JP2020120544A - AC generator - Google Patents

AC generator Download PDF

Info

Publication number
JP2020120544A
JP2020120544A JP2019011742A JP2019011742A JP2020120544A JP 2020120544 A JP2020120544 A JP 2020120544A JP 2019011742 A JP2019011742 A JP 2019011742A JP 2019011742 A JP2019011742 A JP 2019011742A JP 2020120544 A JP2020120544 A JP 2020120544A
Authority
JP
Japan
Prior art keywords
permanent magnets
rotor
generated
coil
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019011742A
Other languages
Japanese (ja)
Other versions
JP6543426B1 (en
Inventor
冨田 学
Manabu Tomita
学 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019011742A priority Critical patent/JP6543426B1/en
Application granted granted Critical
Publication of JP6543426B1 publication Critical patent/JP6543426B1/en
Publication of JP2020120544A publication Critical patent/JP2020120544A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

To provide an inexpensive generator with a voltage waveform and a frequency capable of being directly connected to home appliances or the like, easy to use as an emergency power source for home use.SOLUTION: A generator includes: a rotor in which a plurality of sets of two permanent magnets 2 are radially arranged around a rotary shaft 4; and a stator having a plurality of armature coils 1 located between two permanent magnets 2. Since the two permanent magnets 2 have a magnetic direction for attracting to each other, a magnetic flux is formed between them and directions of magnetism of the permanent magnets 2 adjacent to the periphery of the rotor are arranged alternately. The armature coils 1 respectively have shapes of substantially U-shaped and of approximated to a sinusoidal waveform.SELECTED DRAWING: Figure 1

Description

この発明は交流発電機に関するものである。 The present invention relates to an alternator.

特許文献1等に見られる様に、風力発電機は、風任せのため発電機の回転数が一定しない、すなわち周波数が安定しない、発生する電圧波形も規則的な正弦波にはならず、家庭用の交流電源として直接使用することが出来ない。その為、発生した交流をいったん直流に変換し、その後DC/ACコンバータ等で交流に再変換して家庭用電源に供給もしくは売電のため送電線に連系するという手段を取らざるを得なかった。 As can be seen in Patent Document 1 and the like, in a wind power generator, the number of rotations of the power generator is not constant due to the wind, that is, the frequency is not stable, the generated voltage waveform does not become a regular sine wave, and the household It cannot be used directly as an AC power supply. Therefore, there is no choice but to take the means of once converting the generated alternating current into direct current, and then reconverting it into alternating current with a DC/AC converter and supplying it to a household power source or connecting it to a power transmission line for selling power. It was

特許文献2においても、発生した単相交流電圧は、家庭用の交流電源として直接使用することが出来ない為、インバータ及び電圧安定化回路により、所定電圧の商用周波数の単相交流電圧に変換する方法を提案している。 Also in Patent Document 2, since the generated single-phase AC voltage cannot be directly used as a household AC power supply, it is converted into a single-phase AC voltage having a commercial frequency of a predetermined voltage by an inverter and a voltage stabilizing circuit. Proposing a method.

特許文献3は、回転子に円形磁石を使用し、固定子である電機子はコアレスの複数の円の渦巻状コイルを平面に配置し、DCモーターによる回転を提案している。しかし、円形磁石と渦巻状の電機子コイルを組み合わせた場合、磁石の移動に伴いコイルの中で打ち消しあう方向に起電力が発生する瞬間があるので、発生電圧の効率が悪く、また波形も正弦波にならない。このため、特許文献3の発明においては、発生電圧を高くするために回転子の回転数を上げているが、これにより発生する交流の周波数も高くなる。その結果、家庭用の交流電源として直接使用することが出来ない為、発生した交流をいったん直流に変換し、その後DC/ACコンバータ等で交流に再変換せざるを得ない。 Patent Document 3 proposes rotation by a DC motor, in which a circular magnet is used for a rotor, an armature as a stator has a plurality of coreless spiral coils arranged on a plane. However, when a circular magnet and a spiral armature coil are combined, there is a moment when electromotive force is generated in the coil in the direction of canceling each other as the magnet moves, so the efficiency of the generated voltage is poor and the waveform is sinusoidal. It doesn't make waves. Therefore, in the invention of Patent Document 3, the rotation speed of the rotor is increased in order to increase the generated voltage, but the frequency of the alternating current generated by this is also increased. As a result, since it cannot be directly used as a household AC power supply, the generated AC must be converted to DC once and then converted again to AC by a DC/AC converter or the like.

特許文献4では、やはり電機子として渦巻状のコイルを平面に配置した水力発電システムを提案しているが、この方法も水力発電なので発電機の回転数が一定しない。すなわち周波数が安定せず、発生する電圧波形も規則的な正弦波にならないため、発生した交流をいったん直流に変換し、DC/ACコンバータ等で家庭用の交流電源に変換する方法を採用している。発生する交流電圧も、固定子が渦巻状コイルのため、波形が正弦波にならない。 Patent Document 4 also proposes a hydroelectric power generation system in which spiral coils are arranged on a plane as an armature, but since this method is also hydroelectric power generation, the rotation speed of the generator is not constant. That is, since the frequency is not stable and the generated voltage waveform does not become a regular sine wave, a method is used in which the generated alternating current is once converted into direct current and then converted into a household alternating current power source with a DC/AC converter or the like. There is. The generated AC voltage does not have a sinusoidal waveform because the stator is a spiral coil.

