JP2020120536A - ステータ及び回転電機 - Google Patents

ステータ及び回転電機 Download PDF

Info

Publication number
JP2020120536A
JP2020120536A JP2019011240A JP2019011240A JP2020120536A JP 2020120536 A JP2020120536 A JP 2020120536A JP 2019011240 A JP2019011240 A JP 2019011240A JP 2019011240 A JP2019011240 A JP 2019011240A JP 2020120536 A JP2020120536 A JP 2020120536A
Authority
JP
Japan
Prior art keywords
stator
cooling hole
slot
stator core
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019011240A
Other languages
English (en)
Inventor
田中 修平
Shuhei Tanaka
修平 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2019011240A priority Critical patent/JP2020120536A/ja
Publication of JP2020120536A publication Critical patent/JP2020120536A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

【課題】冷媒の流通効率を向上してコイルを積極的に冷却できるステータ及びこのステータを備えた回転電機を提供する。【解決手段】環状のステータコア5を備え、ステータコア5は、ステータコア5の周方向に間隔をあけて配置され、ステータコア5の軸方向に延びる複数のティース52と、周方向で隣り合う2つのティース52間に配置され、コイル7が挿入されるスロット53と、ティース52に沿って形成され、スロット53に連通するとともに冷媒が流通可能な冷却孔54と、を有する。冷却孔54は、軸方向に対して、冷媒の導入口から冷媒の排出口へ向かって鉛直下方へ傾斜している。【選択図】図6

Description

本発明は、ステータ及び回転電機に関するものである。
従来、ハイブリッド自動車や電気自動車の動力源として回転電機が使用されている。回転電機は、ロータと、ロータの外周に配置されコイルが巻回されたステータコアと、を備える。ロータの回転時、コイルに電流が流れるとコイルやステータコアが発熱するため、外部から冷媒を供給してステータを冷却する技術が種々提案されている。
例えば特許文献1には、ステータのスロットの内壁を形成する電磁鋼板の内壁に、軸方向に延びる連通溝が形成された構成が記載されている。特許文献1に記載の技術によれば、冷媒が連通溝を経由し、電磁鋼板と絶縁体との間に充満されることにより、ステータの冷却性能を高めることができるとされている。
特開2011−193571号公報
しかしながら、特許文献1に記載の技術にあっては、連通溝はスロットと平行に延在し、連通溝の穴径も小さいため、積極的に連通溝に冷媒を流して冷却することが難しい。
そこで、本発明は、冷媒の流通効率を向上してコイルを積極的に冷却できるステータ及びこのステータを備えた回転電機を提供することを目的とする。
上記の課題を解決するため、請求項1に記載の発明に係るステータ(例えば、第1実施形態におけるステータ4)は、環状のステータコア(例えば、第1実施形態におけるステータコア5)を備え、前記ステータコアは、前記ステータコアの周方向に間隔をあけて配置され、前記ステータコアの軸方向に延びる複数のティース(例えば、第1実施形態におけるティース52)と、前記周方向で隣り合う2つの前記ティース間に配置され、コイル(例えば、第1実施形態におけるコイル7)が挿入されるスロット(例えば、第1実施形態におけるスロット53)と、前記ティースに沿って形成され、前記スロットに連通するとともに冷媒(例えば、第1実施形態における冷媒S)が流通可能な冷却孔(例えば、第1実施形態における冷却孔54)と、を有し、前記冷却孔は、前記軸方向に対して、前記冷媒の導入口(例えば、第1実施形態における導入口57)から前記冷媒の排出口(例えば、第1実施形態における排出口58)へ向かって鉛直下方へ傾斜していることを特徴としている。
