JP2020127292A - Load characteristic estimation device and method of power system, and photovoltaic power generation amount estimation device and method - Google Patents

Load characteristic estimation device and method of power system, and photovoltaic power generation amount estimation device and method Download PDF

Info

Publication number
JP2020127292A
JP2020127292A JP2019018591A JP2019018591A JP2020127292A JP 2020127292 A JP2020127292 A JP 2020127292A JP 2019018591 A JP2019018591 A JP 2019018591A JP 2019018591 A JP2019018591 A JP 2019018591A JP 2020127292 A JP2020127292 A JP 2020127292A
Authority
JP
Japan
Prior art keywords
power
load characteristic
power system
power generation
straight line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019018591A
Other languages
Japanese (ja)
Other versions
JP7149867B2 (en
Inventor
井上 秀樹
Hideki Inoue
秀樹 井上
友部 修
Osamu Tomobe
友部  修
足立 昌宏
Masahiro Adachi
昌宏 足立
雅彰 永井
Masaaki Nagai
雅彰 永井
勝弘 松田
Katsuhiro Matsuda
勝弘 松田
哲一 山口
Tetsukazu Yamaguchi
哲一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2019018591A priority Critical patent/JP7149867B2/en
Publication of JP2020127292A publication Critical patent/JP2020127292A/en
Application granted granted Critical
Publication of JP7149867B2 publication Critical patent/JP7149867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

To practically and exactly calculate a photovoltaic power generation amount or to estimate load characteristics in a power system.SOLUTION: A load characteristic estimation device of a power system for estimating load characteristics in the power system with a photovoltaic power generation facility, comprises: a measurement value storage unit 231 which stores a tide measurement value including active power and reactive power obtained from the power system; a perpendicular foot calculation unit 232 which draws down a perpendicular from a point to be determined by the measured active power and reactive power to a straight line passing through an origin on an active power/reactive power plane to be expressed by the active power and the reactive power to calculate a foot of the perpendicular; a histogram creation unit 234 which calculates a histogram using a position of the straight line as a class for the foot of the perpendicular calculated for a plurality of sets of the active power and the reactive power; and load characteristic calculation means 235 for determining the load characteristics by using an inclination of the straight line when the histogram including the maximum degree is created among a plurality of histograms calculated by varying an angle of the straight line passing through the origin on the active power/reactive power plane.SELECTED DRAWING: Figure 3

Description

本発明は、太陽光発電設備を設置する電力系統における負荷特性推定装置並びに方法、太陽光発電量推定装置並びに方法に関する。 The present invention relates to a load characteristic estimation device and method in a power system in which a photovoltaic power generation facility is installed, and a photovoltaic power generation amount estimation device and method.

近年の電力系統においては太陽光発電設備の導入が進んでいることから、電力系統を制御し、あるいは保護する管理運用のためには、太陽光発電量を把握し、太陽光発電設備による電力系統の特性と既存の負荷による電力系統の特性を区分して把握しておく必要がある。 Since the introduction of photovoltaic power generation equipment in the electric power system is progressing in recent years, in order to control and protect the electric power system, the amount of photovoltaic power generation is grasped and the electric power system by the photovoltaic power generation equipment is grasped. It is necessary to distinguish and understand the characteristics of and the characteristics of the power system due to the existing load.

この場合に電力系統において計測される潮流データは、需要家負荷と太陽光発電の発電量が重畳された値として得られることから、潮流データからこれらを分離して把握する必要がある。このための技術として特許文献1、特許文献2に記載の技術が知られている。 In this case, the power flow data measured in the power system is obtained as a value in which the consumer load and the amount of power generated by photovoltaic power generation are superimposed, so it is necessary to separate and grasp these from the power flow data. Techniques described in Patent Documents 1 and 2 are known as techniques for this purpose.

このうち特許文献1においては、「配電線に連系された太陽光発電システムにおいて、配電線の既知のロードカーブと、変電所において計測された変電所電圧、変電所電流情報から計測される瞬時の有効電力及び、瞬時の無効電力から、瞬時の負荷有効電力を推定する手段を備え、前記負荷有効電力から前記有効電力を減算した値を太陽光発電システムの発電量と推測する。」としている。 Among them, in Patent Document 1, "In a photovoltaic power generation system connected to a distribution line, an instantaneous measured from a known load curve of the distribution line, a substation voltage measured at a substation, and substation current information. Of the active power and the instantaneous reactive power, a means for estimating the instantaneous load active power is provided, and a value obtained by subtracting the active power from the load active power is estimated as the power generation amount of the photovoltaic power generation system." ..

また特許文献2においては、「配電系統内に設置された日射量計によって計測された日射量計測値Rと配電線の有効電力潮流Pnetを要素とする観測信号を、要素として太陽光発電システムの総設備容量kを含む混合行列と、配電系統内の負荷需要電力Ploadおよび日射量計測値Rを要素とする信号源との線形結合により表現した推定モデルを生成する推定モデル生成部101と、前記生成された推定モデルの観測信号から、独立成分分析の手法によって負荷需要電力Ploadおよび総設備容量kを分離・推定する推定部102と、推定時の各種データを記憶する記憶部103とを備える。」としている。 Moreover, in patent document 2, "a solar radiation power generation system is made into an element with the observation signal which has the solar radiation amount measurement value R measured by the solar radiation meter installed in the power distribution system, and the active power flow Pnet of a distribution line as an element. An estimation model generation unit 101 that generates an estimation model expressed by a linear combination of a mixing matrix including the total installed capacity k and a signal source whose elements are the load demand power Pload and the solar radiation measurement value R in the distribution system; An estimation unit 102 that separates and estimates the load demand power Pload and the total installed capacity k from the generated observation signal of the estimation model by the method of independent component analysis, and a storage unit 103 that stores various data at the time of estimation. ".

特開2012−191777号公報JP2012-191777A 特開2016−49012号公報JP, 2016-49012, A

しかしながら、特許文献1の方式では、太陽光発電が停止した状態での、有効電力Pと無効電力Qによる特性(以降、負荷特性という)を求めることになるため、雨天等の天候条件が合致する日を選択する必要があった。もしくは、変電所の送り出し点等の計測点配下の全太陽光発電設備を停止させた状態で、負荷特性を計測する必要があった。 However, in the method of Patent Document 1, the characteristic (hereinafter referred to as load characteristic) by the active power P and the reactive power Q in a state where the photovoltaic power generation is stopped is obtained, and therefore weather conditions such as rain meet. Had to choose a day. Alternatively, it was necessary to measure the load characteristics with all photovoltaic power generation facilities under the measuring points such as the sending point of the substation stopped.

また特許文献2の方式では、計測した潮流データから太陽光発電量相当を差し引いて、負荷量を推定するために、日射量計による計測値を入力する必要があった。 Further, in the method of Patent Document 2, it is necessary to input the measured value by the pyranometer in order to estimate the load amount by subtracting the photovoltaic power generation amount equivalent from the measured tidal current data.

このため、特許文献1、特許文献2の方式は、長期間の潮流計測データが必要、あるいは日射量などの付加的な情報が必要という課題を有している。 Therefore, the methods of Patent Documents 1 and 2 have a problem that long-term tidal current measurement data is required or additional information such as the amount of solar radiation is required.

このことから本発明においては、長期間の潮流計測データや日射量などの付加的な情報を必要とせずに、短期間の潮流計測データのみを用いて、電力系統における太陽光発電量をもとめ、あるいは負荷特性を推定することができる電力系統の負荷特性推定装置並びに方法、太陽光発電量推定装置並びに方法を提供することを目的とする。 From this, in the present invention, without requiring additional information such as long-term tidal current measurement data and solar radiation, using only short-term tidal current measurement data, to determine the amount of photovoltaic power generation in the power system, Alternatively, it is an object of the present invention to provide a load characteristic estimation device and method for a power system and a photovoltaic power generation amount estimation device and method capable of estimating the load characteristic.

以上のことから本発明においては「太陽光発電設備を備える電力系統における負荷特性を推定するための電力系統の負荷特性推定装置であって、電力系統から入手した有効電力と無効電力を含む潮流計測値を記憶する計測値格納部と、有効電力と無効電力により表現される有効電力-無効電力平面上の原点を通る直線に対して、計測した有効電力と無効電力で定まる点から垂線を下ろして垂線の足を求める垂線の足算出部と、複数の有効電力と無効電力の組について求めた垂線の足について直線上の位置を階級とするヒストグラムを求めるヒストグラム作成部と、有効電力-無効電力平面上の原点を通る直線の角度を可変して求めた複数のヒストグラムのうち、最大の度数を含むヒストグラムを作成した際の直線の傾きを用いて負荷特性を定める負荷特性等算出手段を備えることを特徴とする電力系統の負荷特性推定装置。」としたものである。 From the above, in the present invention, "a load characteristic estimation device for a power system for estimating a load characteristic in a power system including a photovoltaic power generation facility, which is a flow measurement including active power and reactive power obtained from the power system. A measured value storage unit that stores values and an active power expressed by active power and reactive power-A straight line that passes through the origin on the reactive power plane is drawn from the point determined by the measured active power and reactive power. A vertical bar calculation unit that calculates the vertical bar, a histogram creation unit that calculates a histogram with the position on the straight line as the class for the vertical bar that was calculated for multiple active and reactive power pairs, and the active-reactive power plane Of the plurality of histograms obtained by varying the angle of the straight line passing through the origin, the load characteristic etc. calculating means for determining the load characteristic using the slope of the straight line when the histogram containing the maximum frequency is created is provided. The load characteristic estimation device of the electric power system which is a feature."

また本発明においては「電力系統の負荷特性推定装置を用いる電力系統の太陽光発電量推定装置であって、負荷特性推定装置で求めた負荷特性および太陽光発電設備における特性である力率を用いて太陽光発電量を推定する太陽光発電出力推定部を備えることを特徴とする電力系統の太陽光発電量推定装置。」としたものである。 Further, in the present invention, "a photovoltaic power generation amount estimation device for a power system using a load characteristic estimation device for a power system, in which a load characteristic obtained by the load characteristic estimation device and a power factor which is a characteristic in a photovoltaic power generation facility are used A solar power generation amount estimation device for a power system, comprising a solar power generation output estimation unit that estimates the solar power generation amount."

