛緩することが防止される。配向の間におけるフィルムのこのダウンウェブ拘束のゆえに、このような標準的テンターによってもたらされる延伸は時として拘束延伸と呼ばれる。拘束の結果、延伸の条件下で複屈折性になるフィルム内の層は、通例、フィルムの3つの主方向(ウェブ交差若しくはx方向、ダウンウェブ若しくはy方向、並びに厚さ若しくはz方向)に沿って3つの異なる屈折率を発達させる。主方向のx、y、及びz方向に沿ったこのような層の屈折率をnx、ny、及びnzと表す場合には、このとき、nx≠ny、かつny≠nz、かつnz≠nxである。(所与の屈折率nが光学波長の関数としていくらか変化する、材料が分散を呈する範囲で、屈折率は、550nm(緑色)又は632.8nm(He−Neレーザ、赤色)などの特定の可視波長において指定されると理解されてもよく、あるいは屈折率は、例えば、400〜700nmの、可視波長範囲にわたる平均であると理解されてもよい。)この種の複屈折性を有する材料は、2軸複屈折性を有すると言われる。
複屈折ミクロ層が等方性ミクロ層と交互になった反射型偏光子内において、複屈折ミクロ層が2軸複屈折性である結果、y方向に沿った、及びz方向に沿った層間の屈折率差はどちらも0になり得ない。これが、結果として、フィルムと垂直な光軸に対して高い斜角をなして伝搬する光に対して、y軸(即ち、偏光子の通過軸)及びz軸を含む基準面内で伝搬するp偏光の光に対して、そして他の方向に沿って伝搬する高い斜角の光に対して、残留反射率及び(ディスプレイ内で用いられる時には)知覚色を生じさせる。
第2の周知の技法では、フィルム又はウェブは、配向プロセスの間にウェブ又はフィルムがダウンウェブ方向に十分に弛緩することを可能にするよう特別に設計された延伸装置を通って前進する。例えば、いくつかの実施形態では、延伸装置は、放物線状レールに沿って動くクリップのセットを利用する。例えば、米国特許第6,949,212号(Merrillら)を参照されたい。フィルムがダウンウェブ方向に(及び厚さ方向に)弛緩することを可能にすることによって、延伸の条件下で複屈折性になるフィルム内の層は、通例、フィルムの3つの主方向に沿って2つの異なる屈折率のみを発達させる。別の言い方をすれば、このような複屈折層の場合、z方向に沿った屈折率は、y方向に沿った屈折率と等しい、又はそれと実質的に等しいが、それらの屈折率は、x方向(延伸方向)に沿った屈折率とは実質的に異なる。nx、ny、nzの表記を用いると、ny=nzであるが、nx≠ny、かつnx≠nzである。(場合によっては、後述されるように、ny及びnzは正確に等しくなくてもよいが、それらの差は非常に小さい。それゆえ、ny≒nzである。)この種の複屈折性を有する材料は、1軸複屈折性を有すると言われる。複屈折ミクロ層が等方性ミクロ層と交互になった反射型偏光子内において、複屈折ミクロ層が1軸複屈折性である結果、y方向に沿った、及びz方向に沿った層間の屈折率差はどちらも0又は実質的に0にされ得、その一方で、x方向に沿った屈折率差は0でなく、その大きさは大きい。この結果、高い斜角において有意な反射率はほとんど又は全く生じず、フィルムがディスプレイ内の反射型偏光子として用いられる場合には、このような角度において知覚色は全く又はほとんど生じない。
それゆえ、ディスプレイにおける軸外色に関して、例えば、放物線状延伸装置を用いて作製された、複屈折ミクロ層が1軸複屈折性である多層反射型偏光子は、例えば、従来のテンターを用いて作製された、複屈折ミクロ層が2軸複屈折性である偏光子に対して、固有の利点を有する。しかし、実際には、全ての他の因子が等しいとすると、少なくとも一部は、標準的テンターのための歩留まりと比べて、専用放物線状延伸装置のための歩留まりが実質的により低いがゆえに、1軸複屈折性偏光子は2軸複屈折性偏光子よりも製造コストが高い。
本開示の反射型偏光子の製作において用いられ得る光学材料は、周知の材料、好ましくは、材料特性が、同じ温度における、共通フィードブロック内でのこのような材料の共押し出しを可能にする透明ポリマー材料から選択することができる。例示的な諸実施形態では、交互になった熱可塑性ポリマー(ABABAB...)の層が用いられ、延伸条件下において、ポリマーの一方は、複屈折性になるように選択され、他方のポリマーは、光学的に等方性のまま留まるように選択される。好適なポリマーは、例えば、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、これらのコポリマー、及びこれらのブレンドから賢明に選択され得る。追加的に、複屈折性を呈し、この目的のために有用になり得る他の部類のポリマーは、ポリスチレン類(シンジオタクチックポリスチレンを含む)、ポリアミド類(Nylon6を含む)、及び液晶ポリマー類である。
1軸及び2軸複屈折性、並びにnx、ny、及びnzがかかわる等式及び不等式に関する上述の説明に関して、我々は、2つの屈折率の間の厳密な等式は達成又は測定が困難であり得、実際的見地から、わずかな差は厳密な等式と区別不能であり得ると認識している。したがって、本文書の目的のために、我々は、材料の屈折率の1つの対が実質的に同じである、例えば、それらの差が0.05未満であり、その一方で、材料の屈折率の残りの対が実質的に同じでない場合、例えば、それらが少なくとも0.05だけ異なる場合には、材料を1軸複屈折性と見なす。同様に、材料の主屈折率の各々全ての対が実質的に同じでない場合、例えば、それらが少なくとも0.05だけ異なる場合には、材料は2軸複屈折性と見なされる。
通例、特に多層光学フィルム反射型偏光子に関して、このような偏光子内の2軸複屈折層は、例えば、関係|ny−nz|≧0.05、並びに|nx−ny|>0.06若しくは0.08を満たす屈折率nx、ny、nzを有し得る。対照的に、このような偏光子内の1軸複屈折層は、例えば、関係|ny−nz|<0.05、並びに|nx−ny|>0.06若しくは0.08を満たす屈折率nx、ny、nzを有し得る。
本出願に特に関連する別の設計側面は、完成した多層反射型偏光子内に存在するミクロ層の別個のスタックの数である。この数は、多くの場合、層マルチプライヤデバイスがフィルムの製作の間に用いられたかどうかに関連する。この特徴を説明する際に、図2を参照する。図2は、反射型偏光子220として構成された単一パケット多層光学フィルムを概略的に示す。
多層光学フィルム又は偏光子220は2つの反対の外側主表面220a、220bを有し、これらの間に複数の別個のポリマー層が存在する。共押し出し及び延伸によってこのようなフィルムを作製するために用いることができるポリマー材料及びフィルム作製装置が知られている。例えば、米国特許第5,882,774号(Jonzaら)及び第6,783,349号(Neavinら)、並びに米国特許出願公開第2011/0102891号(Derksら)を参照されたい。隣接するポリマー層は、主軸のx軸、y軸、又はz軸のうちの少なくとも1つに沿って実質的に異なる屈折率を有し、そのため、一部の光は(光の伝搬方向及び偏光状態に依存して)層間の境界面において反射される。偏光子220のポリマー層の一部は、多層光学フィルムに所望の反射特性又は透過特性を与えるために、複数の境界面で反射された光が建設的干渉又は相殺的干渉を受けるよう、十分に薄い、即ち本明細書では「光学的に薄い」という。これらの層は本明細書においてミクロ層と呼ばれ、図2において「A」及び「B」と標識される。可視光を反射するように設計された反射型偏光子の場合、各ミクロ層は、概して、約1ミクロン未満の光学厚さ(即ち、物理的厚さ×その屈折率)を有する。また、図2において層222によって示されるように、偏光子内には、当技術分野において知られているとおりの、スキン層又は保護境界層(protective boundary layer、PBL)などの、より厚い層も存在し得る。このような「光学的に厚い」層は、少なくとも1ミクロン、及び多くの場合、1ミクロンよりもはるかに大きい光学厚さを有し、ミクロ層とは見なされない。(本文書全体を通じて、用語「厚さ」が、修飾語「光学」を伴わずに用いられる時には、文脈によって別途示されない限り、厚さは物理的厚さを指す。)
密着したひとまとまりのミクロ層は、本明細書において、ミクロ層のスタック又はパケット、又はミクロ層パケットと呼ばれる。図示のように、偏光子220はミクロ層のただ1つのパケット224を包含する。図に示されるように、パケット224はTの(物理的)厚さを有し、偏光子220はTの全厚を有する。ミクロ層のただ1つのパケット224を用いて多層光学フィルムを構成することは、製造プロセスを単純にし(所望されるミクロ層の数が過剰でないことを前提とする)、ミクロ層の厚さ及び厚さプロファイルをよりうまく制御することを可能にし、それが今度は、反射型偏光子の分光反射率特性及び分光透過率特性をよりうまく制御することを可能にする。図2において、隣接するミクロ層の対は、ORU1〜ORU6と標識された光学繰り返し単位(optical repeat unit、ORU)を形成する。各ORUは、その構成ミクロ層の光学厚さの合計に等しい光学厚さ(OT1、OT2、...OT6)を有する。6つのORU(12層のミクロ層)のみが示されているが、読み手は、典型的な単一パケット反射型偏光子は、可視スペクトルにわたって十分な反射率をもたらすために、更に多くのミクロ層及びORUを包含することになることを理解するであろう。例えば、単一パケット反射型偏光子内のミクロ層の総数は、例えば、500層未満、400層未満、又は350層未満、あるいは200層〜500層、又は200層〜400層、又は200層〜350層、又は225層〜325層の範囲内であり得る。ORUの光学厚さは、ORUがピーク反射率を呈する波長を決定する。ORUの光学厚さがパケットの一方の側(例えば、主表面220a付近)からパケットの反対側(例えば、厚い層222付近)まで徐々に増大する、所望の層厚さプロファイルに従ってORUの厚さを注意深く制御することによって、十分な数のORUがパケット内に存在することを前提とすると、ミクロ層のパケットは、可視スペクトルにわたって、及び所望の範囲の観測角度にわたって、広い反射性をもたらすことが可能になる。
所望の光学性能目標をより容易に達成するための代替的なアプローチは、多層光学フィルム反射型偏光子を、単一パケットフィルム内に実際に組み込むことができるのよりも多くのミクロ層を有するように設計することである。この理由のために(又は他の理由のために)、ミクロ層が2つ以上の区別可能なミクロ層パケットに分割又は分離されており、少なくとも1つの光学的に厚いポリマー材料が、隣り合うパケット同士を分離する、反射型偏光子が作製される。このような複数パケット反射型偏光子は様々な仕方で製造することができる。例えば、反射型偏光子は、ただ1つのフィードブロックを用いるのではなく、複数のフィードブロック(複数のパケットに対応する)を用い、ポリマー材料が依然として液状である間にこれらのフィードブロックからのパケットを組み合わせて作製することができる。例えば、米国特許出願公開第2011/272849号(Neavinら)を参照されたい。代替的に、反射型偏光子は、例えば、米国特許第5,882,774号(Jonzaら)又は第6,025,897号(Weberら)に記載されているとおりの、層マルチプライヤデバイスを用いて作製することができる。層マルチプライヤデバイスは、例えば、ミクロ層又はORUの数を2倍又は3倍にし、完成した反射型偏光子内に(それぞれ)2倍又は3倍の数のパケットを作り出し得る。更に別のアプローチでは、例えば、単一のフィードブロックを用いて各々作製された2つ以上の多層光学フィルム反射型偏光子を一体に積層することによって、複数パケット反射型偏光子を作製することができる。
複数パケット反射型偏光子の欠点は、(a)多数の層及びその結果生じる高い材料コストによる製造コストの増大、並びに(b)いくつかのディスプレイ適用物においては重大な不利点になり得る、比較的大きな物理的全厚を含む傾向がある。(本開示の反射型偏光子は、好ましくは、50ミクロン未満、又は40ミクロン未満、あるいは20若しくは25ミクロン〜50ミクロン又は20若しくは25ミクロン〜40ミクロンの範囲内の厚さを有する。)しかし、より多数のミクロ層は、複数パケット反射型偏光子が、たとえ、このような偏光子が、標準的テンターを用いて配向されている場合でも、即ち、たとえ、このような反射型偏光子内の複屈折ミクロ層が2軸複屈折性であっても、ディスプレイ品質の光学性能目標を達成することを可能にする。これは、複数のパケットが、米国特許出願公開第2013/0063818号(Weberら)に記載されているように、スペクトル平滑化を作り出すことができ、軸外色の量の低減をもたらすためである。単一パケット反射型偏光子はこのスペクトル平滑化技法の利点を生かすことができず、層厚さの変動性に対してより小さい誤差限界を有する。
フィードブロック/ダイを通して交互になったポリマー材料の数多くの層を共押し出しし、延伸作業を用いてフィルムを配向されることによって作製された多層光学フィルム、及び視覚的表示適用物におけるこのようなフィルムの適合性を議論する際に、当業者にとって実際的関心のあるフィルムの1つの側面は、製造時のフィルムが空間的に均一である度合である。フィルムのこの側面は、意図された適用物において、製造されたフィルムのうちのどれほどが使用可能であるのか、対どれほどが廃棄されなければならないのかに関連するため、関心対象となる。これは、今度は、製造歩留まり及び製造コストに影響を与え、また、それは、大きなディスプレイシステムに適合するために、フィルムの所与のウェブからどのぐらいの大きさの部片を得る、又は切り出すことができるのかについてのサイズ制約をも課し得る。LCディスプレイ用の光学フィルムの場合には、表示された画像内でフィルム関連アーチファクトが目立たないよう、高度の空間的均一性が望まれる。
図3に、光学フィルム320のウェブが概略的に示されている。フィルム320はフィルム作製ライン上で製造され、要素309として概略的に示された、テンター又はその他の延伸デバイスから出てくる。フィルム320は、図示のように、y軸と平行な長手方向又はダウンウェブ方向を有する。フィルム320はまた、図示のように、x軸と平行な横断方向又はウェブ交差方向を有する。2つの反対の長手方向縁部320a、320bがフィルム320の長手方向境界を画定する。テンター又は専用の延伸装置からのクリップセットが以前の配向ステップの間にフィルムを把持していたのは、これらの縁部付近であり、その後、フィルム320は縁部320a、320bへ裁断された。図には、ディスプレイ適用物又はその他の所望の適用物内の反射型偏光子としての使用のために意図された3つのフィルムサンプル:フィルム縁部320a付近のフィルムサンプル321a、フィルム縁部320b付近のフィルムサンプル321b、及びフィルム320の(横断方向に対する)中心部分におけるフィルムサンプル321cが示されている。これらのフィルムサンプル又は部片は、より大きなウェブ又はフィルム320から、ナイフ、スリッタ、又はその他の好適な切断器具を用いて切り出される。反射型偏光子として、光学フィルム320、及びフィルムサンプル321a、321b、321cの各々は、x軸と平行なブロック軸、及びy軸と平行な通過軸を有する。
理想的な状況では、フィルムサンプル321a、321b、321cは全て、同じ光学特性及び特質を有することになる。しかし、実際には、フィルム320は一定量の空間変動性を呈する。その結果、フィルム320の縁部付近におけるミクロ層パケットの層厚さプロファイル(並びにその対応する分光透過特性及び反射特性)は、フィルムの中心部分における層厚さプロファイル(並びに対応する分光透過特性及び反射特性)といくらか異なる。フィルムの中心と縁部との間の分光特性の変化量は、本出願にとって関心対象の種類の多層光学フィルム、即ち、ミクロ層のただ1つのパケットを有し、標準的テンターを用いて、フィルム内の複屈折ミクロ層が2軸複屈折性となるよう配向された反射型偏光子のために、特に重要である。これは、このようなフィルムが、他の種類の反射型偏光子の複数のパケットによって提供されるスペクトル平滑性を欠いているためである。例えば、米国特許出願公開第2013/0063818号(Weberら)を参照されたい。
本文書の他所において、我々は、特定の角度及び偏光状態における一部の偏光フィルム及び積層体の透過及び反射などの光学特性について議論する。図4は、読み手がいくつかの関連方向、平面、及び角度を理解するのを助けるために提供される。図には、例えば、反射型偏光子(TOP反射型偏光子など)として構成された多層光学フィルム、あるいは吸収型偏光子に、並びに/又は別の光学フィルム若しくは本体に積層されたこのようなフィルムであり得る、又はそれを含み得る、光学本体412が、デカルトx−y−z座標系にのっとって示されている。偏光子として、光学本体412は、互いに垂直なy軸及びx軸にそれぞれ対応する、通過軸413及びブロック軸414を有する。z軸は、本体412の厚さ方向、即ち、本体412の平面と垂直な軸に対応する。本体412上に垂直に入射する光は、ゼロの極角(θ)で特徴付けられるz軸と平行に伝搬する。このような光は、光が、通過軸413と平行な直線偏光成分を有する場合には、本体412によって実質的に透過され、光が、ブロック軸414と平行な直線偏光成分を有する場合には、実質的にブロックされる(反射型偏光子の場合には、反射され、吸収型偏光子の場合には、吸収される)。
代替の用語を欠くために、「入射面」は、本明細書において、光がフィルムに入射する場合、及び光がフィルムに入射しないが、代わりにフィルムから出射する場合の両方において、表面法線方向と光伝播方向とを含む基準面を指すために使用される。同様に、「入射角」は、フィルムに入射する光及びフィルムから出射する光の両方に対して表面法線方向(z軸)と光伝搬方向との間の角度を指すために使用され、この角度はまた、極角(θ)に対応する。
図には、2つの基準入射面416及び418が含まれている。基準面416はブロック軸414及びz軸を包含し、基準面418は通過軸413及びz軸を包含する。図には、2つの斜め入射光線415、417が示されている。光線415は平面416内にあり、光線417は平面418内にある。光線415、417は、それらの伝搬方向が、z軸に対してそれぞれの0でない極角θをなすため、斜めに入射する。光線415、417ごとに、光線の偏光状態は、図において、直交する両矢印の対として表されている、2つの直交成分:偏光状態が入射面内にあり、「p偏光している」と呼ばれる成分、及び偏光状態が入射面と垂直であり、「s偏光している」と呼ばれる成分に分解することができる。図を子細に見れば、斜め光線415についてのp偏光の偏光方向は斜め光線417についてのp偏光の偏光方向と同じでないこと(及びそれと平行でないこと)が分かる。同様に、斜め光線415についてのs偏光の偏光方向は斜め光線417についてのs偏光の偏光方向と同じでない(及びそれと平行でない)。同様に明らかなのは、光線415のp偏光(「p偏光(p−pol)」)成分は通過軸413と垂直であり、ブロック軸414と部分的に整列しており、その一方で、光線415のs偏光(「s偏光(s−pol)」)成分は通過軸413と平行であることである。光線417のp偏光成分はブロック軸414と垂直であり、通過軸413と部分的に整列しており、光線417のs偏光成分はブロック軸414と平行である。これから、入射方向によって、p偏光は、ある場合には通過軸と垂直であり、他の場合にはブロック軸と垂直であり得、s偏光は、ある場合には通過軸と平行であり、他の場合にはブロック軸と平行であり得ることが判る。
2つの斜め光線415、417は、任意の斜め入射光線のより一般的な場合の特別な場合であり、任意の斜め光線は、平面416とも平面418とも平行ではない、即ち、x軸ともy軸とも平行ではない入射面を有し得る。このような任意の斜め光線を十分に特徴付けるために、我々は、方位角と呼ばれる追加の角度φを使用する。方位角φは、x−y平面において測定された、x軸(即ちブロック軸)とx−y平面におけるこのような光線の投影との間の角度、又はx軸(ブロック軸)とそのような光線の入射面との間の角度である。φ=0度の値は平面416に対応し、φ=90度の値は平面418に対応する。
