JP2020125525A - Aluminum alloy forged wheel and its production method, casting billet for producing forged wheel - Google Patents

Aluminum alloy forged wheel and its production method, casting billet for producing forged wheel Download PDF

Info

Publication number
JP2020125525A
JP2020125525A JP2019019452A JP2019019452A JP2020125525A JP 2020125525 A JP2020125525 A JP 2020125525A JP 2019019452 A JP2019019452 A JP 2019019452A JP 2019019452 A JP2019019452 A JP 2019019452A JP 2020125525 A JP2020125525 A JP 2020125525A
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
less
wheel
rim portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019019452A
Other languages
Japanese (ja)
Other versions
JP2020125525A5 (en
JP6942151B2 (en
Inventor
塁 横川
Rui Yokokawa
塁 横川
浩一 嶋崎
Koichi Shimazaki
浩一 嶋崎
武司 田中
Takeshi Tanaka
武司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBS JAPAN CO Ltd
Original Assignee
BBS JAPAN CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBS JAPAN CO Ltd filed Critical BBS JAPAN CO Ltd
Priority to JP2019019452A priority Critical patent/JP6942151B2/en
Priority to TW109102144A priority patent/TWI722780B/en
Priority to DE102020102625.0A priority patent/DE102020102625A1/en
Priority to CN202010080454.XA priority patent/CN111532080B/en
Publication of JP2020125525A publication Critical patent/JP2020125525A/en
Publication of JP2020125525A5 publication Critical patent/JP2020125525A5/ja
Application granted granted Critical
Publication of JP6942151B2 publication Critical patent/JP6942151B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B21/00Rims
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B3/00Disc wheels, i.e. wheels with load-supporting disc body
    • B60B3/002Disc wheels, i.e. wheels with load-supporting disc body characterised by the shape of the disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B3/00Disc wheels, i.e. wheels with load-supporting disc body
    • B60B3/04Disc wheels, i.e. wheels with load-supporting disc body with a single disc body not integral with rim, i.e. disc body and rim being manufactured independently and then permanently attached to each other in a second step, e.g. by welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B23/00Attaching rim to wheel body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2310/00Manufacturing methods
    • B60B2310/20Shaping
    • B60B2310/202Shaping by casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2310/00Manufacturing methods
    • B60B2310/20Shaping
    • B60B2310/208Shaping by forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2360/00Materials; Physical forms thereof
    • B60B2360/10Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2360/00Materials; Physical forms thereof
    • B60B2360/10Metallic materials
    • B60B2360/104Aluminum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2360/00Materials; Physical forms thereof
    • B60B2360/10Metallic materials
    • B60B2360/108Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2360/00Materials; Physical forms thereof
    • B60B2360/10Metallic materials
    • B60B2360/109Bronze
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/10Reduction of
    • B60B2900/111Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B3/00Disc wheels, i.e. wheels with load-supporting disc body
    • B60B3/14Attaching disc body to hub ; Wheel adapters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)

Abstract

To provide an aluminum alloy forged wheel having toughness and high rigidity, and having high heat resistance, while having light weight.SOLUTION: An aluminum alloy forged wheel is a wheel including a hub part to which an axle is mounted, a disc part provided to a hub part periphery and a rim part provided to a periphery part of the disc, in which one or both of at least the disc part and the rim part is formed by forging a billet obtained by casting an aluminum alloy that contains Si:9.0 to 12.5 mass%, Cu:0.5 to 3.4 mass%, Mg:0.2 to 0.9 mass%, Fe:0.7 mass% or smaller, Ti:0.005 to 0.15 mass%, and any one kind of Sr, Sb, Ca, and Na containing in the range of Sr:0.01 to 0.15 mass%, Sb:0.01 to 0.20 mass%, Ca:10 to 200 mass.ppm, Na:10 to 200 mass.ppm, the balance is Al and inevitable impurities, and a metallurgical structure of one or both of the disc part and the rim part has a width of a belt-like zone in which Si particles are sparse is 20 μm or smaller, and an average particle size of eutectic silicon is 5 μm or smaller.SELECTED DRAWING: Figure 1

Description

本発明は、アルミニウム合金鍛造ホイール及びその製造方法、アルミニウム合金鍛造ホイールを形成するための鋳造ビレットに関するものである。 The present invention relates to an aluminum alloy forged wheel, a method for manufacturing the same, and a cast billet for forming the aluminum alloy forged wheel.

ハブ部とディスク部とリム部が一体に形成された車両用のホイールは、アルミニウム合金製のものが一般に知られている。アルミニウム合金製ホイールの製造方法としては、低圧鋳造法、重力鋳造法、高圧鋳造法、溶湯鍛造法、熱間鍛造法があり、これらの製造方法の中で機械的性質が最も優れている製造方法が、熱間鍛造法であると言われている。 BACKGROUND ART A vehicle wheel in which a hub portion, a disc portion, and a rim portion are integrally formed is generally known to be made of an aluminum alloy. Aluminum alloy wheel manufacturing methods include low-pressure casting, gravity casting, high-pressure casting, molten metal forging, and hot forging, among which manufacturing methods have the best mechanical properties. However, it is said to be a hot forging method.

下記特許文献1には、車軸が装着されるハブ部と、ハブ部の周囲に位置するディスク部と、このディスク部の周囲に一体で形成されたリム部を備えた車両用ホイールにおいて、質量比でSiを0.95〜1.35%、Mgを0.8〜1.2%、Cuを0.2〜0.5%、Mnを0.4〜0.7%、Feを0.3%以下、及びCrを0.05〜0.25%含んで残部をアルミニウムとしたアルミニウム合金を鍛造して成り、ディスク部のデザイン面及びリム部の結晶粒が、粒径50μm以下の金属組織を有しているものが示されている。 Patent Document 1 below discloses a vehicle wheel including a hub portion to which an axle is mounted, a disc portion located around the hub portion, and a rim portion integrally formed around the disc portion. At 0.95 to 1.35% of Si, 0.8 to 1.2% of Mg, 0.2 to 0.5% of Cu, 0.4 to 0.7% of Mn, and 0.3 of Fe. % Or less, and 0.05 to 0.25% of Cr and the balance being aluminum, forged from an aluminum alloy, and the design surface of the disk portion and the crystal grains of the rim portion have a metal structure with a grain size of 50 μm or less. What has is shown.

特開2007−210017号公報JP 2007-21017 A

前述した従来技術は、良好な機械的性質を有していながら軽量化を実現することができるアルミニウム合金鍛造ホイールを提供することができるとされている。 The above-mentioned prior art is said to be able to provide an aluminum alloy forged wheel that has good mechanical properties and can realize weight reduction.

これに対して、車両用ホイールは、車両の長時間走行によって、路面の凹凸などにより繰り返し荷重がかかることから、軽量であると共に、走行中に繰り返しかかる荷重に耐えて壊れ難い強靱さが求められる。また、車両の長時間走行で安定した走行性を得るためには、荷重に対して変形し難いこと(高剛性であること)が求められる。 On the other hand, a vehicle wheel is required to be lightweight and durable enough to withstand a load repeatedly applied during traveling because the load is repeatedly applied due to unevenness of the road surface due to long running of the vehicle. .. Further, in order to obtain stable running performance of the vehicle for a long time, it is required that the vehicle is not easily deformed by the load (high rigidity).

また、車両のブレーキング時には、非常に高温の熱が発生することになり、ホイールは、発熱源の近くに配置されることになるので、高温に長時間曝された場合にも高い強度特性を維持することができる耐熱強度が求められる。 In addition, when the vehicle is braked, extremely high-temperature heat is generated, and the wheel is placed near the heat source, so it has high strength characteristics even when exposed to high temperatures for a long time. A heat resistant strength that can be maintained is required.

本発明は、車両用ホイールに求められるこれらの要求に対応することを課題としており、軽量であると共に、繰り返し荷重に対する疲れ強さが高く且つ高剛性であること、また耐熱強度が高いこと、などを満たすアルミニウム合金鍛造ホイールを提供することを課題としている。 The present invention has an object to meet these requirements required for a vehicle wheel, is lightweight, has high fatigue strength and high rigidity against repeated load, and has high heat resistance, etc. It is an object to provide an aluminum alloy forged wheel that satisfies the above requirements.