また、請求項2に記載の発明に係るステータは、前記冷却孔は、前記周方向の前記ティースに形成されることを特徴としている。
また、請求項3に記載の発明に係るステータは、前記ステータコアは、前記ステータコア内に前記冷媒を供給するための冷媒分配プレート(例えば、第1実施形態における冷媒分配プレート6)に隣接して配置され、前記冷却孔は、前記冷媒分配プレートに設けられた冷媒導入孔(例えば、第1実施形態における冷媒導入孔61)と連通していることを特徴としている。
また、請求項4に記載の発明に係るステータは、前記冷却孔と前記コイルとの間には、絶縁紙(例えば、第1実施形態における絶縁紙40)が介在していることを特徴としている。
また、請求項5に記載の発明に係るステータは、前記コイルは丸線であり、前記冷却孔の前記スロットに面する開口幅(例えば、第1実施形態における開口幅W)は、前記コイルの外径(例えば、第1実施形態におけるコイル直径D)よりも小さいことを特徴としている。
また、請求項6に記載の発明に係るステータは、前記冷却孔は、断面半円形状に形成されていることを特徴としている。
また、請求項7に記載の発明に係るステータは、前記冷却孔は、断面矩形状に形成されていることを特徴としている。
また、請求項8に記載の発明に係るステータは、前記ステータコアは、前記スロットにおいて隣り合う前記冷却孔同士の間に配置され、前記ステータコアから前記スロットに向かって突出する突出部(例えば、第1実施形態における突出部55)を更に備えることを特徴としている。
また、請求項9に記載の発明に係るステータは、前記冷却孔は、前記スロットの一端部から他端部にかけて直線状に延びて形成されていることを特徴としている。
また、請求項10に記載の発明に係るステータは、前記冷却孔は、複数設けられ、複数の前記スロットは、水平方向に沿って延びる水平スロット(例えば、第1実施形態における水平スロット53c)を含み、前記水平スロットは、前記ステータコアの径方向外側に向かうにしたがい漸次開口幅が増加し、複数の前記冷却孔は、前記水平スロットの鉛直上方側に設けられた上側冷却孔(例えば、第1実施形態における上側冷却孔54a)と、前記水平スロットの鉛直下方側に設けられた下側冷却孔(例えば、第1実施形態における下側冷却孔54b)と、を含み、前記上側冷却孔は、前記冷媒が前記ステータコアの径方向外側から径方向内側に向かうに従って鉛直下方へ流れるように形成され、前記下側冷却孔は、前記冷媒が前記ステータコアの径方向内側から径方向外側に向かうに従って鉛直下方へ流れるように形成されていることを特徴としている。
また、請求項11に記載の発明に係るステータは、前記ティースは、前記ステータコアの径方向の内側から外側へ向かうにしたがい漸次ティース幅が増加し、前記ティースを挟んで前記周方向に隣り合う前記冷却孔同士の間のティース幅寸法(例えば、第5実施形態におけるティース幅寸法L2)は、前記径方向の内側に設けられた幅狭部(例えば、第5実施形態における幅狭部556)における前記ティース幅寸法(例えば、第5実施形態における幅狭部のティース幅寸法L1)よりも大きいことを特徴としている。
また、請求項12に記載の発明に係る回転電機(例えば、第1実施形態における回転電機1)は、上述したステータを備えたことを特徴としている。
本発明の請求項1に記載のステータによれば、冷却孔はスロットに連通するとともに冷媒が流通可能とされているので、冷却孔を流通する冷媒により、スロットに挿入されたコイルを冷却できる。また、冷却孔はティースに形成されているので、スロット内に冷媒を流通させる空間を確保できない場合であっても、コイル及びステータコアを確実に冷却できる。冷却孔は導入口から排出口へ向かって鉛直下方へ傾斜しているので、冷却孔内を流れる冷媒には、重力により排出口へ向かう力が作用する。これにより、冷却孔内における冷媒の移動を促進し、積極的にコイルを冷却できる。