前記いずれの発明も周波数が一定しなかったり、発生する電圧波形が正弦波にならなかったりということから、家庭用の交流電源として使用するためには発生した交流をいったん直流に変換してDC/ACコンバータ等で変換するという手段を選ばざるを得ない。また、発生する交流電圧を高める為に、永久磁石の磁束が固定子である電機子コイルと鎖交する部分に鉄心(コア)を配置すると、永久磁石と鉄心(コア)が引き合う力(コギングトルク)が発生し、回転子がスムーズに回転できないので、電機子コイルはコアレスとせざるを得ないことは共通の課題である。その対策として電機子コイルの形状を扇形やサインカーブに類似した湾曲形のリング状とする方法が提案されているが、コアレスの電機子コイルでは限界がある。 In any of the above inventions, the frequency is not constant, or the generated voltage waveform is not a sine wave. Therefore, in order to use it as a household AC power supply, the generated AC is once converted into DC and DC/ There is no choice but to select a means of conversion using an AC converter or the like. Also, in order to increase the generated AC voltage, if the iron core (core) is placed in the part where the magnetic flux of the permanent magnet links with the armature coil that is the stator, the force (cogging torque) between the permanent magnet and the iron core (core). ) Occurs, and the rotor cannot rotate smoothly, so it is a common subject that the armature coil must be coreless. As a countermeasure, a method has been proposed in which the shape of the armature coil is formed into a fan shape or a curved ring shape similar to a sine curve, but there is a limit in the coreless armature coil.

特許第3047180号公報Japanese Patent No. 3047180 特開2005-160197号公報Japanese Patent Laid-Open No. 2005-160197 特開2016-92917号公報JP 2016-92917 JP 実用新案第3175706号公報Utility Model No. 3175706

家電機器等に直接的に接続することが可能な電圧波形及び周波数を備え、家庭用の非常用電源として使い易く安価な交流発電機の提供を目的とする。 An object of the present invention is to provide an AC generator which has a voltage waveform and frequency that can be directly connected to home electric appliances and the like and is easy to use and inexpensive as a household emergency power source.

本発明の発電機は、二つの永久磁石を回転軸の周囲に放射状に複数組配置した回転子と、前記二つの永久磁石の間に位置する複数の電機子コイルを有す固定子とを有し、前記二つの永久磁石は互いに引き合う磁性の方向を持つため、その間に磁束を形成し、前記回転子の外周に隣接する永久磁石の磁性の方向が交互に配置され、前記複数の電機子コイルはそれぞれ略U字型、且つ正弦波形(サインカーブ)に近似した形状であることを特徴とする。 The generator of the present invention has a rotor in which a plurality of sets of two permanent magnets are radially arranged around a rotating shaft, and a stator having a plurality of armature coils located between the two permanent magnets. However, since the two permanent magnets have magnetic directions that attract each other, a magnetic flux is formed therebetween, and the magnetic directions of the permanent magnets adjacent to the outer circumference of the rotor are alternately arranged. Are each substantially U-shaped and have a shape approximate to a sine waveform (sine curve).

本発明によれば、家電機器等に直接的に接続することが可能な電圧波形及び周波数を備え、家庭用の非常用電源として使い易く安価な交流発電機の提供することができる。 According to the present invention, it is possible to provide an inexpensive AC generator that has a voltage waveform and a frequency that can be directly connected to home electric appliances and the like and is easy to use as a household emergency power source.

本発明の非常用交流発電機の一実施例を示す斜視図、A perspective view showing an embodiment of an emergency AC generator of the present invention, 図1の軸方向断面図、Axial sectional view of FIG. 1, 図1の上面図、The top view of FIG. 1, 実施例1の回転子斜視図、A rotor perspective view of the first embodiment, フレミングの右手の法則の説明図、Illustration of Fleming's right-hand rule, 三角型コイルの発電説明図、および、三角型コイルの発電波形、Power generation explanatory diagram of the triangular coil, and power generation waveform of the triangular coil, 台型コイルの発電説明図、および、台型コイルの発電波形、Power generation explanatory diagram of the trapezoidal coil, and power generation waveform of the trapezoidal coil, 略U字型コイルの発電説明図、および、略U字型コイルの発電波形、Power generation explanatory diagram of the substantially U-shaped coil, and the power generation waveform of the substantially U-shaped coil, この発明に関わる実施例1のコイル形状を変形した側面図、The side view which deformed the coil shape of Example 1 concerning this invention, この発明に関わる実施例3の側面図、A side view of Embodiment 3 relating to the present invention, この発明に関わる実施例4の側面図、A side view of Embodiment 4 relating to the present invention, この発明に関わる実施例5の側面図、A side view of a fifth embodiment according to the present invention, この発明に関わる実施例6のドーナツ状永久磁石の斜視図。The perspective view of the doughnut-shaped permanent magnet of Example 6 which concerns on this invention.

以下、本発明の発電機をそれぞれの実施例に基づいて説明するが、本発明がこれらの実施例に限定されないことは言うまでもない。 Hereinafter, the generator of the present invention will be described based on the respective embodiments, but it goes without saying that the present invention is not limited to these embodiments.

まず、発電波形を正弦波形(サインカーブ)に近似した形状にするための方法を説明する。 First, a method for making the power generation waveform approximate to a sine waveform (sine curve) will be described.

フレミングの右手の法則を利用した発電機の基本は図5に示す様に、磁束の中を電線が通過することにより、電流が発生するという現象を用いている。例えば、図6(A)の様に対向する永久磁石で形成した磁束を、三角形の形状にした電線に対して、永久磁石を図の右から左方向に移動させると、相対的に三角形の電線が図の左から右に移動したことと同じである為、電線の右側には図6(A)に示した様に図の下から上に向かって電流が発生する。永久磁石が図の右側の入口部分を越えて三角形の頂点を通過すると図6(B)に示す様に、左側の電線には同じく図の下から上に向かって電流が発生するので、電線の中では電流の向きが逆転する。永久磁石が左側の電線を超えたところで、次の永久磁石がまた右側の電線に対して作用し、この永久磁石は極性が反転しているので右側のコイルには図の上から下に向かって新たに電流が発生する。すなわち、電線の中ではその前に発生した左側の電流と同じ向きに電流が流れる。この現象を繰り返すことにより電線の中では連続的に交流電流が発生し、永久磁石が連続して通過するので、図6(C)に示す様に、三角波の交流波形となる。 As shown in FIG. 5, the basics of a generator using Fleming's right-hand rule uses a phenomenon in which an electric current is generated when an electric wire passes through a magnetic flux. For example, when the magnetic flux formed by the opposing permanent magnets as shown in FIG. 6(A) is moved from the right to the left in the figure with respect to the electric wire having a triangular shape, the electric wire having a relatively triangular shape is obtained. Is the same as that from the left to the right in the figure, so a current is generated from the bottom to the top of the figure on the right side of the wire as shown in FIG. 6(A). When the permanent magnet passes over the entrance portion on the right side of the figure and passes through the apex of the triangle, as shown in FIG. 6(B), a current is generated from the bottom to the top of the wire on the left side as well. Inside, the direction of the current is reversed. When the permanent magnet crosses the wire on the left side, the next permanent magnet acts on the wire on the right side again, and since the polarity of this permanent magnet is reversed, the coil on the right side goes from the top to the bottom of the figure. New electric current is generated. That is, in the electric wire, a current flows in the same direction as the current on the left side generated before that. By repeating this phenomenon, an alternating current is continuously generated in the electric wire and the permanent magnet continuously passes therethrough, so that a triangular alternating current waveform is obtained as shown in FIG. 6(C).

