JP2020126220A - Image capturing optical lens - Google Patents

Image capturing optical lens Download PDF

Info

Publication number
JP2020126220A
JP2020126220A JP2019150220A JP2019150220A JP2020126220A JP 2020126220 A JP2020126220 A JP 2020126220A JP 2019150220 A JP2019150220 A JP 2019150220A JP 2019150220 A JP2019150220 A JP 2019150220A JP 2020126220 A JP2020126220 A JP 2020126220A
Authority
JP
Japan
Prior art keywords
lens
imaging optical
optical lens
conditional expression
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019150220A
Other languages
Japanese (ja)
Other versions
JP6796171B2 (en
Inventor
弘之 寺岡
Hiroyuki Teraoka
弘之 寺岡
張磊
Lei Zhang
王燕妹
Yanmei Wang
胡文波
Wen Bo Hu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AAC Technologies Pte Ltd
Original Assignee
AAC Technologies Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910096133.6A external-priority patent/CN109459842B/en
Application filed by AAC Technologies Pte Ltd filed Critical AAC Technologies Pte Ltd
Publication of JP2020126220A publication Critical patent/JP2020126220A/en
Application granted granted Critical
Publication of JP6796171B2 publication Critical patent/JP6796171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)

Abstract

To provide an image capturing optical lens which offers high imaging performance and a short total optical length (TTL).SOLUTION: An image capturing optical lens 10 provided herein comprises, in order from the object side to the image side, a first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens L5, and sixth lens L6, the first lens L1 having positive refractive power, the second lens L2 having negative refractive power, and the third lens L3 having negative refractive power. The image capturing optical lens satisfies the following conditional expressions: 2.00≤R3/R4≤5.00, 1.50≤R1/d1≤3.00, 0.30≤R2/R3≤2.00, 1.02≤n2/n3≤1.20, where R1 and R2 respectively represent curvature radii of object-side and image-side surfaces of the first lens L1, R3 and R4 respectively represent curvature radii of object-side and image-side surfaces of the second lens L2, d1 represents a thickness of the first lens L1 along an optical axis, and n2 and n3 respectively represent refractive indexes of the second and third lenses L2, L3.SELECTED DRAWING: Figure 1

Description

本発明は、光学レンズ分野に関し、特にスマートフォン、デジタルカメラなどの携帯端末装置と、モニタ、PCレンズなどの撮像装置とに適用される撮像光学レンズに関する。 The present invention relates to the field of optical lenses, and more particularly to an imaging optical lens applied to mobile terminal devices such as smartphones and digital cameras, and imaging devices such as monitors and PC lenses.

近年、スマートフォンの登場に伴い、小型化の撮像レンズに対する需要がますます高まっているが、撮像レンズの感光素子は、一般的に、感光結合素子(Charge Coupled Device、CCD)又は相補型金属酸化物半導体素子(Complementary Metal−OxideSemiconductor Sensor、CMOS Sensor)の2種類のみに大別される。また、半導体製造プロセスの技術の進歩により、感光素子の画素サイズが縮小可能であるとともに、現在の電子製品は、優れた機能および軽量化・薄型化・小型化の外観を発展の傾向とする。そのため、良好な結像品質を有する小型化の撮像レンズは、現在の市場において既に主流となっている。優れた結像品質を得るために、携帯電話のカメラに搭載された従来のレンズは、3枚式又は4枚式のレンズ構成を用いることが多い。また、技術の発展及びユーザの多様化のニーズの増加に伴い、感光素子の画素面積が縮小しつつあり且つ結像品質に対するシステムからの要求が高くなってきている場合には、5枚式、6枚式、7枚式のレンズ構成が徐々にレンズの設計に現れている。優れた光学特性、極薄且つ色収差が十分に補正される広角撮像レンズの需要が緊迫化している。 In recent years, with the advent of smartphones, the demand for miniaturized image pickup lenses has been increasing more and more. However, the photosensitive element of the image pickup lens is generally a photosensitive coupling element (Charge Coupled Device, CCD) or a complementary metal oxide. Semiconductor devices (Complementary Metal-Oxide Semiconductor Sensors, CMOS Sensors) are roughly classified into two types. Also, due to advances in semiconductor manufacturing process technology, the pixel size of the photosensitive element can be reduced, and current electronic products are expected to have excellent functions and a lightweight, thin, and compact appearance. Therefore, a downsized imaging lens having good image quality has already become the mainstream in the current market. In order to obtain excellent image quality, conventional lenses mounted on mobile phone cameras often use a three-lens or four-lens configuration. In addition, in the case where the pixel area of the photosensitive element is decreasing and the demand for the image quality from the system is increasing with the development of technology and the diversification needs of users, the five-sheet type, Six-lens and seven-lens configurations are gradually emerging in lens design. The demand for wide-angle imaging lenses with excellent optical characteristics, ultra-thinness, and sufficient correction of chromatic aberration is increasing.

本発明は、上記問題に鑑みてなされたものであり、高結像性能を得るとともに、極薄化と広角化の要求を満たす撮像光学レンズを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an imaging optical lens that obtains high imaging performance and satisfies requirements for ultra-thinning and widening of the angle.

上記問題を解決するために、本発明の実施形態は、撮像光学レンズを提供する。前記撮像光学レンズは、物体側から像側にかけて、順に正の屈折力を有する第1レンズ、負の屈折力を有する第2レンズ、負の屈折力を有する第3レンズ、第4レンズ、第5レンズ、及び第6レンズを含み、
前記第2レンズの物体側面の軸上曲率半径をR3、前記第2レンズの像側面の軸上曲率半径をR4、前記第1レンズの物体側面の軸上曲率半径をR1、前記第1レンズの軸上厚みをd1、前記第1レンズの像側面の軸上曲率半径をR2、前記第2レンズの屈折率をn2、前記第3レンズの屈折率をn3としたときに、以下の条件式(1)〜(4)を満足する。
2.00≦R3/R4≦5.00 (1)
1.50≦R1/d1≦3.00 (2)
0.30≦R2/R3≦2.00 (3)
1.02≦n2/n3≦1.20 (4)
In order to solve the above problems, embodiments of the present invention provide an imaging optical lens. The imaging optical lens includes a first lens having a positive refractive power, a second lens having a negative refractive power, a third lens having a negative refractive power, a fourth lens, and a fifth lens in order from the object side to the image side. A lens, and a sixth lens,
The axial radius of curvature of the object side surface of the second lens is R3, the axial radius of curvature of the image side surface of the second lens is R4, the axial radius of curvature of the object side surface of the first lens is R1, and the first lens When the axial thickness is d1, the axial radius of curvature of the image side surface of the first lens is R2, the refractive index of the second lens is n2, and the refractive index of the third lens is n3, the following conditional expression ( Satisfies 1) to (4).
2.00≦R3/R4≦5.00 (1)
1.50≦R1/d1≦3.00 (2)
0.30≦R2/R3≦2.00 (3)
1.02≦n2/n3≦1.20 (4)

本発明は、下記の有利な作用効果を有する。本発明に係る撮像光学レンズは、優れた光学特性を有し、極薄、広角であり且つ色収差が十分に補正され、特に高画素用のCCD、CMOSなどの撮像素子により構成された携帯電話の撮像レンズユニットとWEB撮像レンズに適用することができる。 The present invention has the following advantageous effects. The image pickup optical lens according to the present invention has excellent optical characteristics, is extremely thin, has a wide angle, and is sufficiently corrected for chromatic aberration, and is particularly suitable for a mobile phone configured with an image pickup device such as a CCD or CMOS for high pixels. It can be applied to an imaging lens unit and a WEB imaging lens.

