JP2020122738A - Defect inspection device and defect inspection method - Google Patents

Defect inspection device and defect inspection method Download PDF

Info

Publication number
JP2020122738A
JP2020122738A JP2019015542A JP2019015542A JP2020122738A JP 2020122738 A JP2020122738 A JP 2020122738A JP 2019015542 A JP2019015542 A JP 2019015542A JP 2019015542 A JP2019015542 A JP 2019015542A JP 2020122738 A JP2020122738 A JP 2020122738A
Authority
JP
Japan
Prior art keywords
angle
illumination
inspection
degrees
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019015542A
Other languages
Japanese (ja)
Other versions
JP6605772B1 (en
Inventor
洋 豊嶋
Hiroshi Toyoshima
洋 豊嶋
晋寿 中村
Shinju Nakamura
晋寿 中村
誠 貞木
Makoto Sadaki
誠 貞木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOGE DENKI KOGYO KK
Noge Electric Industries Co Ltd
Original Assignee
NOGE DENKI KOGYO KK
Noge Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOGE DENKI KOGYO KK, Noge Electric Industries Co Ltd filed Critical NOGE DENKI KOGYO KK
Priority to JP2019015542A priority Critical patent/JP6605772B1/en
Application granted granted Critical
Publication of JP6605772B1 publication Critical patent/JP6605772B1/en
Publication of JP2020122738A publication Critical patent/JP2020122738A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

To provide a defect inspection device for detecting a defect of a columnar member which is conventionally visually inspected.SOLUTION: A defect inspection device 100 for inspecting a defect of a surface of a columnar member 4, comprises: a line camera 31 for imaging an inspection part 41 in parallel to an axis center direction of the member 4; a first lighting device 11 for illuminating the inspection part 41; and a second lighting device 21 for illuminating the inspection part 41 from an angle different from that of the first lighting device 11. Illumination is performed at an angle (θ1) formed by an axis about which the inspection part is imaged by the line camera 31 and an axis about which the inspection part 41 is illuminated by the first lighting device 11 being 10 degrees to 60 degrees, and illumination is performed at an angle (θ2) formed by the axis about which the inspection part 41 is imaged by the line camera 31 and an axis about which the inspection part 41 is illuminated by the second lighting device 21 being 10 degrees to 90 degrees, and an angle (Δθ) formed by the axis about which the inspection part 41 is illuminated by the first lighting device 11 and the axis about which the inspection device 41 is illuminated by the second lighting device 21 being 10 degrees to 50 degrees.SELECTED DRAWING: Figure 1

Description

本発明は画像検査により欠陥を検査する欠陥検査装置および欠陥検査方法に関する。 The present invention relates to a defect inspection apparatus and a defect inspection method for inspecting defects by image inspection.

自動車等のシリンダや走行系部品、電子写真式画像形成装置等の感光体ドラムや定着ローラ等、工業用の部材等において円筒状や柱状等の形状の部材が広く利用されている。これらの部材は、鋳造や切削等し、機能性の付与や装飾の目的で適宜めっき処理等して製造されており、光沢を有していたり、地合ともよばれる表面の質感等を有している。これらの部材は、その形状や質感から表面検査等が難しく、訓練された検査者による目視検査等が行われている。 BACKGROUND ART Cylinder-shaped or columnar-shaped members are widely used in industrial members such as cylinders and traveling system parts of automobiles, photosensitive drums and fixing rollers of electrophotographic image forming apparatuses and the like. These members are manufactured by subjecting them to casting, cutting or the like, and appropriately plating or the like for the purpose of imparting functionality or decoration, and have gloss or have a texture of the surface also called texture. There is. Due to the shape and texture of these members, it is difficult to inspect their surfaces, and visual inspections and the like are performed by trained inspectors.

目視検査等による場合、訓練の程度や体調等によって判定がばらつく恐れがある。このため、自動検査する装置等が検討されている。このような検査装置等に関して、例えば、特許文献1の円筒ころ軸受の検査方法およびその検査装置や、特許文献2の欠陥検査装置等、特許文献3の表面欠陥検査装置及び方法等の文献が開示されている。これらは部材に照明を照射して表面を観察しその観察結果から欠陥等を検査する光学的手段による検査を行うものである。 In the case of visual inspection, the judgment may vary depending on the degree of training and physical condition. For this reason, automatic inspection devices and the like are being studied. With regard to such an inspection device, for example, a document such as a cylindrical roller bearing inspection method and its inspection device in Patent Document 1, a defect inspection device in Patent Document 2, and a surface defect inspection device and method in Patent Document 3 are disclosed. Has been done. These illuminate a member, observe the surface, and perform inspection by an optical means for inspecting defects and the like based on the observation result.

特開平7−209197号公報JP, 7-209197, A 特開2004−264054号公報JP 2004-264054 A 特開2006−226900号公報JP 2006-226900 A

円柱や円筒、多角柱などの柱状部材は、その表面形状が曲面や角部等を有することから光学的手段で検査するとき、撮像手段が検出する輝度等に角度依存性等があり、照明の照射角度や照射強度、検査に適した撮像手段等の位置との調整が難しい場合がある。 Since the surface shape of a columnar member such as a cylinder, a cylinder, or a polygonal column has curved surfaces or corners, when inspected by an optical means, the brightness or the like detected by the image pickup means has an angle dependency, etc. It may be difficult to adjust the irradiation angle, the irradiation intensity, and the position of the image pickup means or the like suitable for the inspection.

柱状部材は、鋳造や切削、表面処理等を適宜組み合わせて製造される場合がある。このような柱状部材は、地合と呼ばれるような一定のムラがあるなかから微細なムラは排除し過検出を避けて欠陥のみを検出することが求められる場合がある。また、表面処理等がされ光沢が高く反射・散乱光が強いものから、欠陥と判断されるべき傷のみ検出しなければならない場合がある。さらに、部材において欠陥の向きによって、周方向に平行なキズや、軸心方向に平行なキズ、斜めに入ったキズ等のキズの向きや深さ、幅、先鋭さなど形状等によっても検出しにくい場合がある。特許文献1〜3等の従来の検査装置等は、このような欠陥を検出できない場合があった。
係る状況下、本発明の目的は、柱状部材の欠陥を検出することである。
The columnar member may be manufactured by appropriately combining casting, cutting, surface treatment and the like. Since such a columnar member has a certain unevenness called a formation, it is sometimes required to eliminate fine unevenness and avoid excessive detection to detect only defects. In addition, there are cases where it is necessary to detect only scratches that should be judged as defects, because the surface treatment or the like has high gloss and strong reflected/scattered light. In addition, depending on the orientation of the defect in the member, it can also detect flaws parallel to the circumferential direction, flaws parallel to the axial direction, and flaws that are obliquely inserted, such as the direction and depth, width, and sharpness of the shape. It can be difficult. The conventional inspection devices such as Patent Documents 1 to 3 may not be able to detect such defects.
Under such circumstances, the object of the present invention is to detect defects in the columnar member.

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、下記の発明が上記目的に合致することを見出し、本発明に至った。すなわち、本発明は、以下の発明に係るものである。 As a result of earnest studies to solve the above problems, the present inventor has found that the following invention meets the above object, and has reached the present invention. That is, the present invention relates to the following inventions.

