JP2020128075A - Method of producing laminate and laminate - Google Patents

Method of producing laminate and laminate Download PDF

Info

Publication number
JP2020128075A
JP2020128075A JP2019022658A JP2019022658A JP2020128075A JP 2020128075 A JP2020128075 A JP 2020128075A JP 2019022658 A JP2019022658 A JP 2019022658A JP 2019022658 A JP2019022658 A JP 2019022658A JP 2020128075 A JP2020128075 A JP 2020128075A
Authority
JP
Japan
Prior art keywords
fiber reinforced
resin
glass fiber
thermoplastic resin
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019022658A
Other languages
Japanese (ja)
Inventor
勝司 池田
Katsushi Ikeda
勝司 池田
芳未 小山
Yoshimi Koyama
芳未 小山
欣彦 西尾
Yoshihiko Nishio
欣彦 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2019022658A priority Critical patent/JP2020128075A/en
Publication of JP2020128075A publication Critical patent/JP2020128075A/en
Pending legal-status Critical Current

Links

Abstract

To provide a laminate that has two or more layers including reinforcing fibers, has high adhesiveness in the boundary surface, and can be used as a semi-product having high productivity and a high property of resin impregnation in a state in which an external size variation is suppressed.SOLUTION: A method of producing a laminate of this invention is a method of laminating a carbon fiber-reinforced resin base material (A) and a glass fiber-reinforced resin base material (B), in which the carbon fiber-reinforced resin base material (A) contains carbon fibers and thermoplastic resin fibers including thermoplastic resin (a); and the glass fiber-reinforced resin base material (B) contains glass fibers and thermoplastic resin (b). The method of producing a laminate includes: performing lamination so that the laminate is configured of, in the order from one surface toward the opposite side surface, the carbon fiber-reinforced resin base material (A), glass fiber-reinforced resin base material (B), a release sheet, glass fiber-reinforced resin base material (B), and carbon fiber-reinforced resin base material (A); and heat pressing the laminate.SELECTED DRAWING: None

Description

本発明は、積層体の製造方法および積層体に関する。 The present invention relates to a method for manufacturing a laminated body and a laminated body.

近年、持続可能型社会の構築のため環境保全、省エネルギーの観点から、自動車、鉄道、航空、等運輸機器、ロボット、電子機器、家具、建材等の分野においてこれら製品の軽量化が望まれている。強化繊維を用いた材料である繊維強化樹脂複合材料は金属材料に比較して比強度、比剛性が優れることから、軽量化に寄与することができる。そのため炭素繊維やアラミド繊維、ガラス繊維などを強化繊維として用いた繊維強化複合材料は、その高い比強度・比弾性率を使用して、航空機や自動車などの構造材料やテニスラケット、ゴルフシャフト、釣竿などの一般産業やスポーツ用途などに広く利用されてきた。従来、繊維強化複合材料のマトリクス樹脂としては主として上記のような熱硬化性樹脂が使用されてきたが、近年、熱可塑性樹脂をマトリクスとする繊維強化複合材料(CFRTP)が、コスト、成形の迅速性および容易さ、さらには使用後のリサイクル可能性等の観点から注目されている。熱可塑性樹脂をマトリクスとする繊維強化複合材料は、例えば不織布状の強化繊維に熱可塑性樹脂を熱プレスにより含浸させることで得られる。特許文献1では、強化繊維と熱可塑性樹脂とを含有するウェブ層と、熱可塑性樹脂からなり特定の通気度である樹脂層であって、繊維強化熱可塑性プラスチック作製用プレシート(半製品)の少なくとも1つの表面に位置する樹脂層と、を含み熱風ドライヤーにより通気して成型したプレシートが記載されている。また、特許文献2によれば熱可塑性繊維および強化繊維を含むウェブをダブルベルトラミネートにより熱的に変形可能な半製品とすることもできる。 In recent years, in order to build a sustainable society, from the viewpoint of environmental protection and energy saving, weight reduction of these products is desired in the fields of automobiles, railways, aviation, transportation equipment such as robots, electronic equipment, furniture, building materials, etc. .. A fiber-reinforced resin composite material, which is a material using reinforcing fibers, can contribute to weight reduction because it has excellent specific strength and specific rigidity as compared with a metal material. Therefore, fiber-reinforced composite materials that use carbon fibers, aramid fibers, glass fibers, etc. as reinforcing fibers use structural materials such as aircraft and automobiles, tennis rackets, golf shafts, and fishing rods because of their high specific strength and specific elastic modulus. It has been widely used for general industries such as sports and sports. Conventionally, the thermosetting resin as described above has been mainly used as the matrix resin of the fiber-reinforced composite material, but in recent years, the fiber-reinforced composite material (CFRTP) using a thermoplastic resin as a matrix has been used for cost reduction and quick molding. It is attracting attention from the standpoints of efficiency and easiness, and recyclability after use. The fiber-reinforced composite material having a thermoplastic resin as a matrix can be obtained, for example, by impregnating a non-woven fabric-like reinforcing fiber with the thermoplastic resin by hot pressing. In Patent Document 1, a web layer containing reinforcing fibers and a thermoplastic resin, and a resin layer made of a thermoplastic resin and having a specific air permeability, which is at least a pre-sheet (semi-finished product) for producing a fiber-reinforced thermoplastic There is described a pre-sheet that includes a resin layer located on one surface and is formed by aeration with a hot air dryer. Further, according to Patent Document 2, a web containing thermoplastic fibers and reinforcing fibers can be made into a thermally deformable semi-finished product by double belt lamination.

一方で、繊維強化複合材料は、前述の軽量化等を目的として樹脂や強化繊維が異なる2種類以上の繊維強化材を複合化した積層体が採用されることがある。複合化した積層体の成形品を作製する場合、芯材と表皮材を別々に作製し、接着剤等で接合して作製する方法がある。この方法は接着界面が明瞭に存在するため、界面接着性に課題が生じる。そこで、別の接合手法としては、特許文献3では強化繊維からなるマットに熱可塑性樹脂(A)および熱可塑性樹脂(B)が含浸されてなる繊維強化樹脂シートであって、前記マットは強化繊維の割合Vfmが20体積%以下の不織布であり、前記シート中において熱可塑性樹脂(A)と熱可塑樹脂(B)とが最大高さRy50μm以上、平均粗さRz30μm以上の凹凸形状を有して界面層を形成してなる、繊維強化樹脂シートとすることによって、互いに相溶しない熱可塑性樹脂間においても強固な接合を可能としている。また、特許文献4には、強化繊維基材、熱可塑性樹脂シート、強化繊維の通過を抑制するガラス繊維等からなる抑制層を積層し、ホットプレスで前記熱可塑性樹脂シートを溶融させ強化繊維に含浸させ、コールドプレスで固化させることにより、少なくとも一層は繊維強化複合材料層であるとともに、樹脂のみからなる層を更に少なくとも一層有することにより、一度の成形でサンドイッチ構造の成形品を作製する技術が開示されている。 On the other hand, as the fiber-reinforced composite material, a laminated body in which two or more kinds of fiber-reinforced materials having different resins or reinforcing fibers are compounded may be adopted for the purpose of the above-mentioned weight reduction or the like. In the case of producing a molded product of a composite laminated body, there is a method in which a core material and a skin material are produced separately and then joined with an adhesive or the like. This method has a problem in the interfacial adhesiveness because the adhesive interface is clearly present. Therefore, as another joining method, in Patent Document 3, a mat made of reinforcing fibers is a fiber-reinforced resin sheet obtained by impregnating a thermoplastic resin (A) and a thermoplastic resin (B), and the mat is made of reinforcing fibers. Of the thermoplastic resin (A) and the thermoplastic resin (B) in the sheet have an uneven shape with a maximum height Ry of 50 μm or more and an average roughness Rz of 30 μm or more. By using a fiber-reinforced resin sheet formed with an interface layer, strong joining is possible even between thermoplastic resins that are incompatible with each other. Further, in Patent Document 4, a reinforcing layer comprising a reinforcing fiber base material, a thermoplastic resin sheet, and a glass fiber suppressing passage of reinforcing fibers is laminated, and the thermoplastic resin sheet is melted by hot pressing to form reinforcing fibers. By impregnating and solidifying with a cold press, at least one layer is a fiber reinforced composite material layer, and by further having at least one layer consisting only of resin, there is a technique for producing a sandwich structure molded article by one molding. It is disclosed.

特に繊維強化複合材料の半製品では、2次加工時における加工時間や賦型性、流動性などの成型性と、成型後の剛性や強度、耐衝撃性、寸法安定性、反り、厚み精度、外寸などを考慮しなければならないため、多層構成とする場合には、その層構成や材料特性、成型条件による流動性や含浸性の調整が必要である。 Especially in semi-finished products of fiber reinforced composite materials, processing time during secondary processing, moldability such as moldability, fluidity, rigidity after molding, strength, impact resistance, dimensional stability, warpage, thickness accuracy, Since the outer dimensions and the like must be taken into consideration, when a multilayer structure is used, it is necessary to adjust the fluidity and impregnating property depending on the layer structure, material characteristics, and molding conditions.

特開2016−180022号公報JP, 2016-180022, A 特開2014−62336号公報JP, 2014-62336, A 特開2014−125532号公報JP, 2014-125532, A 特開2013−208791号公報JP, 2013-208791, A

発明者らの検討によれば、特許文献3や4の技術のように多層構造を有する繊維強化複合材料の半製品作製時には、熱源側に樹脂を配置し、強化繊維側へ樹脂を浸透させる工程となるため、厚み方向への含浸の進行中に加圧に伴う樹脂の面内方向への流動が生じるため、半製品において外寸変動を起こしてしまうという課題があった。この課題に対しては、成型圧力の低下と成型時間の延長により面内方向への流動を与えずに成型するなどの対応が必要となるが、最終的な生産性を低下させるという別の課題が発生する。本発明は、2層以上の強化繊維を含む層を有し、その界面の接着性が高い積層体であり、さらに生産性高く外寸変動が抑制された状態で樹脂の含浸性が高い半製品として使用可能な積層体を提供するものである。 According to the studies by the inventors, a step of disposing a resin on the heat source side and infiltrating the resin into the reinforcing fiber side when manufacturing a semi-finished product of a fiber-reinforced composite material having a multilayer structure as in the techniques of Patent Documents 3 and 4. Therefore, since the resin flows in the in-plane direction due to the pressurization during the impregnation in the thickness direction, there is a problem that the outer dimension variation occurs in the semi-finished product. For this problem, it is necessary to take measures such as molding without lowering the in-plane flow due to the decrease of molding pressure and the extension of molding time, but another problem of decreasing the final productivity Occurs. INDUSTRIAL APPLICABILITY The present invention is a laminate having a layer containing two or more layers of reinforcing fibers and having a high adhesiveness at the interface, and a semi-finished product having a high productivity and a high resin impregnability in a state in which fluctuations in outer dimensions are suppressed. The present invention provides a laminate that can be used as.