本発明の第1実施形態に係る撮像光学レンズの構成を示す模式図である。It is a schematic diagram which shows the structure of the imaging optical lens which concerns on 1st Embodiment of this invention. 図1に示す撮像光学レンズの軸上色収差を示す模式図である。It is a schematic diagram which shows the axial chromatic aberration of the imaging optical lens shown in FIG. 図1に示す撮像光学レンズの倍率色収差を示す模式図である。It is a schematic diagram which shows the chromatic difference of magnification of the imaging optical lens shown in FIG. 図1に示す撮像光学レンズの像面湾曲及び歪曲収差を示す模式図である。It is a schematic diagram which shows the field curvature and distortion of the imaging optical lens shown in FIG. 本発明の第2実施形態に係る撮像光学レンズの構成を示す模式図である。It is a schematic diagram which shows the structure of the imaging optical lens which concerns on 2nd Embodiment of this invention. 図5に示す撮像光学レンズの軸上色収差を示す模式図である。FIG. 6 is a schematic diagram showing axial chromatic aberration of the imaging optical lens shown in FIG. 5. 図5に示す撮像光学レンズの倍率色収差を示す模式図である。FIG. 6 is a schematic diagram showing lateral chromatic aberration of the imaging optical lens shown in FIG. 5. 図5に示す撮像光学レンズの像面湾曲及び歪曲収差を示す模式図である。6 is a schematic diagram showing field curvature and distortion of the imaging optical lens shown in FIG. 5. FIG. 本発明の第3実施形態に係る撮像光学レンズの構成を示す模式図である。It is a schematic diagram which shows the structure of the imaging optical lens which concerns on 3rd Embodiment of this invention. 図9に示す撮像光学レンズの軸上色収差を示す模式図である。It is a schematic diagram which shows the axial chromatic aberration of the imaging optical lens shown in FIG. 図9に示す撮像光学レンズの倍率色収差を示す模式図である。It is a schematic diagram which shows the chromatic aberration of magnification of the imaging optical lens shown in FIG. 図9に示す撮像光学レンズの像面湾曲及び歪曲収差を示す模式図である。FIG. 10 is a schematic diagram showing field curvature and distortion of the imaging optical lens shown in FIG. 9.

本発明の実施形態は、従来技術に対して、上記レンズの配置方式により、軸上厚み及び曲率半径のデータ上に特定の関係を有するレンズの協働により、撮像光学レンズが高結像性能を得ると共に、極薄化と広角化の要求を満足することができる。 In the embodiment of the present invention, the image pickup optical lens has a high image forming performance due to the cooperation of the lenses having a specific relation on the data of the axial thickness and the radius of curvature by the arrangement method of the lens as compared with the related art. In addition, it is possible to satisfy the requirements for ultra-thin and wide-angle.

好ましくは、前記第5レンズの物体側面の軸上曲率半径をR9、前記第5レンズの像側面の軸上曲率半径をR10としたとき、前記撮像光学レンズは、以下の条件式(5)を満足する。
−13.00≦R9/R10≦−3.00 (5)
Preferably, when the axial radius of curvature of the object side surface of the fifth lens is R9 and the axial radius of curvature of the image side surface of the fifth lens is R10, the imaging optical lens satisfies the following conditional expression (5). Be satisfied.
-13.00≦R9/R10≦−3.00 (5)

好ましくは、前記撮像光学レンズは、以下の条件式(5−A)を満足する。
−12.00≦R9/R10≦−5.00 (5−A)
Preferably, the imaging optical lens satisfies the following conditional expression (5-A).
-12.00≤R9/R10≤-5.00 (5-A)

好ましくは、前記第3レンズの焦点距離をf3、前記第4レンズの焦点距離をf4としたとき、以下の条件式(6)を満足する。
−2.50≦f3/f4<0 (6)
Preferably, when the focal length of the third lens is f3 and the focal length of the fourth lens is f4, the following conditional expression (6) is satisfied.
−2.50≦f3/f4<0 (6)

好ましくは、前記撮像光学レンズは、以下の条件式(6−A)を満足する。
−2.00≦f3/f4<0 (6−A)
Preferably, the imaging optical lens satisfies the following conditional expression (6-A).
−2.00≦f3/f4<0 (6-A)

好ましくは、前記第6レンズの軸上厚みをd11、前記撮像光学レンズの光学長をTTLとしたとき、以下の条件式(7)を満足する。
0.01≦d11/TTL≦0.20 (7)
Preferably, when the axial thickness of the sixth lens is d11 and the optical length of the imaging optical lens is TTL, the following conditional expression (7) is satisfied.
0.01≦d11/TTL≦0.20 (7)

好ましくは、以下の条件式(7−A)を満足する。
0.04≦d11/TTL≦0.13 (7−A)
Preferably, the following conditional expression (7-A) is satisfied.
0.04≦d11/TTL≦0.13 (7-A)

好ましくは、前記第6レンズの像側面上の停留点から光軸までの垂直距離をYc62、前記撮像光学レンズの光学長をTTLとしたとき、前記撮像光学レンズは、以下の条件式(8)を満足する。
0.10≦Yc62/TTL≦0.55 (8)
Preferably, when the vertical distance from the stationary point on the image side surface of the sixth lens to the optical axis is Yc62 and the optical length of the imaging optical lens is TTL, the imaging optical lens has the following conditional expression (8). To be satisfied.
0.10≦Yc62/TTL≦0.55 (8)

好ましくは、以下の条件式(8−A)を満足する。
0.20≦Yc62/TTL≦0.30 (8−A)
Preferably, the following conditional expression (8-A) is satisfied.
0.20≦Yc62/TTL≦0.30 (8-A)

好ましくは、前記撮像光学レンズのFNOは2.00以下である。 Preferably, the FNO of the imaging optical lens is 2.00 or less.

本発明の目的、解決手段及びメリットがより明瞭になるように、図面を参照しながら、本発明の各実施形態を以下に詳しく説明する。しかし、本発明の各実施形態において、本発明が良く理解されるように多くの技術的詳細が提出されたが、それらの技術的詳細および以下の各実施形態に基づく各種の変化及び修正が存在しなくとも、本発明の保護しようとするものを実現可能であることは、当業者に理解されるべきである。 In order to make the objects, solutions and merits of the present invention clearer, each embodiment of the present invention will be described in detail below with reference to the drawings. However, in the embodiments of the present invention, many technical details have been submitted so that the present invention may be well understood, but there are various changes and modifications based on the technical details and the following embodiments. It should be understood by those skilled in the art that what is intended to be protected by the present invention can be realized without doing so.

(第1実施形態)
図面を参照すると、本発明は、撮像光学レンズ10を提供する。図1は、本発明の第1実施形態に係る撮像光学レンズ10を示す。当該撮像光学レンズ10は、6枚のレンズを備える。具体的に、前記撮像光学レンズ10は、物体側から像側にかけて、順次に絞りS1、第1レンズL1、第2レンズL2、第3レンズL3、第4レンズL4、第5レンズL5及び第6レンズL6を含む。第6レンズL6と像面Siとの間に光学フィルタ(filter)GFなどの光学素子が設けられても良い。
(First embodiment)
Referring to the drawings, the present invention provides an imaging optical lens 10. FIG. 1 shows an imaging optical lens 10 according to the first embodiment of the present invention. The imaging optical lens 10 includes six lenses. Specifically, the imaging optical lens 10 sequentially includes a diaphragm S1, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5 and a sixth lens from the object side to the image side. Includes lens L6. An optical element such as an optical filter (filter) GF may be provided between the sixth lens L6 and the image plane Si.