次に図5を参照すると、LCディスプレイシステム500の選択された要素が概略的に示されていることが分かる。図示されている選択された要素は、後方吸収型偏光子558(図1における後方吸収型偏光子158と同じ又は同様であり得る)、多層光学フィルム反射型偏光子520(図1の反射型偏光子142、若しくは図2の反射型偏光子220と同じ又は同様であり得る)、並びに反射型偏光子520の前方主表面上に配置された光拡散層525である。LCパネル、前方吸収型偏光子、及びバックライトなどの、LCディスプレイシステム内に含まれるであろう他の構成要素は簡略化のために図から省略されている。光学フィルムは概ねx−y平面内に、又はそれと平行に横たわっている。第1のユーザ又は観察者508がシステム500の前に位置しており、z軸と平行なシステム光軸に沿って、垂直入射角でディスプレイを見ている。第2のユーザ又は観察者509が同じくシステム500の前に位置しているが、斜角でディスプレイを見ている。
後方吸収型偏光子558は、LCディスプレイにおける適合性のゆえに当技術分野において知られている吸収型偏光子のうちの任意のものであると仮定されている。偏光子558は通過軸及びブロック軸(図5には示されていない)を有し、偏光子は、通過軸がy軸と平行となり、ブロック軸がx軸と平行となるように配向されている。従来のLCディスプレイでは、後方吸収型偏光子558は通常、コントラスト比が1000より大きい高コントラスト偏光子である。この点に関して、本明細書の目的のために偏光子のコントラストは、特段の指定のない限り、偏光子に垂直に入射し、かつ波長が可視スペクトル又は偏光子に有用な他の任意の波長範囲内にある光に関し、ブロック状態偏光の偏光子の透過率に対する、通過状態偏光の偏光子の透過率の比を指す。吸収型偏光子は、コントラストが、少なくとも1000であれば、又は一部の場合では少なくとも10,000であれば、高いコントラストを有するとされている。現在入手可能な吸収型偏光子は、例えば、1000〜100,000、又は2,000〜10,000の範囲のコントラストを有し得る。
反射型偏光子520は、上記のようなTOP(テンタード・ワン・パケット)反射型偏光子と仮定されている。図5は、TOP反射型偏光子は偏光子の過度の軸外色のゆえにオン・ガラス構成に適していないという一般的に共通した考えに合わせて、偏光子520を独立型構成で示している。それゆえ、反射型偏光子520は空気間隙505によって吸収型偏光子558から分離されている。更に、反射型偏光子520にはその一方の主表面上に光拡散層525が設けられており、拡散層525は反射型偏光子520と吸収型偏光子558との間に配置されている。光拡散層525は、入射光線506及び散乱光線507によって示されるように、光を角度円錐又は分布内へ散乱させる。散乱は、反射型偏光子520を通って異なる方向に伝搬する光線を効果的に混合し、反射型偏光子520に関連付けられる色を低減又は解消する。拡散層525は、Haze Guard Plusヘイズ計を用いて測定された時に、比較的高いヘイズ、例えば、少なくとも40%を有すると仮定されている。拡散層525は任意の既知の種類又は設計のものであり得、例えば、拡散層625は、異なる屈折率のマトリックス内に埋められたガラス若しくはセラミックビーズ又はその他の粒子を含み得、あるいは拡散層625は、ポリマー/空気又はポリマー/ポリマー境界面において、非平滑化されているか、切子面を有するか、又は他の様態で滑らかでない主表面を含み得る。
既に述べたように、我々は調査及び試験を通じて、主流の見解とは反対に、適切に設計及び配向されたTOP反射型偏光子が、オン・ガラス構成において、即ち高コントラスト後方吸収型偏光子に積層された場合に、かつ拡散層又は構造体を挟むことなく、許容可能な光学性能を提供することができることを見出した。(しかしながら、場合によっては、比較的低いヘイズ、例えば、30%未満、又は20%未満、又は10%未満のヘイズを有する拡散層又は構造体が含まれ得る。)図6及び図7に、オン・ガラス構成の2つの例が示されている。
図6の概略図には、多層光学フィルム反射型偏光子620が透明接着剤層626によって後方吸収型偏光子658に付着している、積層体630又は光学本体が示されている。反射型偏光子620、後方吸収型偏光子658、及び接着剤層626は全て互いに同一の広がりを持ち、反射型偏光子620と吸収型偏光子658との間に空気間隙は存在しない。積層体630の観察者側は正のz方向にあり、それゆえ、後方吸収型偏光子658は、反射型偏光子620の前方にあると見なされ得る。反射型偏光子620は、上述された反射型偏光子520と同じ又は同様であり得る。実際に、以下の説明では、我々は、反射型偏光子620はTOP反射型偏光子であると仮定している。TOP反射型偏光子620は反射型偏光子ウェブの中心部分であり得(例えば、図3におけるフィルムサンプル321c参照)、又はTOP反射型偏光子620は縁部部分であり得る(例えば、フィルムサンプル321a、321b参照)。
TOP反射型偏光子620は、y軸と概ね平行な通過軸613a、及びx軸と概ね平行なブロック軸614aを有する。単一のミクロ層パケット内のORUの数、及びそれらのORUの厚さプロファイルは、通過軸613aと平行に偏光した垂直入射可視光に対する高い透過率、及びブロック軸614aと平行に偏光した垂直入射可視光に対する低い透過率(及び高い反射率。これは、これらの低吸収多層光学フィルムの場合、透過率+反射率は100%にほぼ等しいためである)を反射型偏光子620にもたらす。例えば、通過軸613aと平行に偏光した垂直入射可視光の透過率は、可視波長範囲にわたって平均されると、少なくとも60%、又は少なくとも70%、又は少なくとも80%であり得、ブロック軸614aと平行に偏光した垂直入射可視光の透過率は、可視波長範囲にわたって平均されると、30%未満、又は20%未満、又は10%未満であり得る。z軸及び通過軸613aを包含する基準面内で入射する斜めp偏光に対するTOP反射型偏光子620の光学性能は、フィルム内の複屈折ミクロ層の2軸複屈折性の性質の結果生じる不可避の層間の屈折率不一致によって影響を受ける。60度の極入射角をなすこのような斜め光に対して、(あらゆる吸収型偏光子から切り離した単独での)反射型偏光子620の透過率は、450〜700nmの少なくとも一部の波長について、70%〜90%、又は70%〜85%の範囲内の値を有し、場合によっては、このような斜め光に対する透過率は、400〜500nmの波長範囲全体を通じて90%未満であり得る。
TOP反射型偏光子620は、50ミクロン未満、又は40ミクロン未満の全厚を有し得、あるいは、この全厚は、20〜50ミクロンの範囲内、又は20〜40ミクロンの範囲内、又は25〜40ミクロンの範囲内であり得る。偏光子620のミクロ層パケットにおけるORUの層の厚さプロファイルは、更に後述するように、垂直入射から最大80度の極角θの任意の視野角で透過した白色光の色ずれが、好ましくないものでなくなるように調整され得る。特に、垂直入射における第1のCIE色度(a*,b*)座標から最大θ=80度までの任意の角度における第2のCIE色度(a*,b*)座標までの変化(Δ)によって、このような光の色ずれを定量化する場合、sqrt((Δa*)^2+(Δb*)^2)は、好ましくは3.5未満、より好ましくは2.5未満、最も好ましくは2.0未満である。
通過軸613b及びブロック軸614bを有する後方吸収型偏光子658は、上述された後方吸収型偏光子558と同じ又は同様であり得る。実際に、我々は、吸収型偏光子658を高コントラスト吸収型偏光子と仮定している。吸収型偏光子658は、通過軸613a、613bが実質的に整列し、かつブロック軸614a、614bも同じく実質的に整列するよう、反射型偏光子620に対して配向されている。例えば、2つのこのような実質的に整列した軸は、1度未満、又は0.1度未満の角度のずれによって特徴付けられ得る。
透明接着剤層626は、任意の好適な光学接着剤、例えば、3M Company,St.Paul,Minnesotaから入手可能なOptically Clear Adhesive製品のうちの任意のものであり得る。接着剤層626の屈折率は、好ましくは、それらのフィルムのポリマー/接着剤境界面におけるフレネル反射を回避するために、吸収型偏光子658の外面の屈折率及び反射型偏光子620の外面の屈折率に相当に近い。接着剤層626は、好ましくは、吸収型偏光子658と反射型偏光子620との間の永久的接合をもたらす。
積層体630は、反射型偏光子620、吸収型偏光子658、及び接着剤層626(のみ)からなり得、あるいは積層体630はそれらから本質的になり得る。いくつかの実施形態では、積層体630、及びこれらの3つの構成要素の各々は、異なる屈折率のビーズ又はその他の粒子、あるいは非平滑化された、又はその他の滑らかでない主表面などの、有意な識別可能な光拡散層又は光拡散構造体を全く組み込んでいない。それゆえ、積層体630はこのような光拡散層又は光拡散構造体を全く有しなくてもよい。積層体630がこのような拡散層又は構造体を含む場合では、この層は、反射型偏光子620と吸収型偏光子658との間、又は吸収型偏光子658とは反対側を向いた反射型偏光子620の側、又は反射型偏光子620の内部、又は吸収型偏光子658の内部であってもよい。以上の陳述は、非常に優れた光学的透明性を有する理想的な平坦な光学フィルム及び層でさえ、わずかであるが測定可能な量の光学散乱又は拡散を呈し得るとの認識をもってなされている。それゆえ、明確にするために、我々は、最小閾値であって、その閾値未満では問題の層又は構造体が、実際的観点から、及び本文書の目的のために、光拡散を有しないと見なされ得る、最小閾値を確立し得る。我々はこの最小光拡散閾値を、BYK−Gardiner,Silver Springs,MDからのHaze Guard Plusヘイズ計を用いて、ASTM D1003に記載されているものなどの好適な手順に従って測定された時の、5%、又は4%、又は3%、又は2%、又は1%のヘイズ値に設定する。
光学フィルムは、多くの場合、フィルムの主表面を引っかき傷又はその他の損傷から保護するための一時的なポリマー剥離ライナーを両面に有した状態で販売及び/又は輸送される。このような剥離ライナーは、引き剥がすことによって製品から容易に除去することができる。剥離ライナーは、ユーザによって容易に見られる、又は検出され得るよう、染料、顔料、又は光拡散剤を含む、その他の薬剤を組み込むことができる。このような一時的剥離ライナーは積層体630の外面にも同様に適用され得る。しかし、このような剥離ライナーは積層体630と区別可能であり、その一部と見なされる必要はない。それゆえ、このような剥離ライナーが積層体630上に(又は以下の積層体730を含む、本明細書において開示されている他の積層体上に)存在し、実質的な光拡散特性を有するという範囲で、積層体は、有意な光拡散層又は光拡散構造体を全く組み込んでいないと言ってもなお差し支えない。
しかし、読み手は、場合によっては、反射型偏光子620と吸収型偏光子658との間に1つ以上の中程度の拡散層又は拡散構造体を含むことが望ましくなり得ることを注意されるべきである。このような中程度の拡散層又は拡散構造体は、有意である、即ち、上述の最小光拡散閾値よりも大きいが、図5のものなどの独立型構成に通例含まれる高ヘイズ拡散体よりも小さいヘイズ量を有する。例えば、比較的低いヘイズ、例えば、30%未満、又は20%未満、又は10%未満のヘイズを有する拡散層又は拡散構造体がTOP反射型偏光子620と高コントラスト吸収型偏光子658との間に含まれ得る。
本開示のTOP反射型偏光子のミクロ層パケットにおけるミクロ層及びORUは、対象の可視波長域にわたって、かつ垂直入射及び高斜角入射の両方について、遮断状態変更については低透過率(高反射率)を与え、かつ通過状態変更については高透過率(低反射率)を反射型偏光子に与えるだけではなく、反射型偏光子において高い斜角、特に中間の方位角φ(例えばφは、15〜45度の範囲にある)での透過される色を抑制する、厚さプロファイルを提供するために、慎重に調整され、適切に方向付けされた、物理的厚さ、光学的厚さ、又は両方を有する。(TOP反射型偏光子が配置されたディスプレイの白状態に密接に関連付けられている)偏光子の通過状態における高い斜角での望ましくない色は、ミクロ層パケットにおいて、より薄いORUよりもより厚いORUを高コントラスト吸収型偏光子の近くにおいて位置決めすることにより、また物理的厚さプロファイルの固有帯域幅ベースのボックスカー平均(IB平滑化厚さプロファイル)、並びにORU(450)、ORU(600)、及びORU(645)の存在を含む、更に後述する条件を満足し、IB平滑化厚さプロファイルがORU(450)〜ORUに(600)の範囲にわたる第1の平均傾きと、ORU(600)〜ORUに(645)の範囲にわたる第2の平均傾きと、を有し、第1の平均傾きに対する第2の平均傾きの比が1.8以下であることを確保することにより、低減される。この条件を満足することにより、TOP反射型偏光子、及びTOP反射型偏光子がその一部である積層体は、このような偏光子又は積層体を組み込むディスプレイにおいて、高い斜角で偏光子を通過する白色の光に対して、そのような高い斜角におけるこのようなディスプレイの白状態の知覚色が昼白色又は目標とする白色に許容できる程度に近づくほど、与える色の量を少なくすることができる。
図7に、別の積層体730又は光学本体が示される。積層体730は、2つの追加の層が追加されたことを除いて、上述されたとおりの積層体630と同じ又は同様であり得る。それゆえ、積層体730は、高コントラスト後方吸収型偏光子758と、TOP反射型偏光子720と、吸収型偏光子758を反射型偏光子720に接合する接着剤層726とを含む。これらの要素は積層体630の対応する要素と同じ又は同様であり得、これらの要素は光学本体又は構造体730’を形成する。それゆえ、光学本体又は構造体730’は、構造体730’の前部が追加の層に取り付けられていることを除いて、積層体630と同じ又は同様であり得る。具体的には、高コントラスト後方吸収型偏光子758の前方主表面は接着剤層728を通じてガラス層754に接合されている。接着剤層728は接着剤層726と同じ又は同様であり得る。ガラス層は、上述された、LCパネル150のパネルプレート154bなどの、LCパネルの後方又は後部パネルプレートであり得る。
積層体730は、上述されたとおりの要素720、726、758、728、及び754(のみ)からなり得、あるいは積層体730はそれらから本質的になり得る。積層体630と同様に、積層体730及びその構成要素の各々は、好ましくは、異なる屈折率のビーズ又はその他の粒子、あるいは非平滑化された、又はその他の滑らかでない主表面などの、有意な識別可能な光拡散層又は光拡散構造体を全く組み込んでいない。それゆえ、積層体730はこのような光拡散層又は光拡散構造体を全く有しなくてもよい。積層体730がこのような拡散層又は構造体を含む場合では、この層は、反射型偏光子720と吸収型偏光子758との間、又は吸収型偏光子758とは反対側を向いた反射型偏光子720の側、又は反射型偏光子720の内部、又は吸収型偏光子758の内部であってもよい。上述されたように、非常に優れた光学的透明性を有する理想的な平坦な光学フィルム及び層でさえ、測定可能な光学散乱を呈し得、我々は、最小閾値であって、その閾値未満では問題の層又は構造体が本文書の目的のために光拡散を有しないと見なされ得る、最小閾値を確立し得る。好適な閾値は以上において与えられている。更に、場合によっては、反射型偏光子720と吸収型偏光子758との間に、わずかであるが有意な量のヘイズ、例えば、30%未満、又は20%未満、又は10%未満のヘイズを有する1つ以上の拡散層又は拡散構造体を含むことが望ましくなり得る。
図6及び図7の積層体の厚さプロファイルなどの、本開示のTOP反射型偏光子に使用される層の厚さプロファイルは、いくつかの追加の検討を必要とする。既に述べたように、ミクロ層パケット内のミクロ層は光学繰り返し単位(ORU)に編成されており、ORU(及びミクロ層)の光学厚さは、可視スペクトル全域にわたる光に対して、垂直入射においてと、所望の範囲の斜め入射角及び方向にわたってとの両方において、ブロック偏光の光に対する高い広帯域反射率、及び通過偏光の光に対する高い広帯域透過率(低い反射率)をもたらすように調整されている。これは、フィルムの厚さ方向(z軸)に沿ったORUの厚さプロファイルを、より薄いORUが概ねパケットの一方の側(ここでは薄い側と呼ばれる)に位置し、より厚いORUが概ねパケットの反対側(ここでは厚い側と呼ばれる)に位置する、単調関数又は略単調関数となるよう調整することによって達成される。
本開示のフィルムの望ましくない、透過される軸外の知覚色を低減するためには、(a)ミクロ層パケットの厚肉側が吸収型偏光子を(ひいては観察者及びLCパネルを)向き、ミクロ層パケットの薄肉側が吸収型偏光子に背を向ける(ひいてはディスプレイシステムのバックライトを向く)ように、反射型偏光子を方向付けすることと、(b)ミクロ層パケットのIB平滑化厚さプロファイルが、ORU(450)〜ORU(600)の範囲にわたる第1の平均傾きと、ORU(600)〜ORU(645)の範囲にわたる第2の平均傾きと、を有し、第1の平均傾きに対する第2の平均傾きの比が1.8以下になることを確保するように、ORU厚さプロファイルを滑らかに変化するように調整することと、が役立つ。この条件を満足することにより、TOP反射型偏光子、及びTOP反射型偏光子がその一部である積層体は、このような偏光子又は積層体を組み込むディスプレイにおいて、高い斜角で偏光子を通過する白色の光に対して、そのような高い斜角におけるこのようなディスプレイの白状態の知覚色が昼白色又は目標とする白色に許容できる程度に近づくほど、与える色の量を少なくすることができる。
TOP反射型偏光子及びそれを組み込んでいる積層体の色の影響を許容可能な低いレベルに維持するように調整され得ると我々が見出した、ORU厚さプロファイル及びその特性に関する上記の検討は、ここで、更に詳細に、多くの実施形態及びいくつかの実施例を用いて説明される。我々は、簡略化されたORU物理厚さプロファイルに関係する図8A及び図8Bを参照して、より詳細な検討を始める。簡略化された厚さプロファイルにより、それぞれのORUについて、ボックスカー平均を用いた厚さプロファイルの平滑化、及び所与の光学的配置におけるボックスカー平均(平滑化)厚さプロファイルについての共振波長などの概念をより容易に説明することができる。その後、多数のTOP反射型偏光子の実施形態、及び高い斜角におけるそれらのモデル化された色関連性能が、図9〜図30Cに関連して検討及び比較される。最後に、実施例のTOP反射型偏光子が図31〜図32Cに関連して検討され、2つの比較例のTOP反射型偏光子が、図33〜図36Cに関連して検討される。特段の指定のない限り、全ての実施形態は、ブロック軸に沿って偏光された垂直入射光に対して広帯域反射率を提供する勾配を有するORU物理的厚さプロファイルを含み、ORUは、物理的厚さプロファイル及び光学的配置に応じて、それぞれの共振波長を有する。
図8A及び図8Bは、ORU物理的厚さプロファイル、ボックスカー平均化により平滑化された物理的厚さプロファイル(例えば、固有帯域幅(IB)ベースのボックスカー平均)、及び斜角共振波長の概念を簡略化して示している。図8Aでは、仮想のTOP反射型偏光子の物理的厚さプロファイルが、ORU数に対してORU厚さをプロットするグラフに提示されている。一般化のためにグラフの縦軸には数値マークが設けられていないが、厚さが軸矢印方向に直線的に増加していることが読み手には理解されよう。横軸は単純に、ミクロ層パケットの第1の端部において開始するORUの数のカウントである。(このため、横軸はまた、パケットの第1の端部に対する反射型偏光フィルム内の物理的位置や深さにも密接に関連している。)横軸を子細に見れば、仮説偏光子は正確に15個のORUを有することが分かる。各ORUは、例えば上で図2において示したように、2つの隣接するミクロ層から構成され得る。点P1は、図示されたTOP反射型偏光子を形成するミクロ層のパケットにおける、第1のORUの物理的厚さを表し、点P2は第2のORUの物理的厚さを表し、...、点P15は第15の(かつ最後の)ORUの物理的厚さを表す。点P1〜P15の集合は、反射型偏光子のミクロ層のパケットのORU物理的厚さプロファイルである。図示のように、この厚さプロファイルは単調増加し、ORU数の関数として実質的に直線である。第15の(最後の)ORUに近接するORUは、第1のORUに近接するORUよりも大きい平均物理的厚さを有する。