したがって、冷媒の流通効率を向上してコイルを積極的に冷却できるステータを提供できる。
また、冷却孔はスロットと連通しているので、スロットと冷却孔とを例えばパンチ加工により同時に形成することができる。これにより、スロットを形成した後に研磨加工により冷却孔を形成する従来技術と比較して、冷却孔を容易に形成できる。また、冷却孔の加工費を抑えることができる。よって、製造性を向上したステータとすることができる。
本発明の請求項2に記載のステータによれば、冷却孔は、スロットを囲むステータコアのうち周方向のティースに形成されるので、スロットの外周部のうち径方向のステータコアに冷却孔を形成する場合よりも広い領域に冷却孔を設けることができる。これにより、スロットに挿入されるコイルと冷却孔との接触面積が増加し、冷却効率を向上できる。また、ステータの軸方向に向かうにつれて、径方向における冷却孔の配置を変更することにより、冷却孔を導入口から排出口へ向かって鉛直下方へ傾斜させることができる。よって、簡素な構成により冷媒の流通効率を向上したステータとすることができる。
本発明の請求項3に記載のステータによれば、ステータは冷媒分配プレートを有するので、冷媒分配プレートを介してステータの外周部からステータ内に冷媒を供給できる。冷媒分配プレートの冷媒導入孔は冷却孔に連通しているので、冷媒分配プレートを介して冷却孔に確実に冷媒を供給できる。これにより、冷媒の流通効率をより一層向上し、冷却効果を高めることができる。特に、冷媒分配プレートをステータの軸方向における中央部に配置した場合、ステータの中央部から両端に向かって冷媒を供給できる。これにより、冷却孔内を流れる冷媒の流路抵抗を低減し、積極的に冷媒を流通させることができる。
本発明の請求項4に記載のステータによれば、冷却孔とコイルとの間には絶縁紙が介在しているので、絶縁紙によりコイルとステータコアとの間を絶縁できる。また、冷却孔とコイルとの間にステータコアが介在する場合と比較して、コイルと冷却孔との距離を近接させることができる。これにより、冷却孔を流れる冷媒によりコイルを効果的に冷却できる。
本発明の請求項5に記載のステータによれば、冷却孔のスロットに面する開口幅はコイルの外径よりも小さいので、コイルが冷却孔に入り込んで流路を塞ぐことを抑制できる。これにより、冷却孔に確実に冷媒を流通させることができる。
本発明の請求項6に記載のステータによれば、冷却孔は断面半円形状に形成されているので、断面が矩形状や三角形状等に形成される場合と比較して、冷却孔の管路抵抗を低減できる。よって、冷媒を積極的に流通させ、冷却効率を向上できる。また、冷却孔が形成されたスロットの外周部におけるステータコアの強度を向上できる。よって、長寿命で冷却性能に優れたステータとすることができる。
本発明の請求項7に記載のステータによれば、冷却孔は断面矩形状に形成されているので、断面が円形状や矩形状以外の多角形状等に形成される場合と比較して、冷却孔の加工を容易にできる。よって、製造時の加工性に優れたステータとすることができる。
本発明の請求項8に記載のステータによれば、突出部は冷却孔の間に設けられ、スロット側に向かって突出しているので、突出部にコイルが当接することにより、冷却孔内にコイルが入り込むことを抑制できる。よって、冷却孔内に冷媒を確実に流通させることができる。また、コイルと冷却孔との間に配置された絶縁紙が突出部に当接することにより、絶縁紙の位置ずれを抑制できる。よって、ステータの性能低下を抑制した、優れたステータとすることができる。
本発明の請求項9に記載のステータによれば、冷却孔は、スロットの一端部から他端部にかけて直線状に延びて形成されているので、冷却孔内に段差が設けられる場合と比較して、冷却孔の管路抵抗を低減できる。よって、冷媒の流通効率を向上できる。