このような課題を解決するために、本発明は、以下の構成を具備するものである。
車軸が装着されるハブ部と該ハブ部周縁に設けられたディスク部と該ディスク部周縁に設けられたリム部を備えるホイールであって、少なくとも前記ディスク部と前記リム部の一方又は両方が、Si:9.0〜12.5質量%、Cu:0.5〜3.4質量%、Mg:0.2〜0.9質量%、Fe:0.7質量%以下、Ti:0.005〜0.15質量%を含有し、Sr、Sb、Ca、Naのいずれか一種を、Sr:0.01〜0.15質量%、Sb:0.01〜0.20質量%、Ca:10〜200質量ppm、Na:10〜200質量ppm含有し、残部がAl及び不可避不純物であるアルミニウム合金を鋳造して得たビレットを鍛造して成り、前記ディスク部と前記リム部の一方又は両方の金属組織が、Si粒子が疎らな帯状ゾーンの幅が20μm以下であり、且つ共晶Siの平均粒径が5μm以下であることを特徴とするアルミニウム合金鍛造ホイール。
In order to solve such a problem, the present invention has the following configurations.
A wheel comprising a hub portion to which an axle is mounted, a disc portion provided on the periphery of the hub portion, and a rim portion provided on the periphery of the disc portion, at least one or both of the disc portion and the rim portion, Si: 9.0-12.5 mass%, Cu: 0.5-3.4 mass%, Mg: 0.2-0.9 mass%, Fe: 0.7 mass% or less, Ti: 0.005 To 0.15% by mass, and any one of Sr, Sb, Ca, and Na is added to Sr: 0.01 to 0.15% by mass, Sb: 0.01 to 0.20% by mass, Ca:10. .About.200 mass ppm, Na: 10 to 200 mass ppm, and the balance is formed by forging a billet obtained by casting an aluminum alloy containing Al and unavoidable impurities. One or both of the disc portion and the rim portion is formed. An aluminum alloy forged wheel having a metal structure in which the width of a band-shaped zone in which Si particles are sparse is 20 μm or less, and the average grain size of eutectic Si is 5 μm or less.

このような特徴を有するアルミニウム合金鍛造ホイールは、軽量であると共に疲れ強さが高く且つ高剛性であり、また、耐熱強度が高い。よって、高強度耐久性があり且つ良好な走行性が得られる車両用ホイールを得ることができる。 The aluminum alloy forged wheel having such characteristics is lightweight, has high fatigue strength and high rigidity, and has high heat resistance. Therefore, it is possible to obtain a vehicle wheel that has high strength and durability and can obtain good traveling performance.

本発明の実施形態に係るアルミニウム合金鍛造ホイールの金属組織を説明する説明図((a)が本発明の実施例の金属組織であり、(b)が比較例の金属組織)である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing explaining the metal structure of the aluminum alloy forged wheel which concerns on embodiment of this invention ((a) is a metal structure of the Example of this invention, (b) is a metal structure of a comparative example). 本発明の実施形態に係るアルミニウム合金鍛造ホイールの形態例を示す説明図((a)が鍛造のみで形成した例(1ピースの例)、(b)がリム部をスピニング成形した例(1ピースの例)、(c)がディスク部の周縁にリム部を接合した例(2ピースの例))である。Explanatory drawing showing an example of the form of an aluminum alloy forged wheel according to an embodiment of the present invention ((a) is an example formed by forging only (one piece example), (b) is an example formed by spinning forming a rim portion (one piece) 2) and (c) are examples in which a rim portion is joined to the peripheral edge of the disc portion (two-piece example). 本発明の実施形態に係るアルミニウム合金鍛造ホイールの形態例を示す説明図(ディスク部がスポーク形状タイプの例)である。It is explanatory drawing (the example of a disk part is a spoke shape type) which shows the example of a form of the aluminum alloy forged wheel which concerns on embodiment of this invention. 鍛造素材ビレットの主な製造工程のフローを示した説明図である。It is explanatory drawing which showed the flow of the main manufacturing processes of a forging material billet. ホイールの加工工程のフローを示した説明図である。It is explanatory drawing which showed the flow of the processing process of a wheel. 鍛造工程を示した説明図である。It is explanatory drawing which showed the forging process. ホイール材料の比・疲れ強さ及び比・ヤング率を比較する説明図である。It is explanatory drawing which compares the ratio/fatigue strength of wheel material, and ratio/Young's modulus. 実施例におけるディスク部の耐熱強度試験の結果(熱曝露時間100hrでの温度変化に対する引張強さ変化)を示すグラフである。It is a graph which shows the result of the heat resistance test of the disk part in an Example (change of tensile strength with respect to temperature change in heat exposure time 100 hr).

以下、本発明の実施形態を説明する。本発明の実施形態に係るアルミニウム合金鍛造ホイールは、非常に高いSiの含有率を有しており、鍛造後の金属組織は、共晶Siの平均粒径が5μm以下になっている。 Hereinafter, embodiments of the present invention will be described. The aluminum alloy forged wheel according to the embodiment of the present invention has a very high Si content, and the metal structure after forging has an average grain size of eutectic Si of 5 μm or less.

また、本発明の実施形態に係るアルミニウム合金鍛造ホイールは、金属組織における共晶Si粒子の偏りが繰り返し荷重に対する疲れ強さに大きく影響するという新たな知見に基づき、その指標となる「Si粒子が疎らな帯状ゾーンの幅」に着目して、これを20μm以下に特定している。 Further, the aluminum alloy forged wheel according to the embodiment of the present invention is based on the new finding that the deviation of the eutectic Si particles in the metal structure has a large effect on the fatigue strength against repeated loading, and the index "Si particles are Focusing on the "width of the sparse band-shaped zone", it is specified to be 20 μm or less.

高い含有率でSiが含有されたアルミニウム合金を鋳造して得たビレットを鍛造加工した加工品は、鍛造メタルフローに沿って鋳塊α相の名残りの「Si粒子が疎らな帯状ゾーン」が存在する。図1(a)は、本発明の実施形態に係るアルミニウム合金鍛造ホイールの金属組織の一例を示す写真であり、図1(b)は、前述した帯状ゾーンが広く残った比較例の金属組織を示す写真である。図示のWが「Si粒子が疎らな帯状ゾーンの幅」を示している。 The forged product of the billet obtained by casting the aluminum alloy containing Si at a high content ratio has a "belt zone where the Si particles are sparse", which is the remnant of the ingot α phase, along the forged metal flow. To do. FIG. 1(a) is a photograph showing an example of the metallographic structure of the aluminum alloy forged wheel according to the embodiment of the present invention, and FIG. 1(b) shows the metallographic structure of the comparative example in which the band-shaped zone described above remains wide. It is a photograph shown. W in the figure indicates "the width of the strip zone in which the Si particles are sparse".

図1(b)のように広い幅の帯状ゾーンが存在する比較例は、この帯状ゾーンが脆弱なため亀裂の伝搬を進展させ、引張強さや疲れ強さが低下する。特に、疲労強度試験(107サイクルの回転曲げ疲労強度試験)では早期の異常破断を引き起こすことになる。これに対して、図1(a)に示すように、「Si粒子が疎らな帯状ゾーンの幅」Wを全て20μm以下にすることで、疲れ強さを顕著に高めることができる。図1に示す金属組織を得るためには、鍛造素材となる鋳造ビレットの凝固鍛造組織のα層及び共晶Si粒子を微細化すること、及び十分に鍛錬成形加工することで、共晶Si粒子を鍛造の塑性流動変形で揉み砕いて細かく均一に分散させて、前述した帯状ゾーン及び共晶Si粒子を微細化することが重要である。 In the comparative example having a wide band zone as shown in FIG. 1B, since the band zone is weak, the propagation of cracks progresses, and the tensile strength and fatigue strength decrease. Particularly, in the fatigue strength test (rotational bending fatigue strength test of 10 7 cycles), early abnormal fracture is caused. On the other hand, as shown in FIG. 1A, the fatigue strength can be remarkably increased by setting all the “widths of the band-shaped zones in which the Si particles are sparse” W to 20 μm or less. In order to obtain the metal structure shown in FIG. 1, the α layer and the eutectic Si particles of the solidified forging structure of the cast billet used as the forging material are refined, and the eutectic Si particles are sufficiently wrought and formed. It is important to knead by the plastic flow deformation of forging and finely and uniformly disperse the same to make the above-mentioned strip zone and eutectic Si particles fine.

本発明の実施形態に係るアルミニウム合金鍛造ホイールを形成するためのアルミニウム合金は、Si:9.0〜12.5質量%、Cu:0.5〜3.4質量%、Mg:0.2〜0.9質量%、Fe:0.7質量%以下、Ti:0.005〜0.15質量%を含有し、Sr、Sb、Ca、Naのいずれか一種を、Sr:0.01〜0.15質量%、Sb:0.01〜0.20質量%、Ca:10〜200質量ppm、Na:10〜200質量ppm含有し、残部がAl及び不可避不純物としている。 The aluminum alloy for forming the aluminum alloy forged wheel according to the embodiment of the present invention is Si: 9.0 to 12.5 mass%, Cu: 0.5 to 3.4 mass%, Mg: 0.2 to. 0.9 mass%, Fe: 0.7 mass% or less, Ti: 0.005 to 0.15 mass% are contained, and any one kind of Sr, Sb, Ca, and Na is added to Sr: 0.01 to 0. 0.1% by mass, Sb: 0.01 to 0.20% by mass, Ca: 10 to 200% by mass, Na: 10 to 200% by mass, and the balance is Al and unavoidable impurities.