また本発明においては「太陽光発電設備を備える電力系統における負荷特性を推定するための電力系統の負荷特性推定方法であって、電力系統から入手した有効電力と無効電力を含む潮流計測値を記憶し、有効電力と無効電力により表現される有効電力-無効電力平面上の原点を通る直線に対して、計測した有効電力と無効電力で定まる点から垂線を下ろして垂線の足を求め、複数の有効電力と無効電力の組について求めた垂線の足について直線上の位置を階級とするヒストグラムを求め、有効電力-無効電力平面上の原点を通る直線の角度を可変して求めた複数の前記ヒストグラムのうち、最大の度数を含むヒストグラムを作成した際の直線の傾きを用いて負荷特性を定めることを特徴とする電力系統の負荷特性推定方法。」としたものである。 Further, in the present invention, “a load characteristic estimation method for a power system for estimating a load characteristic in a power system including a photovoltaic power generation facility, in which a power flow measurement value including active power and reactive power obtained from the power system is stored. Then, the active power expressed by active power and reactive power-A straight line that passes through the origin on the reactive power plane is struck by dropping the perpendicular from the point determined by the measured active power and reactive power. A histogram with the position on the straight line as the class is calculated for the foot of the vertical line obtained for the set of active power and reactive power, and the plurality of histograms obtained by varying the angle of the straight line passing through the origin on the active power-reactive power plane Among these, the load characteristic estimation method of the electric power system characterized in that the load characteristic is determined by using the slope of the straight line when the histogram including the maximum frequency is created.”

また本発明においては「電力系統の負荷特性推定方法を用いる電力系統の太陽光発電量推定方法であって、負荷特性推定方法で求めた負荷特性および太陽光発電設備における特性である力率を用いて太陽光発電量を推定することを特徴とする電力系統の太陽光発電量推定方法。」としたものである。 Further, in the present invention, "a method of estimating a photovoltaic power generation amount of a power system using a load characteristic estimation method of a power system, in which a load characteristic obtained by the load characteristic estimating method and a power factor which is a characteristic of a photovoltaic power generation facility are used Solar power generation amount estimation method of the electric power system, which is characterized by estimating the solar power generation amount.

本発明によれば、実用的で正確に電力系統における太陽光発電量をもとめ、あるいは負荷特性を推定することができる。例えば、天候情報や外部からの日射量情報の入力無しに、或いは、全ての太陽光発電設備の停止なしに、太陽光発電出力推定のために使用する諸定数を求めることができる。また、諸定数を求めるための学習期間の天候が全て晴天の場合にも、適用できるようになる。加えて、潮流計測値取得の時間間隔が30分や1時間など長い場合、潮流計測値のサンプル数が少なくなるが、少ないサンプル数に対しても適用できる。更に、系統切替時など、切替後の系統構成によっては、対応する過去データの蓄積が無い場合にも、より短い期間で負荷特性を推定できるようになる。 According to the present invention, it is possible to practically and accurately determine the amount of solar power generation in the power system or to estimate the load characteristics. For example, it is possible to obtain various constants used for estimating the photovoltaic power generation output without inputting weather information or solar radiation amount information from the outside or without stopping all the photovoltaic power generation facilities. It can also be applied when the weather during the learning period for obtaining the constants is all fine. In addition, when the time interval for acquiring the tidal current measurement value is long such as 30 minutes or 1 hour, the number of samples of the tidal current measurement value is small, but it can be applied to a small number of samples. Furthermore, depending on the system configuration after switching, such as when switching the system, the load characteristics can be estimated in a shorter period even when the corresponding past data is not accumulated.

本発明の実施例において前提とした典型的な電力系統の構成例を示す図。The figure showing the example of composition of the typical electric power system presupposed in the example of the present invention. 本発明に係る太陽光発電量推定手法の基礎的事項を説明するための図。The figure for demonstrating the basic matter of the photovoltaic power generation amount estimation method which concerns on this invention. 本発明の実施例に係る負荷特性推定装置の構成例を示す図。The figure which shows the structural example of the load characteristic estimation apparatus which concerns on the Example of this invention. 負荷特性の傾きaと無効電力Q切片Qの求め方を説明するための図。Diagram for explaining how to determine the slope a l and reactive power Q intercept Q 0 of the load characteristics. 最大度数を抽出する考え方を説明するための図。The figure for demonstrating the concept which extracts the maximum frequency. 負荷特性のQ切片を求める手順を説明するための図。The figure for demonstrating the procedure which calculates|requires Q intercept of a load characteristic. 諸定数算出部220における処理を示す処理フローを示す図。The figure which shows the processing flow which shows the process in various constant calculation parts 220. 最小二乗を用いた外れ値の無い場合回帰直線の例を示す図。The figure which shows the example of a regression line when there is no outlier using the least squares. 最小二乗を用いた外れ値がある場合回帰直線の例を示す図。The figure which shows the example of a regression line when there is an outlier using the least squares. 射影する直線の傾きを変えつつ作成したヒストグラム群を示す図。The figure which shows the histogram group created while changing the inclination of the projected straight line. 最大値を比較するため基点をそろえたヒストグラム群を示す図。The figure which shows the histogram group which set the base point in order to compare the maximum value. 仮定した傾き毎の度数の最大値のグラフを示す図。The figure which shows the graph of the maximum value of the frequency for every assumed inclination. 外れ値のあるデータを対象とし傾きを求めた結果の比較を示す図。The figure which shows the comparison of the result of having calculated|required the inclination targeting the data with an outlier. 実測した潮流データに対し実施例の手法を適用した結果を示す図。The figure which shows the result of applying the method of an Example with respect to the measured tidal current data.

以下図を用いて、本発明の実施例について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

なお本発明においては電力系統の負荷特性推定装置を構成し、さらにこれを発展させて太陽光発電量推定装置を構成するものである。そのため、実施例1では全体的な考え方と負荷特性推定装置について説明を行い、その後実施例2において太陽光発電量推定装置について説明するものとする。 In the present invention, a load characteristic estimation device for the electric power system is configured and further developed to configure a photovoltaic power generation amount estimation device. Therefore, in the first embodiment, the overall concept and the load characteristic estimation device will be described, and then the solar power generation amount estimation device will be described in the second embodiment.

さらに実施例3では、負荷特性推定装置や太陽光発電量推定装置を計算機により実現する場合の処理方法について説明する。 Further, in the third embodiment, a processing method in the case of realizing the load characteristic estimation device and the photovoltaic power generation amount estimation device by a computer will be described.

図1は、本発明の実施例において前提とした典型的な電力系統の構成例を示す図である。 FIG. 1 is a diagram showing a configuration example of a typical power system premised on the embodiment of the present invention.

一般的な電力系統においては、発電所Gにて発電された電力は送電線L1を経由し、いくつかの電圧階級の変電所SSを経て、配電系統L2に接続された負荷Ld1、Ld2に送電される。このうち、送電線L1や変電所SSの送り出し点などの計測点103で、有効電力Pや無効電力Qなどの潮流を計測している。なお負荷Ld1は大口需要家、負荷Ld2は小口需要家を表している。また配電系統L2には電源である太陽光発電設備PVが設置されている。 In a general electric power system, the electric power generated at the power station G is transmitted to the loads Ld1 and Ld2 connected to the power distribution system L2 via the transmission line L1 and the substation SS of several voltage classes. To be done. Among these, the tidal currents such as the active power P and the reactive power Q are measured at the measurement points 103 such as the power transmission line L1 and the sending point of the substation SS. The load Ld1 represents a large consumer and the load Ld2 represents a small consumer. In addition, a photovoltaic power generation facility PV that is a power source is installed in the power distribution system L2.

図1のような電力系統において系統事故が発生した場合、太陽光発電設備PVは自動的に解列されるため、電力系統には需要家の負荷Ld1、Ld2のみが連系された状態となる。よって、太陽光発電量により相殺されていない負荷の量(以降実負荷と記載)を把握していないと、電力系統の再閉路時に過負荷となる可能性がある。 When a system fault occurs in the power system as shown in FIG. 1, the photovoltaic power generation facility PV is automatically disconnected, so that only the loads Ld1 and Ld2 of the customers are connected to the power system. .. Therefore, if the amount of load that is not offset by the amount of solar power generation (hereinafter referred to as actual load) is not known, overload may occur when the power system is closed again.

昨今、太陽光発電導入量の増加により、電気所で計測した潮流計測値に重畳される太陽光発電量が増えており、実負荷を把握しにくい状況となっている。実負荷を把握するには、電気所で計測した潮流値から太陽光発電量を差引く必要がある。従って、太陽光発電量を正確に推定できれば、実負荷を正確に把握できることになる。 With the recent increase in the amount of photovoltaic power generation introduced, the amount of photovoltaic power generation that is superimposed on the tidal current measurement value measured at an electric station is increasing, making it difficult to grasp the actual load. In order to grasp the actual load, it is necessary to subtract the amount of photovoltaic power generation from the power flow value measured at the electric power station. Therefore, if the solar power generation amount can be accurately estimated, the actual load can be accurately grasped.

太陽光発電量の推定は、電気所で計測した潮流計測値を利用する方法が現実的手法である。これは、電力系統に連系された多数の太陽光発電設備における太陽光発電量の実測値を、通信等を用いて遅れ時間なく取得することは、コスト等の面で困難であることによる。 A practical method for estimating the amount of photovoltaic power generation is to use the tidal current measurement value measured at an electric station. This is because it is difficult in terms of cost and the like to acquire measured values of the amount of solar power generation in a large number of solar power generation facilities connected to the power system without delay using communication or the like.

次に図2を用いて今回使用を前提としている太陽光発電量推定手法の基礎的事項を説明する。 Next, the basic items of the method for estimating the amount of photovoltaic power generation, which is assumed to be used this time, will be described using FIG.

図2は、横軸に潮流の有効電力P、縦軸に同じく無効電力Qをとった平面(以降P−Q平面という)について、特に有効電力Pが正、進み無効電力Qが負となる第4象限を主体に示している。電力系統で計測した潮流は、多くの場合にこの第4象限内の値として表すことができるが、本発明の手法は、どの象限でも、あるいは象限をまたいでも特に区別なく適用できる。 FIG. 2 shows a plane in which the horizontal axis represents the active power P of the tidal current and the vertical axis represents the reactive power Q (hereinafter referred to as PQ plane). In particular, the active power P is positive and the progressive reactive power Q is negative. The four quadrants are mainly shown. The power flow measured in the electric power system can be represented as a value in the fourth quadrant in many cases, but the method of the present invention can be applied to any quadrant or across quadrants without particular distinction.

図2においてLは負荷特性である。負荷特性Lは図1の電力系統に太陽光発電設備PVが連系されておらず、負荷Ld1、Ld2のみが連系されていると仮定した場合の潮流の軌跡であり、その傾きをaとする。またここで、負荷特性Lと無効電力Q軸との交点、つまり負荷特性Lの無効電力Q切片をQと記すことにする。これにより、負荷特性Lは無効電力Q切片Qと傾きaにより一義的に定義することができる。逆に言えば、無効電力Q切片Qと傾きaを知ることができれば、負荷特性Lを特定できることになる。 In FIG. 2, L 0 is a load characteristic. The load characteristic L 0 is the locus of the tidal current in the case where it is assumed that the photovoltaic power generation facility PV is not connected to the power system of FIG. 1 and only the loads Ld 1 and Ld 2 are connected, and the slope is a Let l . Further, here, the intersection of the load characteristic L 0 and the reactive power Q axis, that is, the reactive power Q intercept of the load characteristic L 0 will be referred to as Q 0 . Thereby, the load characteristic L 0 can be uniquely defined by the reactive power Q intercept Q 0 and the slope a 1 . Conversely, if the reactive power Q intercept Q 0 and the slope a 1 can be known, the load characteristic L 0 can be specified.