本発明の請求項10に記載のステータによれば、水平スロットは径方向外側に向かうにしたがい漸次開口幅が増加する。水平スロットの上側冷却孔において、径方向外側の上側冷却孔は、径方向内側の上側冷却孔よりも鉛直上方側に位置する。これにより、径方向外側の上側冷却孔を導入口の近傍に配置し、径方向内側の上側冷却孔を排出口の近傍に配置することにより、冷媒は、重力により径方向外側から径方向内側に向かうに従って鉛直下方へ流れる。よって、上側冷却孔内における冷媒の移動を促進し、積極的にコイルを冷却できる。
一方、水平スロットの下側冷却孔において、径方向内側の下側冷却孔は、径方向外側の下側冷却孔よりも鉛直上方側に位置する。これにより、径方向内側の下側冷却孔を導入口の近傍に配置し、径方向外側の下側冷却孔を排出口の近傍に配置することにより、冷媒は、重力により径方向内側から径方向外側に向かうに従って鉛直下方へ流れる。よって、下側冷却孔内における冷媒の移動を促進し、積極的にコイルを冷却できる。
したがって、水平スロットに冷却孔を設けた場合であっても、冷却孔に冷媒を確実に流通させ、水平スロット内のコイルを冷却できる。
本発明の請求項11に記載のステータによれば、周方向におけるティース幅は径方向の内側から外側へ向かうにしたがい増加するので、ティース幅は、径方向の内側に設けられた幅狭部において最小となる。ここで、ステータコアを径方向に沿って流れる磁束の量は、ティース幅が最も小さい部分、すなわち幅狭部により決定される。本発明のステータによれば、周方向に隣り合う冷却孔同士の間のティース幅寸法は、幅狭部におけるティース幅寸法よりも大きいので、冷却孔を形成することによる磁束量への影響を抑えることができる。よって、磁束量の減少を抑制しつつ冷却性能を向上できる。
本発明の請求項12に記載の回転電機によれば、回転電機は上述のステータを備えているので、製造が容易で、かつ冷媒の流通効率を向上してコイルを積極的に冷却できるステータを備えた、製造性及び冷却性に優れた回転電機を提供できる。
第1実施形態に係る回転電機の概略構成図。 第1実施形態に係るステータの斜視図。 図2のIII方向から見たステータ端面の矢視図。 第1実施形態に係るステータの正面図。 図4のV−V線に沿う断面図。 図5のVI−VI線に沿う断面図。 図6のVII部拡大図。 図5のVIII−VIII線に沿う断面図。 図5のIX−IX線に沿う断面図。 図5のX−X線に沿う断面図。 図5のXI−XI線に沿う断面図。 図5のXII−XII線に沿う断面図。 図4のXIII−XIII線に沿う断面図。 図13のXIV−XIV線に沿う断面図。 図13のXV−XV線に沿う断面図。 図13のXVI−XVI線に沿う断面図。 第2実施形態に係るステータの断面図。 図17のXVIII部拡大図。 第3実施形態に係るスロット近傍の部分拡大図。 第4実施形態に係るスロット近傍の部分拡大図。 第5実施形態に係るスロット近傍の部分拡大図。
以下、本発明の実施形態について図面を参照して説明する。
(第1実施形態)
(回転電機)
図1は、第1実施形態に係る回転電機1の概略構成図である。回転電機1は、例えばハイブリッド自動車や電気自動車等の車両に搭載される走行用モータである。但し、本発明の構成は、走行用モータに限らず、発電用モータやその他用途のモータ、車両用以外の回転電機(発電機を含む)としても適用可能である。
回転電機1は、ケース2と、ロータ3と、ステータ4と、を備える。
ケース2は、ロータ3及びステータ4を収容している。ケース2の内部には、冷媒Sが収容されている。上述したロータ3及びステータ4は、ケース2の内部において、一部が冷媒Sに浸漬された状態で配置されている。なお、冷媒としては、トランスミッションの潤滑や動力伝達等に用いられる作動油である、ATF(Automatic Transmission Fluid)等が好適に用いられている。
以下の説明では、ロータ3における回転軸31の軸線Cに沿う方向を単に軸方向といい、軸線Cに直交する方向を径方向といい、軸線C周りの方向を周方向という場合がある。
ロータ3は、軸線C回りに回転可能に構成されている。ロータ3は、回転軸31と、ロータコア32と、磁石33と、を備える。