本発明者らは前記課題を解決すべく鋭意検討した結果、特定の層構成とした成型前積層体を加熱加圧して積層体を得ることにより課題を解決できることを見出し、本発明を完成するに至った。即ち本発明の要旨は、以下の[1]〜[19]に存する。
[1]炭素繊維強化樹脂基材(A)とガラス繊維強化樹脂基材(B)とを積層融着する積層体の製造方法であって、炭素繊維強化樹脂基材(A)が炭素繊維および熱可塑性樹脂(a)を含む熱可塑性樹脂繊維を含有し、ガラス繊維強化樹脂基材(B)がガラス繊維および熱可塑性樹脂(b)を含有するものであり、一方の面から反対側の面に向かって順に、前記炭素繊維強化樹脂基材(A)、前記ガラス繊維強化樹脂基材(B)、離型シート、前記ガラス繊維強化樹脂基材(B)、および前記炭素繊維強化樹脂基材(A)の構成となるように積層し、加熱加圧する、積層体の製造方法。
[2]少なくとも一方の前記炭素繊維強化樹脂基材(A)の前記ガラス繊維強化樹脂基材(B)とは反対側の面側に離型シートを積層する、[1]に記載の積層体の製造方法。
[3]前記離型シートが、前記熱可塑性樹脂(a)の融点または前記熱可塑性樹脂(b)の融点より高い融点を有する樹脂を含有する、[1]または[2]に記載の積層体の製造方法。
[4]前記炭素繊維と前記熱可塑性樹脂繊維の含有比率が、質量比で炭素繊維:熱可塑性樹脂繊維=50:50〜90:10である、[1]から[3]のいずれか1つに記載の積層体の製造方法。
[5]前記ガラス繊維と前記熱可塑性樹脂(b)の含有比率が、質量比でガラス繊維:熱可塑性樹脂(b)=10:90〜60:40である、[1]から[4]のいずれか1つに記載の積層体の製造方法。
[6]前記熱可塑性樹脂(b)が、ポリプロピレン樹脂またはポリアミド樹脂である、[1]から[5]のいずれか1つに記載の積層体の製造方法。
[7]前記熱可塑性樹脂繊維が、ポリプロピレン樹脂またはポリアミド樹脂の繊維である、[1]から[6]のいずれか1つに記載の積層体の製造方法。
[8]前記熱可塑性樹脂(a)と前記熱可塑性樹脂(b)が同一の樹脂種である、[1]から[7]のいずれか1つに記載の積層体の製造方法。
[9]加熱温度が、前記熱可塑性樹脂(b)の融点+10℃〜120℃、かつ加圧圧力が0.1〜4MPaである、[1]から[8]のいずれか1つに記載の積層体の製造方法。
[10]加熱加圧の時間が150秒以上である、[1]から[9]のいずれか1つに記載の積層体の製造方法。
[11]炭素繊維強化樹脂基材(A)とガラス繊維強化樹脂基材(B)とを積層融着する積層体の製造方法であって、炭素繊維強化樹脂基材(A)が炭素繊維および熱可塑性樹脂(a)を含む熱可塑性樹脂繊維を含有し、ガラス繊維強化樹脂基材(B)がガラス繊維および熱可塑性樹脂(b)を含有するものであり、温度の異なる複数の熱板を用いて、炭素繊維強化樹脂基材(A)およびガラス繊維強化樹脂基材(B)を積層した成形前積層体を挟んで加温加圧する工程を有し、前記成型前積層体の温度の高い熱板側となる面を面C、温度の低い熱板側となる面を面Dとしたときに、面Cから面Dに向かって順に、前記炭素繊維強化樹脂基材(A)、前記ガラス繊維強化樹脂基材(B)、離型シートの構成となるように積層する、積層体の製造方法。
[12]前記炭素繊維強化樹脂基材(A)の前記ガラス繊維強化樹脂基材(B)とは反対側の面側に離型シートを積層する、[11]に記載の積層体の製造方法。
[13]前記離型シートが、前記熱可塑性樹脂(a)の融点または前記熱可塑性樹脂(b)の融点より高い融点を有する樹脂を含有する、[11]または[12]に記載の積層体の製造方法。
[14]前記炭素繊維と前記熱可塑性樹脂繊維の含有比率が、質量比で炭素繊維:熱可塑性樹脂繊維=50:50〜90:10である、[11]から[13]のいずれか1つに記載の積層体の製造方法。
[15]少なくとも炭素繊維強化層、ガラス繊維強化層、および離型シート層を含む積層体であって、前記炭素繊維強化層が熱可塑性樹脂および炭素繊維含有し、前記ガラス繊維強化層が熱可塑性樹脂およびガラス繊維を含有するものであり、一方の面から反対の面に向かって順に、前記炭素繊維強化層、前記ガラス繊維強化層、離型シート層、前記ガラス繊維強化層、前記炭素繊維強化層となるように構成されている積層体。
[16]離型シートがポリテトラフルオロエチレンを含有する、[15]に記載の積層体。
[17]少なくとも炭素繊維強化層、およびガラス繊維強層が積層された半製品であって、前記炭素繊維強化層が熱可塑性樹脂および炭素繊維含有し、前記ガラス繊維強化層が熱可塑性樹脂およびガラス繊維を含有するものであり、前記ガラス繊維強層が最表面となるガラス繊維強化層最表面を有し、前記ガラス繊維強化層最表面の算術平均粗さRaが0.50μm以上1.07μm以下である半製品。
[18]前記ガラス繊維強化最表面の最大高さ粗さRzが4.0μm以上6.1μm以下である[17]に記載の半製品。
[19]前記ガラス繊維強化最表面の二乗平均平方根高さ粗さRqが1.00μm以上1.31μm以下である[17]または[18]に記載の半製品。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the problems can be solved by heating and pressurizing a pre-molding laminate having a specific layer structure to complete the present invention. I arrived. That is, the gist of the present invention lies in the following [1] to [19].
[1] A method for manufacturing a laminate, in which a carbon fiber reinforced resin base material (A) and a glass fiber reinforced resin base material (B) are laminated and fused, wherein the carbon fiber reinforced resin base material (A) is carbon fiber and A thermoplastic resin fiber containing a thermoplastic resin (a) is contained, and a glass fiber reinforced resin base material (B) contains a glass fiber and a thermoplastic resin (b). Toward the carbon fiber reinforced resin substrate (A), the glass fiber reinforced resin substrate (B), a release sheet, the glass fiber reinforced resin substrate (B), and the carbon fiber reinforced resin substrate A method for producing a laminated body, which comprises laminating so as to have the constitution of (A), followed by heating and pressing.
[2] The laminate according to [1], wherein a release sheet is laminated on the surface of at least one of the carbon fiber reinforced resin base materials (A) opposite to the glass fiber reinforced resin base material (B). Manufacturing method.
[3] The laminate according to [1] or [2], wherein the release sheet contains a resin having a melting point higher than the melting point of the thermoplastic resin (a) or the melting point of the thermoplastic resin (b). Manufacturing method.
[4] Any one of [1] to [3], wherein the content ratio of the carbon fiber and the thermoplastic resin fiber is carbon fiber:thermoplastic resin fiber=50:50 to 90:10 in mass ratio. The method for producing a laminated body according to.
[5] From [1] to [4], the content ratio of the glass fiber and the thermoplastic resin (b) is glass fiber:thermoplastic resin (b)=10:90 to 60:40 in mass ratio. The method for manufacturing the laminate according to any one of claims.
[6] The method for producing a laminate according to any one of [1] to [5], wherein the thermoplastic resin (b) is a polypropylene resin or a polyamide resin.
[7] The method for producing a laminate according to any one of [1] to [6], wherein the thermoplastic resin fibers are fibers of polypropylene resin or polyamide resin.
[8] The method for producing a laminate according to any one of [1] to [7], wherein the thermoplastic resin (a) and the thermoplastic resin (b) are the same resin species.
[9] The heating temperature is the melting point of the thermoplastic resin (b)+10° C. to 120° C., and the pressurizing pressure is 0.1 to 4 MPa, according to any one of [1] to [8]. Method for manufacturing laminated body.
[10] The method for producing a laminate according to any one of [1] to [9], wherein the heating and pressing time is 150 seconds or more.
[11] A method for manufacturing a laminate, comprising laminating and fusing a carbon fiber reinforced resin substrate (A) and a glass fiber reinforced resin substrate (B), wherein the carbon fiber reinforced resin substrate (A) is carbon fiber and A thermoplastic resin fiber containing a thermoplastic resin (a) is contained, and a glass fiber reinforced resin substrate (B) contains a glass fiber and a thermoplastic resin (b). Using a pre-molding laminated body in which the carbon fiber reinforced resin base material (A) and the glass fiber reinforced resin base material (B) are laminated, and heating and pressurizing the laminated body. When the surface on the hot plate side is surface C and the surface on the hot plate side with low temperature is surface D, the carbon fiber reinforced resin base material (A) and the glass are sequentially arranged from the surface C to the surface D. A method for producing a laminate, in which the fiber-reinforced resin substrate (B) and the release sheet are laminated so as to have a constitution.
[12] The method for producing a laminate according to [11], wherein a release sheet is laminated on the surface of the carbon fiber reinforced resin substrate (A) opposite to the glass fiber reinforced resin substrate (B). ..
[13] The laminate according to [11] or [12], wherein the release sheet contains a resin having a melting point higher than the melting point of the thermoplastic resin (a) or the melting point of the thermoplastic resin (b). Manufacturing method.
[14] Any one of [11] to [13], wherein the content ratio of the carbon fiber and the thermoplastic resin fiber is carbon fiber:thermoplastic resin fiber=50:50 to 90:10 in mass ratio. The method for producing a laminated body according to.
[15] A laminate including at least a carbon fiber reinforced layer, a glass fiber reinforced layer, and a release sheet layer, wherein the carbon fiber reinforced layer contains a thermoplastic resin and carbon fibers, and the glass fiber reinforced layer is thermoplastic. A resin and a glass fiber are contained, and the carbon fiber reinforced layer, the glass fiber reinforced layer, a release sheet layer, the glass fiber reinforced layer, and the carbon fiber reinforced in order from one surface to the opposite surface. A laminate configured to be a layer.
[16] The laminate according to [15], wherein the release sheet contains polytetrafluoroethylene.
[17] A semi-finished product in which at least a carbon fiber reinforced layer and a glass fiber strong layer are laminated, wherein the carbon fiber reinforced layer contains a thermoplastic resin and carbon fibers, and the glass fiber reinforced layer contains a thermoplastic resin and glass. It contains fibers, and the glass fiber strong layer has a glass fiber reinforced layer outermost surface which is the outermost surface, and the arithmetic mean roughness Ra of the glass fiber reinforced layer outermost surface is 0.50 μm or more and 1.07 μm or less. Is a semi-finished product.
[18] The semi-finished product according to [17], wherein the maximum height roughness Rz of the glass fiber reinforced outermost surface is 4.0 μm or more and 6.1 μm or less.
[19] The semi-finished product according to [17] or [18], wherein the root mean square height roughness Rq of the glass fiber reinforced outermost surface is 1.00 μm or more and 1.31 μm or less.

スタンパブル成型などの2次加工における加工時間や賦型性、流動性などの成型性に優れた炭素繊維強化複合材料とガラス繊維強化複合材料からなる積層体を生産性高く製造できる。また、特定の層構成とすることにより剛性や強度、外寸や耐衝撃性、寸法安定性、反り、厚み精度、外寸などに優れる積層体が得られる。 A laminate comprising a carbon fiber reinforced composite material and a glass fiber reinforced composite material, which are excellent in moldability such as processing time in secondary processing such as stampable molding, moldability and fluidity, can be produced with high productivity. Further, by having a specific layer structure, a laminate having excellent rigidity, strength, outer dimension, impact resistance, dimensional stability, warpage, thickness accuracy, outer dimension and the like can be obtained.

本発明における成型前積層体の構成例を示す図である。It is a figure which shows the structural example of the laminated body before shaping|molding in this invention. 本発明における成型前積層体の構成例を示す図である。It is a figure which shows the structural example of the laminated body before shaping|molding in this invention. 本発明における成型前積層体の構成例を示す図である。It is a figure which shows the structural example of the laminated body before shaping|molding in this invention. 本発明の積層体の構成例を示す図である。It is a figure which shows the structural example of the laminated body of this invention.

以下、本発明を更に詳しく説明する。
本発明の積層体の製造方法の態様の一つは、図1に示すように、炭素繊維強化樹脂基材1とガラス繊維強化樹脂基材2とを積層する積層体の製造方法であって、炭素繊維強化樹脂基材1が炭素繊維および熱可塑性樹脂(a)を含む熱可塑性樹脂繊維を含有し、ガラス繊維強化樹脂基材2がガラス繊維および熱可塑性樹脂(b)を含有するものであり、一方の面5から反対の面6に向かって順に、前記炭素繊維強化樹脂基材1、前記ガラス繊維強化樹脂基材2、離型シート3、前記ガラス繊維強化樹脂基材2および前記炭素繊維強化樹脂基材1の構成となるように積層した成型前積層体4を、加熱加圧する、積層体の製造方法である。炭素繊維強化樹脂基材1は、炭素繊維強化樹脂基材(A)、ガラス繊維強化樹脂基材2はガラス繊維強化樹脂基材(B)、離型シート3は離型シートを表す。一方の面5および反対の面6は、上下逆の構成として、一方の面5が下面、面6が上面であってもよい。各基材の間に別の基材を有していてもよい。本発明の製造方法においては、ガラス繊維強化樹脂基材(B)における熱可塑性樹脂(b)より炭素繊維強化樹脂基材(A)へ熱可塑性樹脂が供給されることで積層体を形成することが好ましい。このため、炭素繊維強化樹脂基材(A)への樹脂浸透の観点から、含浸性を阻害しない範囲において他の通気性の高い機能繊維不織布や多孔性シートなどが介在してもよい。それぞれの層は他の層を介さず直接接していることが好ましい。炭素繊維強化樹脂基材1は、ガラス繊維強化樹脂基材2の全体を覆っていてもよいし、部分的に覆っていてもよい。ガラス繊維強化樹脂基材2は、離型シート3の全体を覆っていてもよいし、部分的に覆っていてもよい。積層体作製におけるプレス熱板への樹脂や繊維の付着防止、成型体の表面意匠性の向上、成型時におけるエア溜まりの防止などの観点から、図2に示すように、一方の面5および/または反対の面6にさらに離型シート3を有していてもよい。離型シート3を隔てて配置されている2つの炭素繊維強化樹脂基材1と2つのガラス繊維強化樹脂基材2はそれぞれ同一の基材である必要はない。例えば、一方の炭素繊維強化樹脂基材1として炭素繊維およびポリプロピレン樹脂を含む熱可塑性樹脂繊維を含有する基材、他方の炭素繊維強化樹脂基材1として炭素繊維およびポリアミド樹脂を含む熱可塑性樹脂繊維を含有する基材を用いることができる。また、別の態様は、図3に示すように炭素繊維強化樹脂基材1とガラス繊維強化樹脂基材2とを積層する積層体の製造方法であって、炭素繊維強化樹脂基材1が炭素繊維および熱可塑性樹脂(a)を含む熱可塑性樹脂繊維を含有し、ガラス繊維強化樹脂基材2がガラス繊維および熱可塑性樹脂(b)を含有するものであり、温度の異なる複数の熱板を用いて、炭素繊維強化樹脂基材(A)およびガラス繊維強化樹脂基材(B)を積層した成形前積層体を挟んで加熱加圧する工程を有し、前記成型前積層体の温度の高い熱板側となる面を面C(上面5a)、温度の低い熱板側となる面を面D(下面6a)としたときに、上面から下面に向かって順に、前記炭素繊維強化樹脂基材(A)、前記ガラス繊維強化樹脂基材(B)、離型シートの構成となるように積層する、積層体の製造方法である。図3においては、模式的に上下の熱板で成型前積層体を挟み、温度の高い熱板が上、温度の低い熱板が下の配置の場合で示されているが、温度の高い熱板を下、温度の低い熱板を上に配置してもよいし、左右の熱板で挟んでもよい。
Hereinafter, the present invention will be described in more detail.
One of the aspects of the method for producing a laminate of the present invention is a method for producing a laminate in which a carbon fiber reinforced resin substrate 1 and a glass fiber reinforced resin substrate 2 are laminated as shown in FIG. The carbon fiber reinforced resin base material 1 contains a thermoplastic resin fiber containing a carbon fiber and a thermoplastic resin (a), and the glass fiber reinforced resin base material 2 contains a glass fiber and a thermoplastic resin (b). , The carbon fiber reinforced resin base material 1, the glass fiber reinforced resin base material 2, the release sheet 3, the glass fiber reinforced resin base material 2 and the carbon fiber in this order from one surface 5 to the opposite surface 6. This is a method for producing a laminated body, in which a pre-molded laminated body 4 laminated so as to have the structure of the reinforced resin substrate 1 is heated and pressed. The carbon fiber reinforced resin substrate 1 represents a carbon fiber reinforced resin substrate (A), the glass fiber reinforced resin substrate 2 represents a glass fiber reinforced resin substrate (B), and the release sheet 3 represents a release sheet. The one surface 5 and the opposite surface 6 may be upside down, and the one surface 5 may be the lower surface and the surface 6 may be the upper surface. You may have another base material between each base material. In the production method of the present invention, the thermoplastic resin (b) in the glass fiber reinforced resin substrate (B) is supplied with the thermoplastic resin to the carbon fiber reinforced resin substrate (A) to form a laminate. Is preferred. Therefore, from the viewpoint of resin penetration into the carbon fiber reinforced resin base material (A), another functional fiber nonwoven fabric having high air permeability or a porous sheet may be interposed as long as the impregnability is not impaired. It is preferable that the respective layers are in direct contact with each other without interposing the other layers. The carbon fiber reinforced resin base material 1 may cover the entire glass fiber reinforced resin base material 2 or may partially cover it. The glass fiber reinforced resin substrate 2 may cover the entire release sheet 3 or may partially cover it. From the viewpoints of preventing resin or fibers from adhering to the press hot plate in the production of the laminate, improving the surface design of the molded body, and preventing air accumulation during molding, as shown in FIG. Alternatively, the opposite surface 6 may further have a release sheet 3. The two carbon fiber reinforced resin base materials 1 and the two glass fiber reinforced resin base materials 2 arranged with the release sheet 3 interposed therebetween do not have to be the same base material. For example, one carbon fiber reinforced resin base material 1 contains a carbon fiber and a thermoplastic resin fiber containing a polypropylene resin, and the other carbon fiber reinforced resin base material 1 contains a carbon fiber and a polyamide resin. A base material containing can be used. Another embodiment is a method for manufacturing a laminate in which a carbon fiber reinforced resin substrate 1 and a glass fiber reinforced resin substrate 2 are laminated as shown in FIG. 3, wherein the carbon fiber reinforced resin substrate 1 is made of carbon. A thermoplastic resin fiber containing a fiber and a thermoplastic resin (a) is contained, and the glass fiber reinforced resin base material 2 contains a glass fiber and a thermoplastic resin (b). The method includes a step of sandwiching and heating and pressing a pre-molding laminate in which a carbon fiber reinforced resin base material (A) and a glass fiber reinforced resin base material (B) are laminated, and the pre-molding laminate has high temperature heat. When the surface on the plate side is the surface C (upper surface 5a) and the surface on the hot plate side having a lower temperature is the surface D (lower surface 6a), the carbon fiber reinforced resin substrate ( A), the glass fiber reinforced resin substrate (B) and a release sheet are laminated so as to have a constitution of a laminated body. In FIG. 3, the upper and lower hot plates are sandwiched between the pre-molding laminates, and the hot plate having the higher temperature is shown on the upper side and the hot plate having the lower temperature is shown on the lower side. The plate may be placed below and the hot plate having a low temperature may be placed above, or the hot plate may be sandwiched between the left and right hot plates.