本発明においては電力系統で計測した潮流(有効電力Pと無効電力Q)から最終的に負荷特性Lを推定していくものであるが、図2では太陽光発電量推定手法の基礎的な事項を説明する都合上、負荷特性Lは既知であり、あるいは仮想の負荷特性Lとして示している。 In the present invention, the load characteristic L 0 is finally estimated from the power flow (active power P and reactive power Q) measured in the power system, but in FIG. For convenience of description, the load characteristic L 0 is known or is shown as a virtual load characteristic L 0 .

この場合に潮流計測点103等で計測した潮流計測値は、図2のP−Q平面上では●として表すことができ、時々刻々の電力系統の運用状態を反映する形でP−Q平面上の各所に点在する複数の点として表示することができる。これらの計測値は、太陽光発電設備PVが発電を行わない夜間には、負荷特性Lに沿って存在し、太陽光発電設備PVが発電を行う昼間にはその時々の状態を反映して任意の位置に点在する傾向を示している。 In this case, the tidal current measurement value measured at the tidal current measuring point 103 or the like can be represented as a circle on the PQ plane of FIG. 2 and reflects on the operating state of the power system every moment on the PQ plane. Can be displayed as a plurality of dots scattered in various places. These measured values exist along the load characteristic L 0 at night when the solar power generation equipment PV does not generate power, and reflect the state at that time during the daytime when the solar power generation equipment PV generates power. It shows the tendency to be scattered at arbitrary positions.

ここでは複数の点●のうち、点657で示される潮流計測値に着目する。潮流計測値657は、P−Q平面の座標上では(P、Q)と表すことができる。次に、(P、Q)を通り、太陽光発電出力の力率に相当する傾きaの直線をもって、負荷特性Lに下ろした交点672の座標を(P、Q)とする。ことのきPpv=P−Pが、太陽光発電出力の推定値となる。 Here, attention is paid to the power flow measurement value indicated by a point 657 out of a plurality of points ●. The power flow measurement value 657 can be expressed as (P m , Q m ) on the coordinates of the PQ plane. Next, with a straight line passing through (P m , Q m ) and having a slope a p corresponding to the power factor of the photovoltaic power generation output, the coordinates of the intersection point 672 lowered to the load characteristic L 0 are defined as (P X , Q X ). To do. Kotonoki Ppv = P X -P m becomes the estimated value of the photovoltaic output.

本発明の太陽光発電出力推定手法では、負荷特性Lの傾きa、太陽光発電出力の力率に相当する傾きa、及び無効電力Q切片Qを、推定用の諸定数として使用する。以降の実施例では、電気所で取得できる潮流計測値を用い、負荷特性Lの傾きa、太陽光発電出力の力率に相当する傾きa、及び無効電力Q切片Qを求める手法について説明する。 In the photovoltaic power generation output estimation method of the present invention, the slope a 1 of the load characteristic L 0 , the slope a p corresponding to the power factor of the photovoltaic power generation output, and the reactive power Q intercept Q 0 are used as various constants for estimation. To do. In the following examples, a method of obtaining the slope a 1 of the load characteristic L 0 , the slope a p corresponding to the power factor of the photovoltaic power generation output, and the reactive power Q intercept Q 0 by using the power flow measurement value that can be acquired at the electric power station. Will be described.

図3は、本発明の実施例に係る太陽光発電量推定装置の構成例を示す図である。計算機装置を用いて実現される太陽光発電量推定装置200は、その処理内容を機能で表すと太陽光発電出力推定部219と諸定数算出部220により構成されている。なお諸定数算出部220は、負荷特性推定装置ということができる。 FIG. 3 is a diagram showing a configuration example of the photovoltaic power generation amount estimation apparatus according to the embodiment of the present invention. The photovoltaic power generation amount estimation apparatus 200 realized by using a computer device is configured by a photovoltaic power generation output estimation unit 219 and various constant calculation units 220 when the processing content is expressed by a function. The constant calculation unit 220 can be referred to as a load characteristic estimation device.

図3の太陽光発電量推定装置200において、太陽光発電出力推定部219は、例えば秒単位などの短周期で取得される潮流計測値が入力されるたびに実行され、太陽光発電量を推定する。 In the photovoltaic power generation amount estimation apparatus 200 of FIG. 3, the photovoltaic power generation output estimation unit 219 is executed each time a tidal current measurement value acquired in a short cycle such as a unit of seconds is input to estimate the photovoltaic power generation amount. To do.

また図3の太陽光発電量推定装置200において、太陽光発電出力推定に用いる諸定数算出部220は、必要に応じ実行され、太陽光発電量を推定するための諸定数(負荷特性Lの傾きa、太陽光発電出力の力率に相当する傾きa、及び無効電力Q切片Q)を求める。 Further, in the photovoltaic power generation amount estimation apparatus 200 in FIG. 3, the constant calculation unit 220 used for estimating the photovoltaic power generation output is executed as necessary, and various constants for estimating the photovoltaic power generation amount (load characteristics L 0 slope a l, slope a p corresponds to the power factor of the photovoltaic output, and the reactive power Q intercept Q 0) determined.

ここで「必要に応じ」とは、対象とする電力系統の諸量(負荷特性など)が変化した場合などを指す。従って例えば負荷の量や種類、太陽光発電設備PVの稼働状況が、殆ど変化しない場合、例えば数ヶ月以上の周期で実行してもよい。一方、電力系統切替や、連系されている既存の太陽光発電設備PVと比較し有意に大きい定格で、力率も異なる太陽光発電設備PVの稼動開始直後などは、諸定数算出部220を実行することで、太陽光発電出力推定の精度を確保することができる。これは、電力系統切替等の事象があると、負荷特性や太陽光発電の力率が変化することが想定されるためである。 Here, "as needed" refers to a case where various amounts (load characteristics, etc.) of the target power system have changed. Therefore, for example, when the amount or type of load and the operating status of the photovoltaic power generation facility PV do not substantially change, the operation may be performed in a cycle of, for example, several months or more. On the other hand, when the power system is switched or the photovoltaic power generation facility PV having a significantly higher rating and a different power factor than the existing photovoltaic power generation facility PV that is interconnected is started to operate, the constant calculation unit 220 is set. By executing it, it is possible to ensure the accuracy of solar power generation output estimation. This is because it is assumed that the load characteristics and the power factor of photovoltaic power generation change when there is an event such as power system switching.

なお、太陽光発電出力推定部219の実行周期に関しても、太陽光発電出力推定値や実負荷の値が必要となる周期に間に合う周期であれば、潮流計測値の入力毎に行う必要は必ずしもない。よって、複数の潮流計測値をまとめて太陽光発電出力推定部219にかけ、処理することを妨げない。 Regarding the execution cycle of the photovoltaic power generation output estimation unit 219, it is not always necessary to perform it for each input of the tidal current measurement value as long as it is a cycle in which the estimated photovoltaic power generation output value and the actual load value are in time. .. Therefore, the plurality of tidal current measurement values are collectively applied to the solar power generation output estimation unit 219 so as to be processed.

次に図3の太陽光発電量推定装置200を構成する各々の処理機能について説明する。まずセンサ類からの計測情報を、図3の太陽光発電出力推定部219内の計測情報取得部221にて取得する。取得する情報は少なくとも、有効電力P、無効電力Qを含むものとする。 Next, each processing function which comprises the photovoltaic power generation amount estimation apparatus 200 of FIG. 3 is demonstrated. First, the measurement information from the sensors is acquired by the measurement information acquisition unit 221 in the photovoltaic power generation output estimation unit 219 of FIG. The information to be acquired includes at least the active power P and the reactive power Q.

次に図3の太陽光発電出力推定部219内の太陽光発電出力推定部222にて、上記の潮流計測点103の配下に連系されている太陽光発電設備PVの出力を推定する。推定方法は、前述した図2の方式に加え、潮流計測値(P、Q)の時間差分値を用いる方式等が利用できる。 Next, the solar power generation output estimation unit 222 in the solar power generation output estimation unit 219 of FIG. 3 estimates the output of the solar power generation facility PV that is interconnected under the power flow measurement point 103. As the estimation method, in addition to the method of FIG. 2 described above, a method of using the time difference value of the tidal current measurement values (P m , Q m ) and the like can be used.

太陽光発電出力推定部222では、潮流計測値から太陽光発電出力を推定する際に、諸定数(負荷特性Lの傾きa、太陽光発電出力の力率に相当する傾きa、及び無効電力Q切片Q)を用いる。これらの諸定数は、諸定数算出部220において算出したものを使用する。 In estimating the photovoltaic power generation output from the tidal current measurement value, the photovoltaic power generation output estimation unit 222 calculates various constants (slope a 1 of the load characteristic L 0 , gradient a p corresponding to the power factor of the photovoltaic power generation output, and The reactive power Q intercept Q 0 ) is used. For these constants, those calculated by the constant calculation unit 220 are used.

尚、諸定数のうち無効電力Q切片Qについては、例えば、日照のない時間帯(早朝)の太陽光発電出力が0で、かつ潮流計測値が負荷特性L上にのっているとの仮定ができれば、必ずしも無効電力Q切片Qを用いる必要はない。しかし、早朝の時間帯は、夜間電力等の負荷により、負荷特性から外れる場合も考慮すると、無効電力Q切片Qを明示的に指定した方が、良い推定結果を得られる場合も多い。 Regarding the reactive power Q intercept Q 0 among the constants, for example, if the photovoltaic power generation output is 0 during the period of no sunlight (early morning), and the tidal current measurement value is on the load characteristic L 0. If it is possible to use the above assumption, it is not always necessary to use the reactive power Q intercept Q 0 . However, in consideration of a case where the load characteristics deviate from the load characteristics in the early morning time zone due to a load such as nighttime power, it is often the case that a better estimation result can be obtained by explicitly specifying the reactive power Q intercept Q 0 .