回転軸31は、軸線Cを中心とする筒状に形成されている。回転軸31は、ケース2に取り付けられた軸受21を介してケース2に回転可能に支持されている。
ロータコア32は、回転軸31の外周部に設けられている。ロータコア32は、環状に形成されている。ロータコア32は、軸線C回りに回転軸31と一体で回転可能に構成されている。
磁石33は、ロータコア32の外周部に配置されている。磁石33は、例えばロータコア32の内部を軸方向に沿って延びている。磁石33は、周方向に間隔をあけて複数形成されている。磁石33は、例えば希土類磁石である。希土類磁石としては、例えばネオジム磁石やサマリウムコバルト磁石、プラセオジム磁石等が挙げられる。
(ステータ)
ステータ4は、ロータ3に対して径方向の外側に、間隔をあけて配置されている。ステータ4は、環状に形成されている。ステータ4の外周部は、ケース2の内壁面に固定されている。
図2は、第1実施形態に係るステータ4の斜視図である。ステータ4は、ステータコア5と、冷媒分配プレート6と、コイル7と、を有する。なお、図2において、説明のため一部の部品の図示を省略している。
(ステータコア)
ステータコア5は、複数の鋼板15を軸方向に積層して形成される積層コアである。ステータコア5は、軸方向の一方側に配置される第一ステータコア5aと、軸方向の他方側に配置される第二ステータコア5bと、を有する。第一ステータコア5aと、第二ステータコア5bと、は冷媒分配プレート6を挟んで一対設けられている。第一ステータコア5aと第二ステータコア5bとは同等の構成とされている。以下の説明では、第一ステータコア5aをステータコア5と呼んで第一ステータコア5a(ステータコア5)の構成について説明し、第二ステータコア5bの説明を省略する。
図3は、図2のIII方向から見たステータ4の端面の拡大矢視図である。図4は、第1実施形態に係るステータ4の正面図である。
図4に示すように、ステータコア5は、軸線Cを中心とする環状に形成されている。ステータコア5は、コア本体51と、ティース52と、スロット53と、冷却孔54(図6参照)と、を有する。
コア本体51は、軸線Cを中心とする環状に形成されている。
ティース52は、コア本体51の内周部から径方向内側に向かって突出している。ティース52は、軸方向に沿って延びている。ティース52は、周方向に間隔をあけて複数設けられている。
スロット53は、周方向において隣り合うティース52同士の間に設けられている。スロット53にはコイル7(図1参照)が挿入されている。スロット53は、周方向に複数設けられている。ここで、スロット53は、上方スロット53aと、下方スロット53bと、水平スロット53cと、を有する。複数のスロット53のうち、軸線Cを通り地面と平行な水平面Fよりも鉛直上方側に設けられたスロット53を上方スロット53aと定義する。複数のスロット53のうち、水平面Fよりも鉛直下方側に設けられたスロット53を下方スロット53bと定義する。複数のスロット53のうち、水平面Fと交差するスロット53を水平スロット53cと定義する。本実施形態において、スロット53は、水平方向に沿って延びる2個の水平スロット53cを有する。換言すれば、2個の水平スロット53cよりも鉛直上方側に設けられたスロット53は上方スロット53aとされている。2個の水平スロット53cよりも鉛直下方側に設けられたスロット53は下方スロット53bとされている。
(上方スロット)
図5は、図4のV−V線に沿う断面図である。図6、8及び9は、図5のVI−VI線、VIII−VIII線及びIX−IX線にそれぞれ沿う断面図である。
図6に示すように、上方スロット53aに隣接するティース52には、冷却孔54が形成されている。冷却孔54は、ティース52に沿ってティース52を軸方向に貫通している。図5に示すように、冷却孔54は、スロット53の一端部(冷媒分配プレート6に面する端部)から他端部(ステータ4の軸方向外側を向く端部)にかけて直線状に延びて形成されている。具体的に、冷却孔54の一端部には導入口57が形成されている。冷却孔54の他端部には排出口58が形成されている。導入口57は、排出口58よりも鉛直上方側に位置している。冷却孔54は、軸方向に対して導入口57から排出口58へ向かって鉛直下方側へ傾斜するとともに直線状に延びている。