アルミニウム合金に含有するSiは、一般に、耐熱性に有効な合金成分であり、高温域における熱膨張係数を低下させる作用を有する。Siは、分散強化と析出強化により材料強度を向上させるものであり、熱処理によってMgとの化合物であるMg2Si相を析出して材料強度を向上させ、平均粒径5μm以下の共晶Si粒子の微細且つ均一な分散により、強靱な材料強度と耐熱強度を得ることができる。 Si contained in the aluminum alloy is generally an alloy component effective in heat resistance, and has the effect of lowering the coefficient of thermal expansion in a high temperature range. Si enhances the material strength by dispersion strengthening and precipitation strengthening, and heat treatment precipitates the Mg 2 Si phase that is a compound with Mg to improve the material strength, and eutectic Si particles having an average particle diameter of 5 μm or less. By the fine and uniform dispersion of, it is possible to obtain tough material strength and heat resistance.

Siの含有率は、9.0質量%未満では、共晶Si粒子の晶出が少なく、平均粒径5μm以下の共晶Si粒子の微細且つ均一な分散ができなくなり、材料強度が不足することになる。Siの含有率が12.5質量%を超えると、粗大な(例えば100μm以上)初晶Si粒子が晶出して、鍛造成形性やスピニング成形性を阻害し、切削工具刃先の損耗や損傷が生じ易くなって切削性を阻害する。また、初晶Si粒子の晶出箇所が応力集中による疲労破壊の核になることで疲れ強さの向上を阻害する。 If the Si content is less than 9.0% by mass, eutectic Si particles are less crystallized, and eutectic Si particles having an average particle size of 5 μm or less cannot be finely and uniformly dispersed, resulting in insufficient material strength. become. If the Si content exceeds 12.5 mass %, coarse (for example, 100 μm or more) primary crystal Si particles are crystallized, which hinders forging formability and spinning formability, resulting in wear and damage of the cutting tool cutting edge. It becomes easy and hinders machinability. Further, the crystallized portion of the primary crystal Si particles serves as a nucleus for fatigue fracture due to stress concentration, which hinders improvement in fatigue strength.

前述したアルミニウム合金に含有するCuは、母相に固溶し、熱処理によってAl2Cu相として析出し、材料強度を向上させると共に、150℃耐熱強度を向上させる。Cuの含有率は、0.5質量%未満では、固溶強化及び分散強化による十分な強度向上効果が得られず、3.4質量%を超えると、粗大なAl2Cu相が晶出し易くなり、鍛造成形性やスピニング成形性が低下すると共に耐食性を阻害する。 Cu contained in the above-mentioned aluminum alloy forms a solid solution in the parent phase and precipitates as an Al 2 Cu phase by heat treatment, improving the material strength and 150° C. heat resistance. If the Cu content is less than 0.5% by mass, a sufficient strength improving effect due to solid solution strengthening and dispersion strengthening cannot be obtained, and if it exceeds 3.4% by mass, a coarse Al 2 Cu phase is easily crystallized. As a result, forging formability and spinning formability deteriorate, and corrosion resistance is impaired.

前述したアルミニウム合金に含有するMgは、前述したように、Mg2Si相の析出で材料強度を向上させるものである。Mgの含有率は、0.2質量%未満では強度向上効果が弱く、0.9質量%を超えると、伸びの低下が著しく、鍛造成形性やスピニング成形性を阻害する。 As described above, the Mg contained in the aluminum alloy improves the material strength by precipitating the Mg 2 Si phase. If the content of Mg is less than 0.2% by mass, the effect of improving the strength is weak, and if it exceeds 0.9% by mass, the elongation is remarkably lowered and the forgeability and the spinnability are impaired.

前述したアルミニウム合金に含有するFeは、Al−Fe(−Si)系の針状金属間化合物として晶出し、高温強度を高めるものである。Feの含有率は、0.7質量%を超えると、巨大な針状晶出物が頻発し、鋳造やスピニング成形の割れを起こしたり、巨大な針状晶出物が疲労破壊の核となるなどして、悪影響が出易くなる。 The Fe contained in the above-mentioned aluminum alloy crystallizes as an Al—Fe(—Si)-based acicular intermetallic compound and enhances high temperature strength. When the Fe content exceeds 0.7% by mass, huge needle-shaped crystallized substances frequently occur, causing cracks in casting and spinning molding, and the huge needle-shaped crystallized substances become the core of fatigue fracture. As a result, adverse effects are likely to occur.

前述したアルミニウム合金に含有するTiは、結晶の種‘異質核’として添加し、鍛造組織を微細化するものである。Tiは、Al−Ti系又はAl−Ti−B系化合物にて添加する。Tiの含有率は、0.005質量%未満では鍛造組織の微細化効果が不足し、0.15質量%を超えると、粗大な針状化合物が晶出して、鍛造成形性やスピニング成形性が悪くなり、また粗大な針状化合物が疲労破壊の核になるなどして材料強度の向上を阻害する。 The Ti contained in the above-mentioned aluminum alloy is added as a crystal seed "heterogeneous nucleus" to refine the forged structure. Ti is added as an Al-Ti-based or Al-Ti-B-based compound. When the content of Ti is less than 0.005 mass %, the effect of refining the forged structure is insufficient, and when it exceeds 0.15 mass %, coarse needle-like compounds crystallize out, resulting in poor forgeability and spinning formability. In addition, the coarse needle-shaped compound becomes a nucleus of fatigue fracture, which hinders the improvement of material strength.

微細化剤として、Tiと共に添加されるBの適量含有率は、0.0002〜0.05重量%である。Bを多量に添加するとTiと結合して前述したように疲労破壊の核になる粗大な針状化合物を生成し易くなる。 An appropriate content of B added together with Ti as a refining agent is 0.0002 to 0.05% by weight. If a large amount of B is added, it becomes easy to form a coarse needle-like compound that combines with Ti and forms the nucleus of fatigue fracture as described above.

前述したアルミニウム合金には、Sr、Sb、Ca、Naのいずれか一種が添加される。これらの添加物は、適量を添加することで、共晶Si晶出物を微細化且つ粒状化し、角を丸める機能を有する。添加量が少なすぎると微細化効果が薄くなり、添加量が多すぎると粗大な晶出物を生成して、鍛造成形性を阻害する。各添加物の適量は、Sr:0.01〜0.15質量%、Sb:0.01〜0.20質量%、Ca:10〜200質量ppm、Na:10〜200質量ppmである。 Any one of Sr, Sb, Ca, and Na is added to the above-described aluminum alloy. These additives have the function of making the eutectic Si crystallized substance finer and more granular and rounding the corners by adding an appropriate amount. If the amount of addition is too small, the effect of refining becomes small, and if the amount of addition is too large, coarse crystallized substances are generated, and forgeability is impaired. Appropriate amounts of each additive are Sr: 0.01 to 0.15 mass%, Sb: 0.01 to 0.20 mass%, Ca: 10 to 200 mass ppm, and Na: 10 to 200 mass ppm.

前述したアルミニウム合金は、更に、Mn、Cr、Ni、Znを適量含有することが好ましい。適正な含有率は、Mn:0.3質量%以下、Cr:0.2質量%以下、Ni:0.2質量%以下、Zn:0.4質量%以下である。 The aluminum alloy described above preferably further contains appropriate amounts of Mn, Cr, Ni, and Zn. Appropriate contents are Mn: 0.3 mass% or less, Cr: 0.2 mass% or less, Ni: 0.2 mass% or less, Zn: 0.4 mass% or less.

0.3質量%以下のMnの含有は、微細なAl−Mn系やAl−Fe−Mn(−Si)系の金属間化合物を晶出して、熱間鍛造時やT6熱処理(溶体化)時の再結晶粒の成長を抑制する。Mnの含有量が0.3質量%を超えると、粗大なAl−Fe−Mn(−Si)系の金属間化合物を晶出し、材料強度や伸びの低下に繋がり、また疲労破壊の核となり有害である。 When Mn is contained in an amount of 0.3 mass% or less, fine Al-Mn-based or Al-Fe-Mn(-Si)-based intermetallic compounds are crystallized, and during hot forging or T6 heat treatment (solution treatment). Suppresses the growth of recrystallized grains. If the Mn content exceeds 0.3% by mass, a coarse Al-Fe-Mn(-Si)-based intermetallic compound is crystallized, leading to a decrease in material strength and elongation, and a nucleus of fatigue fracture, which is harmful. Is.