次に太陽光発電出力推定部222にて使用する推定用の諸定数(負荷特性Lの傾きa、太陽光発電出力の力率に相当する傾きa、及び無効電力Q切片Q)の求め方について説明する。以降、負荷特性の傾きaと無効電力Q切片Qの求め方を例に説明するが、太陽光発電の力率aも殆ど同様の手順で求めることが出来る。なお以下の手順を説明するにあたり図4、図5を参照して説明する。図4は、負荷特性の傾きaと無効電力Q切片Qの求め方を説明するための図である。なお図4は図2と同じP−Q平面の第4象限を示しており、その原点がOである。 Next, various estimation constants used in the photovoltaic power generation output estimation unit 222 (slope a 1 of the load characteristic L 0 , slope a p corresponding to the power factor of the photovoltaic power generation, and reactive power Q intercept Q 0 ). The method of obtaining is explained. Hereinafter, a method of obtaining the slope a 1 of the load characteristic and the reactive power Q intercept Q 0 will be described as an example, but the power factor a p of solar power generation can also be obtained by almost the same procedure. Note that the following procedure will be described with reference to FIGS. 4 and 5. FIG. 4 is a diagram for explaining how to obtain the slope a 1 of the load characteristic and the reactive power Q intercept Q 0 . Note that FIG. 4 shows the fourth quadrant of the same PQ plane as FIG. 2, and its origin is O.

諸定数の推定のために諸定数算出部220内の計測値格納部231は、計測情報取得部221からの計測値を格納する。計測値の座標は、図4のP−Q平面に●で示されたものであり、長期間にわたり、値の相違する多数の計測値が計測値格納部231に収納されることが望ましいものの、本発明の手法では比較的短期間の計測データから推定用の諸定数(負荷特性Lの傾きa、太陽光発電出力の力率に相当する傾きa、及び無効電力Q切片Q)を求めることができる。 The measured value storage unit 231 in the various constant calculation unit 220 stores the measured values from the measurement information acquisition unit 221 for estimating various constants. The coordinates of the measured values are indicated by ● on the PQ plane of FIG. 4, and although it is desirable that a large number of measured values having different values be stored in the measured value storage unit 231 over a long period of time, In the method of the present invention, various constants for estimation (slope a 1 of the load characteristic L 0 , slope a p corresponding to the power factor of the photovoltaic power generation, and reactive power Q intercept Q 0 ) from the measured data in a relatively short period of time. Can be asked.

また諸定数算出部220内の垂線を下ろす対象の直線の傾きの保持部233は、図4のP−Q平面の原点Oを通り、傾き623を可変とする直線622の傾きの情報を保持している。直線の傾きの保持部233は、直線の傾き623についての変更を指示されるまでは、仮定した一定の傾き623を与えるとともに、傾き変更の指示に応じて順次傾き623を変更していく。 Further, the holding unit 233 of the inclination of the straight line to which the perpendicular line is drawn in the constant calculating unit 220 holds the information of the inclination of the straight line 622 that passes through the origin O of the PQ plane of FIG. ing. The straight line inclination holding unit 233 gives the assumed constant inclination 623 until it is instructed to change the linear inclination 623, and sequentially changes the inclination 623 in response to the instruction to change the inclination.

次に垂線の足算出部232は、直線の傾きの保持部233から仮定された一定傾き623の直線622を得、また計測値格納部231に収納した複数の計測値を入手する。そのうえで垂線の足算出部232は、計測値格納部231に格納している潮流計測値として例えば図4に657で示す潮流計測値に着目し、その座標(P、Q)から、垂線を下ろす対象の直線の傾きの保持部233で保持している傾き623の直線622に対し、垂線624を下ろし、その交点626を求める。この交点626が垂線の足であり、その座標を(P、Q)とする。 Next, the perpendicular foot calculation unit 232 obtains the straight line 622 with the assumed constant slope 623 from the straight line inclination holding unit 233, and also obtains the plurality of measured values stored in the measured value storage unit 231. Then, the perpendicular bar calculation unit 232 focuses on the tidal current measurement value indicated by 657 in FIG. 4 as the tidal current measurement value stored in the measurement value storage unit 231, and determines the perpendicular line from its coordinates (P m , Q m ). A perpendicular line 624 is lowered with respect to a straight line 622 having a slope 623 held by a holding unit 233 for holding a straight line to be lowered, and an intersection point 626 thereof is obtained. This intersection point 626 is a perpendicular leg, and its coordinates are (P y , Q y ).

このように垂線の足算出手段232では、仮定した傾きの直線(図4の622に示す直線R)に対し、各々の潮流計測値(P、Q)657から、垂線624を下ろす。このとき直線Rの傾き623を(−1/alx)、垂線624の傾き625をalx、垂線の足626の座標を(P、Q)とする。直線Rの傾き623は、垂線を下ろす対象の直線の傾きの保持部233に格納している。かくして垂線の足算出部232では、仮定された一定傾き623の直線622を基準とし、潮流計測値についての垂線の足を求める処理をすべての潮流計測値に対して実行する。 In this way, the perpendicular foot calculating means 232 lowers the perpendicular 624 from each of the tidal current measurement values (P m , Q m ) 657 with respect to the assumed straight line (straight line R indicated by 622 in FIG. 4). At this time, the inclination 623 of the straight line R is (−1/a 1x ), the inclination 625 of the perpendicular line 624 is a 1x , and the coordinates of the leg 626 of the perpendicular line are (P y , Q y ). The inclination 623 of the straight line R is stored in the holding portion 233 of the inclination of the straight line to which the perpendicular is to be lowered. Thus, the perpendicular foot calculation unit 232 executes the process of obtaining the perpendicular feet of the tidal current measured values for all tidal current measured values, with the assumed straight line 622 having the constant slope 623 as a reference.

なお図2で述べたように、これらの潮流計測値(P、Q)は、太陽光発電設備PVが発電を行わない夜間には、負荷特性Lに沿って存在している。従って、仮定した傾きの直線(図4の622に示す直線R)と負荷特性Lが直交する位置関係にある時、複数の潮流計測値(P、Q)657から夫々求めた垂線の足626の座標(P、Q)は、直線R上の狭い領域に集中して観測されるはずである。逆に言えば本発明は垂線の足が直線R上の狭い領域に集中して観測されるときの条件から、逆に負荷特性Lの傾きを求めていくものである。 As described with reference to FIG. 2, these power flow measured values (P m , Q m ) exist along the load characteristic L 0 at night when the photovoltaic power generation facility PV does not generate power. Therefore, when the assumed straight line (straight line R indicated by 622 in FIG. 4) and the load characteristic L 0 are in a positional relationship of being orthogonal to each other, the perpendicular lines obtained respectively from the plurality of power flow measurement values (P m , Q m ) 657 are The coordinates (P y , Q y ) of the foot 626 should be observed in a concentrated manner in a narrow area on the straight line R. Conversely, according to the present invention, the slope of the load characteristic L 0 is obtained on the contrary from the condition when the feet of the perpendicular line are concentrated and observed in a narrow region on the straight line R.

垂線の足のヒストグラム作成部234では、仮定された一定傾き623の直線622上の各点における垂線の足の発生度数628を求める。直線622上の各点における発生度数は、垂線の足のヒストグラム627を求めたものである。このようにして複数の潮流計測値(P、Q)に対応する複数の垂線の足(P、Q)について、垂線を下ろす対象の直線の傾きの保持手段233で保持している傾きの直線上の位置を階級としたヒストグラムを作成する。 The perpendicular foot histogram creation unit 234 obtains the occurrence frequency 628 of the perpendicular foot at each point on the straight line 622 having the assumed constant slope 623. The occurrence frequency at each point on the straight line 622 is obtained by obtaining the histogram 627 of the perpendicular bar. In this way, a plurality of perpendicular feet (P y , Q y ) corresponding to the plurality of tidal current measurement values (P m , Q m ) are held by the holding means 233 of the inclination of the straight line to be lowered. Create a histogram with the position on the straight line of the slope as the class.

このように垂線の足のヒストグラム作成手段234では、前述の処理でもとめた垂線の足(P、Q)を、複数の潮流計測値(P、Q)についてもとめる。更に、前記複数の垂線の足(P、Q)について、直線R上の原点からの距離を階級としてヒストグラム627を作成する。尚、図4では、ヒストグラムを便宜的に折れ線で表示している。628はヒストグラムの度数を示す軸である。 As described above, the perpendicular foot histogram creating unit 234 obtains the perpendicular feet (P y , Q y ) determined in the above-described processing for a plurality of tidal current measurement values (P m , Q m ). Furthermore, a histogram 627 is created for each of the plurality of perpendicular feet (P y , Q y ) with the distance from the origin on the straight line R as the class. In FIG. 4, the histogram is displayed as a polygonal line for convenience. Reference numeral 628 is an axis indicating the frequency of the histogram.

仮定された一定傾き623の直線622と複数の潮流計測値(P、Q)から1つの垂線の足のヒストグラム627を求めた後に、直線の傾きについての変更を指示し、直線の傾きの保持部233から新たな直線の傾きを入手し、上記垂線の足のヒストグラム627を求める処理を繰り返し実行する。上記繰り返しは、図4のP−Q平面の原点Oを通る直線について、例えばP軸を基準とし反時計回りに-135度から-25度の範囲について、角度を1度ずつ変更しながら繰り返し実行されるものである。これらの範囲は、太陽光発電の力率の範囲や負荷特性の傾きの範囲に応じ適宜拡大縮小してもよい。なおこのようにして求められるヒストグラムは、直線622と負荷特性Lが直交する角度関係になるときに発生度数628が最大となると考えることができる。 After obtaining the histogram 627 of one perpendicular bar from the assumed straight line 622 with a constant slope 623 and a plurality of power flow measurement values (P m , Q m ), the change of the straight line slope is instructed, and The process of obtaining the inclination of the new straight line from the holding unit 233 and obtaining the histogram 627 of the perpendicular bar is repeatedly executed. The above-mentioned repetition is repeatedly executed for the straight line passing through the origin O of the PQ plane in FIG. 4, for example, in the range of −135 degrees to −25 degrees counterclockwise with respect to the P axis while changing the angle by 1 degree. Is done. These ranges may be appropriately expanded or reduced according to the range of the power factor of solar power generation and the range of the slope of the load characteristics. In the histogram thus obtained, it can be considered that the occurrence frequency 628 becomes maximum when the straight line 622 and the load characteristic L 0 have an orthogonal angular relationship.

次に、ヒストグラム群の発生度数から負荷特性等算出手段235では、傾き(−1/alx)毎のヒストグラムのうち、各々の最大度数を抽出する。図5は最大度数を抽出する考え方を説明するための図である。 Next, the load characteristic etc. calculating means 235 extracts the maximum frequency of each of the histograms for each slope (−1/a 1x ) from the frequency of occurrence of the histogram group. FIG. 5 is a diagram for explaining the concept of extracting the maximum frequency.