図6に示すように、上方スロット53aのうち、導入口57の近傍に位置するステータ4において、冷却孔54は、上方スロット53aの径方向外側に設けられている。冷却孔54は、上方スロット53a(スロット53)の周方向の周壁からティース52側に凹んでいる。冷却孔54は、径方向に沿って複数形成されている。冷却孔54は、スロット53と連通している。冷却孔54は、断面半円形状に形成されている。径方向に隣り合う冷却孔54同士の間には突出部55が設けられている。突出部55は、ティース52からスロット53に向かって突出している。冷却孔54には、冷媒S(図5参照)が流通可能とされている。
なお、冷却孔54の穴径は、重力により冷媒Sが流通可能な程度に大きく形成されている。これにより、例えばパンチ等によりステータコア5に冷却孔54を形成可能とされている。
図8に示すように、上方スロット53aのうち、導入口57と排出口58との中間に位置するステータ4において、冷却孔54は、上方スロット53aの径方向中央に設けられている。
図9に示すように、上方スロット53aのうち、排出口58の近傍に位置するステータ4において、冷却孔54は、上方スロット53aの径方向内側に設けられている。
このように、上方スロット53aにおいて、冷却孔54は、導入口57から排出口58へ向かうにしたがいステータコア5の径方向外側から内側へ位置するように設けられる。すなわち、上方スロット53aにおける冷却孔54は、導入口57から排出口58へ向かうにしたがい鉛直下方へ傾斜するように設けられる。これにより、冷却孔54の内部を流通する冷媒Sには、重力により導入口57から排出口58へ向かう力が作用し、冷媒Sが流れやすくなるようにされている。
(下方スロット)
図10、11及び12は、図5のX−X線、XI−XI線及びXII−XII線にそれぞれ沿う断面図である。
図5及び図10に示すように、下方スロット53bに隣接するティース52には、冷却孔54が形成されている。冷却孔54は、ティース52に沿ってティース52を軸方向に貫通している。図5に示すように、冷却孔54は、軸方向に対して導入口57から排出口58へ向かって鉛直下方へ傾斜するとともに直線状に延びている。導入口57は、排出口58よりも鉛直上方側に位置している。
図10に示すように、下方スロット53bのうち、導入口57の近傍に位置するステータ4において、冷却孔54は、下方スロット53bの径方向内側に設けられている。冷却孔54は、下方スロット53b(スロット53)の周方向の周壁からティース52側に凹んでいる。冷却孔54は、径方向に沿って複数形成されている。冷却孔54は、スロット53と連通している。冷却孔54は、断面半円形状に形成されている。径方向に隣り合う冷却孔54同士の間には突出部55が設けられている。突出部55は、ティース52からスロット53に向かって突出している。冷却孔54には、冷媒S(図5参照)が流通可能とされている。
図11に示すように、下方スロット53bのうち、導入口57と排出口58との中間に位置するステータ4において、冷却孔54は、下方スロット53bの径方向中央に設けられている。
図12に示すように、下方スロット53bのうち、排出口58の近傍に位置するステータ4において、冷却孔54は、下方スロット53bの径方向外側に設けられている。
このように、下方スロット53bにおいて、冷却孔54は、導入口57から排出口58へ向かうにしたがいステータコア5の径方向内側から外側へ位置するように設けられる。すなわち、下方スロット53bにおける冷却孔54は、導入口57から排出口58へ向かうにしたがい鉛直下方へ傾斜するように設けられる。これにより、冷却孔54の内部を流通する冷媒Sには、重力により導入口57から排出口58へ向かう力が作用し、冷媒Sが流れやすくなるようにされている。
(水平スロット)
図13は、図4のXIII−XIII線に沿う断面図である。図14、15及び16は、図13のXIV−XIV線、XV−XV線及びXVI−XVI線にそれぞれ沿う断面図である。