図7(A)の様に電線の形状を台形とした場合は右側の斜め部分の電線に発生する電流は三角形の場合と同じであるが、図7(B)に示す様に台形の上底部分を永久磁石が通過する際には右手の法則から外れる為、電線には電流が発生しない。図7(C)に示す様に永久磁石が台形上底部分を過ぎて左側の斜め部分の電線を通過した時点で電流が発生する。電線の形状が台形の場合は図7(D)に示す様に、部分的に電流がゼロとなる不規則な三角波の交流波形となる。 When the electric wire has a trapezoidal shape as shown in FIG. 7(A), the current generated in the electric wire in the diagonal part on the right side is the same as that of the triangular shape, but as shown in FIG. When the permanent magnet passes through the part, it deviates from the right-hand rule, so no electric current is generated in the wire. As shown in FIG. 7(C), a current is generated when the permanent magnet passes the trapezoidal upper bottom portion and passes through the electric wire in the left diagonal portion. When the electric wire has a trapezoidal shape, as shown in FIG. 7(D), an alternating triangular alternating-current waveform in which the current is partially zero is obtained.

図8の様に電線の形状を略U字型、且つ正弦波形(サインカーブ)に近似した形状とした場合、連続して発生する交流波形は正弦波形に近い波形となる。これまでの説明では電線を単線として扱ってきたが、これを複数回巻いてコイル状にした場合でも、発生する交流波形は同じであることは言うまでもない。 As shown in FIG. 8, when the electric wire has a substantially U-shape and a shape approximate to a sine waveform (sine curve), an alternating current waveform that is continuously generated is a waveform close to a sine waveform. Although the electric wire has been treated as a single wire in the above description, it goes without saying that the generated AC waveform is the same even when the electric wire is wound a plurality of times to form a coil.

本発明では、図8に示す方法により、コイルの形状を略U字型、且つ正弦波(サインカーブ)に近似した形状とし、対向する永久磁石で磁束を形成し、隣り合った永久磁石の極性がそれぞれ反転した組合せのものをコイルに対し連続的に通過させることによって、正弦波に近い交流波形を発電するものである。 In the present invention, by the method shown in FIG. 8, the shape of the coil is made substantially U-shaped and approximates to a sine wave (sine curve), magnetic flux is formed by opposing permanent magnets, and polarities of adjacent permanent magnets are formed. By continuously passing the inversion combinations through the coil, an AC waveform close to a sine wave is generated.

すなわち、図1に示す様に、回転子である複数組の永久磁石2の間に位置する複数の固定子である電機子コイル1の形状を略U字型、且つ正弦波形(サインカーブ)に近似した形状とすることにより、発生する電圧波形を規則的な正弦波形に近づけることが可能となる。また複数の永久磁石2の数を複数の電機子コイル1の数の2倍の数を配置し、回転子を駆動するモーター3の回転数を適切に一定速度で回転させることにより、発電する周波数は家庭用の交流電源として直接的に使用できる周波数を得ることが可能である。発生する電圧を高くするためには、コギングトルクの力が及ばない永久磁石2の磁束が鎖交する電機子コイル1部分から離れた開口部の位置に磁心6を配置することにより可能となる。 That is, as shown in FIG. 1, the shape of a plurality of stator armature coils 1 located between a plurality of pairs of permanent magnets 2 which are rotors is substantially U-shaped and has a sinusoidal waveform (sine curve). With the approximated shape, the generated voltage waveform can be approximated to a regular sinusoidal waveform. In addition, the number of the plurality of permanent magnets 2 is set to be twice the number of the plurality of armature coils 1, and the number of rotations of the motor 3 for driving the rotor is appropriately rotated at a constant speed to generate a frequency. It is possible to obtain a frequency that can be used directly as a household AC power supply. In order to increase the generated voltage, it is possible to dispose the magnetic core 6 at the position of the opening apart from the portion of the armature coil 1 where the magnetic flux of the permanent magnet 2 which is not exerted by the cogging torque acts.

なお、特許文献1では、電機子コイルの形状をサインカーブに類似した湾曲形のリング状に形成する方法を提示している。しかし、段落0007に記載されるように、この目的は円形コイルに比べて誘起起電力が大きくなる為としており、発生する電圧波形を正弦波形に近づける為の手段としている訳ではない。 In addition, in patent document 1, the method of forming the armature coil in the shape of a curved ring similar to a sine curve is presented. However, as described in Paragraph 0007, this purpose is to make the induced electromotive force larger than that of the circular coil, and is not a means for making the generated voltage waveform close to a sine waveform.