図5において、636は、仮定する傾き(−1/alx)を変え、作成したヒストグラム群の例である。図5の例ではヒストグラムは、(−1/alx)の昇順または降順で並べたものとした。図5の637は、仮定した傾き(−1/alx)毎に抽出した度数の最大値である。同図で638は度数を示す軸、639は仮定する傾きを示す軸である。ここで、仮定した傾き(−1/alx)毎に抽出した度数の最大値の折れ線のうち、最大値640をとるヒストグラムを作成したときに用いた直線Rの傾き(−1/alx)を(−1/al_est)とする。このとき、直線Rの傾きと直交する直線の傾き(al_est)が、本実施例での負荷特性の傾きaの推定値である。尚、639の軸は、直線Rの傾き(−1/alx)ではなく、直線Rと直交する方向の傾き(alx)を用いても良い。639に直線Rと直交する方向の傾き(alx)を用いると、負荷特性の推定値候補との関連がわかりやすい等の利点がある。 In FIG. 5, reference numeral 636 is an example of a histogram group created by changing the assumed slope (−1/a 1x ). In the example of FIG. 5, the histograms are arranged in ascending or descending order of (−1/a 1x ). Reference numeral 637 in FIG. 5 is the maximum value of the frequencies extracted for each assumed slope (−1/a 1x ). In the figure, 638 is an axis showing a frequency, and 639 is an axis showing an assumed inclination. Here, of the polygonal lines of the maximum value of the frequencies extracted for each assumed slope (−1/a 1x ), the slope of the straight line R (−1/a 1x ) used when the histogram having the maximum value 640 is created. Be (-1/ al_est ). In this case, the straight line perpendicular to the slope of the straight line R slope (a l_est) is an estimate of the slope a l of the load characteristics of the present embodiment. It should be noted that the axis of 639 may use the inclination (a 1x ) in the direction orthogonal to the straight line R instead of the inclination (−1/a 1x ) of the straight line R. The use of the slope (a lx ) in the direction orthogonal to the straight line R for 639 has an advantage that the relation with the estimated value candidate of the load characteristic is easy to understand.

次に、最大値640をとるヒストグラムを作成したときに用いた直線Rの傾き(−1/al_est)に対応したヒストグラムのうちで、最大の度数となる階級値をR_estとする。負荷特性のQ切片は、前記階級値R_estと、傾き(−1/al_est)から求めることが出来る。 Next, in the histogram corresponding to the slope (−1/ al_est ) of the straight line R used when the histogram having the maximum value 640 is created, the class value having the maximum frequency is set as R_est . The Q intercept of the load characteristic can be obtained from the class value R_est and the slope (-1/ al_est ).

ヒストグラム群の度数から負荷特性等算出部235では、直線の傾きの保持部233で保持している傾きを変えつつ作成した複数の前記ヒストグラムについて、度数が最大となる階級値と対応する前記直線の傾きに関する情報から、負荷特性の傾き665(a)とQ切片656(Q)を求める。 In the load characteristic etc. calculation unit 235 from the frequencies of the histogram groups, the plurality of histograms created while changing the slopes held by the straight line slope holding unit 233, are stored in the straight line corresponding to the class value having the maximum frequency. The slope 665 (a 1 ) and the Q intercept 656 (Q 0 ) of the load characteristic are obtained from the information on the slope.

図6は、負荷特性のQ切片を求める手順を説明するための図である。次に図6を用いて、階級値645(R_est)と、傾き641(−1/al_est)から、負荷特性のQ切片を求める手順を説明する。 FIG. 6 is a diagram for explaining the procedure for obtaining the Q intercept of the load characteristic. Next, a procedure for obtaining the Q intercept of the load characteristic from the class value 645 ( R_est ) and the slope 641 (-1/ al_est ) will be described with reference to FIG.

図6において、LO1は推定した負荷特性で、その傾き648は直線Rと直交するal_estである。649は、推定した負荷特性と直線Rとの交点(P、Q)である。(P、Q)は、同点の原点からの距離645がR_estで、直線Rの傾き648がal_estと既知のため、その位置を求めることが出来る。また、推定した負荷特性LO1は、傾き648がal_estと既知であり、かつ交点649(P、Q)を通ることが判っているため、同様に決定することが出来る。よって、負荷特性LO1の方程式を決定することができ、そのQ切片650(Q0_est)も同様に決定することが出来る。 In FIG. 6, L O1 is the estimated load characteristic, and its slope 648 is a l_est orthogonal to the straight line R. Reference numeral 649 is an intersection (P z , Q z ) between the estimated load characteristic and the straight line R. (P z, Q z), the distance 645 from the equalizer of the origin in R _Est, since the slope 648 of the straight line R is known and a L_est, can determine its position. Further, the estimated load characteristic L O1 can be similarly determined because it is known that the slope 648 is a l_est and the point of intersection 649 (P z , Q z ) is passed. Therefore, the equation of the load characteristic L O1 can be determined, and its Q intercept 650 (Q 0 — est ) can be similarly determined.

以上の説明から明らかなように、諸定数算出部220によれば、推定した負荷特性LO1を、傾きal_estとQ切片Q0_estを有するものとして一義的に特定することができる。 As is clear from the above description, according to the constant calculation section 220, the estimated load characteristic L O1 can be uniquely specified as having the slope a l — est and the Q intercept Q 0 — est .

ここで諸定数算出部220を構成するのであれば上記機能を備えて、諸定数として負荷特性Lの傾きaと無効電力Q切片Qを提供できるものであればよいが、さらに太陽光発電設備の特性を把握する太陽光発電量推定装置200を構成することを意図するのであれば、諸定数算出部220はさらに諸定数として太陽光発電出力の力率に相当する傾きaを提供する必要がある。 Here, if the constants calculating unit 220 is configured, the above-mentioned function is provided, and as long as it can provide the slope a 1 of the load characteristic L 0 and the reactive power Q intercept Q 0 as the constants, the sunlight is further included. If it is intended to configure the photovoltaic power generation amount estimation apparatus 200 that grasps the characteristics of the power generation facility, the constant calculation unit 220 further provides the slope ap corresponding to the power factor of the photovoltaic power output as the constants. There is a need to.

実施例2では、諸定数算出部220はさらに諸定数として太陽光発電出力の力率に相当する傾きaを提供し、太陽光発電量推定装置200を構成することについて説明する。 In the second embodiment, it will be described that the various constant calculation unit 220 further provides the slope ap corresponding to the power factor of the photovoltaic power generation output as various constants to configure the photovoltaic power generation amount estimation apparatus 200.

再度図3に戻り、太陽光発電量推定装置200を構成するために、諸定数算出部220はさらに諸定数として太陽光発電出力の力率に相当する傾きaを提供すべく、以下の機能を有するものとされる。 Returning to FIG. 3 again, in order to configure the photovoltaic power generation amount estimation apparatus 200, the various constant calculation units 220 further have the following functions in order to provide the slope ap corresponding to the power factor of the photovoltaic power generation output as various constants. To have

図3の力率の推定対象に関する情報保持部237では、推定用の諸定数(負荷特性Lの傾きa、太陽光発電出力の力率に相当する傾きa及び無効電力Q切片Q)のうち、負荷特性を求めたいのか(負荷特性Lの傾きa及び無効電力Q切片Q)、または、太陽光発電側の特性を求めたいのか(太陽光発電出力の力率に相当する傾きa)を示すフラグを格納する。推定対象が太陽光発電側の特性(太陽光発電出力の力率に相当する傾きa)の場合、例えば使用する潮流計測値について、日照のある時間帯のみに制限するなどの処理を行う。時間帯の一例としては、午前9時から午後3時など、日射量の多い時間帯を選ぶと好適である。また正午から午後1時など、実負荷の急変を含む時間帯を除くと更に好ましい。本発明において太陽光発電出力の力率を求めるためには、負荷の力率を求める場合の処理に対し、使用する潮流計測値の時間帯の制限のみを行えばよく、他の追加処理は特段不要である。尚、太陽光発電出力の力率を求める際には、力率に相当する傾きのみが必要であり、無効電力Q切片Qを求める処理は不要であることは言うまでもない。 In the information holding unit 237 regarding the power factor estimation target in FIG. 3, various constants for estimation (slope a 1 of the load characteristic L 0 , slope a p corresponding to the power factor of the photovoltaic power generation output, and reactive power Q intercept Q 0). of), do you want determined load characteristics (slope a l and reactive power Q intercept Q 0 of the load characteristics L 0), or whether to be obtained the characteristics of photovoltaic side (corresponding to the power factor of the photovoltaic output The flag indicating the slope a p ) to be stored is stored. When the estimation target is the characteristic of the photovoltaic power generation side (slope ap corresponding to the power factor of the photovoltaic power generation output), for example, the tidal current measurement value to be used is limited to only the time zone with sunshine. As an example of the time zone, it is preferable to select a time zone in which the amount of solar radiation is large, such as 9 am to 3 pm. Further, it is more preferable to exclude a time period including a sudden change in actual load, such as from noon to 1:00 pm. In the present invention, in order to obtain the power factor of the photovoltaic power generation output, in contrast to the process of obtaining the power factor of the load, only the time zone of the tidal current measurement value to be used needs to be limited, and other additional processes are notable. It is unnecessary. Needless to say, when obtaining the power factor of the photovoltaic power generation output, only the slope corresponding to the power factor is necessary, and the process of obtaining the reactive power Q intercept Q 0 is unnecessary.

なお太陽光発電出力の力率に相当する傾きaの算出は、日照のある時間帯に計測された有効電力Pと無効電力Qから求めることができるが、この場合の力率は現時点の力率あるいは時間帯ごとの力率として適宜算出するものであってもよい。なおここで使用する有効電力Pと無効電力Qは、図2の657の座標(Pm、Qm)と672の座標(P、Q)の差分で定まる有効電力Pと無効電力Qを意味している。 The slope ap corresponding to the power factor of the solar power generation output can be calculated from the active power P and the reactive power Q measured during a period of sunshine, but the power factor in this case is the current power. It may be calculated as a power factor or a power factor for each time zone. Note reactive power Q and active power P as used herein means the active power P and reactive power Q determined by the difference between 657 coordinates in FIG 2 (Pm, Qm) and 672 of the coordinates (P y, Q y) ing.

さらに太陽光発電量推定装置200を構成するためには、諸定数算出部220としてさらに諸定数の更新要否判定手段238と統括制御部236を備えているのがよい。 Furthermore, in order to configure the photovoltaic power generation amount estimation apparatus 200, it is preferable that the constant calculation unit 220 further includes a constant update necessity determination unit 238 and a general control unit 236.