0.2質量%以下のCrの含有は、微細なAl−Cr系やAl−Fe−Cr(−Si)系の金属間化合物を晶出して、熱間鍛造時やT6熱処理(溶体化)時の再結晶粒の成長を抑制する。Crの含有量が0.3質量%を超えると、粗大なAl−Fe−Cr(−Si)系の金属間化合物を晶出し、加工性が低下すると共に、材料強度の靱性低下に繋がる。 When the content of Cr is 0.2% by mass or less, fine Al-Cr-based or Al-Fe-Cr(-Si)-based intermetallic compounds are crystallized, and during hot forging or T6 heat treatment (solution treatment). Suppresses the growth of recrystallized grains. If the Cr content exceeds 0.3 mass %, a coarse Al—Fe—Cr(—Si)-based intermetallic compound crystallizes, resulting in a decrease in workability and a decrease in toughness of the material strength.

0.2質量%以下のNiの含有は、微細なAl−Ni系の金属間化合物を晶出して、耐熱強度の向上に寄与する。Niの含有量が0.2質量%を超えると、Niを含む粗大な金属間化合物を晶出して、加工性の低下に繋がる。 A content of 0.2 mass% or less of Ni crystallizes a fine Al—Ni-based intermetallic compound and contributes to the improvement of heat resistance strength. When the content of Ni exceeds 0.2 mass %, a coarse intermetallic compound containing Ni is crystallized, leading to deterioration in workability.

Znは、アルミスクラップなどから混入する不純物で、Mgとの共存(MgZn2相析出)により、材料強度を向上するが、少ない方が望ましい。Znの含有量が0.4重量%を超えると、耐食性(応力腐食割れなど)劣化を引き起こす虞がある。 Zn is an impurity mixed from aluminum scrap or the like, and improves the material strength by coexistence with Mg (MgZn 2 phase precipitation), but it is preferable that the amount is small. If the Zn content exceeds 0.4% by weight, corrosion resistance (stress corrosion cracking, etc.) may deteriorate.

本発明の実施形態に係るアルミニウム合金鍛造ホイールは、図2及び図3に示すような各種形態に適用することができる。ここに示す全ての形態例に係るホイール1は、車軸が装着されるハブ部2とハブ部2周縁に設けられたディスク部3とディスク部3周縁に設けられたリム部4を備える。図2(a)に示した例は、鍛造のみでホイール1を形成した例であり、図2(b)に示した例は、ホイール1のリム部4がスピニング成形されている例である。図2(a),(b)に示した例は、いずれもハブ部2とディスク部3とリム部4が一体成形(1ピース)されている。 The aluminum alloy forged wheel according to the embodiment of the present invention can be applied to various forms as shown in FIGS. 2 and 3. The wheels 1 according to all the embodiments shown here include a hub portion 2 on which an axle is mounted, a disc portion 3 provided on the periphery of the hub portion 2, and a rim portion 4 provided on the periphery of the disc portion 3. The example shown in FIG. 2(a) is an example in which the wheel 1 is formed only by forging, and the example shown in FIG. 2(b) is an example in which the rim portion 4 of the wheel 1 is formed by spinning. In each of the examples shown in FIGS. 2A and 2B, the hub portion 2, the disc portion 3, and the rim portion 4 are integrally molded (one piece).

図2(c)に示した例は、ハブ部2とディスク部3が一体成形され、ディスク部3の周縁の接合箇所Cに別途形成されたリム部4が接合されている例である。図2(c)に示した例は、2ピースの部材を接合した例である。また、図3に示した例は、ディスク部2をスポーク形状30にした例である。 The example shown in FIG. 2C is an example in which the hub portion 2 and the disc portion 3 are integrally molded, and the rim portion 4 separately formed is joined to the joining portion C on the peripheral edge of the disc portion 3. The example shown in FIG. 2C is an example in which two-piece members are joined. Further, the example shown in FIG. 3 is an example in which the disc portion 2 has a spoke shape 30.

本発明の実施形態におけるアルミニウム合金鍛造ホイールは、前述した形態例の全てを含み、少なくともディスク部3とリム部4の一方又は両方が、Si:9.0〜12.5質量%、Cu:0.5〜3.4質量%、Mg:0.2〜0.9質量%、Fe:0.7質量%以下、Ti:0.005〜0.15質量%を含有し、Sr、Sb、Ca、Naのいずれか一種を、Sr:0.01〜0.15質量%、Sb:0.01〜0.20質量%、Ca:10〜200質量ppm、Na:10〜200質量ppm含有し、残部がAl及び不可避不純物であるアルミニウム合金を鋳造して得たビレットを鍛造して成り、その金属組織が、Si粒子が疎らな帯状ゾーンの幅が20μm以下であり、且つ共晶Siの平均粒径が5μm以下になっている。 The aluminum alloy forged wheel in the embodiment of the present invention includes all of the above-described form examples, and at least one or both of the disk portion 3 and the rim portion 4 have Si: 9.0 to 12.5 mass% and Cu:0. 0.5 to 3.4 mass%, Mg: 0.2 to 0.9 mass%, Fe: 0.7 mass% or less, Ti: 0.005 to 0.15 mass%, Sr, Sb, Ca , Na, Sr: 0.01 to 0.15 mass%, Sb: 0.01 to 0.20 mass%, Ca: 10 to 200 mass ppm, Na: 10 to 200 mass ppm, The balance is formed by forging a billet obtained by casting an aluminum alloy having Al and unavoidable impurities, the metallographic structure of which is such that the width of the band-shaped zone in which the Si particles are sparse is 20 μm or less, and the average grain of eutectic Si. The diameter is 5 μm or less.

図2(c)に示した形態は、例えば、前述したアルミニウム合金にて形成される鍛造素材ビレットを鍛造して前述した金属組織の鍛造材を形成し、この鍛造材をスピニング成形してリム部4を形成し、鍛造材からリム部4を分離して、分離したリム部4を、別途形成したハブ部2とディスク部3の一体品におけるディスク部3周縁に接合している。 In the form shown in FIG. 2C, for example, a forging material billet formed of the above-mentioned aluminum alloy is forged to form a forging material having the above-described metal structure, and the forging material is subjected to spinning forming to form a rim portion. 4 is formed, the rim portion 4 is separated from the forged material, and the separated rim portion 4 is joined to the peripheral edge of the disk portion 3 in the separately formed hub portion 2 and disk portion 3 integrated product.

本発明の実施形態に係るアルミニウム合金鍛造ホイールの製造方法の一例を図4〜図6にて説明する。ここでは、図2(b)に示したホイール1の製造工程を例にして説明する。 An example of a method for manufacturing an aluminum alloy forged wheel according to the embodiment of the present invention will be described with reference to FIGS. Here, the manufacturing process of the wheel 1 shown in FIG. 2B will be described as an example.

図2(b)に示したホイール1の製造では、先ず、前述したアルミニウム合金の鍛造素材ビレットを形成する。図4は、鍛造素材ビレットの主な製造工程のフローを示している。 In the manufacture of the wheel 1 shown in FIG. 2B, first, the above-mentioned aluminum alloy forging material billet is formed. FIG. 4 shows a flow of main manufacturing steps of the forged material billet.

図4に示すように、鍛造素材ビレットは、アルミ地金などの原材料溶解する溶解工程(S01)、生成された溶湯の化学成分を調整する化学成分調整工程(S02)、溶湯の清浄化処理を行う精錬工程(S03)、鋳造工程(S04)、ホモ処理工程(S05)、ピーリング工程(S06)、切断工程(S07)などにより形成される。 As shown in FIG. 4, the forging material billet is subjected to a melting step (S01) of melting a raw material such as an aluminum ingot, a chemical component adjusting step (S02) of adjusting a chemical component of the generated molten metal, and a cleaning treatment of the molten metal. It is formed by a refining process (S03), a casting process (S04), a homo-treatment process (S05), a peeling process (S06), a cutting process (S07) and the like.

溶解工程(S01)では、原材料を例えば700℃以上で加熱して溶湯を生成する。生成された溶湯には、添加金属が添加され、所望の化学成分に調整される(S02)。主金属Alに添加される添加金属は、前述したSi,Cu,Mg,Fe,Ti,Srなどであり、発光分光分析によって成分分析がなされ、成分が、Si:9.0〜12.5質量%、Cu:0.5〜3.4質量%、Mg:0.2〜0.9質量%、Fe:0.7質量%以下、Ti:0.005〜0.15質量%、Sr:0.01〜0.15質量%、残部がAl及び不可避不純物となるように調整がなされる(S02)。 In the melting step (S01), the raw material is heated at, for example, 700° C. or higher to generate a molten metal. An additive metal is added to the generated molten metal to adjust it to a desired chemical composition (S02). The additive metal added to the main metal Al is the above-mentioned Si, Cu, Mg, Fe, Ti, Sr, etc., and the component analysis is performed by the emission spectroscopic analysis, and the component is Si: 9.0 to 12.5 mass. %, Cu: 0.5 to 3.4 mass%, Mg: 0.2 to 0.9 mass%, Fe: 0.7 mass% or less, Ti: 0.005 to 0.15 mass%, Sr:0 0.01 to 0.15% by mass, and the balance is Al and unavoidable impurities (S02).