任意の所与の光学的配置について、各ORUは、(1)ピーク又は最大反射率、及び(2)我々が固有帯域幅と呼ぶ、(例えば、反射率スペクトルの半値全幅により測定される)スペクトル幅(breadth又はwidth)によって特徴付けられる反射率スペクトルを生じる。次いで、ミクロ層パケットにおける全てのORUのスペクトル反射率を集めたものから、TOP反射型偏光子全体としての反射率が実質的に得られる。所与のORUのピーク反射率は(そのORUについての)共振波長と呼ばれる波長で生じるが、ピーク反射率、ひいては共振波長は、光学的配置に応じて変化する。垂直入射光に対しては、共振波長はORUの光学的厚さの半分に等しく、ここで光学的厚さは、上で詳述した物理的厚さとは異なる。斜角における共振波長は、垂直入射における共振波長未満であり、更に、一般的に、s偏光の光とp偏光の光とで異なっている。ORU反射率スペクトルの固有帯域幅はまた、光学的配置によってある程度影響を受けるが、パケットにおけるミクロ層の屈折率、及びこのようなミクロ層の間の屈折率差などの他の要因によっても影響を受ける。
パケットにおける各ORUが非ゼロ固有帯域幅を有する反射率を有するという事実は、所与の特定の波長における(及び特定の光学的配置での)反射型偏光子全体としての反射率が、共振波長が特定の波長と等しいORUだけではなく、共振波長が(ORU反射スペクトルの固有帯域幅の点で)特定の波長に近い隣接するORUにも起因することを意味している。例えば、点P10により表されるORUが所与の光学的配置で正確にλ10の共振波長を有すると仮定し、次いで、その波長λ10で(及び所与の光学的配置において)反射型偏光子(及びパケット)全体としての反射率を考慮すると、このような後者の反射率は、点P10のORUだけではなく、図8AにおいてグループG10により示されている、その両側にある最も近い近隣のORUのうちのいくつかにも起因し得る。図8Aの点P1又は点P15のORUなどのミクロ層パケットの2つの端部のうちの一方又はその近傍におけるORUの共振波長に対応する波長における反射率の場合、最も近いORUは、対象のORUの片側のみに存在し、図8AにおけるグループG1及びグループG15などの片側又は不平衡ORUグルーピングをもたらし得る。
隣接するORUで重なる反射率幅の上記現象により、我々は、15個のORUのそれぞれにおいて、対象のORUの厚さ、及び対象のORUの各側のその隣接するORUがあれば、その厚さを平均化することによって得られる、平滑化ORU厚さプロファイルを定義するに至った。我々は、この技法をボックスカー平均化と呼ぶ。対象のORUの各側で含めるための隣接するORUの実際の数は、ミクロ層パケットにおけるORUの固有帯域幅、及び他の要因に異存するが、この簡略化された例の目的のために、我々は、対象のORUの各側で2つのORUを(それらが存在する限り)含める。この固有帯域幅(IB)ベースのボックスカー平均化の結果は、図8Aにおいて、15個のORUのそれぞれにおいて設けられた小さい白丸マーク、即ち、A1、A2、A3、...、A15で示されている。点P1〜P15によりで表される元のORU厚さプロファイルが厳密に直線である限り、それらのORUのボックスカー平均化の対称性により、マークA3〜A13も直線であり、かつそれぞれの点P3〜P13と一致する。しかしながら、パケットの端部及びその近傍にあるORUでは、白丸A1、A2、A14、A15がそれらの対応する点P1、P2、P14、P15とはずれていることにより示されているように、それらのORUのボックスカー平均化の非対称性により、IB平滑化厚さプロファイルは元の厚さプロファイルから外れる。
これらの計算の後、我々は、IB平滑化厚さプロファイル、及びx−z平面(例えば、図4を参照されたい)に80度の極角(θ)で入射するp偏光として我々が選択した十分に斜めの光学的配置に基づいて、15個のORUのそれぞれについて共振波長を計算する。この計算は、IB平滑化厚さプロファイル、並びにORUにおいてミクロ層のそれぞれについての(波長依存性)屈折率値nx、ny、nz(上記図2の検討を参照されたい)、及び指定された斜め光学的配置などの、他のパラメータを入力として用いる、Berrimanの4×4行列多層光学応答計算エンジンを使用してもよい。この情報を用いて、15個のORUのそれぞれについて、指定された斜角配置における共振波長を計算することができる。結果は、図8BにおいてORU数に対する共振波長のグラフにプロットされている。Berriman方法論はまた、TOP反射型偏光子及び高コントラスト吸収型偏光子に積層されたこのような偏光子のスペクトル反射率及びスペクトル透過率を計算するために用いることもできる。
一般化のためにグラフの縦軸には数値マークが設けられていないが、共振波長が軸矢印方向に直線的に増加していることが読み手には理解されよう。図8Aと全く同様に、横軸は単純に、ミクロ層パケットの第1の端部において開始するORUの数のカウントである。W1、W2、W3、...、W15と標識されたx字形の点は、ORUのそれぞれにおいて計算された共振波長を表している。
上記の計算を行ったため、ここで我々は、(仮想の簡略化された)TOP反射型偏光子が、反射型偏光子、及び高コントラスト吸収型偏光子との反射型偏光子の積層体の透過率において低い知覚色を促進する条件を満足するか否かを判定するための解析を行うことができる。この解析の一部として、我々は、ミクロ層パケットにおけるORUのいずれかで下記の条件、即ち、指定された斜めの光学的配置(x−z平面にθ=80度で入射するp偏光)における、かつIB平滑化厚さプロファイルに関する共振波長が少なくとも450nmであることと、第1のORUを含むORUの側に配置された全てのORUが(同じ条件の下で)450nm未満の共振波長を有することと、の両方を満足するORUが存在するか否かを判定する。存在する場合、我々は、このORUをORU(450)と呼ぶ。(好ましくは、ORU(450)の共振波長は、指定された斜めの光学的配置におけるIB平滑化厚さプロファイルに関して、455nm未満である。)同様に、この解析の一部として、我々は、ミクロ層パケットにおけるORUのいずれかで下記の条件、即ち、指定された斜めの光学的配置(x−z平面にθ=80度で入射するp偏光)における、かつIB平滑化厚さプロファイルに関する共振波長が少なくとも600nmであることと、第1のORUを含むORUの側に配置された全てのORUが(同じ条件の下で)600nm未満の共振波長を有することと、の両方を満足するORUが存在するか否かを判定する。存在する場合、我々は、このORUをORU(600)と呼ぶ。(好ましくは、ORU(600)の共振波長は、指定された斜めの光学的配置におけるIB平滑化厚さプロファイルに関して、605nm未満である。)同様に、この解析の一部として、我々は、ミクロ層パケットにおけるORUのいずれかで下記の条件、即ち、指定された斜めの光学的配置(x−z平面にθ=80度で入射するp偏光)における、かつIB平滑化厚さプロファイルに関する共振波長が少なくとも645nmであることと、第1のORUを含むORUの側に配置された全てのORUが(同じ条件の下で)645nm未満の共振波長を有することと、の両方を満足するORUが存在するか否かを判定する。存在する場合、我々は、このORUをORU(645)と呼ぶ。(好ましくは、ORU(645)の共振波長は、指定された斜めの光学的配置におけるIB平滑化厚さプロファイルの650nm未満である。)なお、ORU(400)、ORU(600)、ORU(645)は、かなり斜めの光学的配置において規定されており、このことは、それらの垂直入射光での特性は、それらの斜めの配置での特性とは実質的に異なることを意味する。例えば、ORU(645)は、垂直入射光では、電磁スペクトルの近赤外部分に入り込んだ共振波長を有する可能性がある。
TOP反射型偏光子がORU(400)、ORU(600)、及びORU(645)の3つ全てを含む場合、次いで、我々は、IB平滑化厚さプロファイル(例えば、図8Aの点A1〜A15を参照されたい)、及び特にそのプロファイルの平均傾きについて更なる解析を行う。我々は、より長い波長範囲、即ちORU(600)〜ORU(645)にわたるIB平滑化厚さプロファイルの第2の平均傾きに対して、短い波長範囲、即ちORU(400)〜ORU(600)にわたるIB平滑化厚さプロファイルの第1の平均傾きを比較する。反射型偏光子、反射型偏光子と高コントラスト吸収型偏光子との(より厚肉のORUを有するミクロ層パケットの端部が吸収型偏光子に隣接する、又は吸収型偏光子を向くように、反射型偏光子が方向付けられているという条件での)積層体、及び積層体を組み込んでいるディスプレイの白状態での透過光の色抑制が、第1の平均傾きに対する第2の平均傾きの比が1.8以下である場合に促進される。
この解析は特定のかなり斜めの光学的配置で、即ちx−z平面に極角θ=80度で入射したp偏光の光について計算された共振波長を利用しているが、低い色出力はこの配置に決して限定されるものではないことを読み手には留意されたい。換言すれば、反射型偏光子、及び反射型偏光子がその一部である積層体が、上記の解析で説明されたように調整された場合、解析で使用された特定のかなり斜めの光学的配置においてだけではなく、(少なくとも80度の極角θについて)0〜90度の中間方位角φを含む、他のかなり斜めの配置において、及び他の偏光状態でも、色の透過率が抑制される。
図9及びその関連の図10A〜図17Cは、TOP反射型偏光子、及び高コントラスト吸収型偏光子とのTOP反射型偏光子の積層体のいくつかの関連する(モデル化された)実施形態へのこれらの原理の適用を実証している。反射型偏光子の透過及び反射スペクトルは、Berrimanの4×4行列多層光学応答計算エンジンを用いて計算された。計算のための入力パラメータは、ORUの層の厚さプロファイルと、ミクロ層パケット及びORUを作る複屈折性ミクロ層及び等方性ミクロ層の波長依存性屈折率値と、を含んだ。
これらの実施形態では、TOP反射型偏光子は、正確に152個のORUを有する。各ORUは、ただ2つのミクロ層を含み、そのうちの一方が2軸複屈折性であり、他方が等方性であり、f比が0.5である。複屈折ミクロ層は、一軸延伸低融点PEN(LmPEN)に関する測定データに基づく屈折率のセット(nx,ny,nz)が与えられる。LmPENの組成物に関しては、ジオールは、エチレングリコール100%であり、二塩基酸は、テレフタル酸10モル%及びナフタレンジカルボン酸90モル%である。等方性ミクロ層は、それぞれ58%及び42%の重量分率のPETg GN071(Eastman Chemicals,Knoxville,TN)及びLmPENの非晶質ブレンドに関する測定データに基づく等方性屈折率(Niso)が与えられる。我々の計算モデリングにおいて用いたこれらの材料の屈折率を表1に示す。
Figure 2020129111
表を子細に見れば、nxがNisoよりも大きく、x軸に沿った電界に関して大きな屈折率差を提供することが分かる。nyの値は、Nisoに略等しい。nzの値は、Nisoよりも小さく、p偏光の光の垂直以外の入射角度における屈折率差を提供する。後掲されるSCIENCE紙の教示に基づいて、表1に示されている複屈折性の屈折率と等方性の屈折率との組み合わせの結果、入射角θを大きくした場合、及びs偏光とp偏光との両方で、界面反射率が増加し、反射帯域パワーが大きくなる。
図9は、異なるが、関連している8つのORU物理的厚さプロファイル961、962、963、964、965、966、967、及び968のグラフであり、これらのいずれもTOP反射型偏光子に容易に使用され得る。厚さプロファイル961は、物理的厚さが約120nmである第1のORU(#1)から物理的厚さが約265nmである最後のORU(#152)まで、直線の形態であり、即ち一定の傾きのプロファイルである。他の厚さプロファイル962〜968は、ORU#1〜ORU#105までは厚さプロファイル961と同じであるが、ORU#105では、ORU#105〜ORU#152の厚さプロファイルの傾きにおいてステップ状の変化を経る。ステップ状の傾き変化は、図示のように、プロファイル962で最も小さく、プロファイル968で最も大きい。
次いで、これらのORU厚さプロファイルのそれぞれは、ORU厚さプロファイルから、
・IB平滑化厚さプロファイルであって、ここで、ボックスカー平均の目的のために、モデル化された屈折率に関してORU反射帯域の固有帯域幅を考慮するために、我々が対象のORUの各側で含めるORUの数が(存在する場合)10である、IB平滑化厚さプロファイルと、
・x−z平面に80度の極角θで入射するp偏光の光のかなり斜めの光学的配置に関する、各ORUにおけるIB平滑化厚さプロファイルの共振波長と、
を計算し、次いで
・上記のようにミクロ層パケットがORU(450)、ORU(600)、及びORU(645)を含むか否かを判定し、含む場合、
・ORU(450)〜ORU(600)のIB平滑化厚さプロファイルの第1の平均傾きを計算し、ORU(600)〜ORU(645)のIB平滑化厚さプロファイルの第2の平均傾きを計算し、
・第1の平均傾きに対する第2の平均傾きの比(「傾き比」)を計算する
ことによって上述のように解析される。
・なお、ミクロ層パケットがORU(450)、ORU(600)、又はORU(645)のうちのいずれか1つを含んでいない場合、上記傾き比は未定義である。
この他に、我々はまた、偏光子との間に空気間隙又は拡散材料を持たない、コントラスト比が10,000である整列した吸収型偏光子を有する、モデル化されたTOP反射型偏光子であって、より厚肉のミクロ層(及びORU)がより薄肉のミクロ層(及びORU)よりも吸収型偏光子に近くなるように反射型偏光子が方向付けられた、モデル化されたTOP反射型偏光子の積層体の色応答を、15、25、35、及び45度の方位角φについて、増分を5度とする45〜85度の範囲の極角θによって定義される、ある範囲のかなり斜めの光学的配置に関して計算するためにBerriman方法論を使用する。(これらのような角度は、標準のディスプレイパネルの白状態で望ましくない色又は色の変化を受けやすい。)それぞれのこのような配置について、例えば、(θ=50度、φ=35度)について、計算モデルは、非偏光の入力光ビームを積層体に向けて指定された方向で発射し、このような入力ビームは、空気からミクロ層パケットの最も薄い層端部上、即ちORU#1上に入射される。入力ビームのスペクトル成分は、LCディスプレイで一般的である、赤色、緑色、及び青色のカラーフィルタでフィルタされた、標準ディスプレイ白色LEDとしてモデル化される。次いで、Berriman方法論は、積層体(TOP反射型偏光子及び整列された高コントラスト吸収型偏光子の両方)を透過する出力ビームを計算し、出力ビームのスペクトル成分を計算する。計算された出力ビームを入力ビームと比較することによって、特定の配置における積層体に関する色応答が得られる。我々は、既知のCIE(L*,a*,b*)色座標についての色応答を定量化する。計算された(a*,b*)値を、モデル化された方位角及び極角の範囲にわたって評価することにより、積層体(及び反射型偏光子)の一般的な色応答性能を評価することができる。
これにより、図10Aでは、複合グラフは、ORU数を表す単一の横軸と、ナノメートル(nm)でORU(物理的)厚さを表す左側(LHS)縦軸と、ナノメートル(nm)で共振波長を表す右側(RHS)縦軸と、を有する。二重縦軸を用いることにより、同一グラフ上で、ORU数に対して、(LHS軸を用いて)ORU厚さと(RHS軸を用いて)共振波長との両方をプロットすることができる。曲線961及び961Aは、LHS縦軸に対してプロットされ、曲線961Wは、RHS縦軸に対してプロットされている。
曲線961は、図9のORU物理的厚さプロファイル961と同一であり、ORU#1〜ORU#152まで一定の傾きを有する。(実際には、実際の多層膜サンプルが提供される場合、ORU物理的厚さプロファイルは、典型的には、多層ポリマー特性評価のために設計された原子間力顕微鏡(AFM)システムを用いて測定され、正確な結果を得るには、AFMからの生データのなんらかの平均化又は平滑化が必要とされ得る。)
曲線961Aは、曲線961の固有帯域幅(IB)ベースのボックスカー平均である。ORU#11〜142のうちのいずれについても、平均化又は平滑化された曲線961A上の対応する点は、所与のORUと、所与のORUに左側で直接隣接する10個のORUと、所与のORUに右側で直接隣接する10個のORUと、から構成されるORUのグループについて(曲線961からの)平均厚さを計算することにより導出される。よって、これらのORU#11〜142の平均は、21個のORUのグループから導出される。ミクロ層パケットの端部又はその近傍にあるORU、即ちORU#1〜10及び143〜152では、21個未満のORUがグループ平均において使用される。これは、これらのORUでは、所与のORUの左側又は右側において、利用可能なORUが10個未満であるためである。本開示の実施形態では、片側当たり10個のORU(両端又はその近傍を除き、21個のORUのグループ)のボックスカー平均は、適切であり、対象の観察者臨界角度範囲において、ミクロ層厚さプロファイルパケットの透過率特性を支配する種類の、1/4共振波長ORUの固有帯域幅に基づいて、ミクロ層厚さプロファイルの反射/透過挙動を表す。上で表1において示した屈折率を有する1/4共振波長のミクロ層を有するORUの固有帯域幅は、約10%である。このことは、所与の任意の波長について、中央のORUの近傍にあるより厚肉の10個のORUと、中央のORUの近傍にあるより薄肉の10個のORUと、がその所与の波長で反射応答を生成する、したがって、21個のORUボックスカー平均反射率グループなどの用語の使用が生まれるのに関与することを意味する。
任意の所与のORUで評価されたIB平滑化厚さプロファイルは、好ましくは、所与のORUの共振波長におけるパケットの反射率にコヒーレントに寄与するORUのみを実質的に含む。目下の議論における主な対象の実施形態では、これは、IB平滑化厚さプロファイルが、所与のORUの各側に10個の最も近いORUを含むことを意味する。しかしながら、他の実施形態では、IB平滑化厚さプロファイルは、例えば、主な対象の実施形態と比較して実質的に異なる屈折率及び屈折率差に起因する、異なる固有帯域幅の結果、所与のORUの各側で異なる所定の数の最も近い近隣のORUを含み得る。このような場合、(所与のORUの各側において)所定数のORUは、20以下であるが、少なくとも5つであり得る。
プロットされた21個のORUボックスカー平均の値は、ミクロ層パケットの薄肉端部近傍のORU#11から始まり、ORU#142まで続けて計算されている。次いで、ORU#143からパケットの厚肉端部上の最後のORU#152まで、ボックスカー平均におけるORUのグループは、右側の利用可能なORUの数が減少するにつれて、20から11まで減少する。これらのボックスカー平均されたORU値のそれぞれは、その光学位相厚さに適した波長で反射帯域を生成するようにコヒーレントに作用するミクロ層のグループを表し、上記の光学位相厚さは、入射光の偏光状態、入射光が出射する外部媒体の屈折率、並びに入射光の方位角及び極角に依存する。2軸材料の多層スタックに対するこれらの特性の詳細な検討は、論文”Giant Birefringent Optics in Multilayer Polymer Mirrors”,SCIENCE vol.287,pp.2451−2456(March 31,2000)に見られる。