<1> 柱状の部材の表面の欠陥検査装置であって、前記部材の軸心方向と平行に検査部位を撮像するラインカメラと、前記検査部位を照射する第一の照明と、前記検査部位を前記第一の照明と異なる角度から照射する第二の照明とを有し、
前記ラインカメラが前記検査部位を撮像する軸と、前記第一の照明が前記検査部位を照射する軸とのなす角度(θ1)が10〜60度の角度で、前記部材の高さ方向に沿って線状に照射し、
前記ラインカメラが前記検査部位を撮像する軸と、前記第二の照明が前記検査部位を照射する軸とのなす角度(θ2)が10〜90度の角度で、前記第一の照明が前記検査部位を照射する軸と、前記第二の照明が前記検査部位を照射する軸とのなす角度(Δθ)が10〜50度の角度で、前記部材の高さ方向に沿って線状に照射する欠陥検査装置。
<2> 前記角度(θ1)が25〜60度であり、前記角度(θ2)が10〜30度であり、前記角度(θ1)は前記角度(θ2)よりも大きく、前記角度(Δθ)が5〜40度である前記<1>記載の欠陥検査装置。
<3> 前記角度(θ1)が、10〜30度であり、前記角度(θ2)が、20〜90度であり、前記角度(θ1)は前記角度(θ2)よりも大きく、前記角度(Δθ)が、10〜60度である前記<1>記載の欠陥検査装置。
<4> 前記ラインカメラが前記検査部位を撮像する軸に向かってみたとき、前記部材の軸心方向と、前記第二の照明の照射する軸とのなす角度が、0〜60度の方向から照射するものである前記<3>記載の欠陥検査装置。
<5> 前記部材を周方向に回転させる部材の回転手段を有する前記<1>〜<4>のいずれかに記載の欠陥検査装置。
<6> 前記ラインカメラが撮像した像を画像解析する画像解析部を有し、
前記ラインカメラが前記部材を回転させながら撮像することで前記部材の周面を撮像する前記<1>〜<5>のいずれかに記載の欠陥検査装置。
<7> 前記ラインカメラが撮像した像の輝度を、前記部材の欠陥の有無を判別するための輝度の閾値と比較して欠陥の有無を判別する判別部を有する前記<1>〜<6>のいずれかに記載の欠陥検査装置。
<8> 柱状の部材の表面の欠陥検査方法であって、
前記部材の軸心方向と平行に検査部位を照射する第一の照明と、前記検査部位を前記第一の照明と異なる角度から照射する第二の照明とにより照射する照射工程と、
前記照射工程で照射された検査部位をラインカメラにより撮像する撮像工程とを有し、
前記ラインカメラが前記検査部位を撮像する軸と、前記第一の照明が前記検査部位を照射する軸とのなす角度(θ1)が10〜60度の角度で、前記部材の高さ方向に沿って線状に照射し、
前記ラインカメラが前記検査部位を撮像する軸と、前記第二の照明が前記検査部位を照射する軸とのなす角度(θ2)が10〜90度の角度で、前記第一の照明が前記検査部位を照射する軸と、前記第二の照明が前記検査部位を照射する軸とのなす角度(Δθ)が10〜50度の角度で、前記部材の高さ方向に沿って線状に照射する欠陥検査方法。
<1> A defect inspection apparatus for a surface of a columnar member, comprising: a line camera that images an inspection region parallel to an axial direction of the member; a first illumination that irradiates the inspection region; And a second illumination that illuminates from a different angle from the first illumination,
The angle (θ1) between the axis with which the line camera images the inspection site and the axis with which the first illumination irradiates the inspection site is 10 to 60 degrees, and is along the height direction of the member. Irradiate linearly
The angle (θ2) formed by the axis of the line camera capturing the inspection region and the axis of the second illumination irradiating the inspection region is 10 to 90 degrees, and the first illumination is the inspection region. The angle (Δθ) formed by the axis for irradiating the part and the axis for irradiating the inspection part with the second illumination is an angle of 10 to 50 degrees, and linear irradiation is performed along the height direction of the member. Defect inspection equipment.
<2> The angle (θ1) is 25 to 60 degrees, the angle (θ2) is 10 to 30 degrees, the angle (θ1) is larger than the angle (θ2), and the angle (Δθ) is The defect inspection apparatus according to <1>, which is 5 to 40 degrees.
<3> The angle (θ1) is 10 to 30 degrees, the angle (θ2) is 20 to 90 degrees, the angle (θ1) is larger than the angle (θ2), and the angle (Δθ is ) Is 10 to 60 degrees, The defect inspection apparatus according to <1>.
<4> When the line camera views the axis of imaging the inspection site, the angle between the axial direction of the member and the axis of the second illumination is 0 to 60 degrees. The defect inspection apparatus according to <3>, which is for irradiating.
<5> The defect inspection apparatus according to any one of <1> to <4>, further including a member rotating unit that rotates the member in a circumferential direction.
<6> An image analysis unit that analyzes an image captured by the line camera,
The defect inspection apparatus according to any one of <1> to <5>, wherein the line camera images the peripheral surface of the member by imaging the member while rotating the member.
<7> The <1> to <6> having a determination unit that determines the presence/absence of a defect by comparing the luminance of an image captured by the line camera with a luminance threshold for determining the presence/absence of a defect in the member. The defect inspection device according to any one of 1.
<8> A method for inspecting defects on the surface of a columnar member,
An irradiation step of irradiating with a first illumination that irradiates an inspection site parallel to the axial direction of the member, and a second illumination that irradiates the inspection site from an angle different from the first illumination,
An imaging step of imaging the inspection site irradiated in the irradiation step with a line camera,
The angle (θ1) between the axis with which the line camera images the inspection site and the axis with which the first illumination irradiates the inspection site is 10 to 60 degrees, and is along the height direction of the member. Irradiate linearly
The angle (θ2) formed by the axis of the line camera capturing the inspection region and the axis of the second illumination irradiating the inspection region is 10 to 90 degrees, and the first illumination is the inspection region. The angle (Δθ) formed by the axis for irradiating the part and the axis for irradiating the inspection part with the second illumination is an angle of 10 to 50 degrees, and linear irradiation is performed along the height direction of the member. Defect inspection method.

本発明によれば、柱状部材の欠陥を検出することができる。 According to the present invention, it is possible to detect a defect in the columnar member.

本発明に係る欠陥検査装置の第一の実施形態の概略図である。1 is a schematic diagram of a first embodiment of a defect inspection device according to the present invention. 本発明に係る欠陥検査装置の第一の光学系を示す概略図である。It is the schematic which shows the 1st optical system of the defect inspection apparatus which concerns on this invention. 本発明に係る欠陥検査装置の第一の光学系の位置関係の詳細を示す平面図である。It is a top view which shows the detail of the positional relationship of the 1st optical system of the defect inspection apparatus which concerns on this invention. 本発明に係る欠陥検査装置の第二の光学系を示す概略図である。It is the schematic which shows the 2nd optical system of the defect inspection apparatus which concerns on this invention. 本発明に係る欠陥検査装置による欠陥検査工程の一例を示すフロー図である。It is a flowchart which shows an example of the defect inspection process by the defect inspection apparatus which concerns on this invention. 本発明で検査するキズの概要を示す図である。It is a figure which shows the outline|summary of the defect|inspection inspected by this invention. 柱状部材の表面の欠陥検査結果を面情報として処理して表示した一例を示す図である。It is a figure which shows an example which processed and displayed the defect inspection result of the surface of a columnar member as surface information. 柱状部材の欠陥部の輝度の一例を示す図である。It is a figure which shows an example of the brightness|luminance of the defect part of a columnar member. 本発明の実施例により、柱状部材の表面の欠陥検査結果を面情報として処理して表示した一例を示す図である。It is a figure which shows an example which processed and displayed the defect inspection result of the surface of a columnar member as surface information by the Example of this invention. 本発明の実施例により、柱状部材の欠陥部の輝度の一例を示す図である。It is a figure which shows an example of the brightness|luminance of the defective part of a columnar member by the Example of this invention. 柱状部材の表面の欠陥検査結果を面情報として処理して表示した一例を示す図である。It is a figure which shows an example which processed and displayed the defect inspection result of the surface of a columnar member as surface information. 本発明の実施例により、柱状部材の表面の欠陥検査結果を面情報として処理して表示した一例を示す図である。It is a figure which shows an example which processed and displayed the defect inspection result of the surface of a columnar member as surface information by the Example of this invention.

以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を変更しない限り、以下の内容に限定されない。なお、本明細書において「〜」という表現を用いる場合、その前後の数値を含む表現として用いる。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail, but the description of the constituent elements described below is an example (representative example) of the embodiments of the present invention, and the present invention is as follows unless the gist thereof is changed. The content is not limited to. In addition, when the expression "..." is used in this specification, it is used as an expression including numerical values before and after the expression.

[本発明の欠陥検査装置]
本発明の欠陥検査装置は、柱状の部材の表面の欠陥検査装置であって、前記部材の軸心方向と平行に検査部位を撮像するラインカメラと、前記検査部位を照射する第一の照明と、前記検査部位を前記第一の照明と異なる角度から照射する第二の照明とを有し、
前記ラインカメラが前記検査部位を撮像する軸と、前記第一の照明が前記検査部位を照射する軸とのなす角度(θ1)が10〜60度の角度で、前記部材の高さ方向に沿って線状に照射し、
前記ラインカメラが前記検査部位を撮像する軸と、前記第二の照明が前記検査部位を照射する軸とのなす角度(θ2)が10〜90度の角度で、前記第一の照明が前記検査部位を照射する軸と、前記第二の照明が前記検査部位を照射する軸とのなす角度(Δθ)が10〜50度の角度で、前記部材の高さ方向に沿って線状に照射する。このような構成とすることで柱状部材の欠陥を検出することができる。また、この欠陥の検出は、画像を用いて検出するため、部材を非破壊で検出することができ、また検査によりキズが付くおそれもない検査である。よって、検査後の部材はそのまま利用することができる。
[Defect inspection apparatus of the present invention]
The defect inspection device of the present invention is a defect inspection device for the surface of a columnar member, and a line camera for imaging the inspection region parallel to the axial direction of the member, and a first illumination for irradiating the inspection region. A second illumination that illuminates the inspection site from an angle different from the first illumination,
The angle (θ1) between the axis with which the line camera images the inspection site and the axis with which the first illumination irradiates the inspection site is 10 to 60 degrees, and is along the height direction of the member. Irradiate linearly
The angle (θ2) formed by the axis of the line camera capturing the inspection region and the axis of the second illumination irradiating the inspection region is 10 to 90 degrees, and the first illumination is the inspection region. The angle (Δθ) formed by the axis for irradiating the part and the axis for irradiating the inspection part with the second illumination is an angle of 10 to 50 degrees, and linear irradiation is performed along the height direction of the member. .. With such a configuration, it is possible to detect a defect in the columnar member. Further, since this defect is detected by using an image, the member can be detected nondestructively, and there is no risk of scratches due to the inspection. Therefore, the member after the inspection can be used as it is.

[本発明の欠陥検査方法]
本発明の欠陥検査方法は、柱状の部材の表面の欠陥検査方法であって、前記部材の軸心方向と平行に検査部位を照射する第一の照明と、前記検査部位を前記第一の照明と異なる角度から照射する第二の照明とにより照射する照射工程と、前記照射工程で照射された検査部位をラインカメラにより撮像する撮像工程とを有し、前記ラインカメラが前記検査部位を撮像する軸と、前記第一の照明が前記検査部位を照射する軸とのなす角度(θ1)が10〜60度の角度で、前記部材の高さ方向に沿って線状に照射し、前記ラインカメラが前記検査部位を撮像する軸と、前記第二の照明が前記検査部位を照射する軸とのなす角度(θ2)が10〜90度の角度で、前記第一の照明が前記検査部位を照射する軸と、前記第二の照明が前記検査部位を照射する軸とのなす角度(Δθ)が10〜50度の角度で、前記部材の高さ方向に沿って線状に照射する。このような構成とすることで柱状部材の欠陥を検出することができる。
本発明の欠陥検査方法は、本発明の欠陥検査装置を用いて行うことができ、本願においてそれぞれに対応する構成は相互に利用することができる。
[Defect Inspection Method of the Present Invention]
A defect inspection method of the present invention is a defect inspection method for a surface of a columnar member, the first illumination irradiating an inspection portion in parallel with the axial direction of the member, and the first illumination for the inspection portion. An irradiation step of irradiating with a second illumination that irradiates from a different angle, and an imaging step of capturing an image of the inspection site irradiated in the irradiation step with a line camera, the line camera capturing an image of the inspection site. The angle (θ1) formed by the axis and the axis with which the first illumination irradiates the inspection site is 10 to 60 degrees, and linear irradiation is performed along the height direction of the member, and the line camera Is an angle (θ2) formed by the axis for imaging the inspection site and the axis for irradiating the inspection site by the second illumination, and the first illumination irradiates the inspection site. And an axis (Δθ) between the axis for irradiating the inspection site and the second illumination is 10 to 50 degrees, and linear irradiation is performed along the height direction of the member. With such a configuration, it is possible to detect a defect in the columnar member.
The defect inspection method of the present invention can be performed by using the defect inspection apparatus of the present invention, and configurations corresponding to each other in the present application can be used mutually.