さらに、加熱加圧後の積層体の態様の一つは、図4に示すように、少なくとも炭素繊維強化層7、ガラス繊維強化層8、および離型シート層9を含む積層体であって、前記炭素繊維強化層7が熱可塑性樹脂および炭素繊維含有し、前記ガラス繊維強化層8が熱可塑性樹脂およびガラス繊維を含有するものであり、一方の面から反対の面に向かって順に、前記炭素繊維強化層7、前記ガラス繊維強化層8、離型シート層9、前記ガラス繊維強化層8、前記炭素繊維強化層7となるように積層されている、積層体10である。本態様は図1で示した成型前積層体4を加熱加圧することにより得られるものである。炭素繊維強化層7およびガラス繊維強層8は融着されていることが好ましい。この時、ガラス繊維強化樹脂基材(B)中の熱可塑性樹脂(b)が、炭素繊維強化樹脂基材(A)に浸透し炭素繊維強化層7が形成されていることが好ましい。また、積層体10においては、前記熱可塑性樹脂の濃度勾配が積層体の中心から少なくとも一方の積層方向外側に向かって低下するように構成されていることが好ましい。炭素繊維強化層7の膜厚は特に限定されないが、成型後の製品における剛性や強度の観点から0.1mm以上が好ましく、0.3mm以上がより好ましい。また、積層体成型工程における加熱加圧時の熱伝導と成型時間の短縮や、成型後の製品における耐衝撃性や流動性、賦型性の観点から3.0mm以下が好ましく、2.0mm以下がより好ましい。ガラス繊維強化層8の膜厚は特に限定されないが、成型後の製品における耐衝撃性や強度の観点から0.5mm以上が好ましく、1.0mm以上がより好ましい。また、積層体成型工程における外寸変動の抑制や製品成形工程における予熱時間低減などの観点から、10.0mm以下が好ましく、5.0mm以下がより好ましい。離型シート9の膜厚は特に限定されないが、積層体成型工程におけるハンドリング性や樹脂離型性の観点から0.1mm以上が好ましく、0.3mm以上がより好ましい。積層体成型工程における加熱加圧時の熱伝導と成型時間の短縮の観点から2.0mm以下が好ましく、1.0mm以下がより好ましい。 Furthermore, one of the embodiments of the laminated body after heating and pressing is a laminated body including at least a carbon fiber reinforced layer 7, a glass fiber reinforced layer 8, and a release sheet layer 9, as shown in FIG. The carbon fiber reinforced layer 7 contains a thermoplastic resin and carbon fibers, and the glass fiber reinforced layer 8 contains a thermoplastic resin and glass fibers. The carbon is reinforced in order from one surface to the opposite surface. A laminated body 10 is laminated so as to be the fiber reinforced layer 7, the glass fiber reinforced layer 8, the release sheet layer 9, the glass fiber reinforced layer 8 and the carbon fiber reinforced layer 7. This embodiment is obtained by heating and pressing the pre-molding laminate 4 shown in FIG. The carbon fiber reinforced layer 7 and the glass fiber strong layer 8 are preferably fused. At this time, it is preferable that the thermoplastic resin (b) in the glass fiber reinforced resin substrate (B) penetrates into the carbon fiber reinforced resin substrate (A) to form the carbon fiber reinforced layer 7. Further, it is preferable that the laminated body 10 is configured so that the concentration gradient of the thermoplastic resin decreases from the center of the laminated body toward at least one outer side in the laminating direction. The thickness of the carbon fiber reinforced layer 7 is not particularly limited, but is preferably 0.1 mm or more, and more preferably 0.3 mm or more, from the viewpoint of rigidity and strength of the molded product. Further, from the viewpoints of heat conduction during heating and pressurization in the laminate molding step and shortening of the molding time, and impact resistance, fluidity and moldability of the molded product, 3.0 mm or less is preferable, and 2.0 mm or less. Is more preferable. The film thickness of the glass fiber reinforced layer 8 is not particularly limited, but is preferably 0.5 mm or more, more preferably 1.0 mm or more, from the viewpoint of impact resistance and strength of the molded product. In addition, from the viewpoint of suppressing external dimension fluctuations in the laminate molding process and reducing the preheating time in the product molding process, 10.0 mm or less is preferable, and 5.0 mm or less is more preferable. Although the film thickness of the release sheet 9 is not particularly limited, it is preferably 0.1 mm or more, more preferably 0.3 mm or more from the viewpoint of handling property and resin release property in the laminate molding process. The thickness is preferably 2.0 mm or less, more preferably 1.0 mm or less, from the viewpoint of heat conduction during heating and pressurization in the laminate molding step and shortening of the molding time.

前述のようにして得られた積層体から離型シート層を剥離することにより半製品とすることができる。半製品の態様の一つは、少なくとも炭素繊維強化層、およびガラス繊維強層が積層された半製品であって、前記炭素繊維強化層が熱可塑性樹脂および炭素繊維含有し、前記ガラス繊維強化層が熱可塑性樹脂およびガラス繊維を含有するものであり、前記ガラス繊維強層が最表面となるガラス繊維強化層最表面を有し、前記ガラス繊維強化層最表面の算術平均粗さRaが0.50μm以上1.07μm以下である半製品である。二次成型加工における材料のセッティング時の位置ずれ防止の観点から、0.60μm以上が好ましく、0.80μm以上がより好ましい。二次成型時における気泡混入防止などの観点から、1.05μm以下が好ましく、1.03μm以下がより好ましい、1.01μm以下がさらに好ましい。前記ガラス繊維強化最表面の最大高さ粗さRzは、二次成型加工における材料のセッティング時の位置ずれ防止の観点から、4.0μm以上が好ましく、4.2μm以上がより好ましい。二次成型時における気泡混入防止などの観点から、6.1μm以下であることが好ましく、5.7μm以下がより好ましい。前記ガラス繊維強化最表面の二乗平均平方根高さ粗さRqは、二次成型加工における材料のセッティング時の位置ずれ防止の観点から1.00μm以上が好ましく、1.05μm以上がより好ましい。二次成型加工における材料のセッティング時の位置ずれ防止の観点から、1.31μm以下が好ましく、1.20μm以下がより好ましい。各粗さの測定方法は実施例に記載の通りである。前記製造方法により得られる積層体は、例えば、温度の異なる複数の熱板を用いて、成形前積層体を挟んで加温加圧する場合に、低温側に配置されたガラス繊維強層表面が高温側に配置された炭素繊維強化層と比較して圧力による流動変形が小さく、離型シート表面によるガラス繊維強層への表面転写の影響が少なくなるため表面粗さに関する値が小さくなる傾向を生じる。公知の製法で作製された半製品は、高温側に配置されたガラス繊維強層表面がより流動性が大きくなり、離型シート表面によるガラス繊維強層への表面転写の影響が大きいため、表面粗さに関する値が大きくなる傾向を生じる。 A semi-finished product can be obtained by peeling the release sheet layer from the laminate obtained as described above. One of the embodiments of the semi-finished product is a semi-finished product in which at least a carbon fiber reinforced layer and a glass fiber strong layer are laminated, wherein the carbon fiber reinforced layer contains a thermoplastic resin and carbon fiber, and the glass fiber reinforced layer is contained. Contains a thermoplastic resin and glass fibers, the glass fiber strong layer has an outermost surface of the glass fiber reinforced layer which is the outermost surface, and the arithmetic average roughness Ra of the outermost surface of the glass fiber reinforced layer is 0. It is a semi-finished product of 50 μm or more and 1.07 μm or less. From the viewpoint of preventing misalignment when setting the material in the secondary molding process, 0.60 μm or more is preferable, and 0.80 μm or more is more preferable. From the viewpoint of preventing bubbles from being mixed during secondary molding, 1.05 μm or less is preferable, 1.03 μm or less is more preferable, and 1.01 μm or less is further preferable. The maximum height roughness Rz of the glass fiber reinforced outermost surface is preferably 4.0 μm or more, and more preferably 4.2 μm or more, from the viewpoint of preventing misalignment when setting the material in the secondary molding process. From the viewpoint of preventing bubbles from entering during secondary molding, the thickness is preferably 6.1 μm or less, and more preferably 5.7 μm or less. The root mean square height roughness Rq of the glass fiber reinforced outermost surface is preferably 1.00 μm or more, and more preferably 1.05 μm or more from the viewpoint of preventing misalignment when setting the material in the secondary molding process. From the viewpoint of preventing misalignment when setting the material in the secondary molding process, 1.31 μm or less is preferable, and 1.20 μm or less is more preferable. The measuring method of each roughness is as described in Examples. The laminate obtained by the manufacturing method, for example, using a plurality of hot plates having different temperatures, when the pre-molded laminate is sandwiched and heated under pressure, the glass fiber strong layer surface arranged on the low temperature side has a high temperature. Compared with the carbon fiber reinforced layer placed on the side, flow deformation due to pressure is small, and the influence of surface transfer to the glass fiber strong layer by the release sheet surface is small, so the value related to surface roughness tends to be small. .. The semi-finished product produced by the known manufacturing method has a larger fluidity on the glass fiber strong layer surface arranged on the high temperature side, and the surface transfer to the glass fiber strong layer by the release sheet surface has a large influence, so that the surface The value of roughness tends to increase.

<炭素繊維強化樹脂基材(A)>
炭素繊維強化樹脂基材(A)の態様の一つは、炭素繊維および熱可塑性樹脂(a)を含む熱可塑性樹脂繊維を含有する。他に炭素繊維強化樹脂基材(A)が含んでいてもよい材料としては熱バインダー用樹脂や界面活性剤、水系バインダー樹脂などが挙げられるが、耐熱性や力学物性低下などの観点から実質的に炭素繊維および熱可塑性樹脂(a)を含む熱可塑性樹脂繊維からなる基材であることが好ましい。実質的に炭素繊維および熱可塑性樹脂(a)を含む熱可塑性樹脂繊維からなるとは、炭素繊維強化樹脂基材(A)の形状保持の効果を阻害する量となる他の物質を含まないことを意味する。熱可塑性樹脂繊維は、熱可塑性樹脂(a)を含み、他の熱可塑性樹脂や耐光安定剤、酸化防止剤、フィラー、可塑剤、結晶核剤などの他の物質を含んでいてもよい。実質的に熱可塑性樹脂(a)からなる繊維であることが好ましい。実質的に熱可塑性樹脂(a)からなる繊維とは、繊維全体の50質量%以上が熱可塑性樹脂(a)で構成されている繊維を意味する。本発明に用いられる熱可塑性樹脂繊維は、例えば溶融紡糸やフィルムスリットすることで得られる。また、熱可塑性樹脂(a)を含有していれば市販の各種繊維を使用することもできる。前記炭素繊維の含有量は、炭素繊維強化樹脂基材(A)の総質量に対して、通常10質量%以上、成型体の軽量性と力学特性の観点から好ましくは30質量%以上、より好ましくは50質量%以上である。また、通常99質量%以下、不織布としての形状保持(ハンドリング性)の観点から好ましくは95質量%以下、より好ましくは90質量%以下である。前記熱可塑性樹脂繊維の含有量は、炭素繊維強化樹脂基材(A)の総質量に対して、通常1質量%以上、不織布としての形状保持(ハンドリング性)の観点から好ましくは5質量%以上、より好ましくは10質量%以上である。また、通常90質量%以下、成型体の軽量性と力学特性の観点から好ましくは70質量%以下、より好ましくは50質量%以下である。
<Carbon fiber reinforced resin substrate (A)>
One of the embodiments of the carbon fiber reinforced resin base material (A) contains a thermoplastic resin fiber containing a carbon fiber and a thermoplastic resin (a). Other materials that the carbon fiber reinforced resin base material (A) may include include resins for thermal binders, surfactants, water-based binder resins, and the like, but from the viewpoint of heat resistance and deterioration of mechanical properties, etc. It is preferable that the base material is composed of a thermoplastic resin fiber containing carbon fiber and a thermoplastic resin (a). To consist essentially of a thermoplastic resin fiber containing a carbon fiber and a thermoplastic resin (a) means that it does not contain other substances in an amount that hinders the effect of maintaining the shape of the carbon fiber reinforced resin substrate (A). means. The thermoplastic resin fiber contains the thermoplastic resin (a), and may contain other substances such as other thermoplastic resins and light stabilizers, antioxidants, fillers, plasticizers, and crystal nucleating agents. It is preferable that the fiber is substantially composed of the thermoplastic resin (a). The fiber substantially consisting of the thermoplastic resin (a) means a fiber in which 50% by mass or more of the whole fiber is composed of the thermoplastic resin (a). The thermoplastic resin fiber used in the present invention is obtained, for example, by melt spinning or film slitting. Further, various commercially available fibers can be used as long as they contain the thermoplastic resin (a). The content of the carbon fiber is usually 10% by mass or more based on the total mass of the carbon fiber reinforced resin substrate (A), preferably 30% by mass or more, and more preferably from the viewpoint of the lightness and mechanical properties of the molded body. Is 50% by mass or more. Further, it is usually 99% by mass or less, preferably 95% by mass or less, and more preferably 90% by mass or less from the viewpoint of shape retention (handling property) as a nonwoven fabric. The content of the thermoplastic resin fiber is usually 1% by mass or more based on the total mass of the carbon fiber reinforced resin substrate (A), and preferably 5% by mass or more from the viewpoint of shape retention (handling property) as a nonwoven fabric. , And more preferably 10 mass% or more. Further, it is usually 90% by mass or less, preferably 70% by mass or less, and more preferably 50% by mass or less from the viewpoint of the lightness and mechanical properties of the molded body.

また、前記炭素繊維と前記熱可塑性樹脂繊維の含有比率は、通常、質量比で炭素繊維:熱可塑性樹脂繊維=10:90〜99:1あり、50:50〜90:10であることが好ましい。本発明の炭素繊維基材(A)では成型後における力学特性と積層界面の接着性を向上させるため、ハンドリング性に問題を生じない範囲において炭素繊維の含有比率が高くすることが好ましい。炭素繊維強化樹脂基材(A)に対する炭素繊維の含有量の割合を50質量%以上とすることで、成型前積層体が加熱加圧されたときに成型前積層体内側に配置されているガラス繊維強化樹脂基材(B)からマトリックス樹脂が炭素繊維強化樹脂基材(A)に特に効率的に含浸することができ、積層界面の接着性が非常に高くなり力学特性の向上に寄与する。 In addition, the content ratio of the carbon fiber and the thermoplastic resin fiber is usually carbon fiber:thermoplastic resin fiber=10:90 to 99:1 and preferably 50:50 to 90:10 by mass ratio. .. In the carbon fiber base material (A) of the present invention, in order to improve the mechanical properties after molding and the adhesiveness at the laminated interface, it is preferable to increase the carbon fiber content ratio in a range that does not cause a problem in handleability. By setting the ratio of the content of carbon fibers to the carbon fiber reinforced resin substrate (A) to be 50% by mass or more, the glass which is arranged inside the pre-molding laminate when the pre-molding laminate is heated and pressed. The carbon fiber reinforced resin base material (A) can be particularly efficiently impregnated with the matrix resin from the fiber reinforced resin base material (B), and the adhesiveness at the lamination interface becomes very high, which contributes to the improvement of mechanical properties.

炭素繊維としては、ポリアクリロニトリル(PAN)系炭素繊維、PITCH系炭素繊維等が挙げられる。好ましい炭素繊維は、ISO 10618に準じて測定したストランド引張強度が1.0GPa以上9.0GPa以下で、かつストランド引張弾性率が150GPa以上1000GPa以下の炭素繊維である。より好ましい炭素繊維は、ISO 10618に準じて測定したストランド引張強度が1.5GPa以上9.0GPa以下で、かつストランド引張弾性率が200GPa以上1000GPa以下の炭素繊維である。樹脂含浸ストランド引張強度および樹脂含浸ストランド弾性率は、以下の方法で測定することができる。 Examples of the carbon fibers include polyacrylonitrile (PAN)-based carbon fibers and PITCH-based carbon fibers. Preferred carbon fibers are carbon fibers having a strand tensile strength measured according to ISO 10618 of 1.0 GPa or more and 9.0 GPa or less and a strand tensile elastic modulus of 150 GPa or more and 1000 GPa or less. A more preferable carbon fiber is a carbon fiber having a strand tensile strength measured according to ISO 10618 of 1.5 GPa or more and 9.0 GPa or less and a strand tensile elastic modulus of 200 GPa or more and 1000 GPa or less. The resin-impregnated strand tensile strength and the resin-impregnated strand elastic modulus can be measured by the following methods.

(樹脂含浸ストランド引張強度および樹脂含浸ストランド弾性率の測定方法)
カーバイド(株)製ERL−4221を120g(100質量部)、日本化薬(株)カヤハード(MCD)108g(90質量部)、N,Nベンジルジメチルアミン3.6g(3質量部)及びアセトンを60g(50質量部)混合した樹脂組成物を含浸させ、次に130℃で、120分間加熱して硬化させ、樹脂含浸ストランドを得る。得られた樹脂含浸ストランドを用い、炭素繊維−樹脂含浸ヤーン試料を用いた引張特性試験方法(ISO 10618に準拠)により引張強度および引張弾性率を求め、それぞれを樹脂含浸ストランド引張強度および樹脂含浸ストランド弾性率とする。
(Method of measuring resin-impregnated strand tensile strength and resin-impregnated strand elastic modulus)
Carbide Co., Ltd. ERL-4221 120 g (100 parts by mass), Nippon Kayaku Co., Ltd. Kayahard (MCD) 108 g (90 parts by mass), N,N benzyldimethylamine 3.6 g (3 parts by mass) and acetone. The resin composition mixed with 60 g (50 parts by mass) is impregnated and then heated at 130° C. for 120 minutes to be cured to obtain a resin-impregnated strand. Using the obtained resin-impregnated strand, the tensile strength and the tensile elastic modulus were determined by the tensile property test method (based on ISO 10618) using the carbon fiber-resin-impregnated yarn sample, and the tensile strength and the resin-impregnated strand were respectively determined. Elasticity.