第1レンズL1、第2レンズL2、第3レンズL3、第4レンズL4、第5レンズL5及び第6レンズL6は、いずれもプラスチック材質である。 The first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic materials.

前記第1レンズL1は正の屈折力を有し、前記第2レンズL2は負の屈折力を有し、前記第3レンズL3は負の屈折力を有する。 The first lens L1 has a positive refractive power, the second lens L2 has a negative refractive power, and the third lens L3 has a negative refractive power.

ここで、前記第2レンズL2の物体側面の軸上曲率半径をR3、前記第2レンズL2の像側面の軸上曲率半径をR4、前記第1レンズL1の物体側面の軸上曲率半径をR1、前記第1レンズL1の軸上厚みをd1、前記第1レンズL1の像側面の軸上曲率半径をR2、前記第2レンズL2の屈折率をn2、前記第3レンズL3の屈折率をn3として定義すると、当該撮像光学レンズ10は、以下の条件式(1)〜(4)を満足する。
2.00≦R3/R4≦5.00 (1)
1.50≦R1/d1≦3.00 (2)
0.30≦R2/R3≦2.00 (3)
1.02≦n2/n3≦1.20 (4)
Here, the axial curvature radius of the object side surface of the second lens L2 is R3, the axial curvature radius of the image side surface of the second lens L2 is R4, and the axial curvature radius of the object side surface of the first lens L1 is R1. , The axial thickness of the first lens L1 is d1, the axial curvature radius of the image side surface of the first lens L1 is R2, the refractive index of the second lens L2 is n2, and the refractive index of the third lens L3 is n3. , The imaging optical lens 10 satisfies the following conditional expressions (1) to (4).
2.00≦R3/R4≦5.00 (1)
1.50≦R1/d1≦3.00 (2)
0.30≦R2/R3≦2.00 (3)
1.02≦n2/n3≦1.20 (4)

条件式(1)は、第2レンズL2の形状を規定するものである。条件式(1)の範囲外では、FNOが明るい状態で、小型化が困難となる。 Conditional expression (1) defines the shape of the second lens L2. Outside the range of conditional expression (1), the FNO is in a bright state and it is difficult to reduce the size.

条件式(2)は、第1レンズL1の物体側面の軸上曲率半径と軸上厚みの比を規定するものである。条件式(2)の範囲外では、FNOが明るい状態で、小型化が困難となる。 Conditional expression (2) defines the ratio of the axial curvature radius and the axial thickness of the object side surface of the first lens L1. Outside the range of the conditional expression (2), the FNO is in a bright state, and downsizing becomes difficult.

条件式(3)は、第1レンズL1の像側面の軸上曲率半径と第2レンズL2の物体側面の軸上曲率半径の比を規定するものである。この比を合理的に規定することで、第2レンズL2によってシステム収差を効果的に補正することができる。条件式(3)の範囲外では、FNOが明るい状態で、優れた結像性能を得ることが困難となる。 Conditional expression (3) defines the ratio of the on-axis curvature radius of the image side surface of the first lens L1 to the on-axis curvature radius of the object side surface of the second lens L2. By rationally defining this ratio, the system aberration can be effectively corrected by the second lens L2. Outside the range of conditional expression (3), it becomes difficult to obtain excellent imaging performance in a bright FNO state.

条件式(4)は、第2レンズL2の屈折率と第3レンズL3の屈折率の比を規定するものである。条件式(4)の範囲内では、撮像光学レンズ10は、システム収差をより良く補正し、高性能結像の要求を満足することができる。 Conditional expression (4) defines the ratio of the refractive index of the second lens L2 and the refractive index of the third lens L3. Within the range of the conditional expression (4), the imaging optical lens 10 can better correct the system aberration and can satisfy the requirement of high-performance imaging.

本発明に係る撮像光学レンズ10の軸上厚みと曲率半径が上記条件式を満足する場合、撮像光学レンズ10が高性能を有し、且つ広角、低TTLの設計需要を満足する。 When the axial thickness and the radius of curvature of the imaging optical lens 10 according to the present invention satisfy the above conditional expressions, the imaging optical lens 10 has high performance, and satisfies the design demands of wide angle and low TTL.

本実施形態では、第1レンズL1は、物体側面が近軸において凸面であり、像側面が近軸において凹面であり、正の屈折力を有する。第2レンズL2は、物体側面が近軸において凸面であり、像側面が近軸において凹面であり、負の屈折力を有する。第3レンズL3は、その物体側面が近軸において凸面であり、その像側面が近軸において凹面であり、負の屈折力を有する。第4レンズL4は、物体側面が近軸において凸面であり、像側面が近軸において凹面であり、正の屈折力を有する。第5レンズL5は、物体側面が近軸において凸面であり、像側面が近軸において凸面であり、正の屈折力を有する。第6レンズL6は、物体側面が近軸において凹面であり、像側面が近軸において凹面であり、負の屈折力を有する。 In the present embodiment, the first lens L1 has a convex surface on the object side surface and a concave surface on the image side surface in the paraxial direction, and has a positive refractive power. The second lens L2 has an object-side surface that is a convex surface on the paraxial line, an image-side surface that is a concave surface on the paraxial line, and has a negative refractive power. The object side surface of the third lens L3 is a convex surface on the paraxial line, the image side surface thereof is a concave surface on the paraxial line, and has a negative refractive power. The fourth lens L4 has a paraxial convex surface on the object side and a concave paraxial surface on the image side, and has a positive refractive power. The fifth lens L5 has an object side surface which is a convex surface on the paraxial line, an image side surface which is a convex surface on the paraxial line, and has a positive refractive power. The sixth lens L6 has a paraxial concave surface on the object side and a concave paraxial surface on the image side, and has a negative refractive power.

前記第5レンズL5の物体側面の軸上曲率半径をR9、前記第5レンズL5の像側面の軸上曲率半径をR10としたとき、前記撮像光学レンズ10は、以下の条件式(5)を満足する。
−13.00≦R9/R10≦−3.00 (5)
When the axial radius of curvature of the object side surface of the fifth lens L5 is R9 and the axial radius of curvature of the image side surface of the fifth lens L5 is R10, the imaging optical lens 10 satisfies the following conditional expression (5). Be satisfied.
-13.00≦R9/R10≦−3.00 (5)

条件式(5)は、第5レンズの形状を規定するものである。条件式(5)の範囲外では、FNOが明るい状態で、小型化が困難となる。 Conditional expression (5) defines the shape of the fifth lens. Outside the range of the conditional expression (5), the FNO is in a bright state, and downsizing becomes difficult.

なお、条件式(5)の数値範囲を以下の条件式(5−A)の数値範囲に設定することがさらに好ましい。
−12.00≦R9/R10≦−5.00 (5−A)
It is more preferable to set the numerical range of conditional expression (5) to the numerical range of the following conditional expression (5-A).
-12.00≤R9/R10≤-5.00 (5-A)

前記第3レンズL3の焦点距離をf3、前記第4レンズL4の焦点距離をf4としたときに、以下の条件式(6)を満足する。
−2.50≦f3/f4<0 (6)
When the focal length of the third lens L3 is f3 and the focal length of the fourth lens L4 is f4, the following conditional expression (6) is satisfied.
−2.50≦f3/f4<0 (6)

条件式(6)は、第3レンズL3と第4レンズL4の焦点距離の比を規定するものである。屈折力を合理的に配分することで、システムが優れた撮像品質及び低い感度を有する。 Conditional expression (6) defines the ratio of the focal lengths of the third lens L3 and the fourth lens L4. By rationally distributing the refractive power, the system has excellent imaging quality and low sensitivity.