図1に示した様に本発明は対向する二つの永久磁石2(磁石対)を回転軸4の周囲に放射状に複数組配置した回転子を備え、図2に示した様に前記対向する二つの永久磁石2(磁石対)の間に位置する複数の電機子コイル1を有す固定子を有する。図3に示した様に前記固定子を挟むように配置された磁石対の二つの永久磁石2は互いに引き合う磁性の方向を持ち、且つ、前記回転子の外周に隣接する永久磁石2の磁性の方向を交互に配置して、各磁石対が60度を基準とする所定角度に配置される。さらに、前記複数の電機子コイル1はそれぞれ120度を基準とする所定角度で配置され、一つの電機子コイル1はそのコイル両端が約60度の角度で配置される様にフォーミングされている。前記回転子はDCモーター3等により一定速度で回転することにより、発電を行うものである。 As shown in FIG. 1, the present invention is provided with a rotor in which a plurality of opposing two permanent magnets 2 (magnet pairs) are radially arranged around a rotary shaft 4, and as shown in FIG. It has a stator with a plurality of armature coils 1 located between two permanent magnets 2 (magnet pairs). As shown in FIG. 3, the two permanent magnets 2 of the magnet pair arranged so as to sandwich the stator have magnetism directions that attract each other, and the magnetism of the permanent magnets 2 adjacent to the outer circumference of the rotor. The directions of the magnets are alternately arranged so that each magnet pair is arranged at a predetermined angle based on 60 degrees. Further, each of the plurality of armature coils 1 is arranged at a predetermined angle based on 120 degrees, and one armature coil 1 is formed such that both ends of the coil are arranged at an angle of about 60 degrees. The rotor rotates at a constant speed by the DC motor 3 or the like to generate power.

回転子である永久磁石2の回転する円周軌道には3個の電機子コイル1が120度を基準とするほぼ等間隔で配置されており、前記所定角度で隣り合った、磁性の方向が反転した磁石対が電機子コイル1に対し連続的に通過することによって、交流波形を発電する。発生する電圧波形を正弦波に近づける為には、回転子の磁石対が通過する(磁束が固定子である電機子コイル1と鎖交する)部分の略U字型のコイル1の形状を正弦波形(「サインカーブ」の正部分(1サイクルの半分=半周期分)と近い形状にすれば良いことは、図8により説明を行ったとおりである。また、正弦波の半周期に相当する間隔で略U字型の電機子コイル1を挟んで対向する隣り合った永久磁石2のN,S極性を逆に配置する。(図3)この状態で、対向するN,S極間の永久磁石2(回転子)が固定子である電機子コイル1(形状が正弦波の正部分)を挟んで回転子が回転する方向に移動して、電機子コイル1(正弦波の正部分)の半周期分を磁極方向N→Sによって電流が流れ、その永久磁石2が半周期分を移動し終わった時点で次の対向する永久磁石2が通過するが、この対向する永久磁石2は磁極方向S→Nであるので、先ほど通過した永久磁石2によって流れた方向とは逆方向に電流が流れる。この磁極が互いに引き合う向きの対向する永久磁石2の組合せが連続して一定速度で電機子コイル1の両側を通過することによって、電機子コイル1には交流電流が発生する。電機子コイル1の形状は、完全な正弦波とすることは略U字型である以上、不可能であるが、その形状をなるべく正弦波に近い形状とすれば、発生する交流電圧の波形も正弦波に近くなる。この発電機で発電した電圧は商用電源から送電線に送って売電するわけではない。あくまでも非常用交流発電機として使用するため、発生する交流電圧が完全な正弦波形でなくても、実用上差し支えない。また、その電圧波形は正弦波と比較して大きな高調波を含んでいるわけではないので、使用する家庭用機器に対してもほとんどダメージを与えない。仮に商用電源として売電等を行うのであれば、発生した交流を直流に変換し、DC/ACコンバータ等であらためて完全な正弦波の交流に変換すれば可能である。 Three armature coils 1 are arranged at substantially equal intervals on the basis of 120 degrees on a rotating circular orbit of a permanent magnet 2 which is a rotor, and the directions of magnetism that are adjacent to each other at the predetermined angle are The inverted magnet pair continuously passes through the armature coil 1 to generate an AC waveform. In order to make the generated voltage waveform close to a sine wave, the shape of the substantially U-shaped coil 1 in the portion where the magnet pair of the rotor passes (the magnetic flux links with the armature coil 1 which is the stator) is sinusoidal. As described with reference to Fig. 8, it is sufficient to make the shape close to the waveform (the positive part of the "sine curve" (half of one cycle = half cycle), which corresponds to the half cycle of a sine wave. The N and S polarities of the adjoining permanent magnets 2 facing each other with the substantially U-shaped armature coil 1 sandwiched therebetween are arranged opposite to each other (Fig. 3). The magnet 2 (rotor) moves in the direction in which the rotor rotates with the armature coil 1 (the shape of which is the positive part of the sine wave) sandwiching the stator, so that the armature coil 1 (the positive part of the sine wave) A current flows in the magnetic pole direction N→S for a half cycle, and when the permanent magnet 2 has finished moving for the half cycle, the next opposing permanent magnet 2 passes, but the opposing permanent magnet 2 is in the magnetic pole direction. Since S→N, a current flows in a direction opposite to the direction in which the permanent magnet 2 has passed through. The combination of the facing permanent magnets 2 in which the magnetic poles attract each other continuously at a constant speed in the armature coil. An alternating current is generated in the armature coil 1 by passing on both sides of 1. The shape of the armature coil 1 is impossible to be a complete sine wave because it is substantially U-shaped. However, if the shape is made as close to a sine wave as possible, the waveform of the generated AC voltage will also be close to a sine wave.The voltage generated by this generator is not sent from the commercial power source to the power transmission line for power sale. Since it is used as an emergency AC generator, it does not matter if the generated AC voltage is not a perfect sine waveform in practice, and the voltage waveform contains large harmonics compared to a sine wave. However, if the power is sold as a commercial power source, the generated alternating current is converted to direct current, and a DC/AC converter etc. It is possible if converted to a sine wave alternating current.