本発明者は、従来目視で評価されていた円筒や円柱などの柱状の金属部材等を光学的手段による欠陥検査の検討を行った。その結果、後述する実施例等にも詳述するが、一つの照明で検査部位を照射した場合、欠陥が検出されなかったり、欠陥とその他の部位との輝度差が小さく判別が非常に難しい場合があることが分かった。これは、柱状部材に光を照射したとき、反射する光が様々な角度に散乱するため散乱光を検出する撮像手段の位置と照明の位置、それらの向きといった光学系の配置によって、輝度差が大きくなることが影響すると考えられる。さらに、比較的輝度差を検出しやすい配置を見出しても欠陥とそれ以外の部位との輝度差が小さく欠陥の判別がしにくい場合がある。また、地合とよばれるような欠陥ではない微細な凹凸等でも輝度差が生じて、なおさら欠陥の判別が難しい場合がある。 The present inventor examined a defect inspection by optical means for a columnar metal member such as a cylinder or a cylinder, which has been conventionally evaluated visually. As a result, as will be described in detail later in Examples, etc., when the inspection site is illuminated by one illumination, no defect is detected, or the difference in brightness between the defect and the other site is small and it is very difficult to distinguish. I found out that This is because when the columnar member is irradiated with light, the reflected light scatters at various angles, and therefore the difference in brightness depends on the arrangement of the optical system such as the position of the image pickup unit that detects the scattered light, the position of the illumination, and their orientation. It is thought that the increase will affect. Further, even if an arrangement in which the difference in brightness is relatively easy to detect is found, the difference in brightness between the defect and other portions may be small and it may be difficult to determine the defect. In addition, there may be a case where it is more difficult to identify a defect due to a difference in brightness caused by fine unevenness or the like that is not a defect called formation.

本発明者らは、このような柱状の部材の欠陥検査にあたって、ラインカメラを用いることで柱状部材からの散乱光の輝度が比較的安定した部位で撮像できることを見出した。また、検査部位を照射する第一の照明に加えて、第二の照明により第一の照明とは異なる角度から検査部位を照射することで地合等の影響を低減し、欠陥が存在する部分を選択的に輝度差が大きい状態にできることを見出した。 The present inventors have found that in the defect inspection of such a columnar member, a line camera can be used to capture an image at a site where the brightness of scattered light from the columnar member is relatively stable. In addition to the first illumination that irradiates the inspection site, the second illumination irradiates the inspection site from an angle different from that of the first illumination to reduce the influence of formation, etc. It has been found that the luminance difference can be selectively made large.

[欠陥検査装置(100)]
本発明に係る欠陥検査装置の第一の実施形態を、図1等を用いて説明する。図1は、欠陥検査装置100の構成の概要を示す図である。欠陥検査装置100は、第一の照明11と、第二の照明21と、ラインカメラ31とを有する。欠陥検査装置100は、部材4の欠陥を検査する装置である。部材4は、部材4の固定手段51に固定され、固定手段51は回転手段52上に設けられている。ラインカメラ31で撮像した像は、画像検出部60に検出され、画像解析部70で解析や、欠陥の有無の判別がされ、その結果は表示部80に表示される。撮像された画像や、解析された画像、欠陥の判別結果などは、適宜メモリ90に保存される。以下、図1における部材4をラインカメラ31で撮像する方向をX方向、X方向と水平面内で直交する方向をY方向、X方向およびY方向の水平面と直交する方向をZ方向として説明する。
[Defect inspection device (100)]
A first embodiment of the defect inspection apparatus according to the present invention will be described with reference to FIG. FIG. 1 is a diagram showing an outline of the configuration of the defect inspection apparatus 100. The defect inspection apparatus 100 includes a first illumination 11, a second illumination 21, and a line camera 31. The defect inspection device 100 is a device for inspecting the member 4 for defects. The member 4 is fixed to the fixing means 51 of the member 4, and the fixing means 51 is provided on the rotating means 52. The image captured by the line camera 31 is detected by the image detection unit 60, analyzed by the image analysis unit 70, and the presence or absence of a defect is determined, and the result is displayed on the display unit 80. The captured image, the analyzed image, the defect determination result, and the like are appropriately stored in the memory 90. In the following description, the direction in which the line camera 31 captures an image of the member 4 in FIG. 1 is the X direction, the direction orthogonal to the X direction in the horizontal plane is the Y direction, and the direction orthogonal to the horizontal planes of the X direction and the Y direction is the Z direction.

[第一の光学系(101)]
図2、図3は欠陥検査装置における光学系の配置の具体的な構成例を示す図である。第一の照明11および第二の照明21が部材4の検査部位41を照射し、ラインカメラ31は部材4の検査部位41を撮像する。この欠陥検査装置における第一の照明11および、第二の照明21、ラインカメラ31を本願において光学系とよぶ。図2は、第一の光学系101の一例を示す図である。図2(a)は、第一の光学系101を平面視した(Z方向からみた)図である。図2(b)は、第一の光学系101をラインカメラ31の撮像方向(X方向)から見た図である。図3は第一の光学系101の配置をより詳しく説明するための図である。
[First optical system (101)]
2 and 3 are diagrams showing a specific configuration example of the arrangement of the optical system in the defect inspection apparatus. The first illumination 11 and the second illumination 21 illuminate the inspection site 41 of the member 4, and the line camera 31 images the inspection site 41 of the member 4. The first illumination 11, the second illumination 21, and the line camera 31 in this defect inspection apparatus are referred to as an optical system in the present application. FIG. 2 is a diagram showing an example of the first optical system 101. FIG. 2A is a plan view of the first optical system 101 (viewed from the Z direction). FIG. 2B is a diagram of the first optical system 101 viewed from the imaging direction (X direction) of the line camera 31. FIG. 3 is a diagram for explaining the arrangement of the first optical system 101 in more detail.

[第一の照明(11)]
第一の照明11は、部材4の検査部位41を照射する照明である。第一の照明11は、部材4の高さ方向に沿って検査部位41をラインカメラ31によって撮像するため、この検査部位41を照明するために、線状に照射する照明であることが好ましい。第一の照明11は、線状に配置したLEDなどの光源を用いて、さらに適宜集光手段により線状に集光して疑似的に平行光を照射するLEDのライン照明やこれに相当する照度となるように光学系が設計された照明が好ましい。LEDのライン照明等を用いることで、適度に明るく広く照射するため、微細な凹凸による輝度差が生じにくいものとすることができる。
第一の照明11は、ラインカメラ31の撮像と部材4やその欠陥の状態等に応じて適宜選択できる。光の波長は、近紫外線程度から近赤外線程度の波長の光の単一波長でもよいし、混合色や白色でもよい。特に低波長350〜650nm付近にピーク波長を有する光が好ましい。高波長側にピークがある場合、欠陥付近で光が回り込んで照射し、輝度差が低下し欠陥検出しにくい場合がある。また、直線偏光や楕円偏光等の偏光を照射してもよいし、自然光を照射してもよい。
[First lighting (11)]
The first illumination 11 is an illumination that illuminates the inspection site 41 of the member 4. The first illumination 11 is an illumination that irradiates linearly to illuminate the inspection site 41 because the inspection site 41 is imaged by the line camera 31 along the height direction of the member 4. The first illumination 11 uses a linearly arranged light source such as an LED, and further linearly condenses linearly by a condensing means to irradiate pseudo-parallel light, or equivalent thereto. Illumination in which the optical system is designed to have illuminance is preferable. By using LED line illumination or the like, the light is appropriately brightly and widely radiated, so that it is possible to prevent a difference in brightness due to fine unevenness from occurring.
The first illumination 11 can be appropriately selected according to the image captured by the line camera 31 and the state of the member 4 and its defect. The wavelength of light may be a single wavelength of light having a wavelength of about near-ultraviolet to about near-infrared, or may be a mixed color or white. Particularly, light having a peak wavelength near a low wavelength of 350 to 650 nm is preferable. When there is a peak on the high wavelength side, light may circulate around the defect and irradiate, the brightness difference may decrease, and it may be difficult to detect the defect. Further, polarized light such as linearly polarized light or elliptically polarized light may be irradiated, or natural light may be irradiated.

[第二の照明(21)]
第二の照明21は、第一の照明11とは異なる角度から部材4の検査部位41を照射する照明である。第二の照明21には、第一の照明と同様の照明を用いることができる。検査部位41を照射するとき、第一の照明11とは異なる照度としてもよい。地合などの影響を低減するために、第一の照明11よりも強い照度の照明とすることが好ましい。
[Second lighting (21)]
The second illumination 21 is an illumination that illuminates the inspection site 41 of the member 4 from an angle different from that of the first illumination 11. The same illumination as the first illumination can be used for the second illumination 21. When irradiating the inspection region 41, the illuminance may be different from that of the first illumination 11. In order to reduce the influence of formation and the like, it is preferable that the illumination has a higher illuminance than the first illumination 11.