このうち推定用の諸定数の更新要否判定手段238では、例えば系統の構成が変わらない場合は、数ヶ月単位などの周期で、推定用の諸定数の再計算要否の判定を行う。また、系統切替等が行われた場合や、有意に大きい定格の負荷や太陽光発電の新設や廃止が行われた場合など、電力系統における見直し事情が生じたときには、再計算要の判定を行う。系統切替の検出は、制御信号を取り込むか、または潮流計測値の急変などを根拠に判定する。再計算においては、電力系統における見直し事情に応じて対応する有効電力と無効電力を含む潮流計測値を電力系統から再入手して、負荷特性などを再度求めることになる。系統切り替えなどで、同一の系統構成となるケースが将来的に予想される場合は、系統構成毎に、対応する有効電力と無効電力を含む潮流計測値を保存しておくと、迅速に、推定用の諸定数(負荷特性Lの傾きa、太陽光発電出力の力率に相当する傾きa及び無効電力Q切片Q)を決定することができる。また、系統切り替えの場合には、推定用の諸定数(負荷特性Lの傾きa、太陽光発電出力の力率に相当する傾きa及び無効電力Q切片Q)そのものを、対応する系統構成毎に保存する方式としてもよい。 Of these, the estimation constant updating necessity determination means 238 determines whether or not the estimation constants need to be recalculated in a cycle such as every several months when the system configuration does not change. In addition, when there is a review situation in the power system, such as when the system is switched, when a significantly large rated load or when photovoltaic power generation is newly installed or abolished, it is determined whether recalculation is required. .. The system switching is detected by taking in a control signal or making a sudden change in the tidal current measurement value. In the recalculation, the power flow measurement value including the active power and the reactive power corresponding to the review situation in the power system is acquired again from the power system, and the load characteristics and the like are obtained again. If the same system configuration is expected in the future due to system switching, etc., save the power flow measurement value that includes the corresponding active power and reactive power for each system configuration for quick estimation. Constants (slope a 1 of load characteristic L 0 , slope a p corresponding to the power factor of the photovoltaic power generation output, and reactive power Q intercept Q 0 ) can be determined. Further, in the case of system switching, the various constants for estimation (the slope a 1 of the load characteristic L 0 , the slope a p corresponding to the power factor of the photovoltaic power generation output, and the reactive power Q intercept Q 0 ) themselves are used. A method of saving each system configuration may be used.

統括制御部236は、前述の各ブロックの動作を統合的に制御する。図示しない外部システムとの入出力や、ユーザ操作に関するインターフェースも行う。 The integrated control unit 236 controls the operations of the above-mentioned blocks in an integrated manner. It also performs input/output with an external system (not shown) and interfaces with user operations.

実施例3では、負荷特性推定装置や太陽光発電量推定装置を計算機により実現する場合の処理方法について説明する。 In the third embodiment, a processing method when the load characteristic estimation device and the photovoltaic power generation amount estimation device are realized by a computer will be described.

図7は、太陽光発電出力推定に用いる諸定数算出部220における処理を計算機で実現する場合の、負荷特性の傾きとQ切片を求める処理フローを示している。また、使用する潮流計測値の時間帯を日照のある時間帯のみとすることで、太陽光発電出力の力率についても同一のフローを適用することができる。 FIG. 7 shows a processing flow for obtaining the slope of the load characteristic and the Q intercept when the processing in the constant calculation unit 220 used for estimating the solar power generation output is realized by a computer. In addition, the same flow can be applied to the power factor of the photovoltaic power generation output by setting the time zone of the tidal current measurement value to be used only to the time zone with sunlight.

図7の処理フローにおける最初の処理ステップであるS431では、まず計測値格納部231等を経由し、潮流計測値(Pm、Qm)を、取得する。 In S431, which is the first processing step in the processing flow of FIG. 7, first, the tidal current measurement values (Pm, Qm) are acquired via the measurement value storage unit 231 and the like.

次の処理ステップS432Sは、処理ステップS432eとの間の処理を繰り返し実行する。また処理ステップS433Sは、処理ステップS433eとの間の処理を繰り返し実行する。処理ステップS432側は仮定した直線622の傾き(−1/alx)を可変に設定して行う繰り返し処理であり、処理ステップS433側は対象とする計測値のすべてについて順次選択して処理するための繰り返し処理である。このように図7の処理では、R軸の傾きに関するループの内側に、個々の処理対象である潮流計測値(Pm、Qm)に関するループをもつ。このように、本実施例では、個々の潮流計測値(Pm、Qm)に着目した処理ループをもつことを特徴とする。 In the next processing step S432S, the processing between processing step S432e is repeatedly executed. The processing step S433S repeatedly executes the processing between the processing step S433e. The processing step S432 side is an iterative process performed by variably setting the assumed inclination (−1/ alx ) of the straight line 622, and the processing step S433 side sequentially selects and processes all target measurement values. Is a repetitive process. As described above, in the processing of FIG. 7, inside the loop regarding the inclination of the R axis, there is a loop regarding the tidal current measurement values (Pm, Qm) that are individual processing targets. As described above, the present embodiment is characterized by having a processing loop focusing on individual power flow measurement values (Pm, Qm).

次に処理ステップS434にて、(Pm、Qm)からR軸への垂線を下ろす。更に処理ステップS435で前記垂線の足に関し、R軸上での原点からの距離を階級とするヒストグラムを作成する。 Next, in process step S434, the perpendicular line from (Pm, Qm) to the R axis is lowered. Further, in processing step S435, a histogram is created with the distance from the origin on the R-axis as the class for the perpendicular leg.

処理ステップS433のループ、処理ステップS432のループが完了した後、処理ステップS436でR軸上での原点からの距離を階級とするヒストグラムを、複数の前記R軸の傾きについて並べたヒストグラム群636を作成する。更に、前記各々のR軸の傾きについて、度数の最大値を抽出し、図5の637を作成する。次に、637の最大値に相当するR軸の傾き(−1/alx)を(−1/al_est)とする。また、直交する傾きal_estを、負荷特性の傾きとする。 After the loop of the processing step S433 and the loop of the processing step S432 are completed, a histogram group 636 in which a histogram in which the distance from the origin on the R axis is the class is arranged with respect to the inclinations of the plurality of R axes is formed in the processing step S436. create. Furthermore, the maximum value of the frequency is extracted for each of the R-axis inclinations, and 637 in FIG. 5 is created. Next, the inclination of the axis R corresponding to the maximum value of 637 and (-1 / a lx) and (-1 / a l_est). Further, the orthogonal inclination al_est is the inclination of the load characteristic.

更に処理ステップS437で、前記al_estに対応するヒストグラムで最大の度数を与える階級値からR_estを求める。つづいて、al_estとR_estを用い、負荷特性のQ切片であるQ0_estを前出の図6で説明した手順で求める。 Further processing steps S437, obtains the R _Est from class value giving the maximum frequency in the histogram corresponding to the a l_est. Next, using al_est and R_est , Q0_est , which is the Q intercept of the load characteristic, is obtained by the procedure described in FIG.

次に、データ数が少ない場合の効果の例を、模擬データを用いて説明する。まず、比較のために、データが少ない場合に用いられる最小二乗による直線回帰を用いた場合の例を示す。 Next, an example of the effect when the number of data is small will be described using simulated data. First, for comparison, an example of using linear regression by least squares, which is used when the amount of data is small, will be shown.

図8は、例えば夜間に計測された計測値のみで形成され、最小二乗を用いた外れ値の無い場合の回帰直線の例である。なお図8は、横軸に潮流の有効電力P、縦軸に同じく無効電力QをとったP−Q平面状の負荷特性を示している。657として代表的に例示する潮流計測値(Pm、Qm)を模した計測値が、負荷特性に対して小さいばらつきで整然と並んでいた場合、最小二乗を用いた場合でも、サンプル点をよく代表する回帰直線654を得ることができる。 FIG. 8 is an example of a regression line formed by only measurement values measured at night, for example, and using least squares and having no outliers. Note that FIG. 8 shows load characteristics in a PQ plane in which the horizontal axis represents the active power P of the tidal current and the vertical axis also represents the reactive power Q. When the measured values simulating the tidal current measured values (Pm, Qm) exemplarily illustrated as 657 are lined up in an orderly manner with a small variation with respect to the load characteristics, the sample points are well represented even when the least squares is used. A regression line 654 can be obtained.

一方、図9のように、極少数の外れ値652がある場合、最小二乗を用いた回帰直線653は、外れ値の影響で、多くのサンプル点の近傍を通過しない位置となってしまう。 On the other hand, when there is a very small number of outliers 652 as shown in FIG. 9, the regression line 653 using least squares is located at a position where it does not pass near many sample points due to the outliers.

これに対し、次に、本実施例の手順を適用した場合の例を説明する。図10は、図5の636に相当するヒストグラム群である。用いた潮流計測値657は、図9の外れ値を有するものである。図10は、直線の角度(−1/alx)を変更しながら、各直線におけるヒストグラムを求めたものである。 On the other hand, next, an example in which the procedure of the present embodiment is applied will be described. FIG. 10 is a histogram group corresponding to 636 in FIG. The power flow measurement value 657 used has the outliers shown in FIG. FIG. 10 shows histograms obtained for each straight line while changing the angle (−1/a 1x ) of the straight line.

図11は、最大値を比較しやすいよう、度数の基点を揃え、整列させたものである。同図から、最大の度数をもつヒストグラムがあることがわかる。当該ヒストグラムを作成したときに用いた直線Rの傾き(1/alx)が、(−1/al_est)である。よって、逆数をとり、符号を反転することで、負荷特性の傾きal_estを求めることができる。また、前記(−1/al_est)に対応するヒストグラムの最大度数の階級値がR_estであり、図6で説明した手順で負荷特性のQ切片であるQ0_estに変換できる。 In FIG. 11, the base points of the frequencies are aligned and aligned so that the maximum values can be easily compared. It can be seen from the figure that there is a histogram with the highest frequency. The slope of the straight line R was used when creating the histogram (1 / a lx) is - a (1 / a l_est). Therefore, by taking the reciprocal and inverting the sign, the slope a l_est of the load characteristic can be obtained. The class value of the maximum frequency of the histogram corresponding to (-1/ al_est ) is R_est , which can be converted into Q0_est , which is the Q intercept of the load characteristic, by the procedure described in FIG.

図12は、図5の637に相当し、仮定した傾き毎の度数の最大値である。負荷特性の傾きとして比較しやすいよう、横軸は、(−1/alx)ではなく、alxとしているが、本質は変わらない。逆に推定対象である負荷特性の傾きの次元と等しくなるため、どの程度の傾きの違いで、どの程度の最大度数の差となるかの目安を付けやすくなる。図12では、比較のため、図9相当の外れ値のある潮流計測値(Pm、Qm)を用いた場合に加え、図8相当の外れ値の無い潮流計測値(Pm、Qm)を用いた場合の637相当のプロットも、重ねて示している。 FIG. 12 corresponds to 637 in FIG. 5 and shows the maximum value of the frequency for each assumed inclination. So that easy comparison as the slope of the load characteristics, the horizontal axis, (- 1 / a lx) instead, although with a lx, essentially unchanged. On the contrary, since it is equal to the dimension of the gradient of the load characteristic that is the estimation target, it becomes easy to give an indication of how much the gradient differs and what the maximum frequency difference becomes. In FIG. 12, for comparison, in addition to the case where the tidal current measurement values (Pm, Qm) having an outlier corresponding to FIG. 9 are used, the tidal current measurement values (Pm, Qm) having no outlier corresponding to FIG. 8 are used. The plot corresponding to 637 in the case is also shown in an overlapping manner.