炭素繊維は、引張り強度、曲げ強度の観点から、表面処理、特に電解処理されたものが好ましい。表面処理剤としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン骨格型エポキシ樹脂、脂肪族系エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等のエポキシ系サイジング剤、2,4−トリレンジイソシアネート、メタフェニレンジイソシアネート、パラフェニレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、トリフェニルメタントリイソシアネート、ビフェニル−2,4,4’−トリイソシアネート等のイソシアネートと各種アルコールから得られるウレタン系サイジング剤、ナイロン6、ナイロン66、ナイロンMXD6,ナイロン11、ナイロン12およびナイロン610等のポリアミド系サイジング剤、エポキシ変性ポリプロピレン樹脂、無水マレイン酸変性ポリプロピレン樹脂等のポリオレフィン樹脂系サイジング剤等が挙げられる。この中でも、ガラス繊維強化樹脂基材(B)に用いられる熱可塑性樹脂(b)との親和性の観点からポリオレフィン樹脂系サイズ剤やナイロン系サイズ剤で処理された炭素繊維であることが好ましい。ポリオレフィン樹脂系サイズ剤としては無水マレイン酸変性ポリプロピレン樹脂、ナイロン系サイズ剤としてはナイロン6やナイロン66が特に好ましい。例えば、熱可塑性樹脂(b)がポリプロピレン樹脂の場合はポリオレフィン樹脂系サイズ剤、熱可塑性樹脂(b)がポリアミド樹脂の場合はナイロン系サイズ剤を用いるというように熱可塑性樹脂(b)と類似構造のサイズ剤を使用することが好ましい。 From the viewpoint of tensile strength and bending strength, the carbon fiber is preferably surface-treated, particularly electrolytically treated. Examples of the surface treatment agent include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, naphthalene skeleton type epoxy resin, and fat. Group epoxy resins, epoxy sizing agents such as dicyclopentadiene type epoxy resins, 2,4-tolylene diisocyanate, metaphenylene diisocyanate, paraphenylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, norbornane diisocyanate, triphenylmethane Urethane sizing agents obtained from isocyanates such as triisocyanate, biphenyl-2,4,4'-triisocyanate and various alcohols, polyamide sizing such as nylon 6, nylon 66, nylon MXD6, nylon 11, nylon 12 and nylon 610. Agents, polyolefin resin-based sizing agents such as epoxy-modified polypropylene resin, maleic anhydride-modified polypropylene resin, and the like. Among these, carbon fibers treated with a polyolefin resin-based sizing agent or a nylon-based sizing agent are preferable from the viewpoint of affinity with the thermoplastic resin (b) used for the glass fiber reinforced resin base material (B). Maleic anhydride-modified polypropylene resin is particularly preferable as the polyolefin resin-based sizing agent, and nylon 6 and nylon 66 are particularly preferable as the nylon-based sizing agent. For example, when the thermoplastic resin (b) is a polypropylene resin, a polyolefin resin-based sizing agent is used, and when the thermoplastic resin (b) is a polyamide resin, a nylon-based sizing agent is used. For example, a structure similar to the thermoplastic resin (b) is used. It is preferable to use the sizing agent.

炭素繊維の平均繊維長は、10〜150mmが好ましく、30〜80mmがより好ましい。一般に炭素繊維が短すぎると成型品の機械物性の低下や均質な炭素繊維強化樹脂基材(A)を得ることが困難となり、長いほど機械物性に優れた構造材が得られるが、特にスタンピング成形時において、賦型性が低下するために複雑な3次元形状の構造材が得られにくくなる。炭素繊維の平均繊維長が上限値以下であれば、優れた賦形性が得られる。そのため、リブやボス等の複雑な3次元形状の構造材を得ることが容易である。また、炭素繊維の平均繊維長が下限値以上であれば、機械物性に優れた構造材を製造できる。平均繊維長は、以下の方法で測定することができる。 The average fiber length of the carbon fibers is preferably 10 to 150 mm, more preferably 30 to 80 mm. In general, if the carbon fiber is too short, it becomes difficult to obtain mechanical properties of the molded product and it is difficult to obtain a homogeneous carbon fiber reinforced resin substrate (A). The longer the carbon fiber is, the better the structural material can be obtained. At times, it is difficult to obtain a structural material having a complicated three-dimensional shape because the moldability is lowered. When the average fiber length of the carbon fibers is equal to or less than the upper limit value, excellent shapeability can be obtained. Therefore, it is easy to obtain a structural material having a complicated three-dimensional shape such as ribs and bosses. If the average fiber length of the carbon fibers is not less than the lower limit value, a structural material having excellent mechanical properties can be manufactured. The average fiber length can be measured by the following method.

(平均繊維長の測定方法)
数平均繊維長の測定方法としては、例えば焼き飛ばし法により、繊維強化複合材料に含まれる樹脂成分を除去し、残った強化繊維を濾別した後、顕微鏡観察により測定する方法や、溶融法で繊維強化複合材料を薄く引き伸ばして強化繊維を透過観察して測定する方法がある。測定は強化繊維を無作為に400本選び出し、その長さを1μm単位まで光学顕微鏡にて測定し、ΣLi/400(Li:測定した繊維長(i=1,2,3,・・・,400)により数平均繊維長を算出する。なお、繊維強化複合材料から焼き飛ばし法等で強化繊維を摘出する方法は、得られる結果に特別な差異を生じることはない。なお、成形品中における炭素繊維の重量平均繊維長は、例えば、成形条件などにより調整することができる。具体的には配置方法や配置サイズ等を適宜変更することにより、成形品中における炭素繊維の平均繊維長を所望の範囲とすることができる。
(Measurement method of average fiber length)
As a method for measuring the number average fiber length, for example, by a burn-out method, the resin component contained in the fiber-reinforced composite material is removed, and after the remaining reinforcing fibers are filtered off, a method of measuring by microscope observation or a melting method is used. There is a method in which a fiber-reinforced composite material is thinly stretched and the reinforcing fibers are permeated and observed. For the measurement, 400 reinforcing fibers were randomly selected and the length was measured up to a unit of 1 μm with an optical microscope, and ΣLi/400 (Li: measured fiber length (i=1, 2, 3,..., 400 The number average fiber length is calculated by ).The method of extracting the reinforced fibers from the fiber reinforced composite material by the burnout method does not cause any particular difference in the obtained results. The weight average fiber length of the fibers can be adjusted by, for example, molding conditions, etc. Specifically, the average fiber length of the carbon fibers in the molded product can be adjusted to a desired value by appropriately changing the arrangement method, the arrangement size, and the like. It can be a range.

炭素繊維の平均繊維直径は、小さすぎても大きすぎても補強効果が低減する。小さすぎると補強への寄与が小さく、大きすぎると繊維が折れやすく補強効果が得られない。これより、平均繊維直径は1〜50μmが好ましく、5〜15μmがより好ましい。平均繊維直径は、以下の方法で測定することができる。 If the average fiber diameter of the carbon fibers is too small or too large, the reinforcing effect is reduced. If it is too small, the contribution to the reinforcement is small, and if it is too large, the fiber is easily broken and the reinforcing effect cannot be obtained. Therefore, the average fiber diameter is preferably 1 to 50 μm, more preferably 5 to 15 μm. The average fiber diameter can be measured by the following method.

(平均繊維直径の測定方法)
炭素繊維の平均繊維径は、光学顕微鏡や電子顕微鏡等を用いて容易に測定することができる。例えば、基材の5,000倍の電子顕微鏡による繊維の断面写真から任意の400本の炭素繊維を選択してその繊維径を測定し、その単純平均値として求める。横断面の形状が円形でない、例えば楕円径である場合には、長径と短径の平均値を繊維径とする。
(Measurement method of average fiber diameter)
The average fiber diameter of carbon fibers can be easily measured using an optical microscope, an electron microscope or the like. For example, an arbitrary 400 carbon fibers are selected from a cross-sectional photograph of the fibers with an electron microscope of 5,000 times that of the base material, the fiber diameters thereof are measured, and a simple average value thereof is obtained. When the shape of the cross section is not circular, for example, is elliptic, the average value of the major axis and the minor axis is the fiber diameter.

熱可塑性樹脂(a)としては、ポリアミド樹脂(ナイロン6(融点:220℃)、ナイロン66(融点:260℃)、ナイロン12(融点:175℃)、ナイロンMXD6(融点:237℃)等、ポリオレフィン樹脂(低密度ポリエチレン樹脂(融点:95〜130℃)、高密度ポリエチレン樹脂(融点:120〜140℃)、ポリプロピレン樹脂(融点:165℃)等、変性ポリオレフィン樹脂(変性ポリプロピレン樹脂(融点:160〜165℃)等、ポリエステル樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリカーボネート樹脂(ガラス転移温度:145℃)、ポリアミドイミド樹脂、ポリフェニレンオキシド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリスチレン樹脂、ABS樹脂、ポリフェニレンサルファイド樹脂、液晶ポリエステル樹脂、アクリロニトリルとスチレンの共重合体、ナイロン6とナイロン66の共重合体等の熱可塑性樹脂が挙げられる。変性ポリオレフィン樹脂としては、例えば、マレイン酸等の酸によりポリオレフィン樹脂を変性した樹脂等が挙げられる。熱可塑性樹脂は、1種を単独で使用してもよく、2種以上を併用してもよく、2種以上をポリマーアロイとして使用とてもよい。 As the thermoplastic resin (a), polyamide resin (nylon 6 (melting point: 220° C.), nylon 66 (melting point: 260° C.), nylon 12 (melting point: 175° C.), nylon MXD6 (melting point: 237° C.), polyolefin, etc. Resins (low density polyethylene resin (melting point: 95 to 130°C), high density polyethylene resin (melting point: 120 to 140°C), polypropylene resin (melting point: 165°C), modified polyolefin resin (modified polypropylene resin (melting point: 160 to 160) 165° C.), polyester resin (polyethylene terephthalate, polybutylene terephthalate, etc.), polycarbonate resin (glass transition temperature: 145° C.), polyamideimide resin, polyphenylene oxide resin, polysulfone resin, polyether sulfone resin, polyether ether ketone resin, Examples of the thermoplastic resin include a polyetherimide resin, a polystyrene resin, an ABS resin, a polyphenylene sulfide resin, a liquid crystal polyester resin, a copolymer of acrylonitrile and styrene, and a copolymer of nylon 6 and nylon 66. The modified polyolefin resin is exemplified. Examples thereof include resins obtained by modifying a polyolefin resin with an acid such as maleic acid, etc. The thermoplastic resins may be used alone or in combination of two or more, and may be used in combination of two or more. Very good for use as a polymer alloy.

熱可塑性樹脂(a)としては、炭素繊維との接着性、炭素繊維強化樹脂基材としての形状保持能力、1次加工時の加熱における溶融性、2次加工時における加工時間、加工温度及び熱可塑性樹脂の原料コストの各々のバランスの点から、ポリプロピレン樹脂やポリエチレン樹脂等のポリオレフィン樹脂、ナイロン6やナイロン66等のポリアミド樹脂、ポリエチレンテレフタレート樹脂及びポリカーボネート樹脂からなる群から選ばれる少なくとも1種を含むことが好ましい。結晶性と2次加工時の成型性、紡糸性の観点から、特に好ましいのはポリプロピレン樹脂、ポリアミド樹脂である。 As the thermoplastic resin (a), adhesiveness to carbon fiber, shape retention ability as a carbon fiber reinforced resin base material, meltability during heating during primary processing, processing time during secondary processing, processing temperature and heat From the viewpoint of each balance of the raw material cost of the plastic resin, at least one selected from the group consisting of polyolefin resins such as polypropylene resin and polyethylene resin, polyamide resins such as nylon 6 and nylon 66, polyethylene terephthalate resin and polycarbonate resin is included. It is preferable. From the viewpoint of crystallinity, moldability during secondary processing, and spinnability, polypropylene resin and polyamide resin are particularly preferable.

熱可塑性樹脂(a)の溶融粘度(MI値)としては特に限定はされないが、下限については繊維化加工の容易さなどの観点から190℃、2.16kgfの荷重におけるMIの値は0.1以上が好ましく、1.0以上がより好ましく、5.0以上がさらに好ましい。また、上限については加熱加圧時における炭素繊維強化樹脂基材(A)の形状保持性などの観点から190℃、2.16kgfの荷重におけるMIの値は150以下が好ましく、120以下がより好ましく、100以下がさらに好ましい。 The melt viscosity (MI value) of the thermoplastic resin (a) is not particularly limited, but the lower limit of the MI value at 190° C. under a load of 2.16 kgf is 0.1 from the viewpoint of easiness of fiberizing. The above is preferable, 1.0 or more is more preferable, and 5.0 or more is further preferable. Further, regarding the upper limit, the MI value under a load of 190° C. and 2.16 kgf is preferably 150 or less, and more preferably 120 or less from the viewpoint of the shape retention of the carbon fiber reinforced resin substrate (A) during heating and pressing. , 100 or less is more preferable.

<ガラス繊維強化樹脂基材(B)>
ガラス繊維強化樹脂基材(B)の態様の一つは、ガラス繊維および熱可塑性樹脂(b)を含有する。他に含んでいてもよい材料としては、他の熱可塑性樹脂や耐光安定剤、酸化防止剤、フィラー、可塑剤、結晶核剤等が挙げられる。これらは樹脂の流動性や熱安定性、力学特性などを損なわない範囲において添加することが可能であり、一般的にはガラス繊維強化樹脂基材(B)に対して0.01〜30質量%の割合で含有することが好ましい。前記ガラス繊維の含有量は、ガラス繊維強化樹脂基材(B)の総質量に対して、通常5質量%以上、2次加工後の製品における強度や耐久性、剛性、耐衝撃性などの力学的性質の観点から好ましくは10質量%以上、より好ましくは20質量%以上である。また、通常80質量%以下、最終製品の重量、1次加工時の炭素繊維強化樹脂基材(A)への樹脂の含浸性、2次加工時における半製品の賦型性、流動性の観点から好ましくは70質量%以下、より好ましくは60質量%以下である。前記熱可塑性樹脂(b)の含有量は、ガラス繊維強化樹脂基材(B)の総質量に対して、通常20質量%以上、1次加工時の炭素繊維強化樹脂基材(A)への樹脂の含浸性や2次加工時における半製品の賦型性、流動性の観点から好ましくは30質量%以上、より好ましくは40質量%以上である。また、通常95質量%以下、1次加工時の流動性制御や半製品における炭素繊維強化樹脂基材(A)の炭素繊維含有量の制御などの観点から好ましくは90質量%以下、より好ましくは80質量%以下である。
<Glass fiber reinforced resin substrate (B)>
One of the embodiments of the glass fiber reinforced resin base material (B) contains glass fiber and a thermoplastic resin (b). Other materials that may be included include other thermoplastic resins, light stabilizers, antioxidants, fillers, plasticizers, crystal nucleating agents, and the like. These can be added in a range that does not impair the fluidity, thermal stability, mechanical properties, etc. of the resin, and generally 0.01 to 30% by mass relative to the glass fiber reinforced resin base material (B). It is preferable to contain it in a ratio of. The content of the glass fiber is usually 5% by mass or more based on the total mass of the glass fiber reinforced resin base material (B), and mechanical properties such as strength, durability, rigidity and impact resistance of the product after secondary processing. From the viewpoint of physical properties, it is preferably 10% by mass or more, more preferably 20% by mass or more. Further, usually 80% by mass or less, the weight of the final product, the impregnation of the resin into the carbon fiber reinforced resin base material (A) during the primary processing, the moldability of the semi-finished product during the secondary processing, and the viewpoint of fluidity. It is preferably 70% by mass or less, more preferably 60% by mass or less. The content of the thermoplastic resin (b) is usually 20% by mass or more based on the total mass of the glass fiber reinforced resin substrate (B), and the content of the thermoplastic resin (b) in the carbon fiber reinforced resin substrate (A) during the primary processing is From the viewpoint of resin impregnation property, moldability of semi-finished product at the time of secondary processing, and fluidity, it is preferably 30% by mass or more, more preferably 40% by mass or more. Further, it is usually 95% by mass or less, preferably 90% by mass or less, more preferably from the viewpoint of fluidity control during primary processing and control of the carbon fiber content of the carbon fiber reinforced resin substrate (A) in the semi-finished product. It is 80 mass% or less.