[ラインカメラ(31)]
ラインカメラ31は、部材4の検査部位41を撮像する。ラインカメラ31は、フォトダイオードを直列に配置したもので対象を線状に撮像するものである。ラインカメラはCCDやCMOS等を適宜用いることができる。ラインカメラ31が検査部位41を撮像することで、部材4の表面が曲面等であっても検出される輝度差を低減して撮像することができる。
ラインカメラ31の撮像画素数やスキャンレート等は、部材4の大きさや種類、観察するキズの種類、回転手段による回転速度等に応じて、適宜設定することができる。例えば、撮像画素数は500画素以上や1000画素以上、2000画素以上とすることができる。特に、部材4が金属部材のときの鋳巣やヘアラインと呼ばれるような欠陥を検出し、これらの欠陥の大きさを判別できるように、ラインカメラ31は画素当たり15μm角程度撮像することができることが好ましく、10μm角や8μm角程度のより微細な画素サイズで撮像できることがさらに好ましい。
[Line camera (31)]
The line camera 31 images the inspection site 41 of the member 4. The line camera 31 has photodiodes arranged in series and linearly images an object. As the line camera, CCD, CMOS or the like can be used as appropriate. Since the line camera 31 captures an image of the inspection site 41, the detected brightness difference can be reduced even when the surface of the member 4 is a curved surface or the like.
The number of image pickup pixels of the line camera 31, the scan rate, and the like can be appropriately set according to the size and type of the member 4, the type of flaw to be observed, the rotation speed of the rotating unit, and the like. For example, the number of image pickup pixels can be 500 pixels or more, 1000 pixels or more, and 2000 pixels or more. In particular, the line camera 31 can take an image of about 15 μm square per pixel so as to detect defects such as a porosity and a hairline when the member 4 is a metal member and to determine the size of these defects. It is more preferable that an image can be picked up with a finer pixel size of 10 μm square or 8 μm square.

[部材(4)]
部材4は、欠陥検査の対象となる柱状の部材である。部材4は中空部材や中実部材等いずれでもよく、円筒や円柱、多角柱などの形状である。部材4の材質は特に制限がなく、金属や樹脂、セラミック、ガラス管などを用いることができる。また、適宜、表面加工されていてもよく、メッキ塗工などされたものを用いてもよい。部材4は各材質や用途に応じて鋳造や切削、射出成形等を適宜組み合わせて成形されたものを用いることができる。特に鋳巣やヘアラインと呼ばれるような欠陥が生じやすく、地合と呼ばれる表面の質感が生じる金属部材などを好適な検査対象とすることができる。
検査部位41は、ラインカメラ31が撮像する線状の部分である。部材4の高さ方向に検査部位41は設定される。部材4は後述する回転手段等により周方向に回転させながらラインカメラ31で撮像することで、その側面全体の欠陥を検査することができる。
[Member (4)]
The member 4 is a columnar member that is the target of defect inspection. The member 4 may be a hollow member, a solid member, or the like, and has a shape such as a cylinder, a cylinder, or a polygonal pillar. The material of the member 4 is not particularly limited, and metal, resin, ceramic, glass tube, or the like can be used. In addition, the surface may be appropriately processed, or a plated material may be used. The member 4 may be formed by appropriately combining casting, cutting, injection molding and the like according to each material and application. Particularly, defects such as porosity and hairline are likely to occur, and a metal member having a surface texture called texture is suitable for inspection.
The inspection part 41 is a linear part imaged by the line camera 31. The inspection site 41 is set in the height direction of the member 4. The member 4 can be inspected for defects on the entire side surface by taking an image with the line camera 31 while rotating the member 4 in the circumferential direction by a rotating unit or the like described later.

[第一の光学系(101)]
図3は第一の光学系101の配置をより詳しく説明するための図である。光学系101は、部材4の検査部位41を検査するものである。第一の光学系101は、ラインカメラ31と、第一の照明11と、第二の照明21とが所定の位置となるように配置されている。第一の光学系101は、角度θ1が角度θ2よりも大きい。すなわち、第一の照明11よりも鋭角で第二の照明21は検査部位41を照射する構成である。また、第一の照明11、第二の照明21、ラインカメラ31は、水平に配置されている。
[First optical system (101)]
FIG. 3 is a diagram for explaining the arrangement of the first optical system 101 in more detail. The optical system 101 is for inspecting the inspection site 41 of the member 4. The first optical system 101 is arranged such that the line camera 31, the first illumination 11 and the second illumination 21 are at predetermined positions. In the first optical system 101, the angle θ1 is larger than the angle θ2. That is, the second illumination 21 illuminates the inspection site 41 at an acute angle with respect to the first illumination 11. Further, the first illumination 11, the second illumination 21, and the line camera 31 are arranged horizontally.

[第二の光学系(102)]
また、図4は欠陥検査装置における光学系の配置の他の具体的な構成例を示す図である。第一の照明11および第二の照明21が部材4の検査部位41を照射し、ラインカメラ31は部材4の検査部位41を撮像する。図4(a)は、第二の光学系102を平面視した(Z方向からみた)図である。図4(b)は、第二の光学系102をラインカメラ31の撮像方向(X方向)から見た図である。
[Second optical system (102)]
FIG. 4 is a diagram showing another specific configuration example of the arrangement of the optical system in the defect inspection apparatus. The first illumination 11 and the second illumination 21 illuminate the inspection site 41 of the member 4, and the line camera 31 images the inspection site 41 of the member 4. FIG. 4A is a plan view of the second optical system 102 (viewed from the Z direction). FIG. 4B is a diagram of the second optical system 102 viewed from the imaging direction (X direction) of the line camera 31.

第二の光学系102は、ラインカメラ31と、第一の照明11と、第二の照明21とが所定の位置となるように配置されている。第二の光学系102は、角度θ2が角度θ1よりも大きい。すなわち、第二の照明21よりも鋭角から第一の照明11により検査部位41を照射する構成である。また、第一の照明11、ラインカメラ31は、部材4と水平面内に配置されているが、第二の照明21は部材4の高さ方向(Z方向)に斜め方向から検査部位41を照射する。このため第二の光学系102に用いる第二の照明21は、より指向性が高い高指向性の照明を用いることが好ましい。 The second optical system 102 is arranged such that the line camera 31, the first illumination 11 and the second illumination 21 are at predetermined positions. The angle θ2 of the second optical system 102 is larger than the angle θ1. That is, the inspection site 41 is illuminated by the first illumination 11 from an acute angle than the second illumination 21. Further, the first illumination 11 and the line camera 31 are arranged in the horizontal plane with the member 4, but the second illumination 21 irradiates the inspection site 41 from the diagonal direction in the height direction (Z direction) of the member 4. To do. Therefore, as the second illumination 21 used for the second optical system 102, it is preferable to use illumination with high directivity and high directivity.

[角度(θ1)]
角度θ1は、ラインカメラ31が検査部位41を撮像する軸x0と、第一の照明11が検査部位41を照射する軸x1とのなす角度である。この角度θ1は、10〜60度の角度であることが好ましい。角度θ1が小さすぎる場合、第一の照明11とラインカメラ31とが設置しにくかったり、欠陥と正常部との輝度差が小さく欠陥を検出しにくい。一方、角度θ1が大きすぎる場合、ラインカメラ31が撮像する軸x0方向に十分な輝度の散乱光が生じなかったり、散乱光が強すぎて欠陥を検出しにくい。
[Angle (θ1)]
The angle θ1 is an angle formed by the axis x0 at which the line camera 31 images the inspection region 41 and the axis x1 at which the first illumination 11 irradiates the inspection region 41. This angle θ1 is preferably an angle of 10 to 60 degrees. When the angle θ1 is too small, it is difficult to install the first illumination 11 and the line camera 31, or the difference in brightness between the defect and the normal portion is small, and it is difficult to detect the defect. On the other hand, if the angle θ1 is too large, scattered light with sufficient brightness does not occur in the direction of the axis x0 captured by the line camera 31, or the scattered light is too strong to detect a defect.

[角度θ2]
角度θ2は、ラインカメラ31が検査部位41を撮像する軸x0と、第二の照明21が検査部位41を照射する軸x2とのなす角度である。この角度θ2は10〜90度の角度であり、角度θ1と異なる角度となるように配置される。角度θ2が小さすぎる場合、第二の照明21とラインカメラ31とが設置しにくかったり、欠陥と正常部との輝度差が小さく欠陥を検出しにくい。一方、角度θ2が大きすぎる場合、ラインカメラ31が撮像する軸x0方向に十分な輝度の散乱光が生じなかったり、散乱光が強すぎて欠陥を検出しにくい。角度θ2は、角度θ1と異なる角度である。角度θ2を角度θ1と異なるものとすることで、欠陥と正常部の輝度差がより大きく安定して高精度で欠陥を検出することができる。
[Angle θ2]
The angle θ2 is an angle formed by the axis x0 at which the line camera 31 images the inspection region 41 and the axis x2 at which the second illumination 21 irradiates the inspection region 41. This angle θ2 is an angle of 10 to 90 degrees, and is arranged so as to be different from the angle θ1. If the angle θ2 is too small, it is difficult to install the second illumination 21 and the line camera 31, or the difference in brightness between the defect and the normal portion is small, and it is difficult to detect the defect. On the other hand, when the angle θ2 is too large, scattered light with sufficient brightness does not occur in the direction of the axis x0 captured by the line camera 31, or the scattered light is too strong to detect a defect. The angle θ2 is an angle different from the angle θ1. By setting the angle θ2 to be different from the angle θ1, it is possible to detect the defect with high accuracy because the difference in brightness between the defect and the normal portion is larger and stable.

[角度(Δθ)]
角度Δθは、第一の照明11が検査部位41を照射する軸x1と、第二の照明21が検査部位41を照射する軸x2とのなす角度である。これは角度θ1と角度θ2との差である。角度Δθは、10〜30度の角度であることが好ましい。角度Δθがこの範囲から外れる場合、欠陥と正常部との輝度差が小さく欠陥を検出しにくい場合がある。
これらの角度θ1、角度θ2、角度Δθは、Z方向(平面視)から見た第一の照明11、第二の照明21、ラインカメラ31、検査部材4の位置関係における角度である。
[Angle (Δθ)]
The angle Δθ is an angle formed by an axis x1 with which the first illumination 11 illuminates the inspection site 41 and an axis x2 with which the second illumination 21 illuminates the inspection site 41. This is the difference between the angle θ1 and the angle θ2. The angle Δθ is preferably 10 to 30 degrees. If the angle Δθ is out of this range, the difference in brightness between the defect and the normal portion may be small and it may be difficult to detect the defect.
These angles θ1, θ2, and Δθ are angles in the positional relationship among the first illumination 11, the second illumination 21, the line camera 31, and the inspection member 4 when viewed from the Z direction (plan view).