図12に示すように、本実施例の方式では、外れ値の有無にかかわらず、同程度の傾きを推定できる。一方、図12では、最小二乗法による直線回帰の場合の傾きを合わせて示している。外れ値の無い場合の最小二乗法による回帰直線の傾き654は、本実施例による傾きとほぼ同じである。しかし、外れ値がある場合の最小二乗法による回帰直線の傾き653は、本実施例による傾きや、外れ値のない回帰直線の傾き654と比較し、大きく異なっている。 As shown in FIG. 12, according to the method of the present embodiment, it is possible to estimate a similar slope regardless of the presence or absence of an outlier. On the other hand, FIG. 12 also shows the slopes in the case of linear regression by the least squares method. The slope 654 of the regression line obtained by the method of least squares when there is no outlier is almost the same as the slope obtained by the present embodiment. However, the slope 653 of the regression line obtained by the method of least squares when there is an outlier is significantly different from the slopes obtained by the present embodiment and the slope 654 of the regression line having no outliers.

図13は、外れ値のあるデータを対象とし、本実施例により傾きを求めた結果と最小二乗による回帰の結果を比較したものである。本実施例により求めた傾きは、外れ値がある場合においても、外れ値の無い場合の最小二乗による傾きと、ほぼ等しいことがわかる。 FIG. 13 is a comparison of the result of the slope obtained by the present embodiment with the result of the regression by the least squares for the data having the outliers. It can be seen that the slope obtained by the present embodiment is almost equal to the slope by the least squares when there is no outlier even when there is an outlier.

図14は、実際の潮流計測値に対し、本実施例の手法を適用した結果である。同図において、実線で示した斜め方向の直線が、本実施例の手法で求めた負荷特性の推定値である。同直線は、求めたい負荷特性に近いようにみえる。一方、点線で示した直線は、比較のため、同じデータに対し最小二乗による回帰直線を求めた結果である。太陽光発電によると思われる潮流変動の影響で、最小二乗を用いた場合は一般的な負荷特性とは逆極性の傾きの回帰直線となってしまっている。以上から、前出の模擬データの場合だけでなく、実際の潮流データについても、最小二乗による回帰直線は外れ値の影響を受けてしまうのに対し、本発明の手法では、より確からしい負荷特性の傾きと切片を求めることができる。 FIG. 14 is a result of applying the method of the present embodiment to an actual power flow measurement value. In the same figure, the diagonal straight line shown by the solid line is the estimated value of the load characteristic obtained by the method of this embodiment. The straight line seems to be close to the desired load characteristics. On the other hand, the straight line indicated by the dotted line is the result of obtaining a regression line by least squares for the same data for comparison. Due to the influence of tidal current fluctuation, which is considered to be caused by photovoltaic power generation, when using least squares, the regression line has a slope with a polarity opposite to that of the general load characteristics. From the above, not only in the case of the above-mentioned simulated data but also in the actual power flow data, the regression line due to the least squares is affected by the outliers, whereas in the method of the present invention, the load characteristics that are more likely The slope and intercept of can be obtained.

以上、少ないデータを対象に説明してきたが、本実施例による手法は、少ない潮流計測データにも適用できるほか、多いデータに対してもそのまま適用できる。データ量の増加に対する計算量の増加も高々線形であるため、特に支障とはならない。 Although the above description has been made with respect to a small amount of data, the method according to the present embodiment can be applied not only to a small amount of tidal current measurement data but also to a large amount of data. The increase in the amount of calculation with respect to the increase in the amount of data is at most linear, so there is no particular problem.

G:発電所
SS:変電所
103:計測点
L1:送電線
L2:配電線
Ld1:負荷(大口需要家)
Ld2:負荷(小口需要家)
PV:太陽光発電設備
200:太陽光発電量推定装置
219:太陽光発電出力推定部
220:諸定数算出部
221:計測情報取得部
222:太陽光発電出力推定部
231:計測値格納部
232:垂線の足算出部
233:垂線を下ろす対象の直線の傾きの保持手段
234:ヒストグラム作成部
235:負荷特性等算出手段
236:統括制御部
237:情報保持手段
238:更新要否判定部
S431−S437:太陽光発電出力推定用諸特性の算出のフロー
622:仮定した傾きの直線
623:仮定した直線の傾き
624:潮流計測値から仮定した傾きへ下ろす垂線
625:垂線の傾き
626:垂線の足
627:垂線の足のヒストグラム
628:ヒストグラムの度数
636:仮定する傾きを変え作成したヒストグラム群
637:仮定した傾き毎の度数の最大値
638:度数を示す軸
639:仮定する傾きを示す軸
640:傾き毎の最大度数のうちの最大値
−1/al_est:傾き毎の最大度数のうちの最大値に対応した傾き
_est:最大度数を含むヒストグラムで最大度数の階級値
01:推定した負荷特性
648:負荷特性の傾きの推定値
649:推定した負荷特性と直線Rとの交点
650:推定した負荷特性のQ切片
652:外れ値
653:最小二乗による回帰直線(外れ値あり)
654:最小二乗による回帰直線(外れ値なし)
:負荷特性
:負荷特性のQ切片
657 潮流計測値
:負荷の力率(負荷特性の傾き)
Ppv:太陽光発電出力推定値
:太陽光発電の力率
672:負荷特性上の交点
G: Power station SS: Substation 103: Measurement point L1: Transmission line L2: Distribution line Ld1: Load (large-scale consumer)
Ld2: Load (small consumer)
PV: Photovoltaic power generation equipment 200: Photovoltaic power generation amount estimation device 219: Photovoltaic power generation output estimation unit 220: Various constant calculation unit 221: Measurement information acquisition unit 222: Photovoltaic power generation output estimation unit 231: Measured value storage unit 232: Perpendicular foot calculation unit 233: Holding means 234 for the inclination of the straight line to which the perpendicular is drawn down: Histogram creation section 235: Load characteristic etc. calculation means 236: General control section 237: Information holding means 238: Update necessity judgment section
S431-S437: Flow of calculation of characteristics for estimating photovoltaic power generation output 622: Straight line of assumed slope 623: Slope of assumed straight line 624: Vertical line 625: Vertical slope 626: Vertical line 627: Vertical bar histogram 628: Histogram frequency 636: Histogram group 637 created by changing the assumed slope 637: Maximum frequency value for each assumed slope 638: Axis indicating frequency 639: Axis indicating assumed slope 640: Maximum value of maximum frequency of each slope −1/ al_est : Slope corresponding to maximum value of maximum frequency of each slope R_est : Class value of maximum frequency L 01 in a histogram including maximum frequency: Estimate Load characteristic 648: Estimated value of slope of load characteristic 649: Intersection point 650 of estimated load characteristic and straight line R 650: Q intercept of estimated load characteristic 652: Outlier 653: Regression straight line by least square (with outlier)
654: regression line by least squares (no outlier)
L 0 : load characteristic Q 0 : load characteristic Q intercept 657 power flow measured value a 1 : load power factor (slope of load characteristic)
Ppv: PV power output estimated value a p : PV power factor 672: Intersection on load characteristics

Claims (12)