また、前記ガラス繊維と前記熱可塑性樹脂(b)の含有比率は、通常、質量比でガラス繊維:熱可塑性樹脂(b)=5:95〜80:20であり、1次加工時における炭素繊維強化樹脂基材(A)への樹脂の含浸性と2次加工時の流動性、2次加工後の製品物性などの観点から10:90〜60:40であることが好ましい。 Moreover, the content ratio of the said glass fiber and the said thermoplastic resin (b) is glass fiber:thermoplastic resin (b)=5:95-80:20 by mass ratio, and is carbon fiber at the time of primary processing. It is preferably from 10:90 to 60:40 from the viewpoint of the resin impregnation property into the reinforced resin substrate (A), the fluidity during secondary processing, the physical properties of the product after secondary processing, and the like.

ガラス繊維は一般的には溶融紡糸することにより得られる。市販のガラスロービングやチョップドストランド製品が使用できる。ガラス繊維の平均繊維長は、1〜1000mmが好ましく、3〜700mmがより好ましく、5〜500mmがさらに好ましく、10〜200mmが特に好ましい。一般にガラス繊維が長いほど機械物性に優れた構造材が得られる。ガラス繊維の平均繊維直径は、1〜50μmが好ましく、5〜30μmがより好ましい。 Glass fibers are generally obtained by melt spinning. Commercially available glass roving and chopped strand products can be used. The average fiber length of the glass fibers is preferably 1 to 1000 mm, more preferably 3 to 700 mm, further preferably 5 to 500 mm, particularly preferably 10 to 200 mm. Generally, the longer the glass fiber is, the more structural material excellent in mechanical properties can be obtained. 1-50 micrometers is preferable and, as for the average fiber diameter of glass fiber, 5-30 micrometers is more preferable.

熱可塑性樹脂(b)としては、熱可塑性樹脂(a)で挙げたものを適用できる。一次成型後において樹脂が相互溶融して界面などを生じず、炭素繊維強化層における欠点が少なくなるという観点から、前記熱可塑性樹脂(a)と前記熱可塑性樹脂(b)は相溶性や親和性が高いものがよく、同一の樹脂種であることが好ましい。同一の樹脂種とは繰り返し構造単位が同一であることを意味する。繰り返し構造単位成分の割合、重合法、各種分子量は異なっていてもよいが、一次成型条件において熱可塑性樹脂(a)と熱可塑性樹脂(b)を相溶させる観点から同一の樹脂を用いることがより好ましい。熱可塑性樹脂(b)としては、炭素繊維との接着性、1次加工時における炭素繊維強化樹脂基材(A)への含浸性、2次加工時における成型性、加工時間、加工温度、耐衝撃性や力学強度及び熱可塑性樹脂の原料コストの各々のバランスの点から、ポリプロピレン樹脂やポリエチレン樹脂等のポリオレフィン樹脂、ナイロン6やナイロン66等のポリアミド樹脂、ポリエチレンテレフタレート樹脂及びポリカーボネート樹脂からなる群から選ばれる少なくとも1種を含むことが好ましい。1次加工時における炭素繊維強化樹脂基材(A)への含浸性と耐衝撃性、力学強度、原料コストの観点から、特に好ましいのはポリプロピレン樹脂、ポリアミド樹脂である。 As the thermoplastic resin (b), those listed for the thermoplastic resin (a) can be applied. The resins (a) and (b) are compatible and compatible with each other from the viewpoint that the resins do not melt to each other after the primary molding to form an interface and the defects in the carbon fiber reinforced layer are reduced. It is preferable that the resin has a high value and the same resin species is used. The same resin species means that the repeating structural units are the same. The ratio of the repeating structural unit component, the polymerization method, and various molecular weights may be different, but the same resin is preferably used from the viewpoint of compatibilizing the thermoplastic resin (a) and the thermoplastic resin (b) under the primary molding conditions. More preferable. Examples of the thermoplastic resin (b) include adhesiveness with carbon fiber, impregnation with the carbon fiber reinforced resin base material (A) during primary processing, moldability during secondary processing, processing time, processing temperature, and durability. From the viewpoint of each balance of impact resistance, mechanical strength and raw material cost of thermoplastic resin, polyolefin resin such as polypropylene resin or polyethylene resin, polyamide resin such as nylon 6 or nylon 66, polyethylene terephthalate resin and polycarbonate resin are selected. It is preferable to include at least one selected. From the viewpoints of impregnability into the carbon fiber reinforced resin base material (A) at the time of primary processing, impact resistance, mechanical strength, and raw material cost, polypropylene resin and polyamide resin are particularly preferable.

熱可塑性樹脂(b)の溶融粘度(MI値)としては積層体作製時における炭素繊維強化樹脂基材(A)への樹脂の浸透性や二次成型時における流動性と物性との両立の観点より、以下に示す範囲であることが好ましい。例えば、下限については炭素繊維強化樹脂基材(A)への熱可塑性樹脂(b)の含浸や浸透性と二次加工時における加圧加熱プレス(スタンパブル成型)時の半製品の流動性などの観点から190℃、2.16kgfの荷重におけるMIの値は1以上が好ましく、10以上がより好ましく、50以上がさらに好ましい。また、半製品や二次成型品における力学特性などの観点から、190℃、2.16kgfの荷重におけるMIの値は300以下が好ましく、200以下がより好ましく、100以下がさらに好ましい。 As for the melt viscosity (MI value) of the thermoplastic resin (b), the viewpoint of compatibility of resin penetration into the carbon fiber reinforced resin base material (A) at the time of producing a laminate and fluidity and physical properties at the time of secondary molding Therefore, it is preferably within the following range. For example, regarding the lower limit, the impregnation and penetration of the thermoplastic resin (b) into the carbon fiber reinforced resin base material (A) and the fluidity of the semi-finished product at the time of pressurizing and heating (stampable molding) at the time of secondary processing, etc. From the viewpoint, the MI value under a load of 190° C. and 2.16 kgf is preferably 1 or more, more preferably 10 or more, and further preferably 50 or more. From the viewpoint of mechanical properties of semi-finished products and secondary molded products, the MI value under a load of 190° C. and 2.16 kgf is preferably 300 or less, more preferably 200 or less, and even more preferably 100 or less.

<離型シート>
本発明における離型シートは、加熱加圧成型した積層体において半製品を分割離型する、または加熱加圧設備に設置して一次成型品の金型への付着を防止する機能を有するシートを意味する。構成する材料については、前記機能を有する限り特に限定されるものではないが、離型性、耐熱性とハンドリングに必要なシート剛性の観点より、ポリテトラフルオロエチレンやポリイミド、ブチルゴム、シリコーン、ウレタンゴム、ポリエステルなどの樹脂単一のシートまたは、それらにガラスクロスやフィラー、ゴムなどを含有するシートなどを用いることができる。離型シートは、加熱加圧成型時に変形や流動を生じず、積層体から破損することなく半製品を取り出すために前記熱可塑性樹脂(a)または(b)の融点より高い融点を有する樹脂を含有することが好ましく、具体的には、熱可塑性樹脂(b)の融点+5℃以上、より好ましくは+10℃以上、さらに好ましくは+15℃以上である。また、通常+300℃以下である。離型性と融点特性、耐久性の観点から、ポリテトラフルオロエチレン、ポリイミド、またはシリコーンを含有することが好ましく、ポリテトラフルオロエチレンからなるシートであることがより好ましい。また、これらの離型シートはTダイなどによる押出しやカレンダー、ラミネートなど一般的なフィルム・シートの成形に利用される製法により得ることができる。市販の製品としては離型シートとして使用可能なものであれば特に限定されないが、例えばニトフロン、バイトン、圭樹、カプトン、ユーピレックス等の各種シートやフィルムが使用できる。
<Release sheet>
The release sheet in the present invention is a sheet having a function of dividing and releasing a semi-finished product in a heat-press-molded laminate, or installed in a heat-pressurizing facility to prevent adhesion of a primary molded product to a mold. means. The constituent material is not particularly limited as long as it has the above-mentioned function, but from the viewpoint of mold releasability, heat resistance and sheet rigidity necessary for handling, polytetrafluoroethylene or polyimide, butyl rubber, silicone, urethane rubber. A single sheet of resin such as polyester, or a sheet containing glass cloth, filler, rubber or the like in them can be used. The release sheet is made of a resin having a melting point higher than that of the thermoplastic resin (a) or (b) in order to take out a semi-finished product without being deformed or flown at the time of heat and pressure molding and without breaking the laminate. The melting point of the thermoplastic resin (b) is preferably +5° C. or higher, more preferably +10° C. or higher, still more preferably +15° C. or higher. Further, it is usually +300° C. or lower. From the viewpoints of releasability, melting point characteristics, and durability, it is preferable to contain polytetrafluoroethylene, polyimide, or silicone, and it is more preferable that the sheet is made of polytetrafluoroethylene. In addition, these release sheets can be obtained by a method used for forming a general film or sheet, such as extrusion using a T-die or the like, calendering, laminating and the like. The commercially available product is not particularly limited as long as it can be used as a release sheet, and various sheets and films such as Nitoflon, Viton, Keiki, Kapton, and Upilex can be used.

<炭素繊維強化樹脂基材(A)の製造方法>
本発明の炭素繊維強化樹脂基材(A)の製造方法は、主に不織布状で成型する場合は乾式法としては、針や凹凸のついたロール間に繊維を通して機械的に叩解・解繊してシート化するカード法、あるいは、繊維を気流中で浮遊・解繊した後にスクリーン上に吸引してシート化するエアレイ法などがある。具体的には、スパンボンド法、ニードルパンチ法、サーマルボンド法、レジンボンド法、ケミカルボンド法、メルトブロー法等があり、特に限定されないが、例えば熱可塑性樹脂繊維からなる綿状または捲縮をかけた状態のものに、炭素繊維を一定の長さにそろえてカットしたものを混ぜた状態で、カード機に投入して解繊混合し、ウェブを得たのち、クロスレイヤーでウェブを重ね、ニードルパンチで交絡させる方法などがある。また前記ウェブを得る方法として、カード法が、量産性が高いため好ましい。
<Method for producing carbon fiber reinforced resin substrate (A)>
The method for producing the carbon fiber reinforced resin base material (A) of the present invention is a dry method in which a nonwoven fabric is mainly used. There is a card method in which a sheet is formed into a sheet, or an air lay method in which fibers are suspended and defibrated in an air stream and then sucked onto a screen to form a sheet. Specifically, there are spun bond method, needle punch method, thermal bond method, resin bond method, chemical bond method, melt blow method, etc., but are not particularly limited. For example, cotton-like or crimped thermoplastic resin fibers are applied. In a state where carbon fibers are cut to a certain length and cut into a mixed state, put it into a card machine to defibrate and mix, obtain a web, and then stack the web with a cross layer and needle. There is a method of entangling with a punch. As a method for obtaining the web, a card method is preferable because it has high mass productivity.

炭素繊維強化樹脂基材(A)を製造する方法としては様々な方法があり、例えば、乾式法による不織布の作製方法としては、針や凹凸のついたロール間に繊維を通して機械的に叩解・解繊してシート化するカード法、あるいは、繊維を気流中で浮遊・解繊した後にスクリーン上に吸引してシート化するエアレイ法などがある。具体的には、スパンボンド法、ニードルパンチ法、サーマルボンド法、レジンボンド法、ケミカルボンド法、メルトブロー法等が挙げられる。 There are various methods for producing the carbon fiber reinforced resin base material (A). For example, as a method for producing a non-woven fabric by a dry method, a fiber is passed between needles and rolls having irregularities to mechanically beat and deagglomerate. There are a card method in which fibers are formed into sheets, or an air-laying method in which fibers are suspended and defibrated in an air stream and then sucked onto a screen to form sheets. Specific examples thereof include spun bond method, needle punch method, thermal bond method, resin bond method, chemical bond method and melt blow method.

また、湿式法による作製方法としては、繊維を溶媒中に分散させ、製紙工業で使われるビーター、パルパーなどの装置を使用して解繊させた後に網上に抄き上げ、付着した溶媒を乾燥除去してシート化する所謂湿式抄紙法等がある。 In addition, as a production method by a wet method, fibers are dispersed in a solvent, defibrated using a device such as a beater or a pulper used in the paper manufacturing industry, then woven into a net, and the attached solvent is dried. There is a so-called wet papermaking method in which a sheet is removed and formed into a sheet.

本発明の炭素繊維強化樹脂基材(A)の製法について特に限定されないが、乾式製法の場合は増粘剤等の不要な材料を導入する必要がなく、また混合の際にもエアーを用いるため湿式法に比べ繊維長の維持(折損の低減)が容易であり、更に乾燥工程の省略が可能となり、排水処理も不要であることから、本発明の不織布は乾式法で作製されることが好ましい。 The method for producing the carbon fiber reinforced resin substrate (A) of the present invention is not particularly limited, but in the case of the dry production method, it is not necessary to introduce an unnecessary material such as a thickener, and air is also used during mixing. Since it is easier to maintain the fiber length (reduction of breakage) than the wet method, the drying step can be omitted, and wastewater treatment is not required, the nonwoven fabric of the present invention is preferably produced by the dry method. ..

本発明の炭素繊維強化樹脂基材(A)における目付、すなわち単位面積あたりの繊維の重量(Fiber Areal Weight、以下FAWと記す)は50〜2000g/mが好ましく、100〜1000g/mがより好ましい。FAWの小さすぎるものは繊維混抄マット状成形体自体の強度不足により取り扱いが困難となる上、所望の厚さの成形体を得るためには、後述する成形工程で不織布および/または炭素繊維強化樹脂シートの積層枚数を多くする必要があり、製造工程が煩雑となりやすい。逆にFAWの大きすぎるものは成形後の厚みが厚くなり薄物を成形することが困難となりやすく、また厚みブレが大きくなることがある。 Basis weight in the carbon fiber reinforced resin substrate of the present invention (A), i.e. fiber weight (Fiber Areal Weight, referred to as FAW less) per unit area is preferably 50~2000g / m 2, 100~1000g / m 2 is More preferable. If the FAW is too small, it will be difficult to handle due to the insufficient strength of the fiber-blended mat-like molded product itself, and in order to obtain a molded product of the desired thickness, a nonwoven fabric and/or a carbon fiber reinforced resin will be used in the molding step described later. Since it is necessary to increase the number of laminated sheets, the manufacturing process tends to be complicated. On the contrary, if the FAW is too large, the thickness after molding becomes large, and it becomes difficult to mold a thin material, and the thickness deviation may increase.

本発明の炭素繊維強化樹脂基材(A)における厚みについては、積層体作製における加熱加圧成型時の成形時間と成型温度や、半製品や二次成型品の力学特性との両立の観点より特定の範囲であることが好ましい。炭素繊維強化樹脂基材(A)における厚みの下限値としては、二次成型品の力学特性の観点から0.5mm以上であることが良く、1.0mm以上であることがより好ましく、2.0mm以上であることがさらに好ましい。また、炭素繊維強化樹脂基材(A)における厚みの上限値としては、熱板から炭素繊維強化樹脂基材(A)を介してガラス繊維強化樹脂基材(B)への熱伝導するためや、熱可塑性樹脂(b)の炭素繊維強化樹脂基材(A)へ完全に樹脂浸透するために要する加熱加圧成型時の成形時間や成型温度の低減の観点から20.0mm以下であることが良く、15.0mm以下であることが好ましく、10.0mm以下であることがさらに好ましい。 Regarding the thickness of the carbon fiber reinforced resin substrate (A) of the present invention, from the viewpoint of compatibility between the molding time and the molding temperature at the time of heat and pressure molding in the production of the laminate, and the mechanical properties of the semi-finished product and the secondary molded product. It is preferably within a specific range. The lower limit of the thickness of the carbon fiber reinforced resin substrate (A) is preferably 0.5 mm or more, more preferably 1.0 mm or more, from the viewpoint of mechanical properties of the secondary molded product. More preferably, it is 0 mm or more. In addition, the upper limit of the thickness of the carbon fiber reinforced resin substrate (A) is because heat conduction from the hot plate to the glass fiber reinforced resin substrate (B) through the carbon fiber reinforced resin substrate (A) From the viewpoint of reducing the molding time and molding temperature at the time of heat and pressure molding required for completely permeating the thermoplastic resin (b) into the carbon fiber reinforced resin substrate (A), it is 20.0 mm or less. It is preferably 15.0 mm or less, more preferably 10.0 mm or less.