第一の光学系101において、角度θ1は25〜60度が好ましく、角度θ2は10〜30度が好ましく、角度θ1は角度θ2よりも大きく、角度Δθが、5〜40度であることが好ましい。このような配置とすることで、特に、部材4の周方向に平行なキズ(平行キズ)を効率よく検出することができる。
この平行キズをより効率よく検出するために、角度θ1は、30〜55度がより好ましく、35〜45度が特に好ましい。角度θ2は、10〜28度がより好ましく、12〜26度が特に好ましい。角度Δθはこれらの差であればよいが、8〜35度がより好ましく、10〜30度が特に好ましい。
In the first optical system 101, the angle θ1 is preferably 25 to 60 degrees, the angle θ2 is preferably 10 to 30 degrees, the angle θ1 is larger than the angle θ2, and the angle Δθ is preferably 5 to 40 degrees. .. With such an arrangement, in particular, flaws parallel to the circumferential direction of the member 4 (parallel flaws) can be efficiently detected.
In order to detect this parallel flaw more efficiently, the angle θ1 is more preferably 30 to 55 degrees and particularly preferably 35 to 45 degrees. The angle θ2 is more preferably 10 to 28 degrees, particularly preferably 12 to 26 degrees. The angle Δθ may be any difference between them, but it is more preferably 8 to 35 degrees, and particularly preferably 10 to 30 degrees.

[角度(θz1)]
第二の光学系102において、第二の照明21は、部材4の検査部位41を斜めから照射する。部材4の高さ方向を軸z0として、第二の照明21から照射される光の中心を軸z1としたとき、この軸z0と軸z1とのなす角度は、角度θz1である。角度θz1は、第二の照明21も水平面内に配置する0度のものとしてもよいが、例えば10〜60度のように異なる角度とすることもできる。第二の光学系102のように、角度θ2が角度θ1よりも大きく、角度θz1として第二の照明21を照射することで、特に、部材4の表面に周方向から高さ方向にかけて斜めのキズ(斜めキズ)を効率よく検出することができる。
[Angle (θz1)]
In the second optical system 102, the second illumination 21 obliquely illuminates the inspection site 41 of the member 4. When the height direction of the member 4 is the axis z0 and the center of the light emitted from the second illumination 21 is the axis z1, the angle between the axis z0 and the axis z1 is an angle θz1. The angle θz1 may be 0 degree at which the second illumination 21 is also arranged in the horizontal plane, but may be different angles such as 10 to 60 degrees. As in the second optical system 102, the angle θ2 is larger than the angle θ1 and the second illumination 21 is applied as the angle θz1, so that the surface of the member 4 is scratched particularly obliquely from the circumferential direction to the height direction. (Slant scratch) can be detected efficiently.

第二の光学系102の角度θ1は、10〜30度が好ましく、角度θ2は20〜90度が好ましい。角度Δθは10〜60度が好ましい。また、角度θz1は前述のように0〜60度から適宜選択してもよく、傾ける場合10〜60度が好ましい。
この斜めキズをより効率よく検出するために、角度θ1は、10〜20度がより好ましく、12〜18度が特に好ましい。角度θ2は、20〜45度がより好ましく、25〜35度が特に好ましい。角度Δθはこれらの差であればよいが、10〜30度がより好ましく、15〜25度が特に好ましい。角度θz1は、20〜60度がより好ましく、25〜50度がさらに好ましい。
The angle θ1 of the second optical system 102 is preferably 10 to 30 degrees, and the angle θ2 is preferably 20 to 90 degrees. The angle Δθ is preferably 10 to 60 degrees. The angle θz1 may be appropriately selected from 0 to 60 degrees as described above, and is preferably 10 to 60 degrees when tilted.
In order to detect this oblique flaw more efficiently, the angle θ1 is more preferably 10 to 20 degrees, and particularly preferably 12 to 18 degrees. The angle θ2 is more preferably 20 to 45 degrees, and particularly preferably 25 to 35 degrees. The angle Δθ may be any difference between them, but is preferably 10 to 30 degrees, particularly preferably 15 to 25 degrees. The angle θz1 is more preferably 20 to 60 degrees, further preferably 25 to 50 degrees.

[固定手段(51)]
固定手段51は、部材4を固定する手段である。部材4が筒状などで底面や天面に開口部を有する場合、内部から内爪で把持してもよいし、上部にテーパー部を有する錘状部材などに部材4の開口部を配置することで、開口部の内径と錘の径が一致する部位で留まる構造としてもよい。また、外爪により部材4の表面側を固定してもよいし、上下を押さえて固定するものでもよい。固定手段51により、所定の検査部位41を検査する間等に、部材4を措定の位置に固定する。
[Fixing means (51)]
The fixing means 51 is a means for fixing the member 4. When the member 4 is tubular and has an opening on the bottom surface or the top surface, it may be gripped from the inside by an inner claw, or the opening of the member 4 may be arranged on a weight-shaped member having a tapered portion on the upper portion. Then, a structure may be adopted in which the inner diameter of the opening and the diameter of the weight are the same. Further, the front side of the member 4 may be fixed by the outer claw, or the upper and lower sides may be pressed and fixed. The fixing means 51 fixes the member 4 to a predetermined position while inspecting a predetermined inspection site 41 or the like.

[回転手段(52)]
固定手段51は回転手段52上に設けられている。回転手段52は、固定手段51に固定されている部材4の周方向に回転する手段である。回転ローラや歯車等により、固定手段51を回転させることができる。回転手段52の回転は、部材4の検査範囲に対応した回転ができればよく、全周を検査する場合、周方向に360度以上回転可能なものとすることができる。また、回転する位置を制御したり、検出したりして、部材4の周方向の位置を特定できるものであることが好ましい。
[Rotating means (52)]
The fixing means 51 is provided on the rotating means 52. The rotating unit 52 is a unit that rotates in the circumferential direction of the member 4 fixed to the fixing unit 51. The fixing means 51 can be rotated by a rotating roller, a gear, or the like. The rotating means 52 may be rotated as long as it can rotate in accordance with the inspection range of the member 4, and when inspecting the entire circumference, it can be rotated 360 degrees or more in the circumferential direction. Further, it is preferable that the position in the circumferential direction of the member 4 can be specified by controlling or detecting the rotating position.

[画像検出部(60)]
画像検出部60は、ラインカメラ31が撮像した情報を検出する部分である。ラインカメラ31が撮像した像に関する情報は、適宜、有線や無線により電気情報等として画像検出部60に送信される。この情報に基づき、画像として検出する。画像検出部60は、ラインカメラ31が撮像した同一の検査部位41の輝度データなどを積分処理したものとして画像としてもよい。
[Image detection unit (60)]
The image detection unit 60 is a unit that detects information captured by the line camera 31. Information regarding the image captured by the line camera 31 is appropriately transmitted to the image detection unit 60 as electrical information or the like by wire or wirelessly. An image is detected based on this information. The image detection unit 60 may form an image by integrating luminance data of the same inspection region 41 captured by the line camera 31 and the like.

[画像解析部(70)]
画像解析部70は、画像検出部60が検出した画像を解析する部分である。適宜、回転手段52を回転させながらラインカメラ31や画像検出部60を介して、輝度データ等として検出された線状の像を、検査範囲に対応した周方向の情報として解析して検査範囲全体の像とすることができる。画像解析部70は、ラインカメラ31が撮像した像の輝度に基づき、欠陥の有無を判別するための閾値により欠陥の有無を判別する判別部を有するものとしてもよい。
[Image analysis unit (70)]
The image analysis unit 70 is a unit that analyzes the image detected by the image detection unit 60. The linear image detected as brightness data or the like is appropriately analyzed as circumferential information corresponding to the inspection range by rotating the rotating means 52 via the line camera 31 and the image detection unit 60, and the entire inspection range is analyzed. Can be a statue of. The image analysis unit 70 may include a determination unit that determines the presence/absence of a defect by a threshold value for determining the presence/absence of a defect, based on the brightness of the image captured by the line camera 31.

[表示部(80)]
表示部80は、画像解析部70で解析した像や解析結果等を表示する部分である。例えば、画像検出部60で検出した像を画像解析部70で輝度補正等のみを行い、特定の線状の検査部位41に関する像として表示してもよい。また、回転手段52を回転させながら撮像したものを解析して、検査範囲の像としての撮像結果を表示してもよい。また、欠陥の有無を判別するための閾値により欠陥の有無を判別して、その判別結果を表示してもよい。また、その評価条件や、部材の情報等を合わせて表示するものとしてもよい。
[Display (80)]
The display unit 80 is a unit that displays the image analyzed by the image analysis unit 70, the analysis result, and the like. For example, the image detected by the image detection unit 60 may be subjected to only brightness correction or the like by the image analysis unit 70, and may be displayed as an image regarding a specific linear inspection site 41. Further, the imaged result may be displayed as an image of the inspection range by analyzing the imaged while rotating the rotating means 52. Further, the presence/absence of a defect may be determined by a threshold value for determining the presence/absence of a defect, and the determination result may be displayed. Further, the evaluation conditions, information on members, etc. may be displayed together.

[メモリ(90)]
メモリ90は、撮像された画像や、解析された画像、欠陥の判別結果などを、適宜保存する手段である。
[Memory (90)]
The memory 90 is means for appropriately storing the captured image, the analyzed image, the defect determination result, and the like.