電機子コイル1の数が3個の場合、回転子の磁極が互いに引き合う向きの対向する永久磁石2はコイルの数の2倍すなわち6組を必要とする。電機子コイル1は回転軸4の軸方向から見てそれぞれが120度を基準とする所定角度にあり、一つのコイルの両側の巻線の位置は60度を基準とするほぼ等間隔で配置されるものとする。回転子である永久磁石2の6組の位置も回転軸4から見て60度を基準とするほぼ等間隔で配置され、それぞれの隣り合った永久磁石2の極性は逆になっている。(図3) この配置で回転軸4を中心として回転子の永久磁石2が回転し、一つの電機子コイル1の入口側で外側永久磁石2(N極)から内側永久磁石2(S極)に向けて磁束が通過する。電機子コイル1の入口側及び出口側の間隔ピッチと回転する永久磁石2の間隔ピッチが同じで、隣り合った永久磁石2の極性が異なるため、電機子コイル1の入口側で図の上から下へ電流が発生するとき、電機子コイル1の出口側では反対向きに電流が発生する。すなわち、一つの電機子コイル1の中では同じタイミングで同じ向きに電流が発生する。この例の場合、電機子コイル1を3個、それぞれ約120度間隔で配置しており、回転子の永久磁石2も同様の間隔ピッチで配置され、回転しているため、3個の電機子コイル1にはほぼ同じタイミングで電流が発生する。従って、3個の電機子コイル1を直列に接続すれば、一個あたりの電機子コイル1が発電する電圧の約3倍の電圧が得られる。また、3個の電機子コイル1を並列に接続すれば、一個あたりの電機子コイル1が発電する電流の約3倍の電流が得られる。一個あたりの電機子コイル1は巻数を増やすとそれに比例して得られる電圧が増加するが、回転子の磁極が互いに引き合う向きの対向する永久磁石2に挟まれた内側に配置しなければならない為、寸法上の制約があるので巻数をむやみに増やすことは出来ない。このため、電機子コイル1を直列または並列に接続して、得られた電圧が低い場合はステップアップ変圧器で昇圧することにより、非常用電源として必要な電圧を得ることが可能となる。 When the number of armature coils 1 is three, the permanent magnets 2 facing each other in the direction in which the magnetic poles of the rotor attract each other require twice the number of coils, that is, six sets. The armature coils 1 are each at a predetermined angle based on 120 degrees as viewed in the axial direction of the rotating shaft 4, and the windings on both sides of one coil are arranged at substantially equal intervals based on 60 degrees. Shall be. The positions of the six pairs of permanent magnets 2 that are rotors are also arranged at substantially equal intervals with reference to 60 degrees when viewed from the rotary shaft 4, and the polarities of the adjacent permanent magnets 2 are opposite. (FIG. 3) With this arrangement, the permanent magnet 2 of the rotor rotates about the rotary shaft 4, and the outer permanent magnet 2 (N pole) to the inner permanent magnet 2 (S pole) on the inlet side of one armature coil 1. The magnetic flux passes toward. At the inlet side of the armature coil 1, the spacing pitch of the rotating permanent magnets 2 is the same as that at the outlet side, and the polarities of the adjacent permanent magnets 2 are different. When the current is generated downward, the current is generated in the opposite direction on the outlet side of the armature coil 1. That is, in one armature coil 1, current is generated in the same direction at the same timing. In the case of this example, three armature coils 1 are arranged at intervals of about 120 degrees, and the permanent magnets 2 of the rotor are also arranged at a similar pitch and rotate, so that three armatures are provided. Current is generated in the coil 1 at almost the same timing. Therefore, if three armature coils 1 are connected in series, a voltage about three times the voltage generated by each armature coil 1 can be obtained. Further, if three armature coils 1 are connected in parallel, a current that is about three times the current generated by each armature coil 1 can be obtained. Although the voltage obtained in proportion to the increase in the number of turns of the armature coil 1 increases in proportion to the number of turns, since the magnetic poles of the rotor must be arranged inside the opposing permanent magnets 2 facing each other. However, it is not possible to unnecessarily increase the number of turns due to size restrictions. Therefore, by connecting the armature coils 1 in series or in parallel and boosting the voltage with a step-up transformer when the obtained voltage is low, it is possible to obtain the voltage required as an emergency power supply.

回転子である永久磁石2の回転する円周軌道には3個の電機子コイル1が120度を基準とするほぼ等間隔で配置されているので、回転子が1周する間に3周期分の発電が行われる。回転子を駆動するDCモーター3の回転数を1000rpm(回転/分)とすると、1秒間当たりの回転数は、1000÷60=16.666・・rps(回転/秒)となる。回転子が1周する間に3周期分の発電が行われるので、1秒当たりの発電周期は16.666・・×3=50周期分、すなわち50Hzの発電周波数となり、家庭用交流電源として直接的に接続することが可能な周波数が得られる。また、駆動するDCモーター3の回転数を1200rpmとすると、発電周波数は60Hzとなる。 Since the three armature coils 1 are arranged at substantially equal intervals on the basis of 120 degrees on the rotating circular orbit of the permanent magnet 2 which is the rotor, three cycles are required for one rotation of the rotor. Is generated. When the number of rotations of the DC motor 3 that drives the rotor is 1000 rpm (revolutions/minute), the number of rotations per second is 1000÷60=16.666··rps (revolutions/second). Since three cycles of power are generated during one revolution of the rotor, the power generation cycle per second is 16.666...×3=50 cycles, that is, a power generation frequency of 50 Hz, which is directly used as a household AC power supply. A frequency that can be electrically connected is obtained. Further, when the rotation speed of the driven DC motor 3 is 1200 rpm, the power generation frequency is 60 Hz.