図10Aの曲線961Wは、θ=80度、φ=0度で特徴付けられるかなり斜めの光学的配置における、x−z面を入射面とするp偏光の光に関する、各ボックスカー平均された反射率グループの共振波長を(ナノメートルで)プロットしている。つまり、所与のORUにおける曲線961W上の任意の点は、所与のORUにおけるIB平滑化厚さプロファイル961Aの、指定された斜めの光学的配置における共振波長である。また、臨界波長における基準線λcもプロットされ、臨界波長は、本開示の実施形態では645nmとなるように選択されている。グラフを子細に見れば、曲線961Wは、共振波長400nm、600nm、及び645nmを含むことが分かる。これにより、IB平滑化厚さプロファイル961Aは、ORU(400)、ORU(600)、及びORU(645)を含む。
図10Bは、図10AのIB平滑化厚さプロファイル961Aの傾きを、曲線961Wで規定される共振波長の関数としてグラフ化している。つまり、ORU数に従って図10Bの横軸をスケーリングする代わりに、ORUのそれぞれの(指定された斜めの光学的配置における)共振波長に従ってスケーリングされている。計算された傾きは、図10Aにおける曲線961Aの垂直移動量を水平移動量で割ったものに単純に等しい。この計算された傾きは、図10Bにおいて曲線961Sとして示され、この曲線は、ORU#141の近傍での曲線961Aの傾きにおける急激な変化により、約665nmにおいて不連続部を有している。図10Bでは、基準線λcは、645nmの臨界角で垂直に現れる。図10Bにはまた、(ORU(450)に対応する)450nm〜(ORU(600)に対応する)600nmに延びる第1の領域1001と、600nm〜(ORU(645)に対応する)645nmに延びる第2の領域1002と、が含まれる。
上述の傾き比は、第1の領域1001の範囲にわたって、傾き、即ち曲線961Sの傾きの第1の平均を計算することと、第2の領域1002の範囲にわたって、(曲線961Sの)傾きの第2の平均を計算することと、を含む。本実施形態では、図10Bを子細に見れば、曲線961Sは、これらの2つの領域にわたって実質的に平坦であり、よって、第1の平均と第2の平均とは実質的に同一であることが分かる。したがって、本実施形態では、これらの平均の比(傾き比)は、1.0の値となる。
図10Cは、(無次元)CIE a*及びb*色座標を用いて、上で詳細に説明したような、図10A及び図10Bの実施形態に関する色応答をグラフ化している。要するに、偏光子との間に空気間隙又は拡散材料を持たない、コントラスト比が10,000である整列した吸収型偏光子を有する、モデル化されたTOP反射型偏光子であって、より厚肉のミクロ層(及びORU)がより薄肉のミクロ層(及びORU)よりも吸収型偏光子に近くなるように反射型偏光子が方向付けられた、モデル化されたTOP反射型偏光子の積層体の色応答を計算するためにBerriman方法論を使用した。色応答は、増分を5度とする45〜85度の範囲の極角θについて、かつ15、25、35、及び45度の方位角φについて、かなり斜めの光学的配置に関して計算した。結果は、方位角に関してグループ化され、曲線φ15は、上記範囲の極角にわたる、φ=15度についての色応答を示し、曲線φ25は、上記範囲の極角にわたる、φ=25度についての色応答を示し、曲線φ35は、上記範囲の極角にわたる、φ=35度についての色応答を示し、曲線φ45は、上記範囲の極角にわたる、φ=45についての色応答を示している。本明細書で提示される(a*,b*)グラフを比較する場合の同一のスケールを示すために、Cと標識された基準円が設けられている。特段の記載のない限り、全てのこのようなグラフにおいて、円Cは、3.0(無次元数)の直径を有する。
次いで、ORU物理的厚さプロファイル961に関して上述し、かつ図10A、図10B、及び図10Cに示したのと同じ方法論を、図9に示す他の関連するORU物理的厚さプロファイルのそれぞれについて繰り返した。
よって、プロファイル962の場合、図11Aは、曲線962がプロファイル962と同一であり、曲線962Aが曲線962のIB平滑化厚さプロファイルであり、曲線962Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図11Bは、曲線962Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル962Aの傾きを、曲線962Sとしてグラフ化し、かつ450〜600nmの第1の領域1101及び600〜645nmの第2の領域1102並びに645nmにおける基準線λcを提示し、図11Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、φ35、及びφ45により、基準円Cと共に、反射型偏光子−吸収型偏光子積層体のa*,b*色座標における色応答をグラフ化している。
プロファイル963の場合、図12Aは、曲線963がプロファイル963と同一であり、曲線963Aが曲線963のIB平滑化厚さプロファイルであり、曲線963Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図12Bは、曲線963Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル963Aの傾きを、曲線963Sとしてグラフ化し、かつ450〜600nmの第1の領域1201及び600〜645nmの第2の領域1202並びに645nmにおける基準線λcを提示し、図12Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、φ35、及びφ45により、基準円Cと共に、反射型偏光子−吸収型偏光子積層体のa*,b*色座標における色応答をグラフ化している。
プロファイル964の場合、図13Aは、曲線964がプロファイル964と同一であり、曲線964Aが曲線964のIB平滑化厚さプロファイルであり、曲線964Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図13Bは、曲線964Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル964Aの傾きを、曲線964Sとしてグラフ化し、かつ450〜600nmの第1の領域1301及び600〜645nmの第2の領域1302並びに645nmにおける基準線λcを提示し、図13Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、φ35、及びφ45により、基準円Cと共に、反射型偏光子−吸収型偏光子積層体のa*,b*色座標における色応答をグラフ化している。
プロファイル965の場合、図14Aは、曲線965がプロファイル965と同一であり、曲線965Aが曲線965のIB平滑化厚さプロファイルであり、曲線965Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図14Bは、曲線965Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル965Aの傾きを、曲線965Sとしてグラフ化し、かつ450〜600nmの第1の領域1401及び600〜645nmの第2の領域1402並びに645nmにおける基準線λcを提示し、図14Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、φ35、及びφ45により、基準円Cと共に、反射型偏光子−吸収型偏光子積層体のa*,b*色座標における色応答をグラフ化している。
プロファイル966の場合、図15Aは、曲線966がプロファイル966と同一であり、曲線966Aが曲線966のIB平滑化厚さプロファイルであり、曲線966Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図15Bは、曲線966Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル966Aの傾きを、曲線966Sとしてグラフ化し、かつ450〜600nmの第1の領域1501及び600〜645nmの第2の領域1502並びに645nmにおける基準線λcを提示し、図15Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、φ35、及びφ45により、基準円Cと共に、反射型偏光子−吸収型偏光子積層体のa*,b*色座標における色応答をグラフ化している。
プロファイル967の場合、図16Aは、曲線967がプロファイル967と同一であり、曲線967Aが曲線967のIB平滑化厚さプロファイルであり、曲線967Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図16Bは、曲線967Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル967Aの傾きを、曲線967Sとしてグラフ化し、かつ450〜600nmの第1の領域1601及び600〜645nmの第2の領域1602並びに645nmにおける基準線λcを提示し、図16Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、φ35、及びφ45により、基準円Cと共に、反射型偏光子−吸収型偏光子積層体のa*,b*色座標における色応答をグラフ化している。
プロファイル968の場合、図17Aは、曲線968がプロファイル968と同一であり、曲線968Aが曲線968のIB平滑化厚さプロファイルであり、曲線968Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図17Bは、曲線968Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル968Aの傾きを、曲線968Sとしてグラフ化し、かつ450〜600nmの第1の領域1701及び600〜645nmの第2の領域1702並びに645nmにおける基準線λcを提示し、図17Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、φ35、及びφ45により、基準円Cと共に、反射型偏光子−吸収型偏光子積層体のa*,b*色座標における色応答をグラフ化している。
図9の実施形態に関する傾き比の結果は、表2にまとめられており、ここで、「傾き比」は、IB平滑化厚さプロファイル(600〜645nm)の傾きの第2の平均を、IB平滑化厚さプロファイル(450〜600nm)の傾きの第1の平均で除したものを指す。
Figure 2020129111
かなり斜めの臨界視野角での観察者に関する、これらの実施形態の色応答は、図10C、図11C、図12C、...図17Cにおける色応答を子細に検討することにより最良に評価される。手短にまとめると、(それぞれ、ORU厚さプロファイル961、962、963、及び964に関する)図10C、図11C、図12C、及び図13Cの色軌跡は、許容可能な色の限度内にあるが、(それぞれ、ORU厚さプロファイル965、966、967、及び968に関する)図14C、図15C、図16C、及び図17Cの色軌跡は、広すぎる、即ち、これらは過剰な量の色を生成する。
図18及びその関連の図19A〜図26Cは、TOP反射型偏光子、及び高コントラスト吸収型偏光子とのTOP反射型偏光子の積層体の他の関連する(モデル化された)実施形態へのこれらの同じ原理の適用を実証している。図9の実施形態と同様に、図18のTOP反射型偏光子実施形態もまた、正確に152個のORUを有し、各ORUは、ただ2つのミクロ層を有し、その屈折率も上で表1に提示したものと同じである。図18は、異なるが、関連している8つのORU物理的厚さプロファイル1861、1862、1863、1864、1865、1866、1867、及び1868を示しており、これらのいずれもTOP反射型偏光子に容易に使用され得る。厚さプロファイル1861は、物理的厚さが約125nmである第1のORU(#1)から物理的厚さが約275nmである最後のORU(#152)まで、直線の形態であり、即ち一定の傾きのプロファイルである。他の厚さプロファイル1862〜1868は、ORU#1〜ORU#125までは厚さプロファイル1861と同じであるが、ORU#125では、ORU#125〜ORU#152の厚さプロファイルの傾きにおいてステップ状の変化を経る。ステップ状の傾き変化は、図示のように、プロファイル1862で最も小さく、プロファイル1868で最も大きい。
次いで、これらのORU厚さプロファイルのそれぞれが、図9〜図17Cに関連して上述したのと実質的に同様に解析され、その解析は、不要な繰り返しを避けるためにここでは繰り返さない。
ORU厚さプロファイル1861の場合、図19Aは、曲線1861がプロファイル1861と同一であり、曲線1861Aが曲線1861のIB平滑化厚さプロファイルであり、曲線1861Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図19Bは、曲線1861Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル1861Aの傾きを、曲線1861Sとしてグラフ化し、かつ450〜600nmの第1の領域1901及び600〜645nmの第2の領域1902並びに645nmにおける基準線λcを提示し、図19Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、φ35、及びφ45により、基準円Cと共に、反射型偏光子−吸収型偏光子積層体のa*,b*色座標における色応答をグラフ化している。
ORU厚さプロファイル1862の場合、図20Aは、曲線1862がプロファイル1862と同一であり、曲線1862Aが曲線1862のIB平滑化厚さプロファイルであり、曲線1862Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図20Bは、曲線1862Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル1862Aの傾きを、曲線1862Sとしてグラフ化し、かつ450〜600nmの第1の領域2001及び600〜645nmの第2の領域2002並びに645nmにおける基準線λcを提示し、図20Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、φ35、及びφ45により、基準円Cと共に、反射型偏光子−吸収型偏光子積層体のa*,b*色座標における色応答をグラフ化している。
ORU厚さプロファイル1863の場合、図21Aは、曲線1863がプロファイル1863と同一であり、曲線1863Aが曲線1863のIB平滑化厚さプロファイルであり、曲線1863Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図21Bは、曲線1863Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル1863Aの傾きを、曲線1863Sとしてグラフ化し、かつ450〜600nmの第1の領域2101及び600〜645nmの第2の領域2102並びに645nmにおける基準線λcを提示し、図21Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、φ35、及びφ45により、基準円Cと共に、反射型偏光子−吸収型偏光子積層体のa*,b*色座標における色応答をグラフ化している。
ORU厚さプロファイル1864の場合、図22Aは、曲線1864がプロファイル1864と同一であり、曲線1864Aが曲線1864のIB平滑化厚さプロファイルであり、曲線1864Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図22Bは、曲線1864Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル1864Aの傾きを、曲線1864Sとしてグラフ化し、かつ450〜600nmの第1の領域2201及び600〜645nmの第2の領域2202並びに645nmにおける基準線λcを提示し、図22Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、φ35、及びφ45により、基準円Cと共に、反射型偏光子−吸収型偏光子積層体のa*,b*色座標における色応答をグラフ化している。
ORU厚さプロファイル1865の場合、図23Aは、曲線1865がプロファイル1865と同一であり、曲線1865Aが曲線1865のIB平滑化厚さプロファイルであり、曲線1865Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図23Bは、曲線1865Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル1865Aの傾きを、曲線1865Sとしてグラフ化し、かつ450〜600nmの第1の領域2301及び600〜645nmの第2の領域2302並びに645nmにおける基準線λcを提示し、図23Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、φ35、及びφ45により、基準円Cと共に、反射型偏光子−吸収型偏光子積層体のa*,b*色座標における色応答をグラフ化している。
ORU厚さプロファイル1866の場合、図24Aは、曲線1866がプロファイル1866と同一であり、曲線1866Aが曲線1866のIB平滑化厚さプロファイルであり、曲線1866Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図24Bは、曲線1866Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル1866Aの傾きを、曲線1866Sとしてグラフ化し、かつ450〜600nmの第1の領域2401及び600〜645nmの第2の領域2402並びに645nmにおける基準線λcを提示し、図24Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、φ35、及びφ45により、基準円Cと共に、反射型偏光子−吸収型偏光子積層体のa*,b*色座標における色応答をグラフ化している。
ORU厚さプロファイル1867の場合、図25Aは、曲線1867がプロファイル1867と同一であり、曲線1867Aが曲線1867のIB平滑化厚さプロファイルであり、曲線1867Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図25Bは、曲線1867Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル1867Aの傾きを、曲線1867Sとしてグラフ化し、かつ450〜600nmの第1の領域2501及び600〜645nmの第2の領域2502並びに645nmにおける基準線λcを提示し、図25Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、φ35、及びφ45により、基準円Cと共に、反射型偏光子−吸収型偏光子積層体のa*,b*色座標における色応答をグラフ化している。
ORU厚さプロファイル1868の場合、図26Aは、曲線1868がプロファイル1868と同一であり、曲線1868Aが曲線1868のIB平滑化厚さプロファイルであり、曲線1868Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図26Bは、曲線1868Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル1868Aの傾きを、曲線1868Sとしてグラフ化し、かつ450〜600nmの第1の領域2601及び600〜645nmの第2の領域2602並びに645nmにおける基準線λcを提示し、図26Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、φ35、及びφ45により、基準円Cと共に、反射型偏光子−吸収型偏光子積層体のa*,b*色座標における色応答をグラフ化している。