なお、条件式(6)の数値範囲を以下の条件式(6−A)の数値範囲に設定することがさらに好ましい。
−2.00≦f3/f4<0 (6−A)
It is more preferable to set the numerical range of conditional expression (6) to the numerical range of the following conditional expression (6-A).
−2.00≦f3/f4<0 (6-A)

前記第6レンズL6の軸上厚みをd11、前記撮像光学レンズの光学長をTTLとしたときに、以下の条件式(7)を満足する。
0.01≦d11/TTL≦0.20 (7)
When the axial thickness of the sixth lens L6 is d11 and the optical length of the imaging optical lens is TTL, the following conditional expression (7) is satisfied.
0.01≦d11/TTL≦0.20 (7)

条件式(7)は、第6レンズL6の軸上厚みと光学長の比を規定するものである。条件式(7)の範囲外では、FNOが明るい状態で、小型化が困難となる。 Conditional expression (7) defines the ratio between the axial thickness and the optical length of the sixth lens L6. Outside the range of the conditional expression (7), the FNO is in a bright state and it is difficult to reduce the size.

なお、条件式(7)の数値範囲を以下の条件式(7−A)の数値範囲に設定することがさらに好ましい。
0.04≦d11/TTL≦0.13 (7−A)
It is more preferable to set the numerical range of conditional expression (7) to the numerical range of the following conditional expression (7-A).
0.04≦d11/TTL≦0.13 (7-A)

第6レンズL6の像側面上の停留点から光軸までの垂直距離をYc62、撮像光学レンズ10の光学長をTTLとしたときに、以下の条件式(8)を満足する。
0.10≦Yc62/TTL≦0.55 (8)
When the vertical distance from the stationary point on the image side surface of the sixth lens L6 to the optical axis is Yc62 and the optical length of the imaging optical lens 10 is TTL, the following conditional expression (8) is satisfied.
0.10≦Yc62/TTL≦0.55 (8)

条件式(8)は、第6レンズL6の停留点の位置と光学長の比を規定するものである。条件式(8)の範囲外では、撮像光学レンズ10の収差と歪曲収差を補正することが困難となる。 Conditional expression (8) defines the ratio between the position of the stationary point of the sixth lens L6 and the optical length. Outside the range of the conditional expression (8), it becomes difficult to correct the aberration and the distortion of the imaging optical lens 10.

なお、条件式(8)の数値範囲を以下の条件式(8−A)の数値範囲に設定することがさらに好ましい。
0.20≦Yc62/TTL≦0.30 (8−A)
It is more preferable to set the numerical range of conditional expression (8) to the numerical range of the following conditional expression (8-A).
0.20≦Yc62/TTL≦0.30 (8-A)

撮像光学レンズ10のFNOは2.00以下である。FNOは撮像光学レンズの絞りF値であり、この条件を満足することで、撮像光学レンズ10が良い明るさを有し、絞りが大きいとの需要を満足するとともに、夜間撮影效果がより優れる。 The FNO of the imaging optical lens 10 is 2.00 or less. FNO is the aperture F value of the image pickup optical lens, and by satisfying this condition, the demand that the image pickup optical lens 10 has good brightness and a large aperture is satisfied, and the nighttime shooting effect is more excellent.

このように設計すると、撮像光学レンズ10全体の光学長TTLをできる限り短くし、広角化と小型化特性を維持するとともに、絞りが大きいとの需要を満足することができる。 With such a design, the optical length TTL of the entire imaging optical lens 10 can be made as short as possible, the wide angle and the miniaturization characteristics can be maintained, and the demand for a large diaphragm can be satisfied.

以下、本発明に係る撮像光学レンズ10についてさらに説明する。各実施形態に記載の記号は以下の通りである。焦点距離、軸上距離、曲率半径、軸上厚み、変曲点位置、停留点位置の単位がmmであり、全画角の単位が°である。
f:撮像光学レンズ10全体の焦点距離
f1:第1レンズL1の焦点距離
f2:第2レンズL2の焦点距離
f3:第3レンズL3の焦点距離
f4:第4レンズL4の焦点距離
FNO:F値
2ω:全画角
S1:絞り
R:光学面の曲率半径、レンズの場合は中心曲率半径
R1:第1レンズL1の物体側面の曲率半径
R2:第1レンズL1の像側面の曲率半径
R3:第2レンズL2の物体側面の曲率半径
R4:第2レンズL2の像側面の曲率半径
R5:第3レンズL3の物体側面の曲率半径
R6:第3レンズL3の像側面の曲率半径
R7:第4レンズL4の物体側面の曲率半径
R8:第4レンズL4の像側面の曲率半径
R9:第5レンズL5の物体側面の曲率半径
R10:第5レンズL5の像側面の曲率半径
R11:第6レンズL6の物体側面の曲率半径
R12:第6レンズL6の像側面の曲率半径
R13:光学フィルタGFの物体側面の曲率半径
R14:光学フィルタGFの像側面の曲率半径
d:レンズの軸上厚み、又は、レンズ間の軸上距離
d0:絞りS1から第1レンズL1の物体側面までの軸上距離
d1:第1レンズL1の軸上厚み
d2:第1レンズL1の像側面から第2レンズL2の物体側面までの軸上距離
d3:第2レンズL2の軸上厚み
d4:第2レンズL2の像側面から第3レンズL3の物体側面までの軸上距離
d5:第3レンズL3の軸上厚み
d6:第3レンズL3の像側面から第4レンズL4の物体側面までの軸上距離
d7:第4レンズL4の軸上厚み
d8:第4レンズL4の像側面から第5レンズL5の物体側面までの軸上距離
d9:第5レンズL5の軸上厚み
d10:第5レンズL5の像側面から第6レンズL6の物体側面までの軸上距離
d11:第6レンズL6の軸上厚み
d12:第6レンズL6の像側面から光学フィルタGFの物体側面までの軸上距離
d13:光学フィルタGFの軸上厚み
d14:光学フィルタGFの像側面から像面までの軸上距離
nd:d線の屈折率
nd1:第1レンズL1のd線の屈折率
nd2:第2レンズL2のd線の屈折率
nd3:第3レンズL3のd線の屈折率
nd4:第4レンズL4のd線の屈折率
nd5:第5レンズL5のd線の屈折率
nd6:第6レンズL6のd線の屈折率
ndg:光学フィルタGFのd線の屈折率
vd:アッベ数
v1:第1レンズL1のアッベ数
v2:第2レンズL2のアッベ数
v3:第3レンズL3のアッベ数
v4:第4レンズL4のアッベ数
v5:第5レンズL5のアッベ数
v6:第6レンズL6のアッベ数
vg:光学フィルタGFのアッベ数
TTL:光学長(第1レンズL1の物体側面から結像面までの軸上距離、単位がmmである)
LB:第6レンズL6の像側面から像面までの軸上距離(光学フィルタGFの厚みを含む)
IH:像高
Hereinafter, the imaging optical lens 10 according to the present invention will be further described. The symbols described in each embodiment are as follows. The unit of the focal length, the axial distance, the radius of curvature, the axial thickness, the inflection point position, and the stationary point position is mm, and the unit of the total angle of view is °.
f: focal length of the entire imaging optical lens 10 f1: focal length of the first lens L1 f2: focal length of the second lens L2 f3: focal length of the third lens L3 f4: focal length of the fourth lens L4 FNO: F value 2ω: total angle of view S1: diaphragm R: radius of curvature of optical surface, center radius of curvature in case of lens R1: radius of curvature of object side surface of first lens L1 R2: radius of curvature of image side surface of first lens L1 R3: first 2 Object L-side curvature radius of the lens L2 R4: Image-side curvature radius of the second lens L2 R5: Object-side curvature radius of the third lens L3 R6: Image-side curvature radius of the third lens L3 R7: Fourth lens R4: Object-side curvature radius of the fourth lens L4: Image-side curvature radius of the fourth lens L4 R9: Object-side curvature radius of the fifth lens L5 R10: Image-side curvature radius of the fifth lens L5 R11: Sixth lens L6 Object-side curvature radius R12: Image-side curvature radius of sixth lens L6 R13: Object-side curvature radius of optical filter GF R14: Image-side curvature radius of optical filter GF d: Lens axial thickness, or lens On-axis distance between d0: On-axis distance from diaphragm S1 to object side surface of first lens L1 d1: On-axis thickness of first lens L1 d2: From image side surface of first lens L1 to object side surface of second lens L2 Axial distance of d3: axial thickness of the second lens L2 d4: axial distance from the image side surface of the second lens L2 to the object side surface of the third lens L3 d5: axial thickness of the third lens L3 d6: third Axial distance from the image side surface of the lens L3 to the object side surface of the fourth lens L4 d7: Axial thickness of the fourth lens L4 d8: Axial distance from the image side surface of the fourth lens L4 to the object side surface of the fifth lens L5 d9: axial thickness of fifth lens L5 d10: axial distance from the image side surface of fifth lens L5 to the object side surface of sixth lens L6 d11: axial thickness of sixth lens L6 d12: image of sixth lens L6 On-axis distance from side surface to object side surface of optical filter GF d13: On-axis thickness of optical filter GF d14: On-axis distance from image side surface of the optical filter GF to image surface nd: Refractive index of d line nd1: First lens Refractive index of d line of L1 nd2: Refractive index of d line of the second lens L2 nd3: Refractive index of d line of the third lens L3 nd4: Refractive index of d line of the fourth lens L4 nd5: Fifth lens L5 Refractive index of d-line nd6: Refractive index of d-line of sixth lens L6 ndg: Refractive index of d-line of optical filter GF
vd: Abbe number
v1: Abbe number of first lens L1
v2: Abbe number of second lens L2
v3: Abbe number of third lens L3
v4: Abbe number of fourth lens L4
v5: Abbe number of fifth lens L5
v6: Abbe number of sixth lens L6
vg: Abbe number of the optical filter GF TTL: Optical length (axial distance from the object side surface of the first lens L1 to the image plane, the unit is mm)
LB: axial distance from the image side surface of the sixth lens L6 to the image surface (including the thickness of the optical filter GF)
IH: Image height