また、本発明における炭素繊維強化樹脂基材(A)における嵩密度については、前述した炭素繊維強化樹脂基材(A)の目付と厚みから算出することが可能であり、その値としては積層体作製時における炭素繊維強化樹脂基材(A)への熱可塑性樹脂(b)の含浸性、半製品や二次成型品の力学特性などの観点より特定の範囲であることが好ましい。炭素繊維強化樹脂基材(A)における嵩密度の下限値としては、積層体作製に要する加熱加圧時間に関連する炭素繊維強化樹脂基材(A)の熱伝導性向上や積層体中の炭素繊維強化層中の炭素繊維含有量(Vf)を高くすることによる半製品や二次成型品の力学特性向上の観点から、0.01g/cm以上であることが好ましく、0.03g/cm以上であることがより好ましく、0.05g/cm以上であることがさらに好ましい。また、炭素繊維強化樹脂基材(A)における嵩密度の上限値としては、積層体作製に要する加熱加圧時間に関連する熱可塑性樹脂(b)の炭素繊維強化樹脂基材(A)への樹脂浸透速度向上の観点から0.5g/cm以下であることが好ましく、0.3g/cm以下であることがより好ましく、0.15g/cm以下であることがさらに好ましい。 The bulk density of the carbon fiber reinforced resin base material (A) in the present invention can be calculated from the basis weight and thickness of the carbon fiber reinforced resin base material (A) described above, and the value is the laminate. From the viewpoint of the impregnability of the thermoplastic resin (b) into the carbon fiber reinforced resin substrate (A) during production, the mechanical properties of the semi-finished product and the secondary molded product, and the like, it is preferably within a specific range. The lower limit of the bulk density of the carbon fiber reinforced resin substrate (A) is, as the lower limit of the bulk density of the carbon fiber reinforced resin substrate (A), the improvement of the thermal conductivity of the carbon fiber reinforced resin substrate (A) and the carbon in the layered product. From the viewpoint of improving the mechanical properties of the semi-finished product and the secondary molded product by increasing the carbon fiber content (Vf) in the fiber reinforced layer, it is preferably 0.01 g/cm 3 or more, and 0.03 g/cm 3. more preferably 3 or more, and further preferably 0.05 g / cm 3 or more. The upper limit of the bulk density of the carbon fiber reinforced resin base material (A) is the same as that of the thermoplastic resin (b) relative to the carbon fiber reinforced resin base material (A) related to the heating and pressing time required for producing a laminate. From the viewpoint of improving the resin permeation rate, it is preferably 0.5 g/cm 3 or less, more preferably 0.3 g/cm 3 or less, and further preferably 0.15 g/cm 3 or less.

<ガラス繊維強化樹脂基材(B)の製造方法>
連続スワール状ガラス繊維ストランド及び/又はチョップドガラス繊維ストランドで構成されたガラス繊維層の複数層と、前記複数のガラス繊維層の間に介在された熱可塑性樹脂繊維不織布層との積層体を上下両面からニードルパンチ処理してガラス繊維複合マットを作製する。さらにガラス繊維強化樹脂基材は前記マットの不織布層に由来しない熱可塑性樹脂繊維を押出機にてシート状に形成するとともに押し出された熱可塑性樹脂シートの両面に前記マットを積層し、加熱加圧装置ローラで加熱および加圧する。不織布層を構成する熱可塑性樹脂繊維が完全に溶融し、冷却固化させることでシート状のガラス繊維強化樹脂基材を作製する。
<Method for producing glass fiber reinforced resin substrate (B)>
Upper and lower surfaces of a laminate of a plurality of glass fiber layers composed of continuous swirl-shaped glass fiber strands and/or chopped glass fiber strands and a thermoplastic resin fiber nonwoven fabric layer interposed between the plurality of glass fiber layers A glass fiber composite mat is produced by needle punching. Further, the glass fiber reinforced resin base material is formed by extruding a thermoplastic resin fiber not derived from the non-woven fabric layer of the mat into a sheet shape with an extruder and laminating the mat on both sides of the extruded thermoplastic resin sheet, and heating and pressing. Heat and pressurize with device rollers. The thermoplastic resin fibers forming the non-woven fabric layer are completely melted and cooled to solidify to produce a sheet-shaped glass fiber reinforced resin substrate.

<積層体の製造方法>
本発明の積層体(一次成型品)は、前述の炭素繊維強化樹脂基材(A)とガラス繊維強化樹脂基材(B)とを積層した成型前積層体を加熱加圧することにより製造することができる。離型シート上にガラス繊維強化樹脂基材(B)を芯材としてその外層に炭素繊維強化樹脂基材(A)を配置し、加圧加熱可能なプレス機で後述する条件で加熱および加圧させることができる。その他の方法としては、炭素繊維強化樹脂基材(A)の外側から加熱できればよく、油圧式ホットプレスやフラッシュプレス、エアープレス、ダブルベルトプレスなどを使用することが挙げられる。その後、冷却固化させ一次成型品を得る。加熱温度は、一次成型品の炭素繊維強化樹脂基材(A)への熱可塑性樹脂(b)の含浸性の観点から、好ましくは熱可塑性樹脂(b)の融点+5℃以上、より好ましくは+10℃以上、さらに好ましくは+15℃以上、また、一次成型品の外寸変動や熱可塑性樹脂(b)の樹脂劣化防止、離型シートの耐熱性の観点から、好ましくは+150℃以下、より好ましくは+120℃以下、さらに好ましくは+100℃以下である。より具体的には、熱可塑性樹脂(b)の融点に対し+5〜+150℃が好ましく、+10〜+120℃がより好ましい。加圧は、下限については炭素繊維強化樹脂基材(A)への樹脂の熱可塑性樹脂(b)も含浸性の観点から、好ましくは0.01MPa以上、より好ましくは0.1MPa以上、上限については加圧後の一次成型品の外寸変動の観点から好ましくは10MPa以下、より好ましくは4MPa以下である。加熱加圧時間は、60秒以上が好ましく、150秒以上がより好ましい。加熱加圧する装置としては、加熱、冷却機能を有した電熱やオイル循環、蒸気式のプレス機等が挙げられる。成型前積層体を複数の熱板で挟みこんで加熱加圧する場合には、熱板の温度は、10℃〜500℃が好ましい。本発明における図1の態様の場合には、複数熱板の温度が同一であっても異なっていてもよく、熱板の温度の下限は、一次成型品の炭素繊維強化樹脂基材(A)への熱可塑性樹脂(b)の含浸性の観点から、100℃以上が好ましく、200℃以上がより好ましい。上限は、一次成型品の外寸変動や熱可塑性樹脂(b)の樹脂劣化防止、離型シートの耐熱性の観点から、300℃以下が好ましく、280℃以下がより好ましい。本発明における図3の態様の場合には、上下異なる温度の熱板を用いることが好ましく、温度が高い方の熱板の下限は、図1の態様と同様の熱板を用いることができる。低い方の熱板の下限は、積層体の成型時間短縮の観点から10℃以上が好ましく、20℃以上がより好ましい。上限は、積層体作製における加熱加圧による外寸変動への影響低減の観点から100℃以下が好ましく、50℃以下がより好ましい。一次成型品の炭素繊維強化樹脂基材(A)への熱可塑性樹脂(b)の含浸性の観点から、両熱板の温度差が50〜290℃であることが好ましい。
<Method for manufacturing laminated body>
The laminate (primary molded product) of the present invention is produced by heating and pressing a pre-molded laminate in which the carbon fiber reinforced resin substrate (A) and the glass fiber reinforced resin substrate (B) are laminated. You can A glass fiber reinforced resin base material (B) is used as a core material on a release sheet, and a carbon fiber reinforced resin base material (A) is placed on the outer layer of the release material sheet. Can be made. As another method, it is sufficient that heating can be performed from the outside of the carbon fiber reinforced resin base material (A), and a hydraulic hot press, a flash press, an air press, a double belt press or the like can be used. Then, it is cooled and solidified to obtain a primary molded product. The heating temperature is preferably +5° C. or higher of the melting point of the thermoplastic resin (b), more preferably +10, from the viewpoint of the impregnability of the thermoplastic resin (b) into the carbon fiber reinforced resin substrate (A) of the primary molded product. ℃ or more, more preferably +15 ℃ or more, preferably from +150 ℃ or less, more preferably from the viewpoint of the external dimension fluctuation of the primary molded product, the resin deterioration prevention of the thermoplastic resin (b), and the heat resistance of the release sheet. It is +120°C or lower, and more preferably +100°C or lower. More specifically, the melting point of the thermoplastic resin (b) is preferably +5 to +150°C, more preferably +10 to +120°C. From the viewpoint of impregnating the thermoplastic resin (b) of the resin into the carbon fiber reinforced resin substrate (A), the lower limit of the pressure is preferably 0.01 MPa or more, more preferably 0.1 MPa or more, and the upper limit. Is preferably 10 MPa or less, and more preferably 4 MPa or less from the viewpoint of the external dimension fluctuation of the primary molded product after pressurization. The heating and pressing time is preferably 60 seconds or longer, more preferably 150 seconds or longer. Examples of the device for heating and pressurizing include electric heat having a heating and cooling function, oil circulation, and a steam-type press machine. When the pre-molded laminate is sandwiched by a plurality of hot plates and heated and pressed, the temperature of the hot plates is preferably 10°C to 500°C. In the case of the embodiment of FIG. 1 in the present invention, the temperatures of a plurality of hot plates may be the same or different, and the lower limit of the temperature of the hot plates is the carbon fiber reinforced resin substrate (A) of the primary molded product. From the viewpoint of the impregnation property of the thermoplastic resin (b) into the resin, 100°C or higher is preferable, and 200°C or higher is more preferable. The upper limit is preferably 300° C. or lower, more preferably 280° C. or lower, from the viewpoints of external dimension fluctuation of the primary molded product, prevention of resin deterioration of the thermoplastic resin (b), and heat resistance of the release sheet. In the case of the embodiment of FIG. 3 of the present invention, it is preferable to use hot plates having different temperatures, and the lower limit of the hot plate having the higher temperature can be the same as that of the embodiment of FIG. The lower limit of the lower hot plate is preferably 10° C. or higher, more preferably 20° C. or higher, from the viewpoint of shortening the molding time of the laminate. The upper limit is preferably 100° C. or lower, and more preferably 50° C. or lower, from the viewpoint of reducing the influence of the heating and pressurization on the outer size variation in the production of the laminate. From the viewpoint of the impregnability of the thermoplastic resin (b) into the carbon fiber reinforced resin substrate (A) of the primary molded product, it is preferable that the temperature difference between both hot plates is 50 to 290°C.

さらに、本発明では加圧加熱後に1度以上の圧力解放と再加圧を行うことが好ましく、これにより炭素繊維強化樹脂基材(A)への熱可塑性樹脂(b)の含浸が促進され、積層体中のボイド低減や樹脂含浸速度の増加などの効果が得られる。圧力解放し再加圧する工程は加熱工程完了後から冷却工程に移行する際に実施することが特に好ましい。
また、2台以上のプレス機を用いて加熱工程と冷却工程を分離することにより熱板の昇温と降温が不要であり時間短縮が可能となり、また上記の圧力解放と再加圧も同時に実施できるため本発明の積層体を効率的に生産することが可能であり、好ましい。
Further, in the present invention, it is preferable to perform pressure release and re-pressurization at least once after pressure heating, which promotes impregnation of the carbon fiber reinforced resin substrate (A) with the thermoplastic resin (b), Effects such as reduction of voids in the laminate and increase of resin impregnation speed can be obtained. It is particularly preferable that the step of releasing the pressure and repressurizing is carried out when the step of shifting to the cooling step after completion of the heating step.
Also, by separating the heating process and cooling process using two or more press machines, it is not necessary to raise and lower the temperature of the hot plate, and the time can be shortened. In addition, the pressure release and repressurization described above are also performed at the same time. Therefore, the laminate of the present invention can be efficiently produced, which is preferable.

以下に、本発明を実施例によりさらに具体的に説明する。但し、これらの実施例及び比較例により本発明は何ら制限を受けるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples. However, the present invention is not limited to these Examples and Comparative Examples.

[評価方法]
本発明における種々の物性等の測定及び評価は下記に示す方法により実施した。
[Evaluation method]
The measurement and evaluation of various physical properties and the like in the present invention were carried out by the methods described below.

(溶融粘度測定)
炭素繊維強化樹脂基材(A)およびガラス繊維強化樹脂基材(B)において使用した熱可塑性樹脂の溶融粘度測定は、「セミメルトインデクサ 2A型」(株式会社東洋精機製作所製)を用いてJIS−K7210に準拠し、A法自動カット法により試験温度190℃、試験荷重2.16kgf、採取時間5秒における重量測定からMI値(g/10min)を算出した。
(Measurement of melt viscosity)
The melt viscosity of the thermoplastic resin used in the carbon fiber reinforced resin base material (A) and the glass fiber reinforced resin base material (B) is measured by using "Semi-melt indexer 2A type" (manufactured by Toyo Seiki Seisakusho Co., Ltd.) according to JIS. Based on -K7210, the MI value (g/10 min) was calculated from the weight measurement at a test temperature of 190° C., a test load of 2.16 kgf, and a sampling time of 5 seconds by the method A automatic cut method.

(含浸性評価)
成型後のシートにおける外観より、下記基準で外観評価を行った。
〇:積層体の表面に炭素繊維強化樹脂基材(A)の強化繊維の浮き(未含浸部分)が
積層体における炭素繊維強化樹脂基材側の表面全体の5%未満であり、樹脂により
表面が被覆された状態。
△:積層体の表面に炭素繊維強化樹脂基材(A)の強化繊維の浮き(未含浸部分)が
あり、強化繊維の浮きが積層体における炭素繊維強化樹脂基材側の表面全体の5%
以上30%未満存在する。
×:積層体の表面に炭素繊維強化樹脂基材(A)の強化繊維の浮き(未含浸部分)が
あり、強化繊維の浮きが積層体における炭素繊維強化樹脂基材側の表面全体の30%
以上存在する。
(Evaluation of impregnation)
From the appearance of the molded sheet, the appearance was evaluated according to the following criteria.
◯: The floating of the reinforcing fibers of the carbon fiber reinforced resin base material (A) (non-impregnated portion) on the surface of the laminate is less than 5% of the entire surface of the carbon fiber reinforced resin base material side of the laminate, and the surface may vary depending on the resin. Is covered.
Δ: There is a floating portion (unimpregnated portion) of the reinforcing fiber of the carbon fiber reinforced resin substrate (A) on the surface of the laminate, and the floating portion of the reinforcing fiber is 5% of the entire surface of the laminated body on the carbon fiber reinforced resin substrate side.
It exists above 30%.
X: There is a floating portion (unimpregnated portion) of the reinforcing fiber of the carbon fiber reinforced resin substrate (A) on the surface of the laminate, and the floating portion of the reinforcing fiber is 30% of the entire surface of the laminated body on the carbon fiber reinforced resin substrate side.
There exists more.

(外寸変動)
実施例および比較例において用いたガラス繊維強化樹脂基材(B)のTDおよびMD両方を基材の中心線から5cm間隔で5か所をデジタルノギスにより測定した平均値を基材外寸とした。さらに、実施例および比較例の各種条件で成型した後の積層体の寸法のTDおよびMDの両方を積層体の中心線から5cm間隔で5か所をデジタルノギスにより測定した平均値を積層体外寸とした。これらの値より、外寸増大率を下記により算出した。
外寸増大率=(積層体外寸−基材外寸)/基材外寸×100%
また、この外寸増大率より下記基準により外寸変動の評価を判定した。
〇:外寸増大率について、TD、MDともに10%未満。
×:外寸増大率について、TDまたはMDのどちらかが10%以上。
(Outside dimension fluctuation)
Both the TD and MD of the glass fiber reinforced resin base material (B) used in the examples and comparative examples were measured at 5 points with a digital caliper at 5 cm intervals from the center line of the base material, and the average value was taken as the base material outer dimension. .. Further, both the TD and MD of the dimensions of the laminate after molding under various conditions of Examples and Comparative Examples were measured with a digital caliper at 5 points at 5 cm intervals from the center line of the laminate, and the average value was obtained. And From these values, the external dimension increase rate was calculated as follows.
Outer dimension increase rate = (outer dimension of laminate-outer dimension of substrate) / outer dimension of substrate x 100%
In addition, the evaluation of the outside dimension variation was judged based on the following criteria based on this outside dimension increase rate.
◯: Outer size increase rate is less than 10% for both TD and MD.
X: Regarding the external dimension increase rate, either TD or MD is 10% or more.