精錬工程(S03)では、例えば、脱ガス処理がなされ、水素ガス含有量が0.35cc/100gAl以下に調整される。また、ここでは、必要に応じて、非金属介在物の除去処理などが行われる。 In the refining step (S03), for example, degassing treatment is performed, and the hydrogen gas content is adjusted to 0.35 cc/100 g Al or less. Further, here, a treatment for removing non-metallic inclusions or the like is performed, if necessary.

鋳造工程(S04)では、成分調整された溶湯により、連続鋳造法或いは半連続鋳造法を用いてビレットを鋳造する。 In the casting step (S04), the billet is cast from the molten metal whose components have been adjusted using a continuous casting method or a semi-continuous casting method.

ホモ処理工程(S05)は、鋳造工程(S04)で得た鋳造ビレットを加熱し、金属組織を安定化させる工程である。ホモ処理工程(S05)においては、鋳造ビレットが所定の温度で所定時間(1.5〜12時間)加熱されることにより、鋳造凝固歪みが除去され、金属組織が均質化される。 The homogenization step (S05) is a step of heating the casting billet obtained in the casting step (S04) to stabilize the metal structure. In the homogenization step (S05), the cast billet is heated at a predetermined temperature for a predetermined time (1.5 to 12 hours) to remove the cast solidification strain and homogenize the metal structure.

ホモ処理工程(S05)における処理温度は、470〜520℃であることが好ましい。処理温度が470℃未満であると、処理温度が上記範囲内にある場合と比較して、金属組織の均質化及び溶質原子の溶け込みが不十分となり、処理温度が520℃を超えると、部分的融解(バーニング)を引き起こす虞がある。 The treatment temperature in the homotreatment step (S05) is preferably 470 to 520°C. When the treatment temperature is lower than 470° C., compared with the case where the treatment temperature is within the above range, homogenization of metal structure and dissolution of solute atoms become insufficient, and when the treatment temperature exceeds 520° C. May cause melting (burning).

ホモ処理が施された鋳造ビレットは、ピーリング工程(S06)にて、鋳造ビレットの鋳肌表面の不健全部が削り除去され、切断工程(S07)では、鋳造ビレットが所定の鍛造素材重量になるように切断される。これにより、鍛造素材ビレットが形成される。 In the homogenized cast billet, in the peeling step (S06), the unhealthy portion of the casting surface of the cast billet is shaved off, and in the cutting step (S07), the cast billet has a predetermined forging material weight. To be cut off. As a result, a forged material billet is formed.

図5は、鍛造素材ビレットを鍛造するホイール加工工程のフローを示している。熱間鍛造工程(S11)では、形成された鍛造素材ビレットを鍛造により、所定のホイール形状に成形する。ここでは、図6に示すように、上金型F1と下金型F2の間に加温した円柱状の鍛造素材ビレットWを挟み、加温条件下でブレス鍛造することで、鍛造材T1を得る。このときの加温条件は、鍛造素材ビレットWの温度が400〜520℃、より好ましくは、450〜490℃となるようにする。 FIG. 5 shows a flow of a wheel processing process for forging a forged material billet. In the hot forging step (S11), the formed forging material billet is forged into a predetermined wheel shape. Here, as shown in FIG. 6, a forged material T1 is obtained by sandwiching a heated columnar forging material billet W between an upper die F1 and a lower die F2, and performing brace forging under heating conditions. obtain. The heating conditions at this time are such that the temperature of the forging material billet W is 400 to 520°C, and more preferably 450 to 490°C.

温間スピニング工程(S12)では、鍛造材T1を100〜400℃に加熱した状態でスピニング成形することでホイール1のリム部4を成形する。スピニング成形は、鍛造材T1を回転させながら側面を押圧する回転自在な押圧ローラーを備えており、押圧ローラーを材料の回転軸に対して平行に移動させながら鍛造材T1延展加工する。延展する際に塑性加工が生じ鍛錬効果があり、金属組織の微細化が行われるので材料強度が向上する。温間スピニング工程(S12)により、リム部4の再結晶化が防止される。温間スピニング工程(S12)の後には、内部歪みを除去するために熱処理工程(S13)が施される。 In the warm spinning step (S12), the rim portion 4 of the wheel 1 is formed by spinning the forged material T1 heated to 100 to 400°C. The spinning forming includes a rotatable pressing roller that presses the side surface while rotating the forging material T1, and the forging material T1 is stretched while moving the pressing roller in parallel to the rotation axis of the material. When it is extended, plastic working occurs and has a forging effect, and since the metal structure is refined, the material strength is improved. The warm spinning step (S12) prevents recrystallization of the rim portion 4. After the warm spinning step (S12), a heat treatment step (S13) is performed to remove internal strain.

熱処理工程(S13)では、溶体化処理、焼き入れ、時効処理が施される。溶体化処理は、材料を融点直下の温度に加熱し、溶質原子(Si,Mg,Cu)を溶かし込み母相に固溶する。ここでは、鍛造材T1を温間スピニング成形した加工体を480〜540℃以下で0.5〜5時間加熱する。 In the heat treatment step (S13), solution treatment, quenching, and aging treatment are performed. In the solution heat treatment, the material is heated to a temperature just below the melting point to dissolve solute atoms (Si, Mg, Cu) and form a solid solution in the mother phase. Here, the processed body obtained by warm-forging the forged material T1 is heated at 480 to 540° C. or lower for 0.5 to 5 hours.

焼き入れは、溶体化処理した加工体を強制的に水冷する。焼き入れ水の温度は60℃以下の温水焼き入れが好ましい。焼き入れを経ることで、加工体は、溶質原子のSi,Mg,Cuの固溶状態が常温まで持ち越される。時効処理は、焼き入れした加工体を160〜210℃で2〜10時間処理する。これらの熱処理で、微細なMg2Si相、Al2Cu相が均一分散して析出され、加工体の金属組織が強化される。 In quenching, the solution-treated processed body is forcibly cooled with water. The temperature of the quenching water is preferably 60° C. or lower. By passing through the quenching, the solid body of solute atoms Si, Mg, and Cu is carried over to room temperature by quenching. In the aging treatment, the quenched processed body is treated at 160 to 210°C for 2 to 10 hours. By these heat treatments, fine Mg 2 Si phase and Al 2 Cu phase are uniformly dispersed and deposited, and the metal structure of the processed body is strengthened.

機械加工工程(S14)は、熱処理を施された加工体に対して、機械加工を施して、ハブ部2、ディスク部3、リム部4を形成する。機械加工工程(S14)では、旋盤による旋削加工及びマシニングセンターによるミーリング(転削)加工が施される。旋削加工では、図3に示す例ように、円盤状のハブ部2とハブ部2に周縁に設けられたディスク部3とディスク部3の周縁に設けられたリム部4から成るホイール1略全体を旋盤等で削る仕上げ加工が施され、ホイール1の外郭形状が整えられる。ミーニング加工では、ハブ部2とハブ部2から放射状に延びるディスク部3のスポーク形状30をエンドミル等の回転工具で削る仕上げ加工が施され、ハブ部2及びディスク部3が所定の形状に形成される。機械工工程(S14)では、更に、凹凸等の模様を表面に形成してデザイン性を高めたり、ホイール1に空部を設けて更に軽量化を図ったりすることができる。 In the machining step (S14), the heat-treated workpiece is machined to form the hub portion 2, the disc portion 3, and the rim portion 4. In the machining process (S14), lathe turning and milling (rolling) are performed by a machining center. In the turning process, as shown in the example of FIG. 3, the wheel 1 is substantially entirely composed of a disk-shaped hub portion 2, a disc portion 3 provided on the periphery of the hub portion 2, and a rim portion 4 provided on the periphery of the disc portion 3. The outer shape of the wheel 1 is adjusted by performing a finishing process of cutting the wheel with a lathe or the like. In the mining process, the spoke shape 30 of the hub portion 2 and the disk portion 3 radially extending from the hub portion 2 is subjected to a finishing work by cutting with a rotary tool such as an end mill, and the hub portion 2 and the disk portion 3 are formed into a predetermined shape. It In the machining process (S14), it is possible to further form a pattern such as unevenness on the surface to improve designability, or to provide an empty portion in the wheel 1 to further reduce the weight.

表面処理工程(S15)では、機械加工された加工体に対して、表面全体の切削工具跡段差、切削加工バリ等を除去すると共に、角部にはR部面取りを行い、その後は、必要に応じて、化学的表面処理、鍍金、塗装等を行う。 In the surface treatment step (S15), the cutting tool trace steps, cutting burrs, and the like on the entire surface of the machined workpiece are removed, and the R portion is chamfered at the corners. Chemical surface treatment, plating, painting, etc. are performed accordingly.