y=(x/R)/[1+{1−(k+1)(x/R)}1/2]
+A4x+A6x+A8x+A10x10+A12x12+A14x14+A16x16+A18x18+A20x20 (9)
y = (x 2 / R) / [1+ {1- (k + 1) (x 2 / R 2)} 1/2]
+ A4x 4 + A6x 6 + A8x 8 + A10x 10 + A12x 12 + A14x 14 + A16x 16 + A18x 18 + A20x 20 (9)

ここで、kは円錐係数であり、A4、A6、A8、A10、A12、A14、A16、A18、A20は非球面係数であり、xは非球面曲線上の点と光軸との垂直距離であり、yが非球面深さ(非球面上の光軸からの距離がxである点と、非球面の光軸上の頂点に接する接平面との両者間の垂直距離)である。 Here, k is a conic coefficient, A4, A6, A8, A10, A12, A14, A16, A18 and A20 are aspherical coefficients, and x is a vertical distance between a point on the aspherical curve and the optical axis. And y is the depth of the aspherical surface (the vertical distance between the point on the aspherical surface where the distance from the optical axis is x and the tangent plane contacting the apex of the aspherical surface on the optical axis).

各レンズ面の非球面は、便宜上、上記式(9)で表される非球面を使用している。しかしながら、本発明は、この式(9)で示す非球面多項式に限定するものではない。 As the aspherical surface of each lens surface, the aspherical surface represented by the above formula (9) is used for convenience. However, the present invention is not limited to the aspherical polynomial expressed by the equation (9).

好ましくは、高品質の結像需要を満足するように、前記レンズの物体側面及び/又は像側面には変曲点及び/又は停留点(Stationary point)を設置することができる。具体的な実施案について、下記の説明を参照する。 Preferably, an inflection point and/or a stationary point may be provided on the object side surface and/or the image side surface of the lens so as to satisfy a high quality imaging demand. For specific implementation plan, refer to the following explanation.

表1、表2は、本発明の第1実施形態に係る撮像光学レンズ10の設計データを示す。 Tables 1 and 2 show design data of the imaging optical lens 10 according to the first embodiment of the present invention.

表2は本発明の第1実施形態に係る撮像光学レンズ10における各レンズの非球面データを示す。 Table 2 shows aspherical surface data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.

表3、表4は本発明の第1実施形態に係る撮像光学レンズ10における各レンズの変曲点及び停留点の設計データを示す。ここで、P1R1、P1R2は、それぞれ第1レンズL1の物体側面と像側面を示し、P2R1、P2R2は、それぞれ第2レンズL2の物体側面と像側面を示し、P3R1、P3R2は、それぞれ第3レンズL3の物体側面と像側面を示し、P4R1、P4R2は、それぞれ第4レンズL4の物体側面と像側面を示し、P5R1、P5R2は、それぞれ第5レンズL5の物体側面と像側面を示し、P6R1、P6R2は、それぞれ第6レンズL6の物体側面と像側面を示す。「変曲点位置」欄の対応するデータは、各レンズの表面に設置された変曲点から撮像光学レンズ10の光軸までの垂直距離である。「停留点位置」欄の対応するデータは、各レンズの表面に設置された停留点から撮像光学レンズ10の光軸までの垂直距離である。 Tables 3 and 4 show design data of inflection points and stationary points of each lens in the imaging optical lens 10 according to the first embodiment of the present invention. Here, P1R1 and P1R2 indicate the object side surface and the image side surface of the first lens L1, respectively, P2R1 and P2R2 indicate the object side surface and the image side surface of the second lens L2, respectively, and P3R1 and P3R2 indicate the third lens side, respectively. L3 indicates an object side surface and an image side surface, P4R1 and P4R2 respectively indicate an object side surface and an image side surface of the fourth lens L4, P5R1 and P5R2 respectively indicate an object side surface and an image side surface of the fifth lens L5, and P6R1, P6R2 indicates the object side surface and the image side surface of the sixth lens L6, respectively. The corresponding data in the “Inflection point position” column is the vertical distance from the inflection point installed on the surface of each lens to the optical axis of the imaging optical lens 10. Corresponding data in the "stationary point position" column is the vertical distance from the stationary point installed on the surface of each lens to the optical axis of the imaging optical lens 10.