図18の実施形態に関する傾き比の結果は、表3にまとめられ、ここで、「傾き比」は、上の表2と同じ意味を有する。
Figure 2020129111
かなり斜めの臨界視野角での観察者に関する、これらの実施形態の色応答は、図19C、図20C、図21C、...図26Cにおける色応答を子細に検討することにより最良に評価される。手短にまとめると、これらの実施形態の全てに関する色軌跡は、許容可能な限界内に留まる。
図27及びその関連の図28A〜図30Cは、TOP反射型偏光子、及び高コントラスト吸収型偏光子とのTOP反射型偏光子の積層体のまた更なる関連する(モデル化された)実施形態へのこれらの同じ原理の適用を実証している。図9及び図18の実施形態と同様に、図27のTOP反射型偏光子実施形態もまた、正確に152個のORUを有し、各ORUは、ただ2つのミクロ層を有し、その屈折率も上で表1に提示したものと同じである。図27は、異なるが、関連している3つのORU物理的厚さプロファイル2761、2762、及び2763を示しており、これらのいずれもTOP反射型偏光子に容易に使用され得る。厚さプロファイル2762は、物理的厚さが約108nmである第1のORU(#1)から物理的厚さが約255nmである最後のORU(#152)まで、直線の形態であり、即ち一定の傾きのプロファイルである。他の厚さプロファイル2761及び2763もまた直線の形態であるが、簡単なスケーリング因子によって厚さプロファイル2762に関連する。プロファイル2761は、プロファイル2762に95%のスケーリング因子を乗ずることによって導出される。プロファイル2763は、プロファイル2762に105%のスケーリング因子を乗ずることによって導出される。
次いで、これらのORU厚さプロファイルのそれぞれが、図9〜図26Cに関連して上述したのと実質的に同様に解析され、その解析は、不要な繰り返しを避けるためにここでは繰り返さない。
ORU厚さプロファイル2761の場合、図28Aは、曲線2761がプロファイル2761と同一であり、曲線2761Aが曲線2761のIB平滑化厚さプロファイルであり、曲線2761Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図28Bは、曲線2761Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル2761Aの傾きを、曲線2761Sとしてグラフ化し、かつ450〜600nmの第1の領域2801及び600〜645nmの第2の領域2802並びに645nmにおける基準線λcを提示し、図28Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、及びφ35により、基準円Cと共に、反射型偏光子−吸収型偏光子積層体のa*,b*色座標における色応答をグラフ化している。
ORU厚さプロファイル2762の場合、図29Aは、曲線2762がプロファイル2762と同一であり、曲線2762Aが曲線2762のIB平滑化厚さプロファイルであり、曲線2762Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図29Bは、曲線2762Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル2762Aの傾きを、曲線2762Sとしてグラフ化し、かつ450〜600nmの第1の領域2901及び600〜645nmの第2の領域2902並びに645nmにおける基準線λcを提示し、図29Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、及びφ35により、基準円Cと共に、反射型偏光子−吸収型偏光子積層体のa*,b*色座標における色応答をグラフ化している。
ORU厚さプロファイル2763の場合、図30Aは、曲線2763がプロファイル2763と同一であり、曲線2763Aが曲線2763のIB平滑化厚さプロファイルであり、曲線2763Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図30Bは、曲線2763Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル2763Aの傾きを、曲線2763Sとしてグラフ化し、かつ450〜600nmの第1の領域3001及び600〜645nmの第2の領域3002並びに645nmにおける基準線λcを提示し、図30Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、φ35、及びφ45により、基準円Cと共に、反射型偏光子−吸収型偏光子積層体のa*,b*色座標における色応答をグラフ化している。
図27の実施形態に関する傾き比の結果は、表4にまとめられ、ここで、「傾き比」は、上の表2及び表3と同じ意味を有する。
Figure 2020129111
かなり斜めの臨界視野角での観察者に関する、これらの実施形態の色応答は、図28C、図29C、及び図30Cにおける色応答を子細に検討することにより最良に評価される。手短にまとめると、(ORU厚さプロファイル2761に関する)図28Cの色軌跡は、かなりの許容可能できない赤色を生成するが、(それぞれ、ORU厚さプロファイル2762及び2763に関する)図29C及び図30Cの色軌跡は、許容可能な限界内に留まる。
実施例及び比較例
連続フィルム製造ライン上で、フィードブロックによるポリマー共押出、急冷、及びテンターを含む手順により、いくつかのポリマー系TOP反射型偏光子フィルムを作製した。このようなフィルム、及び場合により、整列された高コントラスト吸収型偏光子を有するこのようなフィルムの積層体も試験した。試験のいくつかには、AFM装置によって、ミクロ層スタックの厚さプロファイルを測定することを含んだ。他の試験は、ライトテーブル上で、一片の偏光子フィルム、又はその積層体をかなり斜めの光学的配置で観察することを含んだ。
本明細書で「実施例」と呼ばれる第1のケースでは、ミクロ層パケットの2軸複屈折性のミクロ層が上述のようなLmPENを含み、ミクロ層パケットの等方性ミクロ層がそれぞれ58%及び42%の重量分率のPETg GN071(Eastman Chemicals,Knoxville,TN)及びLmPENの非晶質ブレンドを含む、既知の多層光学フィルム製造技法に従ってTOP反射型偏光子フィルムを作製した。これらのポリマーの屈折率は、表1の屈折率と同様であった。例えば米国特許第6,783,349号(Neavinら)に説明されたような、軸方向棒状ヒータをフィードブロックに使用し、ポリマーフローストリームに対して、ひいては仕上がったTOP反射型偏光子フィルムにおけるORU厚さプロファイルに対して、なんらかの制御を提供するために、軸方向棒状ヒータに沿った温度プロファイルを使用した。このようなフィルムにおけるミクロ層パケットは、152個のORUを含み、各ORUは、1つの2軸複屈折性ミクロ層と1つの等方性ミクロ層とを有していた。TOP反射型偏光子の物理的厚さは約31ミクロンであった。本実施例のTOP反射型偏光子は、ブロック軸及び通過軸、並びにブロック軸に沿って偏光された垂直入射光に対する広帯域反射率をもたらし、このような垂直入射偏光された光に関する反射率は、430nm〜650nmにおいて、90%よりも大きかった。
AFM装置により、仕上がったフィルムにおける層の厚さを測定した。ノイズを除去し、より正確な厚さ値を得るために、平均化技法を用いて、生のAFM厚さ出力を調整した。結果として得られたORUの測定された厚さを、図31において、ORU物理的厚さプロファイル3161としてプロットした。グラフを子細に見れば、ミクロ層パケットは、ORU#1における第1の端部と、ORU#151における第2の端部とを有し、第2の端部に近接するORUは、第1の端部に近接するORUよりも大きい平均物理的厚さを有したことが分かる。
他の実施形態に関連して上述したのと実質的に同じ仕方で、プロファイル3161に対して解析を行った。その関連において、図32Aは、曲線3161がプロファイル3161と同一であり、曲線3161Aが曲線3161のIB平滑化厚さプロファイルであり、曲線3161Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図32Bは、曲線3161Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル3161Aの傾きを、曲線3161Sとしてグラフ化し、かつ450〜600nmの第1の領域3201及び600〜645nmの第2の領域3202並びに645nmにおける基準線λcを提示し、図32Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、φ35、及びφ45により、基準円Cと共に、整列された高コントラスト吸収型偏光子(コントラスト=1000)を有し、概してより厚肉のORUを有するパケットの端部が、概して薄肉のORUを有するパケットの端部よりも吸収型偏光子に近くなるようにTOP反射型偏光子が方向付けられた、(プロファイル3161により特徴付けられる)反射型偏光子の(モデル化された)積層体のa*,b*色座標における色応答をグラフ化している。
上の表2、表3、及び表4における傾き比と同様に計算された、本実施例に関する傾き比は、1.34であった。1.8未満であるこの値は、図32Cの色応答曲線が許容可能限界内に実質的に留まり、許容可能な色均一性挙動を呈し、かつ高い臨界角度の視野範囲内で実質的に白色に留まるという観測と一致する。
本実施例のTOP反射型偏光子フィルムの物理的サンプルも、ライトテーブル上で視覚的に試験及び観察された。San Ritz 5618吸収型偏光子(株式会社サンリッツ(東京都))に、San Ritz 5618偏光子の成分である接着剤を使用して、透明ガラスを積層した。次いで、光学的に透明な接着剤(3M(Saint Paul,MN)から入手可能なOCA 8171)を使用して、吸収型偏光子にTOP反射型偏光子を積層した。この積層体の色特性を様々な角度で見るために、LCDバックライトにおいて共通に見られる種類の白色LEDを用いて拡散ライトテーブルを利用した。反射型偏光子側を下にしてライトテーブル上に積層体を載置した。次いで、積層体を片面全体にわたって観察した。本実施例のフィルムは、最も厳しい角度(θ=80度、並びにφ=15、25、35、及び45度)で見た場合でも好ましい色又は色均一性を示した。市販のオン・ガラス反射型偏光子(日東電工株式会社(東京都)から入手可能なAPCF)内に含まれる反射型偏光子を使用して作製された別の積層体と、本実施例の積層体を比較した。APCF反射型偏光子を用いて作製した積層体は、本実施例の積層体と同じ層、即ちガラス/接着剤/吸収型偏光子/接着剤/反射型偏光子で構築し、このとき、吸収型偏光子は、本実施例の積層体において使用された吸収型偏光子と同じとした(ただし、反射型偏光子がAPCF反射型偏光子であった)。上記の角度で見た場合、両方の積層体とも、角度による色ずれが極めてわずかであり、空間的な色均一性が極めて小さく、このことは強度が同じであると判定された。
本明細書で「比較例1」と呼ばれる別のケースでは、ミクロ層パケットの2軸複屈折性のミクロ層は、上述のようなLmPENを含み、ミクロ層パケットの等方性ミクロ層は、それぞれ58%及び42%の重量分率のPETg GN071(Eastman Chemicals,Knoxville,TN)及びLmPENの非晶質ブレンドを含む、既知の多層光学フィルム製造技法に従ってTOP反射型偏光子フィルムを作製した。これらのポリマーの屈折率は、表1の屈折率と同様であった。このようなフィルムにおけるミクロ層パケットは、152個のORUを含み、各ORUは、1つの2軸複屈折性ミクロ層と1つの等方性ミクロ層とを有していた。TOP反射型偏光子の物理的厚さは約31ミクロンであった。
AFM装置により、仕上がったフィルムにおける層の厚さを測定した。ノイズを除去し、より正確な厚さ値を得るために、平均化技法を用いて、生のAFM厚さ出力を調整した。結果として得られたORUの測定された厚さを、図33において、ORU物理的厚さプロファイル3361としてプロットした。グラフを子細に見れば、ミクロ層パケットは、ORU#1における第1の端部と、ORU#151における第2の端部とを有し、第2の端部に近接するORUは、第1の端部に近接するORUよりも大きい平均物理的厚さを有したことが分かる。
他の実施形態に関連して説明したのと実質的に同じ仕方で、プロファイル3361に対して解析を行った。その関連において、図34Aは、曲線3361がプロファイル3361と同一であり、曲線3361Aが曲線3361のIB平滑化厚さプロファイルであり、曲線3361Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図34Bは、曲線3361Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル3361Aの傾きを、曲線3361Sとしてグラフ化し、かつ450〜600nmの第1の領域3401及び600〜645nmの第2の領域3402並びに645nmにおける基準線λcを提示し、図34Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、φ35、及びφ45により、基準円Cと共に、整列された高コントラスト吸収型偏光子(コントラスト=1000)を有し、概してより厚肉のORUを有するパケットの端部が、概して薄肉のORUを有するパケットの端部よりも吸収型偏光子に近くなるようにTOP反射型偏光子が方向付けられた、(プロファイル3361により特徴付けられる)反射型偏光子の(モデル化された)積層体のa*,b*色座標における色応答をグラフ化している。
上の表2、表3、及び表4における傾き比と同様に計算された、本比較例1に関する傾き比は、2.62であった。1.8よりも大きいこの値は、図34Cの色応答曲線が許容できない色均一性挙動を呈し、高い臨界角度の視野範囲内で白色〜黄色の影響を生じるという観測と一致する。
本比較例1のTOP反射型偏光子フィルムの物理的サンプルも、ライトテーブル上で視覚的に試験及び観察された。San Ritz 5618吸収型偏光子(株式会社サンリッツ(東京都))に、San Ritz 5618偏光子の成分である接着剤を使用して、透明ガラスを積層した。次いで、光学的に透明な接着剤(3M(Saint Paul,MN)から入手可能なOCA 8171)を使用して、吸収型偏光子に比較例1を積層した。この積層体の色特性を様々な角度で見るために、LCDバックライトにおいて共通に見られる種類の白色LEDを用いて拡散ライトテーブルを利用した。反射型偏光子側を下にしてライトテーブル上に積層体を載置した。次いで、積層体を片面全体にわたって観察した。本比較例1の積層体は、少なくとも最も厳しい角度の一部から見たときに(θ=80度、並びにφ=15、25、35、及び45度)、好ましくない色を示した。(上記の)APCF反射型偏光子を用いて作製された積層体に対して本比較例1の積層体を比較した場合、本比較例1の積層体は、角度に対してより多くの深刻な色ずれ及び空間的色変動を有し、高忠実度ディスプレイでの使用を考慮するのはあまりに厳しいと判定された。
本明細書で「比較例2」と呼ばれる更に別のケースでは、ミクロ層パケットの2軸複屈折性のミクロ層は、LmPENを含み、ミクロ層パケットの等方性ミクロ層は、それぞれ58%及び42%の重量分率のPETg GN071(Eastman Chemicals,Knoxville,TN)及びLmPENの非晶質ブレンドを含む、既知の多層光学フィルム製造技法に従ってTOP反射型偏光子フィルムを作製した。本比較例2のTOP反射型偏光子フィルムは、米国特許第7,791,687号(Weberら)の第10欄9〜46行及び図9で説明された反射型偏光子フィルムと実質的に同様である。複屈折性ポリマーの屈折率は、nx=1.820、ny=1.575、及びnz=1.560であり、等方性ポリマーの屈折率は1.595であった。このようなフィルムにおけるミクロ層パケットは、138個のORUを含み、各ORUは、1つの2軸複屈折性ミクロ層と1つの等方性ミクロ層とを有していた。TOP反射型偏光子の物理的厚さは31ミクロンであった。
AFM装置により、仕上がったフィルムにおける層の厚さを測定した。ノイズを除去し、より正確な厚さ値を得るために、平均化技法を用いて、生のAFM厚さ出力を調整した。結果として得られたORUの測定された厚さを、図35において、ORU物理的厚さプロファイル3561としてプロットし、これは、Weberらの‘687特許の図9と実質的に同様であった。グラフを子細に見れば、ミクロ層パケットは、ORU#1における第1の端部と、ORU#137における第2の端部とを有し、第2の端部に近接するORUは、第1の端部に近接するORUよりも大きい平均物理的厚さを有することが分かる。
他の実施形態に関連して説明したのと実質的に同じ仕方で、プロファイル3561に対して解析を行った。その関連において、図36Aは、曲線3561がプロファイル3561と同一であり、曲線3561Aが曲線3561のIB平滑化厚さプロファイルであり、曲線3561Wが指定された斜め光学的配置でのIB平滑化厚さプロファイルに関する共振波長であり、基準線λcが645nmにおける臨界波長をマークする、複合グラフであり、図36Bは、曲線3561Wによって規定される共振波長の関数としてのIB平滑化厚さプロファイル3561Aの傾きを、曲線3561Sとしてグラフ化し、かつ450〜600nmの第1の領域3601及び600〜645nmの第2の領域3602並びに645nmにおける基準線λcを提示し、図36Cは、図10Cのものと類似の意味を有する曲線φ15、φ25、φ35、及びφ45により、基準円Cと共に、整列された高コントラスト吸収型偏光子(コントラスト=1000)を有し、概してより厚肉のORUを有するパケットの端部が、概して薄肉のORUを有するパケットの端部よりも吸収型偏光子に近くなるようにTOP反射型偏光子が方向付けられた、(プロファイル3561により特徴付けられる)反射型偏光子の(モデル化された)積層体のa*,b*色座標における色応答をグラフ化している。
上の表2、表3、及び表4における傾き比と同様に計算された、本比較例2に関する傾き比は、1.91であった。1.8よりも大きいこの値は、図36Cの色応答曲線が許容できない色均一性挙動を呈し、高い臨界角度の視野範囲内で白色〜赤色の影響を生じるという観測と一致する。
本比較例2のTOP反射型偏光子フィルムの物理的サンプルも、ライトテーブル上で視覚的に試験及び観察された。San Ritz 5618吸収型偏光子(株式会社サンリッツ(東京都))に、San Ritz 5618偏光子の成分である接着剤を使用して、透明ガラスを積層した。次いで、光学的に透明な接着剤(3M(Saint Paul,MN)から入手可能なOCA 8171)を使用して、吸収型偏光子に比較例2を積層した。この積層体の色特性を様々な角度で見るために、LCDバックライトにおいて共通に見られる種類の白色LEDを用いて拡散ライトテーブルを利用した。反射型偏光子側を下にしてライトテーブル上に積層体を載置した。次いで、積層体を片面全体にわたって観察した。本比較例2の積層体は、少なくとも最も厳しい角度の一部から見たときに(θ=80度、並びにφ=15、25、35、及び45度)、好ましくない色を示した。(上記の)APCF反射型偏光子を用いて作製された積層体に対して本比較例2の積層体を比較した場合、本比較例2の積層体は、角度に対してより多くの深刻な色ずれ及び空間的色変動を有し、高忠実度ディスプレイでの使用を考慮するのはあまりに厳しいと判定された。