[実施例]
以下、本発明のアルミニウム合金鍛造ホイールの実施例を説明する。表1は、各実施例と比較例のアルミニウム合金の化学成分を示している。表における数値は質量%であり、化学成分の「Al」にはAlと不可避不純物が含まれる(「Rem.」は質量%の残部を示している。)。ここでの実施例1〜8は、表1に示した化学成分のアルミニウム合金を鋳造して得た鍛造素材ビレットを鍛造加工して、図1(a)に示すようなSi粒子が疎らな帯状ゾーンの幅が20μm以下であり、且つ共晶Siの平均粒径が5μm以下である金属組織を実現した例である。そして、比較例は、表1に示した化学成分のアルミニウム合金を鋳造して得た鍛造素材ビレットを鍛造加工したものであるが、図1(b)に示すように、Si粒子径が平均6.4μmであり、Si粒子が疎らな帯状ゾーンが広い幅を有している。
[Example]
Examples of the aluminum alloy forged wheel of the present invention will be described below. Table 1 shows the chemical composition of the aluminum alloys of each Example and Comparative Example. The numerical values in the table are% by mass, and Al and unavoidable impurities are contained in the chemical component "Al"("Rem." indicates the rest of the mass%). In Examples 1 to 8 here, the forging material billet obtained by casting the aluminum alloy having the chemical composition shown in Table 1 is forged, and the Si particles as shown in FIG. This is an example in which a metal structure having a zone width of 20 μm or less and an average grain size of eutectic Si of 5 μm or less is realized. In the comparative example, the forging material billet obtained by casting the aluminum alloy having the chemical composition shown in Table 1 is forged. As shown in FIG. 4 μm, and the band-shaped zone in which Si particles are sparse has a wide width.

Figure 2020125525
Figure 2020125525

表2は、表1に示した各実施例及び比較例の疲れ強さとヤング率と共晶Siの平均粒子径を示している。ここでの疲れ強さは、「JIS Z 2274 金属材料の回転曲げ疲れ試験方法」に基づく繰り返し数107サイクルの時間強さである。ここでのヤング率は、超音波パルス法による常温弾性率測定値である。 Table 2 shows the fatigue strength, Young's modulus, and average particle size of eutectic Si of each of the examples and comparative examples shown in Table 1. The fatigue strength here is the time strength of the number of cycles of 10 7 cycles based on “JIS Z 2274 method for rotating bending fatigue test of metallic materials”. The Young's modulus here is a measured value of room temperature elastic modulus by the ultrasonic pulse method.

表2における実施例1と実施例2と比較例は、図2(a)に示した形態(鍛造のみでホイールを形成)のホイール1におけるディスク3において、疲れ強さとヤング率と共晶Siの平均粒子径を測定している。また、表2における実施例3〜実施例8は、図3に示した形態のホイール1におけるスポーク形状30のディスク部とリム部4において、疲れ強さとヤング率と共晶Siの平均粒子径を測定している。 In Examples 1 and 2 and Comparative Example in Table 2, the fatigue strength, the Young's modulus, and the eutectic Si of the disk 3 in the wheel 1 having the form (the wheel is formed only by forging) shown in FIG. The average particle size is measured. In addition, in Examples 3 to 8 in Table 2, the fatigue strength, the Young's modulus, and the average particle diameter of eutectic Si in the disk portion and the rim portion 4 of the spoke shape 30 in the wheel 1 having the configuration shown in FIG. I'm measuring.

Figure 2020125525
Figure 2020125525

表2から明らかなように、Si粒子が疎らな帯状ゾーンの幅が20μm以下であり、且つ共晶Siの平均粒径が5μm以下である金属組織を有する実施例1〜8は、ディスク部又はリム部において、疲れ強さが155MPa以上であり、且つヤング率が76GPa以上になっている。これは、疲労強度試験にて130MPa程度で早期破断してしまう比較例と比べて高強度耐久性を有していると言える。そして、特に、実施例3〜8においては、スポーク形状30を有するホール1において、高強度耐久性と高剛性が得られることが示されている。 As is clear from Table 2, Examples 1 to 8 having a metal structure in which the width of the band-shaped zone in which Si particles are sparse are 20 μm or less and the average grain size of eutectic Si is 5 μm or less The rim portion has a fatigue strength of 155 MPa or more and a Young's modulus of 76 GPa or more. It can be said that this has high strength durability as compared with the comparative example in which the fatigue strength test causes early fracture at about 130 MPa. Then, particularly in Examples 3 to 8, it is shown that high strength durability and high rigidity can be obtained in the hole 1 having the spoke shape 30.

図7は、実施例1〜8における疲れ強さとヤング率を、比較例及び一般的な鍛造ホイール材料と比較した図である。ここでは、同じ重さ当たりで疲れ強さとヤング率を比較するために、縦軸に比・疲労強度(=疲れ強さ÷密度)をとり、横軸に比・ヤング率(=ヤング率÷密度)をとった座標に、各材料の値をプロットしている。一般的な鍛造ホイールのアルミニウム合金材料としては、AC4CHとA6061を例示している。 FIG. 7 is a diagram comparing the fatigue strength and Young's modulus in Examples 1 to 8 with a comparative example and a general forged wheel material. Here, in order to compare fatigue strength and Young's modulus for the same weight, the vertical axis shows ratio/fatigue strength (=fatigue strength/density) and the horizontal axis shows ratio/Young's modulus (=Young's modulus/density) The values of each material are plotted on the coordinates taken with ). AC4CH and A6061 are illustrated as an aluminum alloy material of a general forged wheel.

図7に示した座標においては、同じ重さ当たりに換算した比較で、より右側にプロットされるほど、高剛性の材料(即ち、変形し難く、堅い材料)であると言え、より上側にプロットされるほど、強靱な材料(繰り返し荷重に対して壊れ難い材料)であると言える。実施例1〜8のホイールは、比較例やAC4CH、A6061による鍛造ホイールと比較して格段に剛性が高く且つ強靱であると言える。このように本発明の実施例に係るホイールは、軽量でありながら、強靱であり且つ高剛性な強度特性を有している。 In the coordinates shown in FIG. 7, in the comparison converted for the same weight, the more to the right, the higher the rigidity of the material (that is, the harder the material is to deform). It can be said that it is a tough material (a material that does not easily break under repeated loads). It can be said that the wheels of Examples 1 to 8 have significantly higher rigidity and toughness as compared with the comparative example and the forged wheels of AC4CH and A6061. As described above, the wheel according to the embodiment of the present invention is lightweight, yet tough and has high rigidity and strength characteristics.

また、図8は、実施例2におけるディスク部の耐熱強度試験の結果(熱曝露時間100hrでの温度変化に対する引張強さ変化)を示している。この例と同様に、実施例1〜8のホイールは、耐熱強度試験において、150℃の高温下に100時間曝した場合にも、引張強度の低下率が2割程度に抑えられることが確認できた。よって、実施例1〜8におけるホイールは、高い耐熱強度を有している。 FIG. 8 shows the results of the heat resistance strength test of the disk portion in Example 2 (change in tensile strength with respect to temperature change at heat exposure time of 100 hr). As in this example, it was confirmed that the wheels of Examples 1 to 8 were able to suppress the reduction rate of the tensile strength to about 20% even when exposed to a high temperature of 150° C. for 100 hours in the heat resistance strength test. It was Therefore, the wheels in Examples 1 to 8 have high heat resistance strength.