図2、図3は、それぞれ波長486nm、588nm、及び656nmの光が第1実施形態に係る撮像光学レンズ10を通った後の軸上色収差及び倍率色収差を示す模式図である。図4は、波長588nmの光が第1実施形態に係る撮像光学レンズ10を通った後の像面湾曲及び歪曲収差を示す模式図であり、図4の像面湾曲Sはサジタル方向の像面湾曲であり、Tは子午方向の像面湾曲である。 2 and 3 are schematic diagrams showing the axial chromatic aberration and the chromatic aberration of magnification after the lights having the wavelengths of 486 nm, 588 nm, and 656 nm have passed through the imaging optical lens 10 according to the first embodiment. FIG. 4 is a schematic diagram showing field curvature and distortion after light having a wavelength of 588 nm passes through the imaging optical lens 10 according to the first embodiment, and the field curvature S in FIG. 4 is an image surface in the sagittal direction. And T is the field curvature in the meridional direction.

後の表13は、各実施形態の諸値及び条件式で規定したパラメータに対応する値を示す。 Table 13 below shows various values of each embodiment and values corresponding to the parameters defined by the conditional expressions.

表13に示すように、第1実施形態は、各条件式を満足する。 As shown in Table 13, the first embodiment satisfies each conditional expression.

本実施形態において、前記撮像光学レンズの入射瞳径ENPDが3.272mmであり、全視野の像高IHが4.560mmであり、対角線方向の画角2ωが78.295°であり、広角、極薄であり、その軸上、軸外色収差が十分に補正され、且つ優れた光学特性を有する。 In the present embodiment, the entrance pupil diameter ENPD of the imaging optical lens is 3.272 mm, the image height IH of the entire visual field is 4.560 mm, the diagonal angle of view 2ω is 78.295°, and the wide angle, It is extremely thin, its axial off-axis chromatic aberration is sufficiently corrected, and it has excellent optical characteristics.

(第2実施形態)
第2実施形態は第1実施形態と基本的に同じであり、記号の意味も第1実施形態と同じであり、以下、異なる点のみを示す。
(Second embodiment)
The second embodiment is basically the same as the first embodiment, and the meanings of symbols are the same as those of the first embodiment, and only different points will be shown below.

表5、表6は本発明の第2実施形態に係る撮像光学レンズ20の設計データを示す。 Tables 5 and 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.

表6は本発明の第2実施形態に係る撮像光学レンズ20における各レンズの非球面データを示す。 Table 6 shows aspherical surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.

表7、表8は本発明の第2実施形態に係る撮像光学レンズ20における各レンズの変曲点及び停留点の設計データを示す。 Tables 7 and 8 show design data of inflection points and stationary points of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.

図6、図7は、それぞれ波長486nm、588nm、及び656nmの光が第2実施形態に係る撮像光学レンズ20を通った後の軸上色収差及び倍率色収差を示す模式図である。図8は、波長588nmの光が第2実施形態に係る撮像光学レンズ20を通った後の像面湾曲及び歪曲収差を示す模式図である。表13に示すように、第2実施形態は各条件式を満足する。 6 and 7 are schematic diagrams showing the axial chromatic aberration and the chromatic aberration of magnification after the lights having the wavelengths of 486 nm, 588 nm, and 656 nm have passed through the imaging optical lens 20 according to the second embodiment. FIG. 8 is a schematic diagram showing field curvature and distortion after light having a wavelength of 588 nm passes through the imaging optical lens 20 according to the second embodiment. As shown in Table 13, the second embodiment satisfies each conditional expression.

本実施形態において、前記撮像光学レンズの入射瞳径ENPDが3.231mmであり、全視野の像高IHが4.560mmであり、対角線方向の画角2ωが76.117°であり、広角、極薄であり、その軸上、軸外色収差が十分に補正され、且つ優れた光学特性を有する。 In this embodiment, the entrance pupil diameter ENPD of the imaging optical lens is 3.231 mm, the image height IH of the entire field of view is 4.560 mm, the diagonal angle of view 2ω is 76.117°, and the wide angle is It is extremely thin, its axial off-axis chromatic aberration is sufficiently corrected, and it has excellent optical characteristics.

(第3実施形態)
第3実施形態は第1実施形態と基本的に同じであり、記号の意味も第1実施形態と同じであり、以下、異なる点のみを示す。
(Third Embodiment)
The third embodiment is basically the same as the first embodiment, and the meanings of symbols are the same as those of the first embodiment, and only different points will be shown below.

表9、表10は本発明の第3実施形態に係る撮像光学レンズ30の設計データを示す。 Tables 9 and 10 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.

表10は本発明の第3実施形態に係る撮像光学レンズ30における各レンズの非球面データを示す。 Table 10 shows aspherical surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.

表11、表12は本発明の第3実施形態に係る撮像光学レンズ30における各レンズの変曲点及び停留点の設計データを示す。 Tables 11 and 12 show design data of inflection points and stationary points of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.

図10、図11は、それぞれ波長486nm、588nm、及び656nmの光が第3実施形態に係る撮像光学レンズ30を通った後の軸上色収差及び倍率色収差を示す模式図である。図12は、波長588nmの光が第3実施形態に係る撮像光学レンズ30を通った後の像面湾曲及び歪曲収差を示す模式図である。 10 and 11 are schematic diagrams showing the axial chromatic aberration and the chromatic aberration of magnification after the lights having the wavelengths of 486 nm, 588 nm, and 656 nm have passed through the imaging optical lens 30 according to the third embodiment. FIG. 12 is a schematic diagram showing field curvature and distortion after light having a wavelength of 588 nm has passed through the imaging optical lens 30 according to the third embodiment.

下記の表13には上記の条件式により本実施形態において各条件式に対応する値を示している。明らかに、本実施形態の撮像光学システムは、上記の条件式を満足する。 Table 13 below shows values corresponding to each conditional expression in the present embodiment by the above conditional expressions. Obviously, the imaging optical system of this embodiment satisfies the above conditional expression.

本実施形態において、前記撮像光学レンズの入射瞳径ENPDが3.541mmであり、全視野の像高IHが4.56mmであり、対角線方向の画角2ωが71.451°であり、広角、極薄であり、その軸上、軸外色収差が十分に補正され、且つ優れた光学特性を有する。 In the present embodiment, the entrance pupil diameter ENPD of the imaging optical lens is 3.541 mm, the image height IH of the entire visual field is 4.56 mm, the diagonal angle of view 2ω is 71.451°, and the wide angle is It is extremely thin, its axial off-axis chromatic aberration is sufficiently corrected, and it has excellent optical characteristics.

表13には各数値実施例の各数値及び条件式(1)〜(8)で規定されるパラメータに対応する値を示している。なお、表13に示す各数値の単位は、2ω(°)、f(mm)、f1(mm)、f2(mm)、f3(mm)、f4(mm)、f5(mm)、f6(mm)、TTL(mm)、LB(mm)、IH(mm)である。 Table 13 shows each numerical value of each numerical example and the value corresponding to the parameter defined by the conditional expressions (1) to (8). The unit of each numerical value shown in Table 13 is 2ω(°), f(mm), f1(mm), f2(mm), f3(mm), f4(mm), f5(mm), f6(mm ), TTL (mm), LB (mm), and IH (mm).

当業者であれば分かるように、上記各実施形態が本発明を実現するための具体的な実施形態であり、実際の応用において、本発明の精神と範囲から逸脱しない限り、形式及び細部に対して各種の変更を行うことができる。

As will be understood by those skilled in the art, each of the above-described embodiments is a specific embodiment for implementing the present invention, and in actual application, without departing from the spirit and scope of the present invention, with respect to form and details, Various changes can be made.