(表面粗さ測定)
実施例および比較例において作製した積層体から離型フィルムを剥離した直後の半製品の表面粗さ測定は、小型表面粗さ測定機「サーフテストSJ−210」(ミツトヨ製)を用いJIS B 0601-2001に準じて、ガラス繊維強化層側の中央部表面5か所においてRa、Rq、Rzを測定し、各々の平均値を算出した。行った。
(Surface roughness measurement)
The surface roughness of the semi-finished products immediately after peeling the release film from the laminates produced in the examples and comparative examples was measured using a small surface roughness measuring instrument “Surftest SJ-210” (manufactured by Mitutoyo) JIS B 0601. According to -2001, Ra, Rq, and Rz were measured at five places on the surface of the central portion on the glass fiber reinforced layer side, and the average value of each was calculated. went.

[炭素繊維強化樹脂基材(A)]
未延伸ポリプリピレン繊維(三菱ケミカル製、MI=14)を平均繊維長45mmにカットしたものと、PAN系炭素繊維(15K、平均繊維直径7μm)を平均繊維長60mmに切断したものとを、重量質量比で30:70となるように配合した。得られた配合物をカード機に投入して解繊混合し、15〜20g/mのウェブを得た。その後にクロスレイヤーでウェブを重ね、ニードルパンチで交絡させて、炭素繊維強化樹脂基材(A)を製造した。(MD引張伸び率:97%、TD引張伸び率:61%、MD引張応力:0.023MPa、TD引張応力:0.054MPa、目付:411g/m、厚み6.0mm、嵩密度:0.07g/cm)。
[Carbon fiber reinforced resin substrate (A)]
An unstretched polypropylene fiber (Mitsubishi Chemical, MI=14) cut to an average fiber length of 45 mm and a PAN-based carbon fiber (15 K, average fiber diameter 7 μm) cut to an average fiber length of 60 mm were used. It was blended so that the ratio was 30:70. The obtained composition was put into a card machine and defibrated and mixed to obtain a web of 15 to 20 g/m 2 . After that, the webs were overlapped with a cross layer and entangled with a needle punch to produce a carbon fiber reinforced resin base material (A). (MD tensile elongation: 97%, TD tensile elongation: 61%, MD tensile stress: 0.023 MPa, TD tensile stress: 0.054 MPa, basis weight: 411 g/m 2 , thickness: 6.0 mm, bulk density: 0. 07 g/cm 3 ).

[ガラス繊維強化樹脂基材(B)]
ガラス繊維強化樹脂基材(B)は、クオドランド・プラスチック・コンポジッド・ジャパン製ガラス繊維複合材GMT(品番:P4038−BK31、Vf20%、平均繊維直径13μm、平均繊維長40mm以上、樹脂:ポリプロピレン樹脂、MI=74)を用いた。
[Glass fiber reinforced resin substrate (B)]
The glass fiber reinforced resin base material (B) is a glass fiber composite material GMT (product number: P4038-BK31, Vf20%, average fiber diameter 13 μm, average fiber length 40 mm or more, resin: polypropylene resin, manufactured by Quadland Plastic Composite Japan. MI=74) was used.

[離型フィルム(C)]
本発明における離型フィルム(C)は、三ツ星ベルト製のガラスクロス強化テフロンシート(厚み:300μm)を用いた。(テフロンは登録商標)
[Release film (C)]
As the release film (C) in the present invention, a glass cloth reinforced Teflon sheet (thickness: 300 μm) made by Mitsuboshi Belting was used. (Teflon is a registered trademark)

[実施例1]
上記の炭素繊維強化樹脂基材(A)とガラス繊維強化樹脂基材(B)を20cm角に切断した後に上面側設定温度250℃、下面側設定温度を30℃とした電熱プレス成型機に、熱板(250℃)/離型フィルム(C)/炭素繊維強化樹脂基材(A)/ガラス繊維強化樹脂基材(B)/離型フィルム/熱板(30℃)の順に積層し、0.35MPaの圧力により420秒間プレスして予熱・含浸させた。その後、得られた試料を上下面とも水冷により冷却したプレスへ移動させて0.35MPaの圧力で240秒間加圧し、積層体を得た。得られた積層体の含浸性は良好であり、外寸測定より外寸増加率はTD方向で4.1%、MD方向で6.8%であり、樹脂流動が少なく寸法振れの小さいことが分かった。これらの結果について表1に示した。また、ガラス繊維強化層側の表面粗さはRa:0.94μm、Rq:1.18μm、Rz:5.0μmであった。
[Example 1]
After cutting the carbon fiber reinforced resin base material (A) and the glass fiber reinforced resin base material (B) into 20 cm squares, an electric heat press molding machine having an upper surface side preset temperature of 250° C. and a lower surface side preset temperature of 30° C., Heat plate (250° C.)/release film (C)/carbon fiber reinforced resin substrate (A)/glass fiber reinforced resin substrate (B)/release film/hot plate (30° C.) are laminated in this order, and 0 It was preheated and impregnated by pressing for 420 seconds under a pressure of 0.35 MPa. Then, the obtained sample was moved to a press cooled with water on both the upper and lower surfaces and pressed at a pressure of 0.35 MPa for 240 seconds to obtain a laminate. The obtained laminate has a good impregnation property, and the outer dimension increase rate is 4.1% in the TD direction and 6.8% in the MD direction from the outer dimension measurement, and there is little resin flow and little dimensional deviation. Do you get it. The results are shown in Table 1. The surface roughness on the glass fiber reinforced layer side was Ra: 0.94 μm, Rq: 1.18 μm, and Rz: 5.0 μm.

[実施例2]
実施例1記載の積層体作製条件において、上面側設定温度を230℃に変更した以外は同様の手法により積層体を得た。得られた積層体の含浸性は成型体端部に若干の強化繊維の浮きが存在するが概ね良好であり、外寸測定より外寸増加率はTD方向で1.8%、MD方向で3.0%であり、樹脂流動が少なく寸法振れの小さいことが分かった。これらの結果について表1に示した。また、ガラス繊維強化層側の表面粗さはRa:0.90μm、Rq:1.05μm、Rz:4.8μmであった。
[Example 2]
A laminated body was obtained by the same method except that the upper surface side preset temperature was changed to 230° C. under the laminated body manufacturing conditions described in Example 1. The impregnating property of the obtained laminated body is generally good although there is some floating of reinforcing fibers at the end of the molded body, and the outer dimension increase rate is 1.8% in the TD direction and 3 in the MD direction from the outer dimension measurement. It was 0.0%, and it was found that the resin flow was small and the dimensional deviation was small. The results are shown in Table 1. The surface roughness on the glass fiber reinforced layer side was Ra: 0.90 μm, Rq: 1.05 μm, and Rz: 4.8 μm.

[実施例3]
実施例1記載の積層体作製条件において、下面側設定温度を250℃とし、積層順を熱板(250℃)/離型フィルム/炭素繊維強化樹脂基材(A)/ガラス繊維強化樹脂基材(B)/離型フィルム(C)/ガラス繊維強化樹脂基材(B)/炭素繊維強化樹脂基材(A)/離型フィルム(C)/熱板(250℃)とした以外は同様の手法により積層体を得た。得られた積層体の含浸性は良好であり、外寸測定より外寸増加率はTD方向で8.2%、MD方向で8.0%であり、樹脂流動が少なく寸法振れの小さいことが分かった。これらの結果について表1に示した。また、離型フィルム剥離(C)後の上面側の半製品におけるガラス繊維強化層側の表面粗さはRa:1.01μm、Rq:1.11μm、Rz:5.5μmであり、下面側の半製品のガラス繊維強化層側の表面粗さはRa:0.99μm、Rq:1.16μm、Rz:5.3μmであった。
[Example 3]
Under the laminated body production conditions described in Example 1, the lower surface side preset temperature was 250° C., and the lamination order was hot plate (250° C.)/release film/carbon fiber reinforced resin base material (A)/glass fiber reinforced resin base material. (B)/Release film (C)/Glass fiber reinforced resin substrate (B)/Carbon fiber reinforced resin substrate (A)/Release film (C)/Hot plate (250° C.) A laminated body was obtained by the method. The obtained laminate has a good impregnation property, and the outer dimension increase rate is 8.2% in the TD direction and 8.0% in the MD direction from the outer dimension measurement, and there is little resin flow and small dimensional deviation. Do you get it. The results are shown in Table 1. The surface roughness on the glass fiber reinforced layer side of the semifinished product on the upper surface side after the release film peeling (C) was Ra: 1.01 μm, Rq: 1.11 μm, Rz: 5.5 μm, and The surface roughness of the glass fiber reinforced layer side of the semi-finished product was Ra: 0.99 μm, Rq: 1.16 μm, and Rz: 5.3 μm.

[実施例4]
実施例3記載の積層体作製条件において、上面側設定温度を230℃、下面側設定温度を230℃とした以外は同様の手法により積層体を得た。得られた積層体の含浸性は成型体端部に若干の強化繊維の浮きが存在するが概ね良好であり、外寸測定より外寸増加率はTD方向で2.3%、MD方向で2.0%であり、樹脂流動が少なく寸法振れの小さいことが分かった。これらの結果について表1に示した。また、離型フィルム剥離(C)後の上面側の半製品におけるガラス繊維強化層側の表面粗さはRa:0.89μm、Rq:1.17μm、Rz:4.6μmであり、下面側の半製品のガラス繊維強化層側の表面粗さはRa:0.96μm、Rq:1.16μm、Rz:4.4μmであった。
[Example 4]
A laminated body was obtained by the same method except that the upper surface side preset temperature was 230° C. and the lower surface side preset temperature was 230° C. under the laminated body production conditions described in Example 3. The impregnating property of the obtained laminated body is generally good although there is some floating of reinforcing fibers at the end of the molded body, and the outer dimension increase rate is 2.3% in the TD direction and 2 in the MD direction from the outer dimension measurement. It was 0.0%, and it was found that the resin flow was small and the dimensional deviation was small. The results are shown in Table 1. The surface roughness on the glass fiber reinforced layer side of the semifinished product on the upper surface side after the release film peeling (C) was Ra: 0.89 μm, Rq: 1.17 μm, Rz: 4.6 μm, and The surface roughness of the glass fiber reinforced layer side of the semi-finished product was Ra: 0.96 μm, Rq: 1.16 μm, and Rz: 4.4 μm.

[比較例1]
実施例1記載の積層体作製条件において、積層順を熱板(250℃)/離型フィルム(C)/ガラス繊維強化樹脂基材(B)/炭素繊維強化樹脂基材(A)/離型フィルム(C)/熱板(30℃)とした以外は同様の手法により積層体を得た。得られた積層体の含浸性は悪く外観において強化繊維が浮いた状態であった。また、外寸測定より外寸増加率はTD方向で14.1%、MD方向で26.0%であり、樹脂流動が激しい状態となった。これらの結果について表1に示した。また、ガラス繊維強化層側の表面粗さはRa:1.18μm、Rq:1.44μm、Rz:6.9μmであった。
[Comparative Example 1]
Under the conditions for producing a laminate as described in Example 1, the order of lamination is: hot plate (250° C.)/release film (C)/glass fiber reinforced resin substrate (B)/carbon fiber reinforced resin substrate (A)/release. A laminate was obtained by the same method except that the film (C)/hot plate (30° C.) was used. The impregnating property of the obtained laminate was poor and the reinforcing fibers were in a floating state in appearance. In addition, the outer dimension increase rate was 14.1% in the TD direction and 26.0% in the MD direction from the outer dimension measurement, and the resin flow became violent. The results are shown in Table 1. The surface roughness on the glass fiber reinforced layer side was Ra: 1.18 μm, Rq: 1.44 μm, and Rz: 6.9 μm.

[比較例2]
実施例1記載の積層体作製条件において、上面側設定温度を230℃とし、積層順を熱板(230℃)/離型フィルム(C)/ガラス繊維強化樹脂基材(B)/炭素繊維強化樹脂基材(A)/離型フィルム(C)/熱板(30℃)とした以外は同様の手法により積層体を得た。得られた積層体の含浸性は悪く外観において強化繊維が浮いた状態であった。また、外寸測定より外寸増加率はTD方向で12.3%、MD方向で19.5%であり、樹脂流動が激しい状態となった。これらの結果について表1に示した。また、ガラス繊維強化層側の表面粗さはRa:1.29μm、Rq:1.39μm、Rz:6.5μmであった。
[Comparative Example 2]
Under the laminated body manufacturing conditions described in Example 1, the upper surface side preset temperature was 230° C., and the stacking order was hot plate (230° C.)/release film (C)/glass fiber reinforced resin substrate (B)/carbon fiber reinforced. A laminate was obtained by the same method except that the resin substrate (A)/release film (C)/hot plate (30° C.) was used. The impregnating property of the obtained laminate was poor and the reinforcing fibers were in a floating state in appearance. Further, the outer dimension increase rate was 12.3% in the TD direction and 19.5% in the MD direction from the outer dimension measurement, and the resin flow became violent. The results are shown in Table 1. The surface roughness on the glass fiber reinforced layer side was Ra: 1.29 μm, Rq: 1.39 μm, and Rz: 6.5 μm.

[比較例3]
実施例3記載の積層体作製条件において、積層順を熱板(250℃)/離型フィルム/ガラス繊維強化樹脂基材(B)/炭素繊維強化樹脂基材(A)/離型フィルム(C)/炭素繊維強化樹脂基材(A)/ガラス繊維強化樹脂基材(B)/離型フィルム(C)/熱板(250℃)とした以外は同様の手法により積層体を得た。得られた積層体の含浸性は成型体端部に若干の強化繊維の浮きが存在するが概ね良好であり、外寸測定より外寸増加率はTD方向で16.4%、MD方向で25.5%であり、樹脂流動が激しい状態となった。これらの結果について表1に示した。また、離型フィルム剥離(C)後の上面側の半製品におけるガラス繊維強化層側の表面粗さはRa:1.16μm、Rq:1.33μm、Rz:6.9μmであり、下面側の半製品のガラス繊維強化層側の表面粗さはRa:1.15μm、Rq:1.25μm、Rz:5.6μmであった。
[Comparative Example 3]
Under the conditions for producing a laminate as described in Example 3, the order of lamination was: hot plate (250° C.)/release film/glass fiber reinforced resin substrate (B)/carbon fiber reinforced resin substrate (A)/release film (C )/Carbon fiber reinforced resin substrate (A)/Glass fiber reinforced resin substrate (B)/Release film (C)/Hot plate (250° C.) was used to obtain a laminate by the same method. The impregnating property of the obtained laminated body is generally good although there is some floating of the reinforcing fibers at the end of the molded body, and the outer dimension increase rate is 16.4% in the TD direction and 25 in the MD direction from the outer dimension measurement. It was 0.5%, and the resin flow became violent. The results are shown in Table 1. The surface roughness on the glass fiber reinforced layer side of the semifinished product on the upper surface side after the release film peeling (C) was Ra: 1.16 μm, Rq: 1.33 μm, Rz: 6.9 μm, and The surface roughness of the semi-finished product on the glass fiber reinforced layer side was Ra: 1.15 μm, Rq: 1.25 μm, and Rz: 5.6 μm.