1:ホイール,2:ハブ部,3:ディスク部,
4:リム部,30:スポーク形状,C:接合箇所
1: wheel, 2: hub part, 3: disk part,
4: rim part, 30: spoke shape, C: joint part

Claims (10)

車軸が装着されるハブ部と該ハブ部周縁に設けられたディスク部と該ディスク部周縁に設けられたリム部を備えるホイールであって、
少なくとも前記ディスク部と前記リム部の一方又は両方が、
Si:9.0〜12.5質量%、Cu:0.5〜3.4質量%、Mg:0.2〜0.9質量%、Fe:0.7質量%以下、Ti:0.005〜0.15質量%を含有し、Sr、Sb、Ca、Naのいずれか一種を、Sr:0.01〜0.15質量%、Sb:0.01〜0.20質量%、Ca:10〜200質量ppm、Na:10〜200質量ppm含有し、残部がAl及び不可避不純物であるアルミニウム合金を鋳造して得たビレットを鍛造して成り、
前記ディスク部と前記リム部の一方又は両方の金属組織が、Si粒子が疎らな帯状ゾーンの幅が20μm以下であり、且つ共晶Siの平均粒径が5μm以下であることを特徴とするアルミニウム合金鍛造ホイール。
A wheel comprising a hub portion to which an axle is mounted, a disc portion provided on the periphery of the hub portion, and a rim portion provided on the periphery of the disc portion,
At least one or both of the disc portion and the rim portion,
Si: 9.0-12.5 mass%, Cu: 0.5-3.4 mass%, Mg: 0.2-0.9 mass%, Fe: 0.7 mass% or less, Ti: 0.005 To 0.15% by mass, and any one of Sr, Sb, Ca, and Na is added to Sr: 0.01 to 0.15% by mass, Sb: 0.01 to 0.20% by mass, Ca:10. .About.200 mass ppm, Na: 10 to 200 mass ppm, and the balance is formed by forging a billet obtained by casting an aluminum alloy containing Al and unavoidable impurities.
One or both of the metal structure of the disk part and the rim part has a width of a band zone in which Si particles are sparser is 20 μm or less, and an average grain size of eutectic Si is 5 μm or less. Alloy forged wheel.
前記アルミニウム合金は、更にMn:0.3質量%以下、Cr:0.2質量%以下、Ni:0.2質量%以下、Zn:0.4質量%以下を含有することを特徴とする請求項1記載のアルミニウム合金鍛造ホイール。 The aluminum alloy further contains Mn: 0.3 mass% or less, Cr: 0.2 mass% or less, Ni: 0.2 mass% or less, Zn: 0.4 mass% or less. Item 1. An aluminum alloy forged wheel according to item 1. 前記アルミニウム合金は、更にB:0.0002〜0.05重量%を含有することを特徴とする請求項1又は2記載のアルミニウム合金鍛造ホイール。 The aluminum alloy forged wheel according to claim 1, wherein the aluminum alloy further contains B: 0.0002 to 0.05% by weight. 前記ディスク部と前記リム部の一方又は両方は、107サイクルの回転曲げ疲れ強さが155MPa以上且つヤング率が76GPa以上の強度特性を有することを特徴とする請求項1〜3のいずれか1項記載のアルミニウム合金鍛造ホイール。 4. One or both of the disc portion and the rim portion have strength characteristics of a rotational bending fatigue strength of 10 7 cycles of 155 MPa or more and a Young's modulus of 76 GPa or more. Aluminum alloy forged wheel according to the item. 前記リム部は、前記ディスク部と一体の鍛造材がスピニング成形されており、
前記ディスク部及び前記リム部の金属組織が、Si粒子が疎らな帯状ゾーンの幅が20μm以下であり、且つ共晶Siの平均粒径が5μm以下であり、
前記ディスク部及び前記リム部の強度特性が、107サイクルの回転曲げ疲れ強さが155MPa以上且つヤング率が76GPa以上であることを特徴とする請求項1〜4のいずれか1項記載のアルミニウム合金鍛造ホイール。
The rim portion is formed by spinning a forging material integrated with the disc portion,
In the metal structure of the disk portion and the rim portion, the width of the band zone in which Si particles are sparse is 20 μm or less, and the average grain size of eutectic Si is 5 μm or less,
5. The aluminum according to any one of claims 1 to 4, wherein the disc portion and the rim portion have strength characteristics such that a rotational bending fatigue strength at 10 7 cycles is 155 MPa or more and a Young's modulus is 76 GPa or more. Alloy forged wheel.
前記リム部が前記ディスク部に対して接合されていることを特徴とする請求項1〜4のいずれか1項記載のアルミニウム合金鍛造ホイール。 The aluminum alloy forged wheel according to claim 1, wherein the rim portion is joined to the disc portion. 車軸が装着されるハブ部と該ハブ部周縁に設けられたディスク部と該ディスク部周縁に設けられたリム部を備えるホイールの製造方法であって、
Si:9.0〜12.5質量%、Fe:0.7質量%以下、Cu:0.5〜3.4質量%、Mg:0.2〜0.9質量%、Ti:0.005〜0.15質量%を含有し、Sr、Sb、Ca、Naのいずれか一種を、Sr:0.01〜0.15質量%、Sb:0.01〜0.20質量%、Ca:10〜200質量ppm、Na:10〜200質量ppm含有し、残部がAl及び不可避不純物であるアルミニウム合金を鋳造して鍛造素材ビレットを形成し、
前記鍛造素材ビレットを鍛造した鍛造材から少なくとも前記ディスク部と前記リム部の一方又は両方を形成し、
前記ディスク部と前記リム部の一方又は両方の金属組織を、Si粒子が疎らな帯状ゾーンの幅が20μm以下であり、且つ共晶Siの平均粒径が5μm以下にすることを特徴とするアルミニウム合金鍛造ホイールの製造方法。
A method of manufacturing a wheel, comprising: a hub portion to which an axle is mounted; a disc portion provided on the periphery of the hub portion; and a rim portion provided on the periphery of the disc portion.
Si: 9.0-12.5 mass%, Fe: 0.7 mass% or less, Cu: 0.5-3.4 mass%, Mg: 0.2-0.9 mass%, Ti: 0.005 To 0.15% by mass, and any one of Sr, Sb, Ca, and Na is added to Sr: 0.01 to 0.15% by mass, Sb: 0.01 to 0.20% by mass, Ca:10. ~200 mass ppm, Na: 10 to 200 mass ppm are contained, the balance is Al and aluminum alloy which is an unavoidable impurity is cast to form a forging material billet,
Forming at least one or both of the disc portion and the rim portion from a forged material obtained by forging the forged material billet,
Aluminum characterized in that one or both of the disk portion and the rim portion has a metal structure in which the width of the band-shaped zone in which Si particles are sparse is 20 μm or less and the average grain size of eutectic Si is 5 μm or less. Manufacturing method of alloy forged wheel.
前記リム部は、前記鍛造材をスピニング成形して形成されることを特徴とする請求項7に記載されたアルミニウム合金鍛造ホイールの製造方法。 The method for manufacturing an aluminum alloy forged wheel according to claim 7, wherein the rim portion is formed by spinning the forged material. 前記リム部を前記鍛造材から形成し、別途形成したディスク部に前記リム部を接合することを特徴とする請求項7に記載されたアルミニウム合金鍛造ホイールの製造方法。 The method for manufacturing an aluminum alloy forged wheel according to claim 7, wherein the rim portion is formed from the forged material, and the separately formed disc portion is joined to the rim portion. 車軸が装着されるハブ部と該ハブ部周縁に設けられたディスク部と該ディスク部周縁に設けられたリム部を備える鍛造ホイールを形成するための鋳造ビレットであって、
Si:9.0〜12.5質量%、Fe:0.7質量%以下、Cu:0.5〜3.4質量%、Mg:0.2〜0.9質量%、Ti:0.005〜0.15質量%を含有し、Sr、Sb、Ca、Naのいずれか一種を、Sr:0.01〜0.15質量%、Sb:0.01〜0.20質量%、Ca:10〜200質量ppm、Na:10〜200質量ppm含有し、残部がAl及び不可避不純物であるアルミニウム合金を鋳造して得たことを特徴とする鍛造ホイール形成用鋳造ビレット。
A cast billet for forming a forged wheel including a hub portion to which an axle is mounted, a disc portion provided on the periphery of the hub portion, and a rim portion provided on the periphery of the disc portion,
Si: 9.0-12.5 mass%, Fe: 0.7 mass% or less, Cu: 0.5-3.4 mass%, Mg: 0.2-0.9 mass%, Ti: 0.005 To 0.15% by mass, and any one of Sr, Sb, Ca, and Na is added to Sr: 0.01 to 0.15% by mass, Sb: 0.01 to 0.20% by mass, Ca:10. ~200 mass ppm, Na: 10-200 mass ppm, and the balance is obtained by casting an aluminum alloy containing Al and unavoidable impurities.
JP2019019452A 2019-02-06 2019-02-06 Aluminum alloy forged wheel and its manufacturing method Active JP6942151B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019019452A JP6942151B2 (en) 2019-02-06 2019-02-06 Aluminum alloy forged wheel and its manufacturing method
TW109102144A TWI722780B (en) 2019-02-06 2020-01-21 Aluminum alloy forged wheel, manufacturing method thereof, and casting blank for forming forged wheel
DE102020102625.0A DE102020102625A1 (en) 2019-02-06 2020-02-03 WHEEL FORGED FROM AN ALUMINUM ALLOY AND METHOD FOR THE PRODUCTION THEREOF AND A CAST BLOCK FOR FORMING A FORGED WHEEL
CN202010080454.XA CN111532080B (en) 2019-02-06 2020-02-05 Aluminum alloy forged wheel, manufacturing method thereof, and casting blank for forming forged wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019019452A JP6942151B2 (en) 2019-02-06 2019-02-06 Aluminum alloy forged wheel and its manufacturing method

Publications (3)