我々はまた、ディスプレイの白状態における(垂直入射角及び中間の斜角での色抑制に加えて)高い斜角で望ましくない可視色を最も低いレベルにするために、積層体において、反射型偏光子を吸収型偏光子に対してどのように配向させるべきかという問題に対処したい。我々は、ミクロ層パケットの厚肉のミクロ層端部(大部分がより薄肉から大部分がより厚肉まで偏光子の厚さ軸に沿った勾配があるとすると、より厚肉のORUを有するTOP偏光子の側)が、吸収型偏光子に隣接し、かつ吸収型偏光子(及びディスプレイの前方)を向き、薄肉のミクロ層端部が、ディスプレイの後方を向き、吸収型偏光子に背を向けるように、TOP偏光子を配向することによって、このような望ましくない可視色を実質的に許容可能なレベルに低減できると上で述べている。この方向付けを厚肉層上向きの方向付けと呼び、反対の方向付けを薄肉層上向きの方向付けと呼ぶと、本実施例の積層体、比較例1の積層体、及び比較例2の積層体は、全て、厚肉層上向きの方向付けを使用した。しかしながら、これらの3つの積層体のそれぞれについても、拡散ライトテーブルを用いて、再構成された薄肉層上向き方向付けにおいて調査した。それぞれの場合において、最も厳しい観察配置(例えば、θ=80度、及びφ=15、25、35、及び45度)における色性能は、厚肉層上向き方向付けにおける色性能に劣っていた。
以下は、本開示において検討及び説明されたいくつかの項目の非包括的なリストである。
項目1は、
光学干渉によって光を反射及び透過するミクロ層のただ1つのパケットを有する反射型偏光子であって、ミクロ層のパケットは、第1の通過軸(y)、第1のブロック軸(x)、並びに第1の通過軸及び第1のブロック軸に対して垂直な第1の厚さ軸(z)を規定するように構成されており、第1のブロック軸と第1の厚さ軸とがx−z平面を形成し、ミクロ層のパケットは、第1のミクロ層と第2のミクロ層を交互に含み、第1のミクロ層は2軸複屈折性である、反射型偏光子と、
第2の通過軸と第2のブロック軸とを有する吸収型偏光子であって、吸収型偏光子は、反射型偏光子との間に空気間隙が存在しないように、かつ第1の通過軸と第2の通過軸とが実質的に整列するように反射型偏光子に取り付けられており、吸収型偏光子は、少なくとも1000のコントラスト比を有する、吸収型偏光子と、
を備える、積層体であって、
第1のミクロ層と第2のミクロ層との隣接する対は、ミクロ層のパケットに沿って、光学繰り返し単位(ORU)を形成し、ORUは、第1のブロック軸に沿って偏光された垂直入射光に対して広帯域反射率を提供する勾配を有する物理的厚さプロファイルを規定し、ORUは、物理的厚さプロファイル及び光学的配置に応じて、それぞれ共振波長を有し、
ORUは、パケットの両端を規定する第1のORUと最後のORUとを含み、最後のORUは、第1のORUよりも吸収型偏光子に近く、
物理的厚さプロファイルは、最後のORUに近接するORUの平均物理的厚さが、第1のORUに近接するORUの平均物理的厚さよりも大きいような物理的厚さプロファイルであり、
物理的厚さプロファイルの固有帯域幅ベースのボックスカー平均により、IB平滑化厚さプロファイルが得られ、IB平滑化厚さプロファイルは、ORUのそれぞれにおいて規定され、
ORUは、
p偏光の光がx−z平面に80度の極角(θ)で入射する斜めの光学的配置において、少なくとも450nmの、IB平滑化厚さプロファイルにおける共振波長を有するORU(450)であって、ORU(450)の第1のORU側に配置された全てのORUは、斜めの光学的配置において、450nm未満の、IB平滑化厚さプロファイルにおける共振波長を有する、ORU(450)と、
斜めの光学的配置において、少なくとも600nmの、IB平滑化厚さプロファイルにおける共振波長を有するORU(600)であって、ORU(600)の第1のORU側に配置された全てのORUは、斜めの光学的配置において、600nm未満の、IB平滑化厚さプロファイルにおける共振波長を有する、ORU(600)と、
最後のORUと任意で同じであってよいORU(645)であって、ORU(645)は、斜めの光学的配置において、少なくとも645nmの、IB平滑化厚さプロファイルにおける共振波長を有し、ORU(645)の第1のORU側に配置された全てのORUは、斜めの光学的配置において、645nm未満の、IB平滑化厚さプロファイルにおける共振波長を有する、ORU(645)と、
を更に含み、
IB平滑化厚さプロファイルは、ORU(450)〜ORU(600)の範囲にわたって第1の平均傾きを有し、ORU(600)〜ORU(645)の範囲にわたって第2の平均傾きを有し、第1の平均傾きに対する第2の平均傾きの比は1.8以下である、積層体である。
項目2は、任意の所与のORUで評価されたIB平滑化厚さプロファイルが、所与のORUの共振波長におけるパケットの反射率にコヒーレントに寄与するORUのみを実質的に包含するものである、項目1に記載の積層体である。
項目3は、任意の所与のORUで評価されたIB平滑化厚さプロファイルは、所与のORUの両側における最近隣の所定数のORUを包含するものである、項目1に記載の積層体である。
項目4は、所定の数が20以下である、項目3に記載の積層体である。
項目5は、所定の数が少なくとも5である、項目3に記載の積層体である。
項目6は、所定の数が10である、項目3に記載の積層体である。
項目7は、ORU(450)のIB平滑化厚さプロファイルに関する共振波長は、455nm未満であり、ORU(600)のIB平滑化厚さプロファイルに関する共振波長は、605nm未満であり、ORU(645)のIB平滑化厚さプロファイルに関する共振波長は、650nm未満である、項目1から6のいずれか一項目に記載の積層体である。
項目8は、第2のミクロ層は実質的に等方性である、項目1から7のいずれか一項目に記載の積層体である。
項目9は、第1のミクロ層及び第2のミクロ層は異なる第1のポリマー材料及び第2のポリマー材料をそれぞれ含む、項目1から8のいずれか一項目に記載の積層体である。
項目10は、反射型偏光子が50ミクロン未満の物理的厚さを有する、項目1から9のいずれか一項目に記載の積層体である。
項目11は、反射型偏光子の物理的厚さが20〜40ミクロンの範囲にある、項目10に記載の積層体である。
項目12は、積層体が、反射型偏光子、吸収型偏光子、及び反射型偏光子を吸収型偏光子に接合する接着剤層から本質的になる、項目1から11のいずれか一項目に記載の積層体である。
項目13は、ミクロ層のパケットは、反射型偏光子の垂直入射透過率を、400〜700nmの波長範囲にわたり平均的に、通過状態偏光に対しては少なくとも80%にし、ブロック状態偏光に対しては15%未満にする、項目1から12のいずれか一項目に記載の積層体である。
項目14は、光学干渉によって光を反射及び透過するミクロ層のただ1つのパケットを有する反射型偏光子であって、ミクロ層のパケットは、通過軸(y)、ブロック軸(x)、並びに通過軸及びブロック軸と垂直な厚さ軸(z)を規定するように構成されており、ブロック軸と厚さ軸とがx−z平面を形成し、ミクロ層のパケットは、第1のミクロ層と第2のミクロ層を交互に含み、第1のミクロ層は2軸複屈折性であり、
第1のミクロ層と第2のミクロ層との隣接する対は、ミクロ層のパケットに沿って光学繰り返し単位(ORU)を形成し、ORUは、ブロック軸に沿って偏光された垂直入射光に対して広帯域反射率を提供する勾配を有する物理的厚さプロファイルを規定し、ORUは、物理的厚さプロファイル及び光学的配置の関数として、それぞれ共振波長を有し、
ORUは、パケットの両端を規定する第1のORUと最後のORUとを含み、物理的厚さプロファイルは、最後のORUに近接するORUの平均物理的厚さが、第1のORUに近接するORUの平均物理的厚さよりも大きいような物理的厚さプロファイルであり、
物理的厚さプロファイルの固有帯域幅ベースでのボックスカー平均により、IB平滑化厚さプロファイルが得られ、IB平滑化厚さプロファイルは、ORUのそれぞれにおいて規定され、
ORUは、
p偏光の光がx−z平面に80度の極角(θ)で入射する斜めの光学的配置において、少なくとも450nmの、IB平滑化厚さプロファイルにおける共振波長を有するORU(450)であって、ORU(450)の第1のORU側に配置された全てのORUは、斜めの光学的配置において、450nm未満の、IB平滑化厚さプロファイルにおける共振波長を有する、ORU(450)と、
斜めの光学的配置において、少なくとも600nmの、IB平滑化厚さプロファイルにおける共振波長を有するORU(600)であって、ORU(600)の第1のORU側に配置された全てのORUは、斜めの光学的配置において、600nm未満の、IB平滑化厚さプロファイルにおける共振波長を有する、ORU(600)と、
最後のORUと任意で同じであってよいORU(645)であって、ORU(645)は、斜めの光学的配置において、少なくとも645nmの、IB平滑化厚さプロファイルにおける共振波長を有し、ORU(645)の第1のORU側に配置された全てのORUは、斜めの光学的配置において、645nm未満の、IB平滑化厚さプロファイルにおける共振波長を有する、ORU(645)と、
を更に含み、
IB平滑化厚さプロファイルは、ORU(450)〜ORU(600)の範囲にわたって第1の平均傾きを有し、ORU(600)〜ORU(645)の範囲にわたって第2の平均傾きを有し、第1の平均傾きに対する第2の平均傾きの比が1.8以下である、反射型偏光子である。
項目15は、任意の所与のORUで評価されたIB平滑化厚さプロファイルは、所与のORUの共振波長におけるパケットの反射率にコヒーレントに寄与するORUのみを実質的に包含するものである、項目14に記載の偏光子である。
項目16は、任意の所与のORUで評価されたIB平滑化厚さプロファイルは、所与のORUの両側における最近隣の所定の数のORUを包含するものである、項目14に記載の偏光子である。
項目17は、所定の数が20以下である、項目16に記載の偏光子である。
項目18は、ORU(450)のIB平滑化厚さプロファイルに関する共振波長は、455nm未満であり、ORU(600)のIB平滑化厚さプロファイルに関する共振波長は、605nm未満であり、ORU(645)のIB平滑化厚さプロファイルに関する共振波長は、650nm未満である、項目14から17のいずれか一項目に記載の偏光子である。
項目19は、第2のミクロ層は実質的に等方性である、項目14から18のいずれか一項目に記載の偏光子である。
項目20は、
項目14に記載の反射偏光子であって、通過軸が第1の通過軸であり、ブロック軸が第1のブロック軸である、反射偏光子と、
第2の通過軸と第2のブロック軸とを有する吸収型偏光子であって、吸収型偏光子は、反射型偏光子との間に空気間隙が存在しないように、かつ第1の通過軸と第2の通過軸とが実質的に整列するように反射型偏光子に取り付けられており、吸収型偏光子は、少なくとも1000のコントラスト比を有する、吸収型偏光子と、
を備える、積層体であって、
最後のORUは第1のORUよりも吸収型偏光子に接近している、積層体である。
別段の指示のない限り、本明細書及び「特許請求の範囲」で使用される、数量、特性の測定値などを表す全ての数は、用語「約」によって修飾されているものと理解されたい。したがって、反対の指示がない限り、本明細書及び「特許請求の範囲」に記載の数値パラメータは、本出願の教示を利用する当業者が得ようとする所望の特性に応じて変動し得る、近似値である。「特許請求の範囲」に対する均等論の適用を制限しようとするものではないが、各数値パラメータは、少なくとも、報告されている有効桁数を考慮して、通常の四捨五入法を適用することによって解釈されるべきである。本発明の広義の範囲を記載している数値範囲及びパラメータは、近似値ではあるが、いずれかの数値が、本明細書で説明されている具体例で記載される限りにおいて、それらは、合理的な範囲で可能な限り正確に報告されるものである。しかしながら、いかなる数値も、試験又は測定の限界に伴う誤差を包含し得る。
本発明の趣旨及び範囲から逸脱することなく、本発明の様々な改変及び変更が、当業者には明らかとなるものであり、本発明は、本明細書に記載される例示的実施形態に限定されるものではないことを理解されたい。読者には、別段の指示のない限り、開示される1つの実施形態の特徴はまた、開示される全ての他の実施形態にも適用することができる点を想定されたい。また、本明細書で参照する全ての米国特許、特許出願公開、並びに他の特許文献及び非特許文献は、上述の開示に矛盾しない範囲内で、参照により組み込まれるものであることも理解されたい。
液晶ディスプレイシステムの概略側面又は断面図である。 反射型偏光子として構成された単一パケット多層光学フィルムの概略側面又は断面図である。 光学フィルムのウェブの斜視図である。 デカルト座標系による光学フィルム又は積層体の斜視図である。 吸収型偏光子の背後に、それから離間して配置された多層光学フィルム反射型偏光子の概略斜視図である。この反射型偏光子には、観察される色の量を低減するための光拡散層が設けられている。 光拡散層を有しない、多層光学フィルム反射型偏光子及び吸収型偏光子の積層体の概略斜視図である。 図6のものと同様であるが、液晶パネルからのガラス層を更に含み、吸収型偏光子が反射型偏光子とガラス層との間に配置されている積層体の概略斜視図である。 TOP反射型偏光子のミクロ層パケットに関する第1の物理的厚さプロファイル及びボックスカー平滑化厚さプロファイルの例示的な目的のための簡略化されたグラフである。ここではパケットが正確に15のORUを含む。 同実施形態に関する対応する簡略化されたグラフであるが、ボックスカー平滑化厚さプロファイル及び所与の光学的配置に関する共振波長を示すグラフである。 TOP反射型偏光子で使用することのできる8つの物理的厚さプロファイルのグラフである。それら物理的厚さプロファイルは異なるが関連しており、性能が図10A〜図17Cにモデル化され図示されている。 ORU数に対してORU厚さをプロットし、更にORU数に対して共振波長をプロットした複合グラフである。 共振波長の関数としての、図10Aの平均厚さプロファイルの傾きのグラフである。 ある範囲の方位角(φ)及び極角(θ)にわたる、TOP反射型偏光子と高コントラスト吸収型偏光子との積層体を透過した光の計算された色のグラフである。TOP反射型偏光子は、図10Aの厚さプロファイルを有する。 図10Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図10Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図10Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図10Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図10Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図10Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図10Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図10Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図10Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 TOP反射型偏光子で使用することのできる8つの物理的厚さプロファイルのグラフである。それら物理的厚さプロファイルは異なるが関連しており、性能が図19A〜図26Cにモデル化され図示されている。 ORU数に対してORU厚さをプロットし、更にORU数に対して共振波長をプロットした複合グラフである。 共振波長の関数としての、図19Aの平均厚さプロファイルの傾きのグラフである。 ある範囲の方位角(φ)及び極角(θ)にわたる、TOP反射型偏光子と高コントラスト吸収型偏光子との積層体を透過した光の計算された色のグラフである。TOP偏光子は、図19Aの厚さプロファイルを有する。 図19Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図19Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図19Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図19Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図19Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図19Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図19Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Aと同様であるが、他のTOP反射型偏光子の実施形態に関する複合グラフである。 図19Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図19Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 TOP反射型偏光子で使用することのできる3つの物理的厚さプロファイルのグラフである。それら物理的厚さプロファイルは異なるが関連しており、性能が図28A〜図30Cにモデル化され図示されている。 ORU数に対してORU厚さをプロットし、更にORU数に対して共振波長をプロットした複合グラフである。 共振波長の関数としての、図28Aの平均厚さプロファイルの傾きのグラフである。 ある範囲の方位角(φ)及び極角(θ)にわたる、TOP反射型偏光子と高コントラスト吸収型偏光子との積層体を透過した光の計算された色のグラフである。TOP偏光子は、図28Aの厚さプロファイルを有する。 図28Aと同様であるが、他のTOP多層光学フィルム反射型偏光子の実施形態に関する複合グラフである。 図28Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図28Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図28Aと同様であるが、他のTOP多層光学フィルム反射型偏光子の実施形態に関する複合グラフである 図28Bと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 図28Cと同様であるが、このような他のTOP偏光子の実施形態に関するグラフである。 作製して試験した例示的なTOP多層光学フィルム反射型偏光子に関する測定された物理的厚さプロファイルのグラフである。 ORU数に対してORU厚さをプロットし、更にORU数に対して共振波長をプロットした複合グラフである。 共振波長の関数としての、図32Aの平均厚さプロファイルの傾きのグラフである。 ある範囲の方位角(φ)及び極角(θ)にわたる、TOP反射型偏光子と高コントラスト吸収型偏光子との積層体を透過した光の計算された色のグラフである。TOP偏光子は、図32Aの厚さプロファイルを有する。 比較例(既知)のTOP反射型偏光子に関する測定された物理的厚さプロファイルのグラフである。 ORU数に対してORU厚さをプロットし、更にORU数に対して共振波長をプロットした複合グラフである。 共振波長の関数としての、図34Aの平均厚さプロファイルの傾きのグラフである。 ある範囲の方位角(φ)及び極角(θ)にわたる、TOP反射型偏光子と高コントラスト吸収型偏光子との積層体を透過した光の計算された色のグラフである。TOP偏光子は、図34Aの厚さプロファイルを有する。 別の比較例(既知)のTOP多層光学フィルム反射型偏光子に関する測定された物理的厚さプロファイルのグラフである。 ORU数に対してORU厚さをプロットし、更にORU数に対して共振波長をプロットした複合グラフである。 共振波長の関数としての、図36Aの平均厚さプロファイルの傾きのグラフである。 ある範囲の方位角(φ)及び極角(θ)にわたる、TOP多層光学フィルム反射型偏光子と高コントラスト吸収型偏光子との積層体を透過した光の計算された色のグラフである。TOP偏光子は、図36Aの厚さプロファイルを有する これらの図中、同様の参照符号は、同様の要素を指す。 以下、発明を実施するための形態について説明する。