図14に示すように、水平スロット53cに隣接するティース52には、上側冷却孔54aと、下側冷却孔54bと、が形成されている。
上側冷却孔54aは、水平スロット53cにおいて水平面Fよりも鉛直上方側に位置するティース52に形成されている。上側冷却孔54aは、ティース52に沿ってティース52を軸方向に貫通している。図13に点線で示すように、上側冷却孔54aは、軸方向に対して導入口57から排出口58へ向かって直線状に延びている。導入口57は、排出口58よりも鉛直上方側に位置している。
図14に示すように、水平スロット53cのうち、導入口57の近傍に位置するステータ4において、上側冷却孔54aは、水平スロット53cの径方向外側に設けられている。上側冷却孔54aは、水平スロット53c(スロット53)の周方向の周壁からティース52側に凹んでいる。上側冷却孔54aは、径方向に沿って複数形成されている。上側冷却孔54aは、スロット53と連通している。上側冷却孔54aは、断面半円形状に形成されている。径方向に隣り合う上側冷却孔54a同士の間には突出部55が設けられている。突出部55は、ティース52からスロット53に向かって突出している。上側冷却孔54aには、冷媒S(図5参照)が流通可能とされている。
図15に示すように、水平スロット53cのうち、導入口57と排出口58との中間に位置するステータ4において、上側冷却孔54aは、水平スロット53cの径方向中央に設けられている。
図16に示すように、水平スロット53cのうち、排出口58の近傍に位置するステータ4において、上側冷却孔54aは、水平スロット53cの径方向内側に設けられている。
このように、水平スロット53cにおいて、上側冷却孔54aは、導入口57から排出口58へ向かうにしたがいステータコア5の径方向外側から内側へ位置するように設けられる。ここで、水平スロット53cは、ステータコア5の径方向外側に向かうにしたがい漸次開口幅が増加する台形状に形成されているので、水平スロット53cの鉛直上方側の面は、径方向外側から内側へ向かうにつれて鉛直下方に位置する。すなわち、水平スロット53cにおける上側冷却孔54aは、導入口57から排出口58へ向かうにしたがい鉛直下方側へ傾斜するように設けられる。これにより、冷却孔54の内部を流通する冷媒Sには、重力により導入口57から排出口58へ向かう力が作用し、冷媒Sが流れやすくなるようにされている。
図15に戻って、下側冷却孔54bは、水平スロット53cにおいて水平面Fよりも鉛直下方側に位置するティース52に形成されている。下側冷却孔54bは、ティース52に沿ってティース52を軸方向に貫通している。図13に実線で示すように、下側冷却孔54bは、軸方向に対して導入口57から排出口58へ向かって直線状に延びている。導入口57は、排出口58よりも鉛直上方側に位置している。
図14に示すように、水平スロット53cのうち、導入口57の近傍に位置するステータ4において、下側冷却孔54bは、水平スロット53cの径方向内側に設けられている。下側冷却孔54bは、水平スロット53c(スロット53)の周方向の周壁からティース52側に凹んでいる。下側冷却孔54bは、径方向に沿って複数形成されている。下側冷却孔54bは、スロット53と連通している。下側冷却孔54bは、断面半円形状に形成されている。径方向に隣り合う下側冷却孔54b同士の間には突出部55が設けられている。突出部55は、ティース52からスロット53に向かって突出している。下側冷却孔54bには、冷媒S(図5参照)が流通可能とされている。
図15に示すように、水平スロット53cのうち、導入口57と排出口58との中間に位置するステータ4において、下側冷却孔54bは、水平スロット53cの径方向中央に設けられている。
図16に示すように、水平スロット53cのうち、排出口58の近傍に位置するステータ4において、下側冷却孔54bは、水平スロット53cの径方向外側に設けられている。