Publication Number Publication Date
JP2020125525A true JP2020125525A (en) 2020-08-20
JP2020125525A5 JP2020125525A5 (en) 2020-10-22
JP6942151B2 JP6942151B2 (en) 2021-09-29

Family

ID=71615275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019019452A Active JP6942151B2 (en) 2019-02-06 2019-02-06 Aluminum alloy forged wheel and its manufacturing method

Country Status (4)

Country Link
JP (1) JP6942151B2 (en)
CN (1) CN111532080B (en)
DE (1) DE102020102625A1 (en)
TW (1) TWI722780B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262810A (en) * 2021-11-25 2022-04-01 广州致远新材料科技有限公司 Preparation method of hypoeutectic die-casting aluminum-silicon alloy material
WO2022091948A1 (en) * 2020-10-30 2022-05-05 昭和電工株式会社 Aluminum alloy for sliding component, and sliding component
WO2022091936A1 (en) * 2020-10-30 2022-05-05 昭和電工株式会社 Aluminum alloy for sliding components, and sliding component
WO2022091944A1 (en) * 2020-10-30 2022-05-05 昭和電工株式会社 Aluminum alloy for automobile wheels, and automobile wheel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564431B (en) * 2021-08-10 2022-04-08 广州立中锦山合金有限公司 High-strength aluminum alloy for wheel hub and preparation method thereof
CN113789453B (en) * 2021-08-17 2023-08-01 东南大学 Method for improving high-temperature strength of heat-resistant aluminum alloy through Mn microalloying
CN115921801B (en) * 2023-03-14 2023-10-10 中铝材料应用研究院有限公司 Method for modifying eutectic structure of large-size 4000-series aluminum alloy cast ingot

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287427A (en) * 1992-04-08 1993-11-02 Furukawa Alum Co Ltd Wear resistant aluminum alloy for cold forging and its manufacture
JPH093581A (en) * 1995-06-15 1997-01-07 Nippon Light Metal Co Ltd Forged aluminum product with high fatigue strength and its production
JPH10204566A (en) * 1997-01-14 1998-08-04 Sumitomo Light Metal Ind Ltd Aluminum alloy material excellent in anodic oxidation treatment property and having high strength and wear resistance, and its production
JP2005281742A (en) * 2004-03-29 2005-10-13 Sanden Corp Aluminum alloy, scroll part for fluid apparatus made of the aluminum alloy and production method therefor
JP2006168597A (en) * 2004-12-17 2006-06-29 Chuo Motor Wheel Co Ltd Wheel for automobile
JP2011177785A (en) * 2010-02-02 2011-09-15 Washi Kosan Co Ltd Forged billet, wheel made from light metal, and processes for production of those products
CN104674076A (en) * 2015-02-02 2015-06-03 安徽省斯特嘉汽车零部件有限公司 Method for preparing potassium titanate whisker enhanced aluminum-silicon alloy hub

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7905471A (en) * 1978-07-25 1980-01-29 Itt METHOD FOR FORMING A MOLDED PRODUCT FROM A METAL ALLOY.
US5993576A (en) * 1995-11-29 1999-11-30 The Furukawa Electric Co., Ltd. Wear resistant wrought aluminum alloy and scroll of wear-resistant wrought aluminum alloy
EP1443122B1 (en) * 2003-01-23 2009-07-29 ALUMINIUM RHEINFELDEN GmbH Die cast aluminium alloy
JP4822324B2 (en) 2006-02-10 2011-11-24 日産自動車株式会社 Aluminum alloy forged road wheel and manufacturing method thereof
US20100006192A1 (en) * 2006-08-01 2010-01-14 Showa Denko K.K. Method for producing aluminum-alloy shaped product, aluminum-alloy shaped product and production system
CN102039780A (en) * 2009-10-09 2011-05-04 韦加伟 Ti alloy automobile wheel hub and material thereof
JP5431233B2 (en) * 2010-03-31 2014-03-05 株式会社神戸製鋼所 Aluminum alloy forging and method for producing the same
JP5894289B2 (en) * 2012-10-17 2016-03-23 本田技研工業株式会社 Die-cast products and vehicle parts
CN104164598A (en) * 2014-08-27 2014-11-26 浙江巨科实业有限公司 Al-Mg aluminium alloy material for aluminium hub and method for preparing wafer for aluminium hub
JP2016079454A (en) * 2014-10-16 2016-05-16 株式会社神戸製鋼所 Aluminum alloy forging material and manufacturing method therefor
ES2932837T3 (en) * 2017-08-18 2023-01-26 Carbon Revolution Ltd Shaped preform for face part of a composite material wheel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287427A (en) * 1992-04-08 1993-11-02 Furukawa Alum Co Ltd Wear resistant aluminum alloy for cold forging and its manufacture
JPH093581A (en) * 1995-06-15 1997-01-07 Nippon Light Metal Co Ltd Forged aluminum product with high fatigue strength and its production
JPH10204566A (en) * 1997-01-14 1998-08-04 Sumitomo Light Metal Ind Ltd Aluminum alloy material excellent in anodic oxidation treatment property and having high strength and wear resistance, and its production
JP2005281742A (en) * 2004-03-29 2005-10-13 Sanden Corp Aluminum alloy, scroll part for fluid apparatus made of the aluminum alloy and production method therefor
JP2006168597A (en) * 2004-12-17 2006-06-29 Chuo Motor Wheel Co Ltd Wheel for automobile
JP2011177785A (en) * 2010-02-02 2011-09-15 Washi Kosan Co Ltd Forged billet, wheel made from light metal, and processes for production of those products
CN104674076A (en) * 2015-02-02 2015-06-03 安徽省斯特嘉汽车零部件有限公司 Method for preparing potassium titanate whisker enhanced aluminum-silicon alloy hub

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091948A1 (en) * 2020-10-30 2022-05-05 昭和電工株式会社 Aluminum alloy for sliding component, and sliding component
WO2022091936A1 (en) * 2020-10-30 2022-05-05 昭和電工株式会社 Aluminum alloy for sliding components, and sliding component
WO2022091944A1 (en) * 2020-10-30 2022-05-05 昭和電工株式会社 Aluminum alloy for automobile wheels, and automobile wheel
CN116324009A (en) * 2020-10-30 2023-06-23 株式会社力森诺科 Aluminum alloy for wheel of automobile and wheel of automobile
CN114262810A (en) * 2021-11-25 2022-04-01 广州致远新材料科技有限公司 Preparation method of hypoeutectic die-casting aluminum-silicon alloy material

Also Published As

Publication number Publication date
TWI722780B (en) 2021-03-21
TW202031909A (en) 2020-09-01
DE102020102625A1 (en) 2020-08-06
JP6942151B2 (en) 2021-09-29
CN111532080B (en) 2023-04-21
CN111532080A (en) 2020-08-14

Similar Documents

Publication Publication Date Title
JP6942151B2 (en) Aluminum alloy forged wheel and its manufacturing method
US9279173B2 (en) Aluminum alloy forged material for automotive vehicles and production method for the material
JP5048996B2 (en) Wear-resistant aluminum alloy material excellent in workability and method for producing the same
JP6085365B2 (en) Improved free-cutting wrought aluminum alloy product and manufacturing method thereof
JPH06172949A (en) Member made of magnesium alloy and its production
JP2013525608A (en) Damage-resistant aluminum material with hierarchical microstructure
JP2020125525A5 (en)
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
JP4822324B2 (en) Aluminum alloy forged road wheel and manufacturing method thereof
JP2002294383A (en) Aluminum alloy ingot for plastic working, method for producing aluminum alloy ingot for plastic working, method for producing aluminum alloy plastic worked product and aluminum alloy plastic worked product
JP2016079419A (en) Aluminum alloy continuous cast material and manufacturing method therefor
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP4996853B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
KR101688358B1 (en) Aluminum alloy extruded material having excellent machinability and method for manufacturing same
JP2004315938A (en) Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor
JP3849095B2 (en) Aluminum alloy plate for forming and method for producing the same
JP3845312B2 (en) Aluminum alloy plate for forming and method for producing the same
JPH09249949A (en) Production of aluminum extruded material forged product
US20190299296A1 (en) Aluminum alloy powder and method of producing the same, aluminum alloy extruded material and method of producing the same
JP2014189844A (en) Aluminum alloy and method of producing the same
JPS63140060A (en) Free-cutting aluminum-alloy casting and its production
JP5360729B2 (en) Method of manufacturing aluminum alloy ingot for plastic working, method of manufacturing aluminum alloy plastic processed product, aluminum alloy plastic processed product
JP2009079299A (en) Automotive parts
JPH09249953A (en) Production of aluminum extruded material forged product
EP4393613A1 (en) Method for producing extruded multi-hole pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210714

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210714

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210721

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210907

R150 Certificate of patent or registration of utility model

Ref document number: 6942151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150