Claims (20)

  1. 光学干渉によって光を反射及び透過するミクロ層のただ1つのパケットを有する反射型偏光子であって、前記ミクロ層のパケットは、第1の通過軸(y)、第1のブロック軸(x)、並びに前記第1の通過軸及び前記第1のブロック軸に対して垂直な第1の厚さ軸(z)を規定するように構成されており、前記第1のブロック軸と前記第1の厚さ軸とがx−z平面を形成し、前記ミクロ層のパケットは、第1のミクロ層と第2のミクロ層を交互に含み、前記第1のミクロ層は2軸複屈折性である、反射型偏光子と、
    第2の通過軸と第2のブロック軸とを有する吸収型偏光子であって、前記吸収型偏光子は、前記反射型偏光子との間に空気間隙が存在しないように、かつ前記第1の通過軸と前記第2の通過軸とが実質的に整列するように前記反射型偏光子に取り付けられており、前記吸収型偏光子は、少なくとも1000のコントラスト比を有する、吸収型偏光子と、
    を備える、積層体であって、
    前記第1のミクロ層と前記第2のミクロ層との隣接する対は、前記ミクロ層のパケットに沿って光学繰り返し単位(ORU)を形成し、ORUは、前記第1のブロック軸に沿って偏光された垂直入射光に対して広帯域反射率を提供する勾配を有する物理的厚さプロファイルを規定し、前記ORUは、前記物理的厚さプロファイル及び光学的配置の関数として、それぞれ共振波長を有し、
    前記ORUは、前記パケットの両端を規定する第1のORUと最後のORUとを含み、前記最後のORUは、前記第1のORUよりも前記吸収型偏光子に近く、
    前記物理的厚さプロファイルは、前記最後のORUに近接するORUの平均物理的厚さが、前記第1のORUに近接するORUの平均物理的厚さよりも大きいような物理的厚さプロファイルであり、
    前記物理的厚さプロファイルの固有帯域幅ベースでのボックスカー平均により、IB平滑化厚さプロファイルが得られ、前記IB平滑化厚さプロファイルは、前記ORUのそれぞれにおいて規定され、
    前記ORUは、
    p偏光の光が前記x−z平面に80度の極角(θ)で入射する斜めの光学的配置において、少なくとも450nmの、前記IB平滑化厚さプロファイルにおける共振波長を有するORU(450)であって、前記ORU(450)の前記第1のORU側に配置された全ての前記ORUは、前記斜めの光学的配置において、450nm未満の、前記IB平滑化厚さプロファイルにおける共振波長を有する、ORU(450)と、
    前記斜めの光学的配置において、少なくとも600nmの、前記IB平滑化厚さプロファイルにおける共振波長を有するORU(600)であって、前記ORU(600)の前記第1のORU側に配置された全ての前記ORUは、前記斜めの光学的配置において、600nm未満の、前記IB平滑化厚さプロファイルにおける共振波長を有する、ORU(600)と、
    前記最後のORUと任意で同じであってよいORU(645)であって、前記ORU(645)は、前記斜めの光学的配置において、少なくとも645nmの、前記IB平滑化厚さプロファイルにおける共振波長を有し、前記ORU(645)の前記第1のORU側に配置された全ての前記ORUは、前記斜めの光学的配置において、645nm未満の、前記IB平滑化厚さプロファイルにおける共振波長を有する、ORU(645)と、
    を更に含み、
    前記IB平滑化厚さプロファイルは、ORU(450)〜ORU(600)の範囲にわたって第1の平均傾きを有し、ORU(600)〜ORU(645)の範囲にわたって第2の平均傾きを有し、前記第1の平均傾きに対する前記第2の平均傾きの比は1.8以下である、積層体。
  2. 任意の所与のORUで評価された前記IB平滑化厚さプロファイルは、前記所与のORUの共振波長における前記パケットの反射率にコヒーレントに寄与するORUのみを実質的に包含するものである、請求項1に記載の積層体。
  3. 任意の所与のORUで評価された前記IB平滑化厚さプロファイルは、前記所与のORUの両側における最近隣の所定数のORUを包含するものである、請求項1に記載の積層体。
  4. 前記所定の数が20以下である、請求項3に記載の積層体。
  5. 前記所定の数が少なくとも5である、請求項3に記載の積層体。
  6. 前記所定の数が10である、請求項3に記載の積層体。
  7. 前記ORU(450)の前記IB平滑化厚さプロファイルに関する前記共振波長は、455nm未満であり、前記ORU(600)の前記IB平滑化厚さプロファイルに関する前記共振波長は、605nm未満であり、前記ORU(645)の前記IB平滑化厚さプロファイルに関する前記共振波長は、650nm未満である、請求項1に記載の積層体。
  8. 前記第2のミクロ層は実質的に等方性である、請求項1に記載の積層体。
  9. 第1のミクロ層及び第2のミクロ層は異なる第1のポリマー材料及び第2のポリマー材料をそれぞれ含む、請求項1に記載の積層体。
  10. 前記反射型偏光子が、50ミクロン未満の物理的厚さを有する、請求項1に記載の積層体。
  11. 前記反射型偏光子の前記物理的厚さが、20〜40ミクロンの範囲にある、請求項10に記載の積層体。
  12. 前記積層体が、前記反射型偏光子、前記吸収型偏光子、及び前記反射型偏光子を前記吸収型偏光子に接合する接着剤層から本質的になる、請求項1に記載の積層体。
  13. 前記ミクロ層のパケットは、前記反射型偏光子の垂直入射透過率を、400〜700nmの波長範囲にわたり平均的に、通過状態偏光に対しては少なくとも80%にし、ブロック状態偏光に対しては15%未満にする、請求項1に記載の積層体。
  14. 光学干渉によって光を反射及び透過するミクロ層のただ1つのパケットを有する反射型偏光子であって、前記ミクロ層のパケットは、通過軸(y)、ブロック軸(x)、並びに前記通過軸及び前記ブロック軸に対して垂直な厚さ軸(z)を規定するように構成されており、前記ブロック軸と前記厚さ軸とがx−z平面を形成し、前記ミクロ層のパケットは、第1のミクロ層と第2のミクロ層を交互に含み、前記第1のミクロ層は2軸複屈折性であり、
    前記第1のミクロ層と前記第2のミクロ層との隣接する対は、前記ミクロ層のパケットに沿って光学繰り返し単位(ORU)を形成し、ORUは、前記ブロック軸に沿って偏光された垂直入射光に対して広帯域反射率を提供する勾配を有する物理的厚さプロファイルを規定し、前記ORUは、前記物理的厚さプロファイル及び光学的配置の関数として、それぞれ共振波長を有し、
    前記ORUは、前記パケットの両端を規定する第1のORUと最後のORUとを含み、前記物理的厚さプロファイルは、前記最後のORUに近接するORUの平均物理的厚さが、前記第1のORUに近接するORUの平均物理的厚さよりも大きいような物理的厚さプロファイルであり、
    前記物理的厚さプロファイルの固有帯域幅ベースでのボックスカー平均により、IB平滑化厚さプロファイルが得られ、前記IB平滑化厚さプロファイルは、前記ORUのそれぞれにおいて規定され、
    前記ORUは、
    p偏光の光が前記x−z平面に80度の極角(θ)で入射する斜めの光学的配置において、少なくとも450nmの、前記IB平滑化厚さプロファイルにおける共振波長を有するORU(450)であって、前記ORU(450)の前記第1のORU側に配置された全ての前記ORUは、前記斜めの光学的配置において、450nm未満の、前記IB平滑化厚さプロファイルにおける共振波長を有する、ORU(450)と、
    前記斜めの光学的配置において、少なくとも600nmの、前記IB平滑化厚さプロファイルにおける共振波長を有するORU(600)であって、前記ORU(600)の前記第1のORU側に配置された全ての前記ORUは、前記斜めの光学的配置において、600nm未満の、前記IB平滑化厚さプロファイルにおける共振波長を有する、ORU(600)と、
    前記最後のORUと任意で同じであってよいORU(645)であって、前記ORU(645)は、前記斜めの光学的配置において、少なくとも645nmの、前記IB平滑化厚さプロファイルにおける共振波長を有し、前記ORU(645)の前記第1のORU側に配置された全ての前記ORUは、前記斜めの光学的配置において、645nm未満の、前記IB平滑化厚さプロファイルにおける共振波長を有する、ORU(645)と、
    を更に含み、
    前記IB平滑化厚さプロファイルは、ORU(450)〜ORU(600)の範囲にわたって第1の平均傾きを有し、ORU(600)〜ORU(645)の範囲にわたって第2の平均傾きを有し、前記第1の平均傾きに対する前記第2の平均傾きの比は1.8以下である、反射型偏光子。
  15. 任意の所与のORUで評価された前記IB平滑化厚さプロファイルは、前記所与のORUの共振波長における前記パケットの反射率にコヒーレントに寄与するORUのみを実質的に包含するものである、請求項14に記載の偏光子。
  16. 任意の所与のORUで評価された前記IB平滑化厚さプロファイルは、前記所与のORUの両側における最近隣の所定の数の前記ORUを包含するものである、請求項14に記載の偏光子。
  17. 前記所定の数が20以下である、請求項16に記載の偏光子。
  18. 前記ORU(450)の前記IB平滑化厚さプロファイルに関する前記共振波長は、455nm未満であり、前記ORU(600)の前記IB平滑化厚さプロファイルに関する前記共振波長は、605nm未満であり、前記ORU(645)の前記IB平滑化厚さプロファイルに関する前記共振波長は、650nm未満である、請求項14に記載の偏光子。
  19. 前記第2のミクロ層は実質的に等方性である、請求項14に記載の偏光子。
  20. 請求項14に記載の反射偏光子であって、前記通過軸が第1の通過軸であり、前記ブロック軸が第1のブロック軸である、反射偏光子と、
    第2の通過軸と第2のブロック軸とを有する吸収型偏光子であって、前記吸収型偏光子は、前記反射型偏光子との間に空気間隙が存在しないように、かつ前記第1の通過軸と前記第2の通過軸とが実質的に整列するように前記反射型偏光子に取り付けられており、前記吸収型偏光子は、少なくとも1000のコントラスト比を有する、吸収型偏光子と、
    を備える、積層体であって、
    前記最後のORUは前記第1のORUよりも吸収型偏光子に接近している、積層体。
JP2020066350A 2016-09-13 2020-04-02 斜角における色抑制のために調整された厚さプロファイルを有する単一パケット反射型偏光子 Active JP7012113B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662393985P 2016-09-13 2016-09-13
US62/393,985 2016-09-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019514024A Division JP6687811B2 (ja) 2016-09-13 2017-09-12 斜角における色抑制のために調整された厚さプロファイルを有する単一パケット反射型偏光子