従来技術では、永久磁石2の磁束が固定子である電機子コイル1と鎖交する部分に鉄心(コア)を配置すると、永久磁石2と鉄心(コア)が引き合う力(コギングトルク)が発生し、回転子がスムーズに回転できない為、電機子コイル1はコアレスとせざるを得ず、その対策として電機子コイル1の形状を扇形やサインカーブに類似した湾曲形のリング状とする方法を提案している。しかるに、本発明ではコギングトルクの影響が及ばない位置、すなわち回転子である永久磁石2と鎖交する部分から離れた位置である開口部に磁心6を配置することにより、コギングトルクの発生を回避している。コアレスの電機子コイル1の周回する内部に磁心6を配置すると、電機子コイル1のインダクタンスが増加する。回転子である永久磁石2により、電機子コイル1に電流が発生するわけであるが、電機子コイル1のインダクタンスが高い方が電機子コイル1に発生する電圧は高くなる。1個の電機子コイル1をリアクトルとして見た場合、巻線の両端に発生する電圧Vは
V=2πfLI が成立する。
ここで、f:周波数(Hz)、L:インダクタンス(H)、I:電流(A)である。すなわち、電機子コイル1の周回する内部に磁心6を配置するので、電機子コイル1のインダクタンスが大きくなる。よって、電機子コイル1の両端に発生する電圧は高くなる。
尚、電機子コイル1の形状を図9の様に下部分を斜めに変形しても発生する電圧に変化は無い。
In the prior art, when the iron core (core) is arranged in a portion where the magnetic flux of the permanent magnet 2 links with the armature coil 1 which is the stator, a force (cogging torque) that attracts the permanent magnet 2 and the iron core (core) is generated. Since the rotor cannot rotate smoothly, the armature coil 1 has to be coreless, and as a countermeasure against this, a method of making the armature coil 1 into a fan-shaped or curved ring shape similar to a sine curve is proposed. ing. However, in the present invention, by arranging the magnetic core 6 at a position where the influence of the cogging torque does not affect, that is, at a position away from the portion that links the permanent magnet 2 that is the rotor, the generation of the cogging torque is avoided. doing. When the magnetic core 6 is arranged inside the coreless armature coil 1 in a circulating manner, the inductance of the armature coil 1 increases. A current is generated in the armature coil 1 by the permanent magnet 2 that is a rotor, but the higher the inductance of the armature coil 1, the higher the voltage generated in the armature coil 1. When one armature coil 1 is viewed as a reactor, the voltage V generated at both ends of the winding is V=2πfLI.
Here, f: frequency (Hz), L: inductance (H), I: current (A). That is, since the magnetic core 6 is arranged inside the revolving armature coil 1, the inductance of the armature coil 1 increases. Therefore, the voltage generated across the armature coil 1 becomes high.
Even if the lower part of the armature coil 1 is deformed obliquely as shown in FIG. 9, the generated voltage does not change.

本発明では電機子コイル1を3個配置しており、それぞれの電機子コイル1を直列に接続すれば、発生する電圧は一個の電機子コイル1の3倍の電圧が得られる。また、それぞれの電機子コイル1を並列に接続すれば、発生する電流は一個の電機子コイル1の3倍の電流が得られる。直列接続及び並列接続のどちらの場合でも周波数は変わらない。 In the present invention, three armature coils 1 are arranged, and when the respective armature coils 1 are connected in series, the voltage generated is three times that of one armature coil 1. Moreover, if the respective armature coils 1 are connected in parallel, the generated current is three times as large as that of one armature coil 1. The frequency does not change in both series connection and parallel connection.

尚、回転子の対向する永久磁石2を固定するホルダーはコの字型をした鉄板等、磁束を通す金属のヨーク5に固定することにより、電機子コイル1に作用する磁束量を強めることが期待できる。 The holder for fixing the facing permanent magnets 2 of the rotor can be strengthened by fixing the magnetic flux acting on the armature coil 1 to the yoke 5 made of a metal such as a U-shaped iron plate that allows magnetic flux to pass. Can be expected.

回転子の対向する永久磁石2はネオジム磁石等を採用することにより、電機子コイル1に作用する磁束の量が強まることは言うまでもない。 Needless to say, the amount of magnetic flux acting on the armature coil 1 is increased by adopting a neodymium magnet or the like for the permanent magnets 2 facing the rotor.

本発明では回転子を一定速度で回転させる為にDCモーター3を使用しており、このDCモーター3を駆動するには乾電池もしくはバッテリー等の直流電源が必要である。乾電池もしくはバッテリーが消耗するまでの間は発電を継続する。発電機の出力電圧は家庭用として使用出来る様に、ステップアップ変圧器により昇圧させることは前述したが、このステップアップ変圧器に中間タップを設けて直流変換すればDCモーター3のバッテリーの充電用として使用することも可能である。なお、DCモーターに限定せず、一般的なエンジン等を使用して回転子を一定速度で回転させても同様に発電できることは言うまでもない。 In the present invention, the DC motor 3 is used to rotate the rotor at a constant speed, and a DC power source such as a dry battery or a battery is required to drive the DC motor 3. Power generation continues until the dry cells or batteries are exhausted. As mentioned above, the output voltage of the generator is stepped up by a step-up transformer so that it can be used for home use. However, if the step-up transformer is provided with an intermediate tap and converted to DC, it can be used to charge the battery of the DC motor 3. It is also possible to use as. Needless to say, the electric power can be similarly generated by rotating the rotor at a constant speed using a general engine or the like without being limited to the DC motor.

設置場所の水平方向に寸法的余裕があるならば、実施例1で示した電機子コイル1を3個、約120度間隔で配置し、回転子である永久磁石2は6組を交互に配置しているものを、その2倍、すなわち電機子コイル1を6個、約60度間隔で配置し、回転子である永久磁石2を12組配置することも可能である。電機子コイル1を6個配置するので、回転子の直径が大きくなる。この場合も電機子コイル1に流れる電流が同じタイミングの電機子コイル1同士を並列または直列に接続することにより、電機子コイル1が3個の場合と比較して2倍の電流または電圧が得られる。 If there is a dimensional margin in the horizontal direction at the installation location, three armature coils 1 shown in the first embodiment are arranged at intervals of about 120 degrees, and six permanent magnets 2 as rotors are arranged alternately. It is also possible to arrange double the number, that is, six armature coils 1 are arranged at intervals of about 60 degrees, and twelve permanent magnets 2 which are rotors are arranged. Since the six armature coils 1 are arranged, the diameter of the rotor becomes large. In this case as well, by connecting the armature coils 1 having the same timing of the current flowing through the armature coils 1 in parallel or in series, a current or voltage that is twice as high as that in the case of three armature coils 1 can be obtained. To be

設置場所の垂直方向に寸法的余裕があるならば、実施例1の発電機を垂直方向に2段重ねもしくは複数段を重ねることも可能である。(図10)この場合、電機子コイル1と回転子である永久磁石2の垂直方向の位置関係を同じくしておけば、同じ縦位置関係の電機子コイル1同士を並列または直列に接続することにより、電機子コイル1が1段の場合と比較して2倍の電流または電圧が得られる。 If there is a dimensional margin in the installation location in the vertical direction, it is possible to stack the generators of Example 1 in the vertical direction in two stages or in a plurality of stages. (FIG. 10) In this case, if the vertical positional relationship between the armature coil 1 and the permanent magnet 2 as the rotor is the same, the armature coils 1 having the same vertical positional relationship should be connected in parallel or in series. As a result, twice the current or voltage can be obtained as compared with the case where the armature coil 1 has one stage.