[欠陥検査方法(S100)]
図5は、欠陥検査装置100を用いた欠陥検査方法の検査フローの一例を示す図である。
まず、第一の照明11と、部材4の検査部位41を第一の照明11と異なる角度から照射する第二の照明21とにより照射する照射工程S11を行う。
この照射を維持した状態で、検査部位41をラインカメラ31で撮像する撮像工程S21を行う。撮像した像は、適宜画像検出部60で検出し、メモリ90に保存する。
撮像を行った後、欠陥検査を行う所定の範囲を撮像したかの判定工程S22を行う。所定の範囲を撮像していない場合、回転手段52を回転させて検査部位41を周方向に移動させて、次の検査部位41が検査対象となるように配置する回転工程S23を行う。この状態で、撮像工程S21を行う。所定の範囲を撮像するまでこれを繰り返す。所定の範囲を撮像し終えた場合、撮像と回転を終了する。
撮像完了後、撮像されて検出された像を、画像解析手段70で解析する画像解析工程S31を行う。この解析は、部材4の表面の撮像結果を面状に配置したものとして、検出された像の輝度に応じて濃淡や色がつくものとして処理したり、所定の検査部位41での輝度のチャートとする。解析結果に基づいて、欠陥を検出する所定の閾値と対比して、欠陥の有無の判別を行う判別工程S41を行う。この閾値は、正常部の輝度が高く、欠陥が輝度が低いものとなる検査を行ったとき、所定の輝度よりも低いものを欠陥と、所定の輝度以上のものを正常部と判別するものとすることができる。判別結果は、表示部80に表示する表示工程S51を行い、部材4の欠陥検査を終了する。
[Defect inspection method (S100)]
FIG. 5 is a diagram showing an example of the inspection flow of the defect inspection method using the defect inspection apparatus 100.
First, the irradiation step S11 of irradiating the inspection site 41 of the member 4 with the first illumination 11 and the second illumination 21 that irradiates the inspection site 41 of the member 4 from an angle different from the first illumination 11 is performed.
In the state where this irradiation is maintained, the imaging step S21 of imaging the inspection region 41 with the line camera 31 is performed. The captured image is appropriately detected by the image detection unit 60 and stored in the memory 90.
After performing the image capturing, a determination step S22 is performed to determine whether a predetermined range in which the defect inspection is performed is captured. When the predetermined range is not imaged, the rotating means 52 is rotated to move the inspection site 41 in the circumferential direction, and the rotating step S23 is performed to arrange the next inspection site 41 to be the inspection target. In this state, the imaging step S21 is performed. This is repeated until the image of the predetermined range is captured. When the imaging of the predetermined range is completed, the imaging and the rotation are ended.
After the image capturing is completed, an image analyzing step S31 in which the image captured by the image analyzing unit 70 is analyzed. In this analysis, the image pickup result of the surface of the member 4 is arranged in a plane, and it is processed so that light and shade are added depending on the brightness of the detected image, or a brightness chart at a predetermined inspection site 41. And On the basis of the analysis result, a discrimination step S41 of discriminating the presence/absence of a defect is performed in comparison with a predetermined threshold value for detecting a defect. This threshold value is such that when an inspection is performed in which the normal part has high brightness and the defect has low brightness, it is determined that a defect having a brightness lower than a predetermined brightness is a defect and a product having a brightness of a predetermined brightness or higher is a normal part. can do. A display step S51 of displaying the determination result on the display unit 80 is performed, and the defect inspection of the member 4 is completed.

柱状部材の欠陥は、視覚的や物理的に検出される、線状や面状の色や光沢のムラ、凹凸などの表面の異常部である。欠陥の代表的なものとして、図6に示すような線状のキズがあげられる。図6(a)は、柱状部材の高さ方向に沿ったキズである。図6(b)は、柱状部材の周方向に沿ったキズである(平行キズ)。図6(c)は、柱状部材の斜め方向のキズである(斜めキズ)。特に平行キズや斜めキズは、単独の照明により照射するとキズの段差に沿って照射光が入り込み影となりにくくなり、良品部である周囲との輝度差が生じにくい場合があったが、本発明によれば、このようなキズを検査することができる。 The defect of the columnar member is an abnormal portion of the surface such as linear or planar color or gloss unevenness, unevenness or the like which is visually or physically detected. A typical defect is a linear scratch as shown in FIG. FIG. 6A shows scratches along the height direction of the columnar member. FIG. 6B shows scratches along the circumferential direction of the columnar member (parallel scratches). FIG. 6C shows scratches in the diagonal direction of the columnar member (oblique scratches). In particular, when a parallel flaw or an oblique flaw is irradiated by a single illumination, the irradiation light is less likely to enter along the step of the flaw and become a shadow, and there is a case where a difference in luminance with the surroundings which is a non-defective portion is less likely to occur. According to this, such a flaw can be inspected.

以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is changed.

[実施例1]
第一の実施形態に準じる構成で欠陥検査装置を構成し、部材の表面を評価した。
白色(色温度:6500K)の疑似平行光を照射するLEDのライン照明を、第一の照明および第二の照明として用いた。また、ライン状に約8000画素検出するラインカメラを用いて画像を検出した。ラインカメラは、1画素あたり約7μmを撮像するものとなるように、部材との距離や撮影範囲、レンズ倍率を設定した。
角度θ1:45°、角度θ2:15°、角度Δθ:30°となるように配置した。
・部材:金属を用いて鋳造後、切削して直径15mm、高さ20mmの円筒状とした部材。複数製造した部材から、平行方向にキズがついたものを選別して評価対象とした。
[Example 1]
The defect inspection apparatus was configured with the configuration according to the first embodiment, and the surface of the member was evaluated.
The line illumination of an LED that emits white (color temperature: 6500K) pseudo-parallel light was used as the first illumination and the second illumination. Further, the image was detected using a line camera that detects approximately 8000 pixels in a line. In the line camera, the distance to the member, the shooting range, and the lens magnification were set so as to capture about 7 μm per pixel.
The angle θ1:45°, the angle θ2:15°, and the angle Δθ:30°.
-Member: A member having a diameter of 15 mm and a height of 20 mm, which is cylindrical after being cast using metal. From the plurality of manufactured members, those having scratches in the parallel direction were selected and evaluated.

[比較例1]
実施例1の構成において、第二の照明を消灯し、第一の照明のみで照明し、撮像された像を図7に示す。また、欠陥部位の輝度チャート図を、図8に示す。図7(a)は目視したとき、太くて大きいキズが確認される部位で、輝度をマップ化した図でも確認し得る。しかし、地合の凹凸との判別が行いにくい。また、図7(b)は小さいキズが確認される部位であり、輝度をマップ化した図からは判断が難しい。
また、図8は、図7(a)に示す大きいキズに相当する部位での線状(図7(a)の縦方向)の輝度分布を示した図である。キズに相当する部位の輝度は他の正常部よりも低く、輝度により判別できる可能性があるが、正常部の地合による輝度が低い部分との差が小さく、閾値の設定が難しい。
[Comparative Example 1]
In the configuration of the first embodiment, the second illumination is turned off, the illumination is performed only by the first illumination, and the imaged image is shown in FIG. 7. Further, FIG. 8 shows a luminance chart of the defective portion. FIG. 7A shows a portion where large and large scratches are confirmed when visually observed, and can be confirmed by a diagram in which luminance is mapped. However, it is difficult to distinguish from the unevenness of the formation. Further, FIG. 7B shows a portion where a small flaw is confirmed, and it is difficult to judge from the diagram in which the luminance is mapped.
Further, FIG. 8 is a diagram showing a linear (vertical direction in FIG. 7A) luminance distribution in a portion corresponding to a large flaw shown in FIG. The brightness of the part corresponding to the scratch is lower than that of other normal parts, and there is a possibility that the part can be discriminated by the brightness. However, the difference between the normal part and the low brightness part is small, and it is difficult to set the threshold value.

[実施例1]
実施例1の構成において、第一の照明、第二の照明を用いて検査部位を照射し、撮像された像を図9に示す。図9(a)は太いキズを示すものであり、図9(b)は小さいキズを示すものである。実施例1の構成により、第二の照明を設けることで、地合の影響を低減し、キズのみ顕著に濃い陰影として撮像することができた。また、小さいキズもキズと判別しやすい像を得ることができた。これは、軽微な凹凸差である地合の影は第一の照明とは異なる角度からの第二の照明の照射により低減され、大きな凹凸であるキズは、第二の照明を照射しても影が明確に残るためと考えられる。また、そのとき、部材の表面からの反射光がラインカメラに検出されることも防止できる判別に適した配置となっているためと考えられる。
また、図10(a)は、図9(a)に示す大きいキズに相当する部位での線状(図9(a)の縦方向)の輝度分布と、図10(b)は図9(b)の小さいキズの部位の輝度分布を示した図である。キズに相当する部位の輝度は他の正常部よりも低く、輝度により判別できる。また、正常部の地合による輝度が低い部分との差が大きく、欠陥と判別する閾値の設定も行いやすい。
[Example 1]
FIG. 9 shows an image obtained by irradiating the inspection site with the first illumination and the second illumination in the configuration of the first embodiment. 9A shows thick scratches, and FIG. 9B shows small scratches. With the configuration of the first embodiment, by providing the second illumination, it was possible to reduce the influence of formation and to image only scratches as a significantly dark shadow. In addition, it was possible to obtain an image in which even small scratches could be easily distinguished from scratches. This is because the shadow of the formation, which is a slight unevenness difference, is reduced by the irradiation of the second illumination from an angle different from that of the first illumination, and the scratches of the large unevenness are irradiated by the second illumination. It is thought that the shadow remains clearly. Further, at that time, it is considered that the arrangement is suitable for the determination that the reflected light from the surface of the member can be prevented from being detected by the line camera.
Further, FIG. 10A shows a linear (vertical direction in FIG. 9A) luminance distribution in a portion corresponding to a large flaw shown in FIG. 9A, and FIG. It is the figure which showed the brightness|luminance distribution of the part of small b) of a flaw. The brightness of the part corresponding to the scratch is lower than that of other normal parts, and can be identified by the brightness. Further, the difference between the normal portion and the low luminance portion due to the texture is large, and it is easy to set the threshold value for determining a defect.