太陽光発電設備を備える電力系統における負荷特性を推定するための電力系統の負荷特性推定装置であって、
電力系統から入手した有効電力と無効電力を含む潮流計測値を記憶する計測値格納部と、有効電力と無効電力により表現される有効電力-無効電力平面上の原点を通る直線に対して、計測した前記有効電力と無効電力で定まる点から垂線を下ろして垂線の足を求める垂線の足算出部と、複数の前記有効電力と無効電力の組について求めた垂線の足について前記直線上の位置を階級とするヒストグラムを求めるヒストグラム作成部と、前記有効電力-無効電力平面上の原点を通る直線の角度を可変して求めた複数の前記ヒストグラムのうち、最大の度数を含むヒストグラムを作成した際の直線の傾きを用いて負荷特性を定める負荷特性等算出手段を備えることを特徴とする電力系統の負荷特性推定装置。
A load characteristic estimation device for a power system for estimating a load characteristic in a power system including a photovoltaic power generation facility,
A measurement value storage unit that stores the power flow measurement values that include active power and reactive power obtained from the power grid, and active power expressed by active power and reactive power-measured for a straight line that passes through the origin on the reactive power plane The perpendicular foot is calculated from the point determined by the active power and the reactive power and the foot of the perpendicular is obtained, and the position on the straight line is calculated with respect to the foot of the perpendicular obtained for the set of the active power and the reactive power. Histogram creation unit for obtaining a histogram as a class, and the active power-of the plurality of histograms obtained by varying the angle of a straight line passing through the origin on the reactive power plane, when creating a histogram containing the maximum frequency A load characteristic estimating device for a power system, comprising load characteristic calculating means for determining a load characteristic by using a slope of a straight line.
請求項1に記載の電力系統の負荷特性推定装置であって、
前記負荷特性は、負荷特性の傾きと前記有効電力-無効電力平面の無効電力軸上の切片により定められることを特徴とする電力系統の負荷特性推定装置。
The load characteristic estimation device for a power system according to claim 1,
The load characteristic estimation device for a power system, wherein the load characteristic is determined by a slope of the load characteristic and an intercept on a reactive power axis of the active power-reactive power plane.
請求項1または請求項2に記載の電力系統の負荷特性推定装置であって、
前記負荷特性等算出手段は、前記太陽光発電設備における特性である力率を与えることを特徴とする電力系統の負荷特性推定装置。
A load characteristic estimation device for a power system according to claim 1 or 2, wherein
The load characteristic estimating device for a power system, wherein the load characteristic etc. calculating means gives a power factor which is a characteristic of the photovoltaic power generation facility.
請求項1から請求項3のいずれか1項に記載の電力系統の負荷特性推定装置であって、
前記電力系統における見直し事情に応じて有効電力と無効電力を含む潮流計測値を電力系統から再入手して、負荷特性を再度求めることを特徴とする電力系統の負荷特性推定装置。
The load characteristic estimation device for a power system according to any one of claims 1 to 3,
A load characteristic estimation apparatus for a power system, wherein the power flow measurement value including active power and reactive power is re-acquired from the power system according to a review situation in the power system and the load characteristic is obtained again.
請求項3に記載の電力系統の負荷特性推定装置であって、
前記太陽光発電設備における特性を求めるに際し、処理対象として使用する潮流計測値の時間情報をもとに、昼間計測された潮流計測値を前記計測値格納部から抽出することを特徴とする電力系統の負荷特性推定装置。
The load characteristic estimation device for a power system according to claim 3,
When obtaining the characteristics of the photovoltaic power generation facility, based on time information of the tidal current measurement value used as a processing target, the tidal current measurement value measured during the daytime is extracted from the measurement value storage unit Load characteristic estimation device.
請求項1から請求項5のいずれか1項に記載の電力系統の負荷特性推定装置を用いる電力系統の太陽光発電量推定装置であって、
前記負荷特性推定装置で求めた負荷特性および太陽光発電設備における特性である力率を用いて太陽光発電量を推定する太陽光発電出力推定部を備えることを特徴とする電力系統の太陽光発電量推定装置。
A photovoltaic power generation amount estimating apparatus for an electric power system, which uses the load characteristic estimating apparatus for the electric power system according to any one of claims 1 to 5,
Photovoltaic power generation in an electric power system, comprising a photovoltaic power generation output estimation unit that estimates a photovoltaic power generation amount by using a load characteristic obtained by the load characteristic estimation device and a power factor that is a characteristic of a photovoltaic power generation facility. Quantity estimation device.
太陽光発電設備を備える電力系統における負荷特性を推定するための電力系統の負荷特性推定方法であって、
電力系統から入手した有効電力と無効電力を含む潮流計測値を記憶し、有効電力と無効電力により表現される有効電力-無効電力平面上の原点を通る直線に対して、計測した前記有効電力と無効電力で定まる点から垂線を下ろして垂線の足を求め、複数の前記有効電力と無効電力の組について求めた垂線の足について前記直線上の位置を階級とするヒストグラムを求め、前記有効電力-無効電力平面上の原点を通る直線の角度を可変して求めた複数の前記ヒストグラムのうち、最大の度数を含むヒストグラムを作成した際の直線の傾きを用いて負荷特性を定めることを特徴とする電力系統の負荷特性推定方法。
A load characteristic estimation method of a power system for estimating a load characteristic in a power system including a solar power generation facility,
The power flow measurement value including the active power and the reactive power obtained from the power system is stored, and the active power expressed by the active power and the reactive power-A straight line passing through the origin on the reactive power plane, and the measured active power and Obtain the foot of the perpendicular by dropping the perpendicular from the point determined by the reactive power, to obtain a histogram with the position on the straight line as a class for the feet of the perpendicular obtained for the set of the active power and the reactive power, the active power- Among the plurality of histograms obtained by varying the angle of the straight line passing through the origin on the reactive power plane, the load characteristic is determined by using the slope of the straight line when the histogram including the maximum frequency is created. Power system load characteristic estimation method.
請求項7に記載の電力系統の負荷特性推定方法であって、
前記負荷特性は、負荷特性の傾きと前記有効電力-無効電力平面の無効電力軸上の切片により定められることを特徴とする電力系統の負荷特性推定方法。
The load characteristic estimation method for a power system according to claim 7,
The load characteristic estimation method for a power system, wherein the load characteristic is determined by a slope of the load characteristic and an intercept on the reactive power axis of the active power-reactive power plane.
請求項7または請求項8に記載の電力系統の負荷特性推定方法であって、
前記太陽光発電設備における特性である力率を求めることを特徴とする電力系統の負荷特性推定方法。
A load characteristic estimation method for an electric power system according to claim 7 or claim 8,
A load characteristic estimation method for an electric power system, characterized in that a power factor, which is a characteristic of the photovoltaic power generation facility, is obtained.
請求項7から請求項9のいずれか1項に記載の電力系統の負荷特性推定方法であって、
前記電力系統における見直し事情に応じて有効電力と無効電力を含む潮流計測値を電力系統から再入手して、負荷特性を再度求めることを特徴とする電力系統の負荷特性推定方法。
The load characteristic estimation method for a power system according to any one of claims 7 to 9,
A load characteristic estimating method for a power system, comprising re-obtaining a power flow measurement value including active power and reactive power from the power system according to a review situation in the power system, and re-determining a load characteristic.
請求項9に記載の電力系統の負荷特性推定方法であって、
前記太陽光発電設備における特性を求めるに際し、処理対象として使用する潮流計測値の時間情報をもとに、昼間計測された潮流計測値を用いることを特徴とする電力系統の負荷特性推定方法。
The load characteristic estimation method for a power system according to claim 9,
A load characteristic estimation method for a power system, characterized in that a power flow measurement value measured during the daytime is used based on time information of a power flow measurement value used as a processing target when obtaining the characteristics of the photovoltaic power generation facility.
請求項7から請求項11のいずれか1項に記載の電力系統の負荷特性推定方法を用いる電力系統の太陽光発電量推定方法であって、
前記負荷特性推定方法で求めた負荷特性および太陽光発電設備における特性である力率を用いて太陽光発電量を推定することを特徴とする電力系統の太陽光発電量推定方法。
A photovoltaic power generation amount estimation method for a power system, which uses the load characteristic estimation method for the power system according to any one of claims 7 to 11,
A photovoltaic power generation amount estimation method for a power system, which estimates a photovoltaic power generation amount by using a load characteristic obtained by the load characteristic estimation method and a power factor which is a characteristic of a photovoltaic power generation facility.
JP2019018591A 2019-02-05 2019-02-05 Apparatus and method for estimating load characteristics of power system, apparatus and method for estimating solar power generation amount Active JP7149867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019018591A JP7149867B2 (en) 2019-02-05 2019-02-05 Apparatus and method for estimating load characteristics of power system, apparatus and method for estimating solar power generation amount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019018591A JP7149867B2 (en) 2019-02-05 2019-02-05 Apparatus and method for estimating load characteristics of power system, apparatus and method for estimating solar power generation amount

Publications (2)

Publication Number Publication Date
JP2020127292A true JP2020127292A (en) 2020-08-20
JP7149867B2 JP7149867B2 (en) 2022-10-07

Family

ID=72084341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019018591A Active JP7149867B2 (en) 2019-02-05 2019-02-05 Apparatus and method for estimating load characteristics of power system, apparatus and method for estimating solar power generation amount

Country Status (1)

Country Link
JP (1) JP7149867B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021035076A (en) * 2019-08-15 2021-03-01 東芝エネルギーシステムズ株式会社 Load power factor estimation method and device therefor
JP2021078193A (en) * 2019-11-06 2021-05-20 株式会社日立製作所 System switching detection device for power system, and solar power generation output estimating apparatus and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039457A (en) * 1998-07-23 2000-02-08 Nissin Electric Co Ltd Grouping method for p-q correlation curve of power system
JP2012191777A (en) * 2011-03-11 2012-10-04 Nissin Electric Co Ltd Method for estimating generated amount of power in photovoltaic power generation system
JP2016049012A (en) * 2014-08-25 2016-04-07 株式会社明電舎 Load amount estimation device in distribution system with photovoltaic power generation system, and load amount estimation method
JP2017099187A (en) * 2015-11-26 2017-06-01 株式会社日立製作所 Power generation amount estimation device and method for distributed power source
JP2017158386A (en) * 2016-03-04 2017-09-07 株式会社日立製作所 Photovoltaic power generation amount estimating device and estimating method
JP2018088761A (en) * 2016-11-29 2018-06-07 株式会社日立製作所 Power factor estimation apparatus and method of electric power system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039457A (en) * 1998-07-23 2000-02-08 Nissin Electric Co Ltd Grouping method for p-q correlation curve of power system
JP2012191777A (en) * 2011-03-11 2012-10-04 Nissin Electric Co Ltd Method for estimating generated amount of power in photovoltaic power generation system
JP2016049012A (en) * 2014-08-25 2016-04-07 株式会社明電舎 Load amount estimation device in distribution system with photovoltaic power generation system, and load amount estimation method
JP2017099187A (en) * 2015-11-26 2017-06-01 株式会社日立製作所 Power generation amount estimation device and method for distributed power source
JP2017158386A (en) * 2016-03-04 2017-09-07 株式会社日立製作所 Photovoltaic power generation amount estimating device and estimating method
JP2018088761A (en) * 2016-11-29 2018-06-07 株式会社日立製作所 Power factor estimation apparatus and method of electric power system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021035076A (en) * 2019-08-15 2021-03-01 東芝エネルギーシステムズ株式会社 Load power factor estimation method and device therefor
JP7251888B2 (en) 2019-08-15 2023-04-04 東芝エネルギーシステムズ株式会社 Load power factor estimation method and device
JP2021078193A (en) * 2019-11-06 2021-05-20 株式会社日立製作所 System switching detection device for power system, and solar power generation output estimating apparatus and method
JP7293085B2 (en) 2019-11-06 2023-06-19 株式会社日立製作所 SYSTEM SWITCHING DETECTION DEVICE FOR POWER SYSTEM, SOLAR POWER OUTPUT ESTIMATION DEVICE AND METHOD

Also Published As

Publication number Publication date
JP7149867B2 (en) 2022-10-07

Similar Documents

Publication Publication Date Title
WO2016170912A1 (en) Power system voltage reactive power monitoring control device and method
Mohn et al. Tracing PV and QV curves with the help of a CRIC continuation method
US20030040846A1 (en) Stability prediction for an electric power network
CN102946253B (en) Data sampling method and system and the application process in parameter identification thereof and system
Chen et al. Wide-area measurement-based voltage stability sensitivity and its application in voltage control
CN115015474B (en) Method and equipment for detecting carbon emission of power consumer
JP2016189664A (en) System stabilization controller and power system control system
US11169189B2 (en) Systems and methods for operating generators based on generator steady state stability limits
JP2020127292A (en) Load characteristic estimation device and method of power system, and photovoltaic power generation amount estimation device and method
US10677824B2 (en) Distributed-generator power-generation-amount estimation apparatus and method
JP2017153345A (en) Method and system for dynamic state estimation of power distribution system
JPWO2017126260A1 (en) Power system model analysis apparatus and method
Tang et al. Trajectory sensitivities: Applications in power systems and estimation accuracy refinement
CN105610168A (en) Application method of node voltage stability index of multi-feed-in alternating current and direct current system
US20180269681A1 (en) Power systems and related voltage stability methods
Cheng et al. PV impact assessment for very high penetration levels
Kumar et al. Innovative and precise MPP estimation using P–V curve geometry for photovoltaics
Mather Fast determination of distribution-connected PV impacts using a variable-time-step quasi-static time-series approach
Sacerdoţianu et al. Research on the continuous monitoring of the sag of overhead electricity transmission cables based on the measurement of their slope
Macii et al. Uncertainty sensitivity analysis of WLS-based grid state estimators
KR20200073039A (en) System and Method for Controlling Virtual Multi Slack Droop Based on Power Sensitivity Analysis
JP6530698B2 (en) Apparatus and method for estimating power generation of distributed power source
JP2015114741A (en) Solar battery evaluation apparatus, solar battery evaluation method, and photovoltaic power generation system
CN114705947A (en) Island detection model training method, device, equipment and medium
CN114565058A (en) Training method, device, equipment and medium for island detection model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211115

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220927

R150 Certificate of patent or registration of utility model

Ref document number: 7149867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150