Claims (10)

撮像光学レンズであって、
前記撮像光学レンズは、物体側から像側にかけて、順に正の屈折力を有する第1レンズ、負の屈折力を有する第2レンズ、負の屈折力を有する第3レンズ、第4レンズ、第5レンズ、及び第6レンズを含み、
前記第2レンズの物体側面の軸上曲率半径をR3、前記第2レンズの像側面の軸上曲率半径をR4、前記第1レンズの物体側面の軸上曲率半径をR1、前記第1レンズの軸上厚みをd1、前記第1レンズの像側面の軸上曲率半径をR2、前記第2レンズの屈折率をn2、前記第3レンズの屈折率をn3としたときに、以下の条件式(1)〜(4)を満足することを特徴とする撮像光学レンズ。
2.00≦R3/R4≦5.00 (1)
1.50≦R1/d1≦3.00 (2)
0.30≦R2/R3≦2.00 (3)
1.02≦n2/n3≦1.20 (4)
An imaging optical lens,
The imaging optical lens includes a first lens having a positive refractive power, a second lens having a negative refractive power, a third lens having a negative refractive power, a fourth lens, and a fifth lens in order from the object side to the image side. A lens, and a sixth lens,
The axial radius of curvature of the object side surface of the second lens is R3, the axial radius of curvature of the image side surface of the second lens is R4, the axial radius of curvature of the object side surface of the first lens is R1, and the first lens When the axial thickness is d1, the axial radius of curvature of the image side surface of the first lens is R2, the refractive index of the second lens is n2, and the refractive index of the third lens is n3, the following conditional expression ( An imaging optical lens satisfying 1) to 4).
2.00≦R3/R4≦5.00 (1)
1.50≦R1/d1≦3.00 (2)
0.30≦R2/R3≦2.00 (3)
1.02≦n2/n3≦1.20 (4)
前記第5レンズの物体側面の軸上曲率半径をR9、前記第5レンズの像側面の軸上曲率半径をR10としたときに、以下の条件式(5)を満足することを特徴とする請求項1に記載の撮像光学レンズ。
−13.00≦R9/R10≦−3.00 (5)
When the axial radius of curvature of the object side surface of the fifth lens is R9 and the axial radius of curvature of the image side surface of the fifth lens is R10, the following conditional expression (5) is satisfied. Item 1. The imaging optical lens according to Item 1.
-13.00≦R9/R10≦−3.00 (5)
以下の条件式(5−A)を満足することを特徴とする請求項2に記載の撮像光学レンズ。
−12.00≦R9/R10≦−5.00 (5−A)
The imaging optical lens according to claim 2, wherein the following conditional expression (5-A) is satisfied.
-12.00≤R9/R10≤-5.00 (5-A)
前記第3レンズの焦点距離をf3、前記第4レンズの焦点距離をf4としたときに、以下の条件式(6)を満足することを特徴とする請求項1に記載の撮像光学レンズ。
−2.50≦f3/f4<0 (6)
The imaging optical lens according to claim 1, wherein the following conditional expression (6) is satisfied, where f3 is the focal length of the third lens and f4 is the focal length of the fourth lens.
−2.50≦f3/f4<0 (6)
以下の条件式(6−A)を満足することを特徴とする請求項4に記載の撮像光学レンズ。
−2.00≦f3/f4<0 (6−A)
The imaging optical lens according to claim 4, wherein the following conditional expression (6-A) is satisfied.
−2.00≦f3/f4<0 (6-A)
前記第6レンズの軸上厚みをd11、前記撮像光学レンズの光学長をTTLとしたときに、以下の条件式(7)を満足することを特徴とする請求項1に記載の撮像光学レンズ。
0.01≦d11/TTL≦0.20 (7)
The imaging optical lens according to claim 1, wherein the following conditional expression (7) is satisfied, where d11 is an axial thickness of the sixth lens and TTL is an optical length of the imaging optical lens.
0.01≦d11/TTL≦0.20 (7)
以下の条件式(7−A)を満足することを特徴とする請求項6に記載の撮像光学レンズ。
0.04≦d11/TTL≦0.13 (7−A)
The imaging optical lens according to claim 6, wherein the following conditional expression (7-A) is satisfied.
0.04≦d11/TTL≦0.13 (7-A)
前記第6レンズの像側面上の停留点から光軸までの垂直距離をYc62、前記撮像光学レンズの光学長をTTLとしたときに、以下の条件式(8)を満足することを特徴とする請求項1に記載の撮像光学レンズ。
0.10≦Yc62/TTL≦0.55 (8)
When the vertical distance from the stationary point on the image side surface of the sixth lens to the optical axis is Yc62 and the optical length of the imaging optical lens is TTL, the following conditional expression (8) is satisfied. The imaging optical lens according to claim 1.
0.10≦Yc62/TTL≦0.55 (8)
以下の条件式(8−A)を満足することを特徴とする請求項8に記載の撮像光学レンズ。
0.20≦Yc62/TTL≦0.30 (8−A)
The imaging optical lens according to claim 8, wherein the following conditional expression (8-A) is satisfied.
0.20≦Yc62/TTL≦0.30 (8-A)
前記撮像光学レンズのFNOは2.00以下であることを特徴とする請求項1に記載の撮像光学レンズ。 The imaging optical lens according to claim 1, wherein FNO of the imaging optical lens is 2.00 or less.
JP2019150220A 2019-01-31 2019-08-20 Imaging optical lens Active JP6796171B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910096133.6A CN109459842B (en) 2018-12-31 2019-01-31 Camera optical camera lens
CN201910096133.6 2019-01-31

Publications (2)

Publication Number Publication Date
JP2020126220A true JP2020126220A (en) 2020-08-20
JP6796171B2 JP6796171B2 (en) 2020-12-02

Family

ID=72084932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019150220A Active JP6796171B2 (en) 2019-01-31 2019-08-20 Imaging optical lens

Country Status (1)

Country Link
JP (1) JP6796171B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114911029A (en) * 2021-02-09 2022-08-16 三营超精密光电(晋城)有限公司 Optical imaging system, camera module and electronic device
CN114911031A (en) * 2021-02-09 2022-08-16 三营超精密光电(晋城)有限公司 Optical imaging system, image capturing module and electronic device