[実施例2]
第二の実施形態に準じる構成で欠陥検査装置を構成し、部材の表面を評価した。
白色(色温度:6500K)の疑似平行光を照射するLEDのライン照明を、第一の照明および第二の照明として用いた。第二の照明はより高指向性の照射光を用いた。また、ライン状に約8000画素検出するラインカメラを用いて画像を検出した。ラインカメラは、1画素あたり約7μmを撮像するものとなるように、部材との距離や撮影範囲、レンズ倍率を設定した。
角度θ1:20°、角度θ2:40°、角度Δθ:20°、角度θz1:30°
・部材:金属を用いて鋳造後、切削して直径15mm、高さ20mmの円筒状とした部材。複数製造した部材から、斜め方向にキズがついたものを選別して評価対象とした。
[Example 2]
The defect inspection apparatus was configured with the configuration according to the second embodiment, and the surface of the member was evaluated.
The line illumination of an LED that emits white (color temperature: 6500K) pseudo-parallel light was used as the first illumination and the second illumination. The second illumination used irradiation light with higher directivity. Further, the image was detected using a line camera that detects approximately 8000 pixels in a line. In the line camera, the distance to the member, the shooting range, and the lens magnification were set so as to capture about 7 μm per pixel.
Angle θ1: 20°, angle θ2: 40°, angle Δθ: 20°, angle θz 1:30°
-Member: A member having a diameter of 15 mm and a height of 20 mm, which is cylindrical after being cast using metal. From a plurality of manufactured members, those having scratches in the oblique direction were selected and evaluated.

[比較例2]
実施例2の構成において、第二の照明を消灯し、第一の照明のみで照明し、撮像された像を図11に示す。図11(a)は撮像された像を示すものであり、図11(b)は欠陥部分の輝度チャートを抽出したものである。全体的に輝度が低く、欠陥部分と、正常部との判別が難しい。また、欠陥部位の輝度チャートを確認すると、欠陥部分の輝度は他の正常部より低いものの、地合の影響による正常部との輝度差が小さく、欠陥判別の閾値の設定が難しい。
良品部であるキズ周辺の輝度は、38〜80である。一方、キズ部分の最小輝度は18であり、良品部の下限と、キズ部分の最小値との輝度差が約20である。このため、欠陥判別の閾値を設定しにくく、例えば「輝度30以下は欠陥」と設定しても、良品部の下限と近く誤検出となったり、キズであるにも関わらず検出できない場合がある。
[Comparative example 2]
In the configuration of Example 2, the second illumination is turned off, the illumination is performed only by the first illumination, and the imaged image is shown in FIG. 11. FIG. 11A shows the imaged image, and FIG. 11B shows the extracted luminance chart of the defective portion. The brightness is low as a whole, and it is difficult to distinguish between a defective portion and a normal portion. Also, when the brightness chart of the defective portion is confirmed, although the brightness of the defective portion is lower than that of other normal portions, the difference in luminance from the normal portion due to the effect of formation is small, and it is difficult to set the threshold value for defect determination.
The luminance around the scratch, which is a non-defective part, is 38 to 80. On the other hand, the minimum luminance of the scratched portion is 18, and the luminance difference between the lower limit of the non-defective portion and the minimum value of the scratched portion is about 20. For this reason, it is difficult to set the threshold value for defect determination, and even if "brightness of 30 or less is a defect" is set, it may be erroneously detected close to the lower limit of the non-defective portion, or it may not be detected despite a flaw. ..

[実施例2]
実施例2の構成において、第一の照明と第二の照明を照射し、撮像された像を図12に示す。図12(a)は撮像された像を示すものであり、図12(b)は欠陥部分の輝度チャートを抽出したものである。全体的に輝度が高く、正常部は地合の影響も低減した明るい像が得られ、キズは顕著に濃いものとなる像が得られ判別しやすい。また、欠陥部位の輝度チャートを確認すると、欠陥部分の輝度は他の正常部より著しく低く、地合の影響による正常部との輝度差も大きく、欠陥判別の閾値の設定が行いやすい。
良品部であるキズ周辺の輝度は、80〜190である。一方、キズ部分の最小輝度は31であり、良品部と輝度差が約50以上の差がある。このため、欠陥判別の閾値を、例えば「輝度50以下は欠陥」と設定しても、キズは良品部の下限となる80程度よりも大幅に低い輝度であるため、誤検出等が生じにくく、判別しやすいものとできる。
これは、第二の照明を斜めから照射することで、地合の凹凸による影を低減できることに加えて、斜めのキズの凹凸の影を強調するものとなったためと考えられる。
[Example 2]
FIG. 12 shows an image captured by irradiating the first illumination and the second illumination with the configuration of the second embodiment. FIG. 12A shows the picked-up image, and FIG. 12B shows the extracted luminance chart of the defective portion. A bright image with high brightness as a whole and a normal part in which the influence of texture is reduced is obtained, and an image in which scratches are remarkably dark is obtained, and it is easy to discriminate. Further, when the brightness chart of the defective portion is confirmed, the brightness of the defective portion is significantly lower than that of other normal portions, the difference in luminance from the normal portion due to the influence of formation is large, and it is easy to set the threshold value for defect determination.
The luminance around the scratch, which is a non-defective part, is 80 to 190. On the other hand, the minimum luminance of the scratched portion is 31, which is about 50 or more in luminance difference from the non-defective portion. For this reason, even if the threshold value for defect determination is set to "defects with a brightness of 50 or less", for example, since the scratches have a brightness significantly lower than about 80 which is the lower limit of the non-defective portion, erroneous detection or the like is unlikely to occur. It can be easily distinguished.
It is considered that this is because, by obliquely irradiating the second illumination, the shadow due to the unevenness of the formation can be reduced, and the shadow of the unevenness of the diagonal scratch is emphasized.

本発明は、柱状部材等の欠陥の検査に利用することができ、産業上有用である。 INDUSTRIAL APPLICABILITY The present invention can be used for inspection of defects such as columnar members and is industrially useful.

100 欠陥検査装置
101 第一の光学系
102 第二の光学系
11 第一の照明
21 第二の照明
31 ラインカメラ
4 部材
41 検査部位
51 固定手段
52 回転手段
60 画像検出部
70 画像解析部
80 表示部
90 メモリ
100 Defect Inspection Apparatus 101 First Optical System 102 Second Optical System 11 First Illumination 21 Second Illumination 31 Line Camera 4 Member 41 Inspection Site 51 Fixing Means 52 Rotating Means 60 Image Detecting Part 70 Image Analyzing Part 80 Display Part 90 memory

[角度(θz1)]
第二の光学系102において、第二の照明21は、部材4の検査部位41を斜めから照射する。部材4の高さ方向を軸z0として、第二の照明21から照射される光の中心を軸z1としたとき、この軸z0と軸z1とのなす角度は、角度θz1である。第二の照明21も水平面内に配置するものとしてもよいが、例えば、角度θz1は20〜60度のように異なる角度とすることもできる。第二の光学系102のように、角度θ2が角度θ1よりも大きく、角度θz1として第二の照明21を照射することで、特に、部材4の表面に周方向から高さ方向にかけて斜めのキズ(斜めキズ)を効率よく検出することができる。
[Angle (θz1)]
In the second optical system 102, the second illumination 21 obliquely illuminates the inspection site 41 of the member 4. When the height direction of the member 4 is the axis z0 and the center of the light emitted from the second illumination 21 is the axis z1, the angle between the axis z0 and the axis z1 is an angle θz1 . Second illumination 21 may also it arranged in a horizontal plane, but for example, the angle θz1 can also be different angles as 20 to 60 degrees. As in the second optical system 102, the angle θ2 is larger than the angle θ1 and the second illumination 21 is applied as the angle θz1, so that the surface of the member 4 is scratched particularly obliquely from the circumferential direction to the height direction. (Slant scratch) can be detected efficiently.

第二の光学系102の角度θ1は、10〜30度が好ましく、角度θ2は20〜90度が好ましい。角度Δθは10〜60度が好ましい。また、角度θz1は20〜60度が好ましい。
この斜めキズをより効率よく検出するために、角度θ1は、10〜20度がより好ましく、12〜18度が特に好ましい。角度θ2は、20〜45度がより好ましく、25〜35度が特に好ましい。角度Δθはこれらの差であればよいが、10〜30度がより好ましく、15〜25度が特に好ましい。角度θz1は、25〜50度がさらに好ましい。
The angle θ1 of the second optical system 102 is preferably 10 to 30 degrees, and the angle θ2 is preferably 20 to 90 degrees. The angle Δθ is preferably 10 to 60 degrees. Further, the angle θz1 is preferably 20 to 60 degrees.
In order to detect this oblique flaw more efficiently, the angle θ1 is more preferably 10 to 20 degrees, and particularly preferably 12 to 18 degrees. The angle θ2 is more preferably 20 to 45 degrees, and particularly preferably 25 to 35 degrees. The angle Δθ may be any difference between them, but is preferably 10 to 30 degrees, particularly preferably 15 to 25 degrees. Angle θz1 is 2 5-50 degrees is more preferable.