Publications (2)

Publication Number Publication Date
JP2020129111A true JP2020129111A (ja) 2020-08-27
JP7012113B2 JP7012113B2 (ja) 2022-01-27

Family

ID=61619733

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019514024A Active JP6687811B2 (ja) 2016-09-13 2017-09-12 斜角における色抑制のために調整された厚さプロファイルを有する単一パケット反射型偏光子
JP2020066350A Active JP7012113B2 (ja) 2016-09-13 2020-04-02 斜角における色抑制のために調整された厚さプロファイルを有する単一パケット反射型偏光子

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019514024A Active JP6687811B2 (ja) 2016-09-13 2017-09-12 斜角における色抑制のために調整された厚さプロファイルを有する単一パケット反射型偏光子

Country Status (7)

Country Link
US (3) US10613264B2 (ja)
EP (1) EP3513244A4 (ja)
JP (2) JP6687811B2 (ja)
KR (1) KR102169582B1 (ja)
CN (1) CN109716208B (ja)
TW (1) TW201812353A (ja)
WO (1) WO2018052872A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201812353A (zh) 2016-09-13 2018-04-01 美商3M新設資產公司 具有針對依傾斜角度之低顏色定製之厚度分布之單封包反射偏振器
WO2019069214A2 (en) 2017-10-02 2019-04-11 3M Innovative Properties Company PARTIAL REFLECTOR FOR CORRECTING A CHROMATIC VARIATION
CN112789529B (zh) * 2018-09-27 2023-04-14 东洋纺株式会社 多层层叠膜
KR102532479B1 (ko) * 2018-09-27 2023-05-16 도요보 가부시키가이샤 다층 적층 필름
KR102642890B1 (ko) * 2018-09-27 2024-03-05 도요보 가부시키가이샤 다층 적층 필름
WO2022232047A2 (en) * 2021-04-26 2022-11-03 Meta Platforms Technologies, Llc Multilayer organic solid thin films having a biaxial refractive index

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062281A (ja) * 2004-08-30 2006-03-09 Teijin Dupont Films Japan Ltd 光学フィルム積層体およびそれを含む液晶表示装置
US20080151147A1 (en) * 2006-12-21 2008-06-26 3M Innovative Properties Company Display including reflective polarizer
JP2008158365A (ja) * 2006-12-26 2008-07-10 Hitachi Ltd 投射型映像表示装置
JP2010250025A (ja) * 2009-04-14 2010-11-04 Hitachi Displays Ltd 偏光素子とその製造方法および液晶表示装置
JP2014142367A (ja) * 2011-05-13 2014-08-07 Sharp Corp 機能性光学フィルムおよびこれを備えた液晶調光素子
JP2015169769A (ja) * 2014-03-06 2015-09-28 帝人株式会社 多層一軸延伸フィルム、ならびにそれからなる反射型偏光板、ips方式液晶ディスプレイ装置用光学部材およびips方式液晶ディスプレイ装置
US20160195659A1 (en) * 2013-09-06 2016-07-07 3M Innovative Properties Company Multilayer reflective polarizer

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096375A (en) 1993-12-21 2000-08-01 3M Innovative Properties Company Optical polarizer
US5882774A (en) 1993-12-21 1999-03-16 Minnesota Mining And Manufacturing Company Optical film
US6025897A (en) 1993-12-21 2000-02-15 3M Innovative Properties Co. Display with reflective polarizer and randomizing cavity
US5808794A (en) 1996-07-31 1998-09-15 Weber; Michael F. Reflective polarizers having extended red band edge for controlled off axis color
US6049419A (en) 1998-01-13 2000-04-11 3M Innovative Properties Co Multilayer infrared reflecting optical body
US6111697A (en) * 1998-01-13 2000-08-29 3M Innovative Properties Company Optical device with a dichroic polarizer and a multilayer optical film
US6157490A (en) * 1998-01-13 2000-12-05 3M Innovative Properties Company Optical film with sharpened bandedge
US6531230B1 (en) * 1998-01-13 2003-03-11 3M Innovative Properties Company Color shifting film
US6808658B2 (en) 1998-01-13 2004-10-26 3M Innovative Properties Company Method for making texture multilayer optical films
US6590707B1 (en) * 2000-03-31 2003-07-08 3M Innovative Properties Company Birefringent reflectors using isotropic materials and form birefringence
US6949212B2 (en) 2002-11-27 2005-09-27 3M Innovative Properties Company Methods and devices for stretching polymer films
WO2006025548A1 (ja) 2004-08-30 2006-03-09 Teijin Dupont Films Japan Limited 光学フィルム積層体
EP1824791A1 (de) 2004-12-06 2007-08-29 Basf Aktiengesellschaft Verfahren und vorrichtung zur behandlung von pflanzenschutzmittelhaltigem abwasser
JP5336475B2 (ja) 2007-05-20 2013-11-06 スリーエム イノベイティブ プロパティズ カンパニー 光リサイクリング中空キャビティー型ディスプレイ・バックライト
MY163688A (en) * 2008-03-31 2017-10-13 3M Innovative Properties Co Low layer count reflective polarizer with optimized gain
JP5706332B2 (ja) * 2008-11-19 2015-04-22 スリーエム イノベイティブ プロパティズ カンパニー 極方向及び方位方向の両方における出力制限を有する反射性フィルムの組み合わせ体並びに関連する構成
WO2010075373A1 (en) * 2008-12-22 2010-07-01 3M Innovative Properties Company Multilayer optical films suitable for bi-level internal patterning
JP5898085B2 (ja) * 2009-10-24 2016-04-06 スリーエム イノベイティブ プロパティズ カンパニー 低減した色を有する浸漬された非対称反射体
KR101789839B1 (ko) * 2009-10-24 2017-10-25 쓰리엠 이노베이티브 프로퍼티즈 컴파니 선택된 입사 평면에서 각방향 구속을 갖는 침지형 반사 편광기
US20110115109A1 (en) * 2009-11-19 2011-05-19 Skc Haas Display Films Co., Ltd. Method of manufacturing a reflective polarizer
EP2514592B1 (en) * 2009-12-18 2014-08-20 Teijin Limited Multi-layer stretch film
WO2011139618A2 (en) 2010-05-07 2011-11-10 3M Innovative Properties Company Feedblock for manufacturing multilayer polymeric films
CN105652358B (zh) * 2010-05-21 2019-01-22 3M创新有限公司 部分反射型多层光学膜
CN102521807B (zh) * 2011-12-02 2013-09-25 中国科学院自动化研究所 利用颜色空间分布对颜色进行传递的方法
US9081147B2 (en) * 2012-01-03 2015-07-14 3M Innovative Properties Company Effective media retarder films with spatially selective birefringence reduction
WO2014085197A1 (en) * 2012-11-30 2014-06-05 3M Innovative Properties Company Emissive display with hybrid polarizer
SG11201506508SA (en) * 2013-02-20 2015-09-29 3M Innovative Properties Co Absorbing, reflecting and collimating polarizer stack and backlights incorporating same
US9279921B2 (en) 2013-04-19 2016-03-08 3M Innovative Properties Company Multilayer stack with overlapping harmonics for wide visible-infrared coverage
US9773847B2 (en) * 2013-06-06 2017-09-26 3M Innovative Properties Company Antireflective OLED construction
WO2015034910A1 (en) * 2013-09-05 2015-03-12 3M Innovative Properties Company Patterned marking of multilayer optical film by thermal conduction
EP3041673A1 (en) 2013-09-06 2016-07-13 3M Innovative Properties Company Multilayer optical film
US9823395B2 (en) * 2014-10-17 2017-11-21 3M Innovative Properties Company Multilayer optical film having overlapping harmonics
US9441718B2 (en) * 2014-10-23 2016-09-13 Valeo Embrayages Hydrokinetic torque coupling device having turbine-piston lockup clutch, and related methods
MY186003A (en) * 2014-12-30 2021-06-14 3M Innovative Properties Co Optical stack including reflective polarizer and compensation film
WO2017087493A1 (en) * 2015-11-16 2017-05-26 3M Innovative Properties Company Display laminate with single packet biaxially birefringent reflective polarizer
TW201812353A (zh) * 2016-09-13 2018-04-01 美商3M新設資產公司 具有針對依傾斜角度之低顏色定製之厚度分布之單封包反射偏振器
WO2018102193A1 (en) * 2016-11-29 2018-06-07 3M Innovative Properties Company Optical stack

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062281A (ja) * 2004-08-30 2006-03-09 Teijin Dupont Films Japan Ltd 光学フィルム積層体およびそれを含む液晶表示装置
US20080151147A1 (en) * 2006-12-21 2008-06-26 3M Innovative Properties Company Display including reflective polarizer
JP2008158365A (ja) * 2006-12-26 2008-07-10 Hitachi Ltd 投射型映像表示装置
JP2010250025A (ja) * 2009-04-14 2010-11-04 Hitachi Displays Ltd 偏光素子とその製造方法および液晶表示装置
JP2014142367A (ja) * 2011-05-13 2014-08-07 Sharp Corp 機能性光学フィルムおよびこれを備えた液晶調光素子
US20160195659A1 (en) * 2013-09-06 2016-07-07 3M Innovative Properties Company Multilayer reflective polarizer
JP2015169769A (ja) * 2014-03-06 2015-09-28 帝人株式会社 多層一軸延伸フィルム、ならびにそれからなる反射型偏光板、ips方式液晶ディスプレイ装置用光学部材およびips方式液晶ディスプレイ装置

Also Published As

Publication number Publication date
US20200174170A1 (en) 2020-06-04
TW201812353A (zh) 2018-04-01
US11099312B2 (en) 2021-08-24
EP3513244A1 (en) 2019-07-24
US11550089B2 (en) 2023-01-10
EP3513244A4 (en) 2020-11-11
CN109716208B (zh) 2022-04-12
WO2018052872A1 (en) 2018-03-22
KR102169582B1 (ko) 2020-10-23
US20190346605A1 (en) 2019-11-14
KR20190040379A (ko) 2019-04-17
JP2019526837A (ja) 2019-09-19
US10613264B2 (en) 2020-04-07
CN109716208A (zh) 2019-05-03
JP6687811B2 (ja) 2020-04-28
US20210341660A1 (en) 2021-11-04
JP7012113B2 (ja) 2022-01-27

Similar Documents

Publication Publication Date Title
JP6687811B2 (ja) 斜角における色抑制のために調整された厚さプロファイルを有する単一パケット反射型偏光子
US10859741B2 (en) Display laminate with single packet biaxially birefringent reflective polarizer
JP6983014B2 (ja) 高い軸外反射率を有する浸漬した反射偏光子
US9057843B2 (en) Immersed asymmetric reflector with reduced color
US6396631B1 (en) Light fixture having a multilayer polymeric film
US9063293B2 (en) Immersed reflective polarizer with angular confinement in selected planes of incidence
US8007118B2 (en) Direct-lit backlight with angle-dependent birefringent diffuser
US20110222263A1 (en) High transmission flux leveling multilayer optical film and related constructions
JP2016109994A (ja) 液晶表示装置
JP2019164386A (ja) 液晶表示装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220117

R150 Certificate of patent or registration of utility model

Ref document number: 7012113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150