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120188654A1 (en) * 2011-01-20 2012-07-26 Largan Precision Co. Optical Imaging System for Pickup
US20120262806A1 (en) * 2011-04-13 2012-10-18 Largan Precision Co., Ltd. Optical image lens assembly
US20120314301A1 (en) * 2011-06-10 2012-12-13 Largan Precision Co., Ltd. Optical image capturing lens assembly
US20140185141A1 (en) * 2012-12-31 2014-07-03 Samsung Electronics Co., Ltd. Photographic lens and photographic apparatus using the same
US20140192422A1 (en) * 2013-01-04 2014-07-10 Largan Precision Co., Ltd. Optical image collecting system
US20150002728A1 (en) * 2013-07-01 2015-01-01 Largan Precision Co., Ltd. Optical image capturing lens assembly
JP5651881B1 (en) * 2014-08-13 2015-01-14 株式会社AAC Technologies Japan R&D Center Imaging lens
US20160004035A1 (en) * 2014-07-03 2016-01-07 Lg Innotek Co., Ltd. Image Pickup Lens and Camera Module Including the Same
US20160313536A1 (en) * 2015-04-22 2016-10-27 Optical Logic Inc. Imaging lens
US20160349485A1 (en) * 2015-05-28 2016-12-01 Aac Acoustic Technologies (Shenzhen) Co., Ltd. Camera Lens
US20170010444A1 (en) * 2015-07-07 2017-01-12 Aac Acoustic Technologies (Shenzhen) Co., Ltd. Camera Lens
CN106814441A (en) * 2016-12-14 2017-06-09 瑞声科技(新加坡)有限公司 Camera optical camera lens
US20170357080A1 (en) * 2015-01-07 2017-12-14 Zhejiang Sunny Optics Co.,Ltd. Camera Lens
US20180067283A1 (en) * 2016-09-07 2018-03-08 Genius Electronic Optical Co., Ltd. Optical imaging lens
US20180074295A1 (en) * 2016-09-12 2018-03-15 Largan Precision Co., Ltd. Imaging optical lens system, image capturing apparatus and electronic device
US20180120539A1 (en) * 2016-11-02 2018-05-03 Genius Electronic Optical Co., Ltd. Optical lens set
US20180149833A1 (en) * 2015-04-23 2018-05-31 Lg Electronics Inc. Camera module
US20180188496A1 (en) * 2016-12-29 2018-07-05 Largan Precision Co., Ltd. Image capturing assembly, imaging apparatus and electronic device
CN208172352U (en) * 2018-04-03 2018-11-30 浙江舜宇光学有限公司 Optical imaging lens
CN109031629A (en) * 2018-11-07 2018-12-18 浙江舜宇光学有限公司 imaging optical system
CN208297807U (en) * 2018-05-04 2018-12-28 浙江舜宇光学有限公司 Optical imaging lens
CN109164560A (en) * 2018-10-22 2019-01-08 浙江舜宇光学有限公司 Imaging lens
CN208421380U (en) * 2018-06-01 2019-01-22 浙江舜宇光学有限公司 Optical imaging lens
CN109283664A (en) * 2018-12-05 2019-01-29 浙江舜宇光学有限公司 Optical imagery eyeglass group
US20190033556A1 (en) * 2017-07-26 2019-01-31 Largan Precision Co., Ltd. Imaging lens system, image capturing unit and electronic device
JP2019086526A (en) * 2017-11-01 2019-06-06 カンタツ株式会社 Image capturing lens
WO2019192180A1 (en) * 2018-04-03 2019-10-10 浙江舜宇光学有限公司 Optical imaging lens

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120188654A1 (en) * 2011-01-20 2012-07-26 Largan Precision Co. Optical Imaging System for Pickup
US20120262806A1 (en) * 2011-04-13 2012-10-18 Largan Precision Co., Ltd. Optical image lens assembly
US20120314301A1 (en) * 2011-06-10 2012-12-13 Largan Precision Co., Ltd. Optical image capturing lens assembly
US20140185141A1 (en) * 2012-12-31 2014-07-03 Samsung Electronics Co., Ltd. Photographic lens and photographic apparatus using the same
US20140192422A1 (en) * 2013-01-04 2014-07-10 Largan Precision Co., Ltd. Optical image collecting system
US20150002728A1 (en) * 2013-07-01 2015-01-01 Largan Precision Co., Ltd. Optical image capturing lens assembly
US20160004035A1 (en) * 2014-07-03 2016-01-07 Lg Innotek Co., Ltd. Image Pickup Lens and Camera Module Including the Same
JP5651881B1 (en) * 2014-08-13 2015-01-14 株式会社AAC Technologies Japan R&D Center Imaging lens
US20170357080A1 (en) * 2015-01-07 2017-12-14 Zhejiang Sunny Optics Co.,Ltd. Camera Lens
US20160313536A1 (en) * 2015-04-22 2016-10-27 Optical Logic Inc. Imaging lens
US20180149833A1 (en) * 2015-04-23 2018-05-31 Lg Electronics Inc. Camera module
US20160349485A1 (en) * 2015-05-28 2016-12-01 Aac Acoustic Technologies (Shenzhen) Co., Ltd. Camera Lens
JP2016224136A (en) * 2015-05-28 2016-12-28 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd Imaging lens
US20170010444A1 (en) * 2015-07-07 2017-01-12 Aac Acoustic Technologies (Shenzhen) Co., Ltd. Camera Lens
US20180067283A1 (en) * 2016-09-07 2018-03-08 Genius Electronic Optical Co., Ltd. Optical imaging lens
US20180074295A1 (en) * 2016-09-12 2018-03-15 Largan Precision Co., Ltd. Imaging optical lens system, image capturing apparatus and electronic device
US20180120539A1 (en) * 2016-11-02 2018-05-03 Genius Electronic Optical Co., Ltd. Optical lens set
EP3318910A1 (en) * 2016-11-02 2018-05-09 GeniuS Electronic Optical Co., Ltd. Optical lens set
CN106814441A (en) * 2016-12-14 2017-06-09 瑞声科技(新加坡)有限公司 Camera optical camera lens
US20180188496A1 (en) * 2016-12-29 2018-07-05 Largan Precision Co., Ltd. Image capturing assembly, imaging apparatus and electronic device
US20190033556A1 (en) * 2017-07-26 2019-01-31 Largan Precision Co., Ltd. Imaging lens system, image capturing unit and electronic device
JP2019086526A (en) * 2017-11-01 2019-06-06 カンタツ株式会社 Image capturing lens
CN208172352U (en) * 2018-04-03 2018-11-30 浙江舜宇光学有限公司 Optical imaging lens
WO2019192180A1 (en) * 2018-04-03 2019-10-10 浙江舜宇光学有限公司 Optical imaging lens
CN208297807U (en) * 2018-05-04 2018-12-28 浙江舜宇光学有限公司 Optical imaging lens
CN208421380U (en) * 2018-06-01 2019-01-22 浙江舜宇光学有限公司 Optical imaging lens
CN109164560A (en) * 2018-10-22 2019-01-08 浙江舜宇光学有限公司 Imaging lens
CN109031629A (en) * 2018-11-07 2018-12-18 浙江舜宇光学有限公司 imaging optical system
CN109283664A (en) * 2018-12-05 2019-01-29 浙江舜宇光学有限公司 Optical imagery eyeglass group

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114911029A (en) * 2021-02-09 2022-08-16 三营超精密光电(晋城)有限公司 Optical imaging system, camera module and electronic device
CN114911031A (en) * 2021-02-09 2022-08-16 三营超精密光电(晋城)有限公司 Optical imaging system, image capturing module and electronic device

Also Published As

Publication number Publication date
JP6796171B2 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
JP2020109494A (en) Image capturing optical lens
JP2020109485A (en) Image capturing optical lens
JP2020109486A (en) Image capturing optical lens
JP2020109472A (en) Imaging optical lens
JP2020109484A (en) Image capturing optical lens
JP2019191547A (en) Image capturing optical lens
JP2020109483A (en) Image capturing optical lens
JP2020109469A (en) Imaging optical lens
JP2020106789A (en) Image capturing optical lens
JP2020106799A (en) Image capturing optical lens
JP2020109471A (en) Imaging optical lens
JP2020109482A (en) Image capturing optical lens
JP2020109466A (en) Imaging optical lens
JP2020109492A (en) Image capturing optical lens
JP2020106796A (en) Image capturing optical lens
JP2020106808A (en) Image capturing optical lens
JP2020106815A (en) Image capturing optical lens
JP2020106806A (en) Image capturing optical lens
JP2020109470A (en) Imaging optical lens
JP2020106814A (en) Image capturing optical lens
JP2020106819A (en) Image capturing optical lens
JP2019079022A (en) Imaging optical lens
JP2020106809A (en) Image capturing optical lens
JP2020106787A (en) Image capturing optical lens
JP2020109465A (en) Imaging optical lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201113

R150 Certificate of patent or registration of utility model

Ref document number: 6796171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250