Claims (8)

柱状の部材の表面の欠陥検査装置であって、前記部材の軸心方向と平行に検査部位を撮像するラインカメラと、前記検査部位を照射する第一の照明と、前記検査部位を前記第一の照明と異なる角度から照射する第二の照明とを有し、
前記ラインカメラが前記検査部位を撮像する軸と、前記第一の照明が前記検査部位を照射する軸とのなす角度(θ1)が10〜60度の角度で、前記部材の高さ方向に沿って線状に照射し、
前記ラインカメラが前記検査部位を撮像する軸と、前記第二の照明が前記検査部位を照射する軸とのなす角度(θ2)が10〜90度の角度で、前記第一の照明が前記検査部位を照射する軸と、前記第二の照明が前記検査部位を照射する軸とのなす角度(Δθ)が10〜50度の角度で、前記部材の高さ方向に沿って線状に照射する欠陥検査装置。
A defect inspection apparatus for a surface of a columnar member, comprising: a line camera that images an inspection region parallel to an axial direction of the member; a first illumination that irradiates the inspection region; And a second illumination that illuminates from a different angle,
The angle (θ1) formed by the axis of the line camera capturing the inspection region and the axis of the first illumination irradiating the inspection region is 10 to 60 degrees, and is along the height direction of the member. Irradiate linearly
The angle (θ2) formed by the axis of the line camera capturing the inspection region and the axis of the second illumination irradiating the inspection region is 10 to 90 degrees, and the first illumination is the inspection region. The angle (Δθ) between the axis for irradiating the part and the axis for irradiating the inspection part with the second illumination is an angle of 10 to 50 degrees, and linear irradiation is performed along the height direction of the member. Defect inspection equipment.
前記角度(θ1)が25〜60度であり、前記角度(θ2)が10〜30度であり、
前記角度(θ1)は前記角度(θ2)よりも大きく、前記角度(Δθ)が5〜40度である請求項1記載の欠陥検査装置。
The angle (θ1) is 25 to 60 degrees, the angle (θ2) is 10 to 30 degrees,
The defect inspection apparatus according to claim 1, wherein the angle (θ1) is larger than the angle (θ2), and the angle (Δθ) is 5 to 40 degrees.
前記角度(θ1)が、10〜30度であり、前記角度(θ2)が、20〜90度であり、
前記角度(θ1)は前記角度(θ2)よりも大きく、前記角度(Δθ)が、10〜60度である請求項1記載の欠陥検査装置。
The angle (θ1) is 10 to 30 degrees, the angle (θ2) is 20 to 90 degrees,
The defect inspection apparatus according to claim 1, wherein the angle (θ1) is larger than the angle (θ2), and the angle (Δθ) is 10 to 60 degrees.
前記ラインカメラが前記検査部位を撮像する軸に向かってみたとき、前記部材の軸心方向と、前記第二の照明の照射する軸とのなす角度が、0〜60度の方向から照射するものである請求項3記載の欠陥検査装置。 When the line camera is viewed toward the axis that images the inspection site, the angle between the axial direction of the member and the axis of the second illumination is 0 to 60 degrees. The defect inspection device according to claim 3. 前記部材を周方向に回転させる部材の回転手段を有する請求項1〜4のいずれかに記載の欠陥検査装置。 The defect inspection apparatus according to any one of claims 1 to 4, further comprising a member rotating unit that rotates the member in a circumferential direction. 前記ラインカメラが撮像した像を画像解析する画像解析部を有し、
前記ラインカメラが前記部材を回転させながら撮像することで前記部材の周面を撮像する請求項1〜5のいずれかに記載の欠陥検査装置。
An image analysis unit that analyzes an image captured by the line camera,
The defect inspection apparatus according to claim 1, wherein the line camera images the peripheral surface of the member by imaging the member while rotating the member.
前記ラインカメラが撮像した像の輝度を、前記部材の欠陥の有無を判別するための輝度の閾値と比較して欠陥の有無を判別する判別部を有する請求項1〜6のいずれかに記載の欠陥検査装置。 The brightness of the image imaged by the line camera is compared with a brightness threshold value for determining the presence/absence of a defect of the member, and a determination unit for determining the presence/absence of a defect is provided. Defect inspection equipment. 柱状の部材の表面の欠陥検査方法であって、
前記部材の軸心方向と平行に検査部位を照射する第一の照明と、前記検査部位を前記第一の照明と異なる角度から照射する第二の照明とにより照射する照射工程と、
前記照射工程で照射された検査部位をラインカメラにより撮像する撮像工程とを有し、
前記ラインカメラが前記検査部位を撮像する軸と、前記第一の照明が前記検査部位を照射する軸とのなす角度(θ1)が10〜60度の角度で、前記部材の高さ方向に沿って線状に照射し、
前記ラインカメラが前記検査部位を撮像する軸と、前記第二の照明が前記検査部位を照射する軸とのなす角度(θ2)が10〜90度の角度で、前記第一の照明が前記検査部位を照射する軸と、前記第二の照明が前記検査部位を照射する軸とのなす角度(Δθ)が10〜50度の角度で、前記部材の高さ方向に沿って線状に照射する欠陥検査方法。
A method for inspecting defects on the surface of a columnar member,
An irradiation step of irradiating with a first illumination that irradiates an inspection site parallel to the axial direction of the member, and a second illumination that irradiates the inspection site from an angle different from the first illumination,
An imaging step of imaging the inspection site irradiated in the irradiation step with a line camera,
The angle (θ1) between the axis with which the line camera images the inspection site and the axis with which the first illumination irradiates the inspection site is 10 to 60 degrees, and is along the height direction of the member. Irradiate linearly
The angle (θ2) formed by the axis of the line camera capturing the inspection region and the axis of the second illumination irradiating the inspection region is 10 to 90 degrees, and the first illumination is the inspection region. The angle (Δθ) formed by the axis for irradiating the part and the axis for irradiating the inspection part with the second illumination is an angle of 10 to 50 degrees, and linear irradiation is performed along the height direction of the member. Defect inspection method.
JP2019015542A 2019-01-31 2019-01-31 Defect inspection apparatus and defect inspection method Active JP6605772B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019015542A JP6605772B1 (en) 2019-01-31 2019-01-31 Defect inspection apparatus and defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019015542A JP6605772B1 (en) 2019-01-31 2019-01-31 Defect inspection apparatus and defect inspection method

Publications (2)

Publication Number Publication Date
JP6605772B1 JP6605772B1 (en) 2019-11-13
JP2020122738A true JP2020122738A (en) 2020-08-13

Family

ID=68532224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019015542A Active JP6605772B1 (en) 2019-01-31 2019-01-31 Defect inspection apparatus and defect inspection method

Country Status (1)

Country Link
JP (1) JP6605772B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7111370B2 (en) * 2019-10-23 2022-08-02 株式会社野毛電気工業 Defect inspection method
CN112903693A (en) * 2021-01-18 2021-06-04 菲特(天津)检测技术有限公司 Image acquisition system, method, product, equipment and terminal based on gear shaft visual detection

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11508039A (en) * 1995-06-15 1999-07-13 ブリテイツシユ・ニユクリアー・フユールズ・ピー・エル・シー Object surface inspection
JP2001041896A (en) * 1999-07-27 2001-02-16 Mitsubishi Chemicals Corp Method and apparatus for detecting flaw of roll-shaped film
JP2002139441A (en) * 2000-06-26 2002-05-17 Dac Engineering Kk Lighting unit for quality inspection
US20060126061A1 (en) * 2004-12-10 2006-06-15 International Business Machines Corporation Automated inspection system and method
US20080192243A1 (en) * 2007-02-09 2008-08-14 Kamran Uz Zaman Plural light source and camera to detect surface flaws
JP2013024809A (en) * 2011-07-25 2013-02-04 Kobe Steel Ltd Surface inspection device and surface inspection method
JP2016011837A (en) * 2014-06-27 2016-01-21 三菱レイヨン株式会社 Method for inspecting mold and method for manufacturing mold
JP2016212060A (en) * 2015-05-13 2016-12-15 国立大学法人岐阜大学 Mirror surface inspecting device
JP2017173234A (en) * 2016-03-25 2017-09-28 株式会社サンユウ Surface flaw inspection method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11508039A (en) * 1995-06-15 1999-07-13 ブリテイツシユ・ニユクリアー・フユールズ・ピー・エル・シー Object surface inspection
JP2001041896A (en) * 1999-07-27 2001-02-16 Mitsubishi Chemicals Corp Method and apparatus for detecting flaw of roll-shaped film
JP2002139441A (en) * 2000-06-26 2002-05-17 Dac Engineering Kk Lighting unit for quality inspection
US20060126061A1 (en) * 2004-12-10 2006-06-15 International Business Machines Corporation Automated inspection system and method
US20080192243A1 (en) * 2007-02-09 2008-08-14 Kamran Uz Zaman Plural light source and camera to detect surface flaws
JP2013024809A (en) * 2011-07-25 2013-02-04 Kobe Steel Ltd Surface inspection device and surface inspection method
JP2016011837A (en) * 2014-06-27 2016-01-21 三菱レイヨン株式会社 Method for inspecting mold and method for manufacturing mold
JP2016212060A (en) * 2015-05-13 2016-12-15 国立大学法人岐阜大学 Mirror surface inspecting device
JP2017173234A (en) * 2016-03-25 2017-09-28 株式会社サンユウ Surface flaw inspection method

Also Published As

Publication number Publication date
JP6605772B1 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
US7924418B2 (en) Inspection apparatus and method
JP2010223621A (en) Inner surface inspection method of tubular article
JP4739044B2 (en) Appearance inspection device
JP6772084B2 (en) Surface defect inspection equipment and surface defect inspection method
JP2007218889A (en) Surface defect detection method and surface defect detecting device
JP2007017377A (en) Fluorescent flaw detector and fluorescent flaw detecting method
JP2012026858A (en) Device for inspecting inner peripheral surface of cylindrical container
JP6769182B2 (en) Surface inspection equipment and surface inspection method for steel materials
JP6605772B1 (en) Defect inspection apparatus and defect inspection method
JP2007071661A (en) Visual inspection device
WO2022030325A1 (en) Inspection device, inspection method, and piston manufacturing method
JP2009109243A (en) Device for inspecting resin sealing material
JP2009236648A (en) Visual inspection device
JP2009236760A (en) Image detection device and inspection apparatus
JP6321709B2 (en) Surface wrinkle inspection method
JP5634390B2 (en) Glass container defect inspection method and apparatus
JP2008026149A (en) Visual examination device
JP7111370B2 (en) Defect inspection method
JP2010266366A (en) Characteristic extraction method of image, tool defect inspection method, and tool defect inspection device
JP2008045957A (en) Visual inspection device of bearing roll
JP5948974B2 (en) Surface defect inspection equipment
JP5787668B2 (en) Defect detection device
JP2010230450A (en) Object surface inspection apparatus
JP5266118B2 (en) Defect inspection method and defect inspection apparatus for object surface
JP4967132B2 (en) Defect inspection method for object surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190131

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190131

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191016

R150 Certificate of patent or registration of utility model

Ref document number: 6605772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250