設置場所の水平方向に寸法的余裕があるならば、実施例1の発電機を水平方向に展開することも可能である。(図11)この場合の電機子コイル1の配置は実施例1,2と同様の考え方が成立する。 It is also possible to deploy the generator of Example 1 in the horizontal direction if there is a dimensional margin in the horizontal direction at the installation location. (FIG. 11) The arrangement of the armature coil 1 in this case is based on the same idea as in the first and second embodiments.

実施例4の水平方向に展開した回転子である永久磁石2と電機子コイル1を縦方向に複数段重ねることも可能であり、実施例3と同様の考え方が成立する。(図12) It is also possible to stack the permanent magnets 2 and the armature coils 1 which are the horizontally expanded rotors of the fourth embodiment in a plurality of stages in the vertical direction, and the same idea as in the third embodiment is established. (Figure 12)

実施例1で示した、回転子の磁極が互いに引き合う向きに対向する永久磁石2は6組を必要とし、回転子の永久磁石2の6組の位置は回転軸から見て60度を基準とするほぼ等間隔で配置され、隣り合った永久磁石2の極性は逆になっているが、この永久磁石2は外周側と内周側に大小2個のドーナツ状の一体型永久磁石に置き換えることも可能である。このドーナツ状の一体型永久磁石は回転軸から見て約60度間隔で隣り合った極性が逆向きとなっており、外側と内側の対向する位置の極性は互いに引き合う磁性を持つ。(図13) The permanent magnets 2 facing each other in the direction in which the magnetic poles of the rotor attract each other shown in the first embodiment require six sets, and the positions of the six sets of the permanent magnets 2 of the rotor are based on 60 degrees as viewed from the rotation axis. The adjacent permanent magnets 2 arranged at substantially equal intervals have opposite polarities, but the permanent magnet 2 should be replaced by two large and small donut-shaped integral permanent magnets on the outer circumference side and the inner circumference side. Is also possible. The doughnut-shaped integrated permanent magnets have opposite polarities adjacent to each other at an interval of about 60 degrees as viewed from the rotation axis, and the polarities at the outer and inner facing positions have magnetism attracting each other. (Figure 13)

1 電機子コイル
2 永久磁石
3 モーター
4 シャフト(回転軸)
5 ヨーク
6 磁心
7 コイル押さえ

1 Armature coil 2 Permanent magnet 3 Motor 4 Shaft (rotating shaft)
5 Yoke 6 Magnetic core 7 Coil holder

本発明の発電機は、二つの直方体状の永久磁石を、前記永久磁石の長手方向が回転軸に略平行または略直交する向きに配置し、かつ、前記回転軸の周囲に放射状に複数組配置した回転子と、前記二つの永久磁石の間に位置する複数の電機子コイルを有す固定子とを有し、前記二つの永久磁石は互いに引き合う磁性の方向を持つため、その間に磁束を形成し、前記回転子の外周に隣接する永久磁石の磁性の方向が交互に配置され、前記複数の電機子コイルはそれぞれ前記永久磁石の長手方向にコイルの上端と下端を有し、前記永久磁石の長手方向の一端は前記コイルの上端に一致するか、前記上端より前記コイルの外側に配置され、前記永久磁石と前記コイルが対向する範囲の前記コイルの形状は、前記コイルの上端を正弦波(サインカーブ)の尖頭とする前記正弦波の半周期に近い曲線状であることを特徴とする。
In the power generator of the present invention, two rectangular parallelepiped permanent magnets are arranged in a direction in which the longitudinal direction of the permanent magnets is substantially parallel or substantially orthogonal to the rotation axis, and a plurality of sets are radially arranged around the rotation axis. Rotor and a stator having a plurality of armature coils located between the two permanent magnets, and the two permanent magnets have magnetic directions that attract each other, forming a magnetic flux between them. The magnetism directions of the permanent magnets adjacent to the outer circumference of the rotor are alternately arranged, and the plurality of armature coils each have an upper end and a lower end of the coil in the longitudinal direction of the permanent magnet. One end in the longitudinal direction coincides with the upper end of the coil or is arranged outside the upper end of the coil, and the shape of the coil in a range in which the permanent magnet and the coil face each other has a sine wave ( characterized in that the half period of the sine wave to the peak of the sine curve) is a near have curved.

本発明によれば、正弦波に近い発電波形が得られ、家電機器等に直接的に接続することが可能な電圧波形及び周波数を備え、家庭用の非常用電源として使い易く安価な交流発電機の提供することができる。
According to the present invention, a power generation waveform close to a sine wave is obtained, and a voltage waveform and frequency that can be directly connected to home electric appliances and the like are provided, and an AC generator that is easy to use and inexpensive as a household emergency power source. Can be provided.

すなわち、図1に示す様に、回転子である複数組の永久磁石2の間に位置する複数の固定子である電機子コイル1の形状を前記永久磁石の長手方向に上端を有する正弦波形(サインカーブ)に近似した曲線状とすることにより、 発生する電圧波形を規則的な正弦波形に近づけることが可能となる。また複数の永久磁石2の数を複数の電機子コイル1の数の2倍の数を配置し、回転子を駆動するモーター3の回転数を適切に一定速度で回転させることにより、発電する周波数は家庭用の交流電源として直接的に使用できる周波数を得ることが可能である。発生する電圧を高くするためには、コギングトルクの力が及ばない永久磁石2の磁束が鎖交する電機子コイル1部分から離れた開口部の位置に磁心6を配置することにより可能となる。
That is, as shown in FIG. 1, a shape of a plurality of stator armature coils 1 located between a plurality of pairs of permanent magnets 2 which are rotors has a sinusoidal waveform having an upper end in the longitudinal direction of the permanent magnets ( By making it a curve similar to a sine curve), it becomes possible to make the generated voltage waveform close to a regular sine waveform. In addition, the number of the plurality of permanent magnets 2 is set to be twice the number of the plurality of armature coils 1, and the number of rotations of the motor 3 for driving the rotor is appropriately rotated at a constant speed to generate a frequency. It is possible to obtain a frequency that can be directly used as a household AC power source. In order to increase the generated voltage, it is possible to dispose the magnetic core 6 at the position of the opening apart from the portion of the armature coil 1 where the magnetic flux of the permanent magnet 2 which is not exerted by the cogging torque acts.