[比較例4]
実施例3記載の積層体作製条件において、上面側設定温度を230℃、下面側設定温度を230℃とし、積層順を熱板(230℃)/離型フィルム(C)/ガラス繊維強化樹脂基材(B)/炭素繊維強化樹脂基材(A)/離型フィルム(C)/炭素繊維強化樹脂基材(A)/ガラス繊維強化樹脂基材(B)/離型フィルム(C)/熱板(230℃)とした以外は同様の手法により積層体を得た。得られた積層体の含浸性は悪く外観において強化繊維が浮いた状態であった。また、外寸測定より外寸増加率はTD方向で12.7%、MD方向で22.0%であり、樹脂流動が激しい状態となった。これらの結果について表1に示した。また、離型フィルム剥離(C)後の上面側の半製品におけるガラス繊維強化層側の表面粗さはRa:1.08μm、Rq:1.22μm、Rz:5.4μmであり、下面側の半製品のガラス繊維強化層側の表面粗さはRa:1.08μm、Rq:1.22μm、Rz:5.1μmであった。
[Comparative Example 4]
Under the laminated body manufacturing conditions described in Example 3, the upper surface side preset temperature was 230° C., the lower surface side preset temperature was 230° C., and the lamination order was hot plate (230° C.)/release film (C)/glass fiber reinforced resin base. Material (B)/carbon fiber reinforced resin substrate (A)/release film (C)/carbon fiber reinforced resin substrate (A)/glass fiber reinforced resin substrate (B)/release film (C)/heat A laminate was obtained by the same method except that the plate (230°C) was used. The impregnating property of the obtained laminate was poor and the reinforcing fibers were in a floating state in appearance. In addition, the outer dimension increase rate was 12.7% in the TD direction and 22.0% in the MD direction from the outer dimension measurement, and the resin flow was in a severe state. The results are shown in Table 1. The surface roughness on the glass fiber reinforced layer side of the semifinished product on the upper surface side after the release film peeling (C) was Ra: 1.08 μm, Rq: 1.22 μm, Rz: 5.4 μm, and The surface roughness of the glass fiber reinforced layer side of the semi-finished product was Ra: 1.08 μm, Rq: 1.22 μm, and Rz: 5.1 μm.

表1に示すように、本発明の製造方法を用いることにより、含浸したガラス繊維強化樹脂基材(B)から炭素繊維強化樹脂基材(A)へ樹脂を含浸させることが可能となった。また、本発明の積層体の製造法を用いることで成型サイクルが短く、さらに高含浸性と成型時の流動に伴う外寸変動の低減を両立することができる。 As shown in Table 1, by using the manufacturing method of the present invention, it became possible to impregnate the impregnated glass fiber reinforced resin substrate (B) with the carbon fiber reinforced resin substrate (A). Further, by using the method for producing a laminate of the present invention, the molding cycle can be shortened, and the high impregnation property and the reduction of the outer dimension variation due to the flow during molding can be achieved at the same time.

さらに本発明における積層体から得られる半製品を使用することにより、高生産性と力学特性、耐衝撃特性に優れたCFRTP成型体を得ることが可能であり、自動車、航空、鉄道、等運輸機器、ロボット、電子機器、家具、建材等の分野の各種CFRTP用途への適用が可能となる。 Furthermore, by using a semi-finished product obtained from the laminate of the present invention, it is possible to obtain a CFRTP molded product having high productivity, mechanical properties and impact resistance, and transportation equipment such as automobiles, aviation, railways, etc. It can be applied to various CFRTP applications in fields such as robots, electronic devices, furniture, and building materials.

1 炭素繊維強化樹脂基材
2 ガラス繊維強化樹脂基材
3 離型シート
4 成型前積層体
5 一方の面
6 反対の面
7 炭素繊維強化層
8 ガラス繊維強化層
9 離型シート層
10 積層体
1 Carbon Fiber Reinforced Resin Base Material 2 Glass Fiber Reinforced Resin Base Material 3 Release Sheet 4 Pre-Molding Laminate 5 One Side 6 Opposite Side 7 Carbon Fiber Reinforced Layer 8 Glass Fiber Reinforced Layer 9 Release Sheet Layer 10 Laminated Body

Claims (19)

炭素繊維強化樹脂基材(A)とガラス繊維強化樹脂基材(B)とを積層融着する積層体の製造方法であって、炭素繊維強化樹脂基材(A)が炭素繊維および熱可塑性樹脂(a)を含む熱可塑性樹脂繊維を含有し、ガラス繊維強化樹脂基材(B)がガラス繊維および熱可塑性樹脂(b)を含有するものであり、一方の面から反対側の面に向かって順に、前記炭素繊維強化樹脂基材(A)、前記ガラス繊維強化樹脂基材(B)、離型シート、前記ガラス繊維強化樹脂基材(B)、および前記炭素繊維強化樹脂基材(A)の構成となるように積層し、加熱加圧する、積層体の製造方法。 A method for producing a laminate, comprising laminating and fusing a carbon fiber reinforced resin substrate (A) and a glass fiber reinforced resin substrate (B), wherein the carbon fiber reinforced resin substrate (A) is a carbon fiber and a thermoplastic resin. The thermoplastic resin fiber containing (a) is contained, and the glass fiber reinforced resin base material (B) contains the glass fiber and the thermoplastic resin (b), from one surface to the opposite surface. In order, the carbon fiber reinforced resin substrate (A), the glass fiber reinforced resin substrate (B), a release sheet, the glass fiber reinforced resin substrate (B), and the carbon fiber reinforced resin substrate (A) The method for producing a laminated body, which comprises laminating and heating and pressurizing so as to have the constitution. 少なくとも一方の前記炭素繊維強化樹脂基材(A)の前記ガラス繊維強化樹脂基材(B)とは反対側の面側に離型シートを積層する、請求項1に記載の積層体の製造方法。 The method for producing a laminate according to claim 1, wherein a release sheet is laminated on a surface of at least one of the carbon fiber reinforced resin base materials (A) opposite to the glass fiber reinforced resin base material (B). .. 前記離型シートが、前記熱可塑性樹脂(a)の融点または前記熱可塑性樹脂(b)の融点より高い融点を有する樹脂を含有する、請求項1または2に記載の積層体の製造方法。 The method for producing a laminate according to claim 1 or 2, wherein the release sheet contains a resin having a melting point higher than the melting point of the thermoplastic resin (a) or the melting point of the thermoplastic resin (b). 前記炭素繊維と前記熱可塑性樹脂繊維の含有比率が、質量比で炭素繊維:熱可塑性樹脂繊維=50:50〜90:10である、請求項1から3のいずれか1項に記載の積層体の製造方法。 The laminate according to any one of claims 1 to 3, wherein the content ratio of the carbon fibers and the thermoplastic resin fibers is carbon fiber:thermoplastic resin fibers=50:50 to 90:10 in mass ratio. Manufacturing method. 前記ガラス繊維と前記熱可塑性樹脂(b)の含有比率が、質量比でガラス繊維:熱可塑性樹脂(b)=10:90〜60:40である、請求項1から4のいずれか1項に記載の積層体の製造方法。 The content ratio of the said glass fiber and the said thermoplastic resin (b) is glass fiber:thermoplastic resin (b)=10:90-60:40 by mass ratio, In any one of Claim 1 to 4. A method for producing a laminate as described. 前記熱可塑性樹脂(b)が、ポリプロピレン樹脂またはポリアミド樹脂である、請求項1から5のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 5, wherein the thermoplastic resin (b) is a polypropylene resin or a polyamide resin. 前記熱可塑性樹脂繊維が、ポリプロピレン樹脂またはポリアミド樹脂の繊維である、請求項1から6のいずれか1項に記載の積層体の製造方法。 The method for manufacturing a laminate according to claim 1, wherein the thermoplastic resin fiber is a fiber of polypropylene resin or polyamide resin. 前記熱可塑性樹脂(a)と前記熱可塑性樹脂(b)が同一の樹脂種である、請求項1から7のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 7, wherein the thermoplastic resin (a) and the thermoplastic resin (b) are the same resin species. 加熱温度が、前記熱可塑性樹脂(b)の融点+10℃〜120℃、かつ加圧圧力が0.1〜4MPaである、請求項1から8のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to claim 1, wherein a heating temperature is a melting point of the thermoplastic resin (b)+10° C. to 120° C., and a pressurizing pressure is 0.1 to 4 MPa. .. 加熱加圧の時間が150秒以上である、請求項1から9のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to claim 1, wherein the heating and pressing time is 150 seconds or more. 炭素繊維強化樹脂基材(A)とガラス繊維強化樹脂基材(B)とを積層融着する積層体の製造方法であって、炭素繊維強化樹脂基材(A)が炭素繊維および熱可塑性樹脂(a)を含む熱可塑性樹脂繊維を含有し、ガラス繊維強化樹脂基材(B)がガラス繊維および熱可塑性樹脂(b)を含有するものであり、温度の異なる複数の熱板を用いて、炭素繊維強化樹脂基材(A)およびガラス繊維強化樹脂基材(B)を積層した成形前積層体を挟んで加温加圧する工程を有し、前記成型前積層体の温度の高い熱板側となる面を面C、温度の低い熱板側となる面を面Dとしたときに、面Cから面Dに向かって順に、前記炭素繊維強化樹脂基材(A)、前記ガラス繊維強化樹脂基材(B)、離型シートの構成となるように積層する、積層体の製造方法。 A method for producing a laminate, comprising laminating and fusing a carbon fiber reinforced resin substrate (A) and a glass fiber reinforced resin substrate (B), wherein the carbon fiber reinforced resin substrate (A) is a carbon fiber and a thermoplastic resin. A thermoplastic resin fiber containing (a) is contained, the glass fiber reinforced resin substrate (B) contains glass fiber and a thermoplastic resin (b), and a plurality of hot plates having different temperatures are used, A hot plate side of the pre-molding laminate having a high temperature, which has a step of sandwiching a pre-molding laminate in which a carbon fiber reinforced resin base material (A) and a glass fiber reinforced resin base material (B) are laminated, and applying heat and pressure. When the surface to be the surface is the surface C and the surface on the hot plate side having a low temperature is the surface D, the carbon fiber reinforced resin base material (A) and the glass fiber reinforced resin are sequentially arranged from the surface C to the surface D. A method for producing a laminate, in which the base material (B) and the release sheet are laminated to form a laminate. 前記炭素繊維強化樹脂基材(A)の前記ガラス繊維強化樹脂基材(B)とは反対側の面側に離型シートを積層する、請求項11に記載の積層体の製造方法。 The method for producing a laminate according to claim 11, wherein a release sheet is laminated on the surface side of the carbon fiber reinforced resin substrate (A) opposite to the glass fiber reinforced resin substrate (B). 前記離型シートが、前記熱可塑性樹脂(a)の融点または前記熱可塑性樹脂(b)の融点より高い融点を有する樹脂を含有する、請求項11または12に記載の積層体の製造方法。 The method for producing a laminate according to claim 11 or 12, wherein the release sheet contains a resin having a melting point higher than the melting point of the thermoplastic resin (a) or the melting point of the thermoplastic resin (b). 前記炭素繊維と前記熱可塑性樹脂繊維の含有比率が、質量比で炭素繊維:熱可塑性樹脂繊維=50:50〜90:10である、請求項11から13のいずれか1項に記載の積層体の製造方法。 The laminated body according to any one of claims 11 to 13, wherein a content ratio of the carbon fibers and the thermoplastic resin fibers is a mass ratio of carbon fibers: thermoplastic resin fibers = 50:50 to 90:10. Manufacturing method. 少なくとも炭素繊維強化層、ガラス繊維強化層、および離型シート層を含む積層体であって、前記炭素繊維強化層が熱可塑性樹脂および炭素繊維含有し、前記ガラス繊維強化層が熱可塑性樹脂およびガラス繊維を含有するものであり、一方の面から反対の面に向かって順に、前記炭素繊維強化層、前記ガラス繊維強化層、離型シート層、前記ガラス繊維強化層、前記炭素繊維強化層となるように構成されている積層体。 A laminated body including at least a carbon fiber reinforced layer, a glass fiber reinforced layer, and a release sheet layer, wherein the carbon fiber reinforced layer contains a thermoplastic resin and carbon fibers, and the glass fiber reinforced layer is a thermoplastic resin and glass. It contains fibers, in order from one surface to the opposite surface, the carbon fiber reinforced layer, the glass fiber reinforced layer, the release sheet layer, the glass fiber reinforced layer, the carbon fiber reinforced layer becomes A laminate that is configured as. 離型シートがポリテトラフルオロエチレンを含有する、請求項15に記載の積層体。 The laminate according to claim 15, wherein the release sheet contains polytetrafluoroethylene. 少なくとも炭素繊維強化層、およびガラス繊維強層が積層された半製品であって、前記炭素繊維強化層が熱可塑性樹脂および炭素繊維含有し、前記ガラス繊維強化層が熱可塑性樹脂およびガラス繊維を含有するものであり、前記ガラス繊維強層が最表面となるガラス繊維強化層最表面を有し、前記ガラス繊維強化層最表面の算術平均粗さRaが0.50μm以上1.07μm以下である半製品。 A semi-finished product in which at least a carbon fiber reinforced layer and a glass fiber strong layer are laminated, wherein the carbon fiber reinforced layer contains a thermoplastic resin and carbon fibers, and the glass fiber reinforced layer contains a thermoplastic resin and glass fibers. The glass fiber reinforced layer has an outermost surface which is the outermost surface, and the arithmetic mean roughness Ra of the outermost surface of the glass fiber reinforced layer is 0.50 μm or more and 1.07 μm or less. Product. 前記ガラス繊維強化最表面の最大高さ粗さRzが4.0μm以上6.1μm以下である請求項17に記載の半製品。 The semi-finished product according to claim 17, wherein the maximum height roughness Rz of the glass fiber reinforced outermost surface is 4.0 μm or more and 6.1 μm or less. 前記ガラス繊維強化最表面の二乗平均平方根高さ粗さRqが1.00μm以上1.31μm以下である請求項17または18に記載の半製品。
The semi-finished product according to claim 17 or 18, wherein a root mean square height roughness Rq of the glass fiber reinforced outermost surface is 1.00 µm or more and 1.31 µm or less.
JP2019022658A 2019-02-12 2019-02-12 Method of producing laminate and laminate Pending JP2020128075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019022658A JP2020128075A (en) 2019-02-12 2019-02-12 Method of producing laminate and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019022658A JP2020128075A (en) 2019-02-12 2019-02-12 Method of producing laminate and laminate

Publications (1)

Publication Number Publication Date
JP2020128075A true JP2020128075A (en) 2020-08-27

Family

ID=72174142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019022658A Pending JP2020128075A (en) 2019-02-12 2019-02-12 Method of producing laminate and laminate

Country Status (1)

Country Link
JP (1) JP2020128075A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100996A1 (en) * 2021-12-02 2023-06-08 日本板硝子株式会社 Glass fiber strand

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100996A1 (en) * 2021-12-02 2023-06-08 日本板硝子株式会社 Glass fiber strand

Similar Documents

Publication Publication Date Title
KR102006511B1 (en) Composite laminate having improved impact strength and the use thereof
JP6965957B2 (en) Laminated base material, its manufacturing method, and carbon fiber reinforced resin base material
JP5320742B2 (en) Method for producing composite prepreg substrate, laminated substrate and fiber reinforced plastic
EP1027206B1 (en) Unidirectional fiber-random mat preform
JP5551386B2 (en) Fiber / resin composite sheet and FRP molded body
JP5533320B2 (en) Sandwich structure
JP6699986B2 (en) Preform and method for manufacturing integrated sheet material
JP6087545B2 (en) Fiber reinforced plastic molding substrate
KR102285655B1 (en) Fiber-reinforced resin intermediate material, fiber-reinforced resin molded body, and method for manufacturing a fiber-reinforced resin intermediate material
JP2001064406A (en) Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof
JP5932576B2 (en) Fiber reinforced plastic molding substrate
JP2018043412A (en) Laminated base material for rib formation
JPH0575575B2 (en)
JP2014050981A (en) Substrate for molding fiber reinforced plastic and fiber reinforced plastic
JP2020128075A (en) Method of producing laminate and laminate
CN112041157A (en) Laminated body
WO2019163578A1 (en) Method for producing carbon-fiber-reinforced thermoplastic-resin composite material
US20230040874A1 (en) Fiber-reinforced composite material and sandwich structure
JP2022069001A (en) Method for manufacturing fiber-reinforced composite material
JP7380945B1 (en) Fiber-reinforced resin structure and method for manufacturing fiber-reinforced resin structure
US11926088B2 (en) Prepreg, preform, fiber-reinforced composite material, and method for producing said prepreg, said preform or said fiber-reinforced composite material
JP2014051554A (en) Fiber reinforced plastic molding substrate
JP2022120692A (en) Method for producing fiber-reinforced composite material
JP2023140384A (en) Method for manufacturing fiber-reinforced composite material
JP2023142070A (en) Fiber-reinforced composite material and manufacturing method