Claims (3)

二つの永久磁石(2)を回転軸(4)の周囲に放射状に複数組配置した回転子と、前記二つの永久磁石の間に位置する複数の電機子コイル(1)を有す固定子とを有し、前記二つの永久磁石は互いに引き合う磁性の方向を持たせて前記二つの永久磁石の間に磁束を形成し、前記回転子の外周に隣接する永久磁石の前記磁性の方向を交互に配置し、前記複数の電機子コイルはそれぞれ略U字型、且つ正弦波形に近似した形状であることを特徴とする交流発電機。 A rotor in which a plurality of sets of two permanent magnets (2) are radially arranged around a rotating shaft (4), and a stator having a plurality of armature coils (1) located between the two permanent magnets. The two permanent magnets have magnetic directions that attract each other to form a magnetic flux between the two permanent magnets, and the magnetic directions of the permanent magnets adjacent to the outer periphery of the rotor are alternately arranged. An AC generator characterized in that the plurality of armature coils are arranged in a substantially U shape and have a shape similar to a sine wave. 前記二つの永久磁石の組数は前記複数の電機子コイルの数の2倍であり、前記回転子の回転数は発電周波数によって決定されることを特徴とする請求項1に記載された交流発電機。 The alternating current power generation according to claim 1, wherein the number of sets of the two permanent magnets is twice the number of the plurality of armature coils, and the rotation speed of the rotor is determined by a power generation frequency. Machine. 前記複数の電機子コイルそれぞれの開口部の、前記磁束と鎖交する部分から離れた位置に磁心(6)を有することを特徴とする請求項1または請求項2に記載された交流発電機。


The AC generator according to claim 1 or 2, further comprising a magnetic core (6) at a position apart from a portion of the opening of each of the plurality of armature coils that intersects with the magnetic flux.


JP2019011742A 2019-01-25 2019-01-25 Alternator Active JP6543426B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019011742A JP6543426B1 (en) 2019-01-25 2019-01-25 Alternator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019011742A JP6543426B1 (en) 2019-01-25 2019-01-25 Alternator

Publications (2)

Publication Number Publication Date
JP6543426B1 JP6543426B1 (en) 2019-07-10
JP2020120544A true JP2020120544A (en) 2020-08-06

Family

ID=67212280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019011742A Active JP6543426B1 (en) 2019-01-25 2019-01-25 Alternator

Country Status (1)

Country Link
JP (1) JP6543426B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010288445A (en) * 2009-05-14 2010-12-24 Shin-Etsu Chemical Co Ltd Cooling mechanism in axial gap type rotating machine
JP2015047034A (en) * 2013-08-29 2015-03-12 株式会社東芝 Axial gap type power generator
JP2015056991A (en) * 2013-09-13 2015-03-23 則次 福田 Multiple permanent magnetic rotary type alternating current power generation unit
WO2015133015A1 (en) * 2014-03-04 2015-09-11 株式会社神戸製鋼所 Axial gap type power generator
JP2016226138A (en) * 2015-05-29 2016-12-28 学校法人加計学園 Superconducting motor and superconducting generator
JP2018207628A (en) * 2017-06-01 2018-12-27 三菱電機エンジニアリング株式会社 Wind power generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010288445A (en) * 2009-05-14 2010-12-24 Shin-Etsu Chemical Co Ltd Cooling mechanism in axial gap type rotating machine
JP2015047034A (en) * 2013-08-29 2015-03-12 株式会社東芝 Axial gap type power generator
JP2015056991A (en) * 2013-09-13 2015-03-23 則次 福田 Multiple permanent magnetic rotary type alternating current power generation unit
WO2015133015A1 (en) * 2014-03-04 2015-09-11 株式会社神戸製鋼所 Axial gap type power generator
JP2016226138A (en) * 2015-05-29 2016-12-28 学校法人加計学園 Superconducting motor and superconducting generator
JP2018207628A (en) * 2017-06-01 2018-12-27 三菱電機エンジニアリング株式会社 Wind power generator

Also Published As

Publication number Publication date
JP6543426B1 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
CN108964396B (en) Stator partition type alternate pole hybrid excitation motor
JP2009247196A (en) Rotating electrical machine
KR20070063055A (en) A constant-power brushless dc motor and the generator thereby
JP2008005603A (en) Synchronous machine and power generating system using it as generator
KR20120056408A (en) Generator
WO2013100803A1 (en) Electromagnetic generator
RU2437202C1 (en) Non-contact magnetoelectric machine with axial excitation
KR100960225B1 (en) Generator for spinning brush
JP2007288917A (en) Power generation device
US8629588B2 (en) Apparatus for generating alternating current power by direct current supply brush that rotates with field pole generator, and apparatus for generating direct current power
JP5967745B2 (en) Power generation system using renewable natural energy
JP6543426B1 (en) Alternator
JP2021035084A (en) Ac generator
KR101472056B1 (en) Brushless synchronous generator having flat exciter
JP6286115B2 (en) Structure of stator of rotating electrical machine
KR101727214B1 (en) Equipment for generating electricity
CN104682649B (en) Motor and its excitation part
JP2016158460A (en) Rotary electric machine
KR20160028688A (en) Induction generator having enhanced generation efficiency
US20100171318A1 (en) Magnetic drive for electrical generation
CN218976423U (en) Radial magnetic field three-phase alternating current permanent magnet brushless motor
JP2019216530A (en) Permanent magnet generator
JP2015532826A (en) Electromechanical transducer
TWM566946U (en) Motor with optimized numbers of slot
JP3175706U (en) Coreless generator and micro hydro power generation system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190211

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190211

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190614

R150 Certificate of patent or registration of utility model

Ref document number: 6543426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250