このように、水平スロット53cにおいて、下側冷却孔54bは、導入口57から排出口58へ向かうにしたがいステータコア5の径方向内側から外側へ位置するように設けられる。ここで、水平スロット53cは、ステータコア5の径方向外側に向かうにしたがい漸次開口幅が増加する台形状に形成されているので、水平スロット53cの鉛直下方側の面は、径方向内側から外側へ向かうにつれて鉛直下方に位置する。すなわち、水平スロット53cにおける下側冷却孔54bは、導入口57から排出口58へ向かうにしたがい鉛直下方へ傾斜するように設けられる。これにより、冷却孔54の内部を流通する冷媒Sには、重力により導入口57から排出口58へ向かう力が作用し、冷媒Sが流れやすくなるようにされている。
(冷媒分配プレート)
図2に戻って、冷媒分配プレート6は、軸方向において2つのステータコア5の間(第一ステータコア5aと第二ステータコア5bとの間)に配置されている。冷媒分配プレート6は、ステータコア5に隣接して配置されている。冷媒分配プレート6は、軸線Cを中心とする環状に形成されている。冷媒分配プレート6は、ステータ4の外周部から供給された冷媒Sを、ステータコア5の冷却孔54へ供給している。
図3に示すように、冷媒分配プレート6は、冷媒導入孔61と、コイル貫通孔62と、コア当接部63と、凸部64と、を有する。
冷媒導入孔61は、冷媒分配プレート6の径方向に沿って延びている。冷媒導入孔61は、冷媒分配プレート6の軸方向を向く両端面から冷媒分配プレート6の内部に向かって凹んでいる。冷媒導入孔61は、周方向に複数設けられている。冷媒導入孔61は、周方向において、ステータコア5のティース52に対応する位置に設けられている。冷媒分配プレート6とステータコア5とが隣接した状態において、冷媒導入孔61は、ステータコア5の冷却孔54に連通している。より具体的には、冷媒導入孔61は、コイル貫通孔62を介して冷却孔54の導入口57に連通している。
コイル貫通孔62は、冷媒分配プレート6を軸方向に貫通している。コイル貫通孔62は、周方向に複数設けられている。コイル貫通孔62は、周方向において隣り合う冷媒導入孔61の間に設けられている。コイル貫通孔62は、冷媒導入孔61に連通している。コイル貫通孔62は、ステータコア5のスロット53に対応する位置に設けられている。コイル貫通孔62の内形は、スロット53の内形よりも大きい。コイル貫通孔62には、コイル7が挿入可能とされている。
コア当接部63は、冷媒分配プレート6の外周部に設けられている。コア当接部63は、冷媒分配プレート6から軸方向の両側に突出している。コア当接部63は、周方向に複数設けられている。具体的に、コア当接部63は、周方向に隣り合う冷媒導入孔61同士の間に設けられている。コア当接部63は、ステータコア5(より具体的にはコア本体51)に当接している。
凸部64は、冷媒分配プレート6の内周部に設けられている。凸部64は、冷媒分配プレート6から軸方向の両側に突出している。凸部64は、軸方向から見て、径方向外側に凸となるように形成されている。凸部64は、周方向に複数設けられている。具体的に、凸部64は、周方向に隣り合うコイル貫通孔62の間に設けられている。凸部64の軸方向の高さ寸法は、コア当接部63の軸方向の高さ寸法と実質的に同等となるように形成されている。凸部64は、ステータコア5(より具体的にはティース52)に当接している。
(コイル)
コイル7は、ステータコア5のスロット53及び冷媒分配プレート6のコイル貫通孔62に挿入されている。図1に示すように、コイル7は、ステータコア5及び冷媒分配プレート6に挿入されるコイル挿通部71と、ステータコア5から軸方向の両側に突出するコイルエンド72と、を有する。
図6に示すように、コイル7は丸線である。コイル挿通部71(図1参照)において、コイル7とステータコア5との間には、絶縁紙40が介在している。絶縁紙40により、コイル7とステータコア5とが絶縁されている。冷却孔54を流れる冷媒Sは、絶縁紙40を介してコイル7を冷却する。絶縁紙40の外周部には、ステータコア5の突出部55が当接している。
図7は、図6のVII部拡大図である。
図7に示すように、コイル7と冷却孔54との間には、絶縁紙40が介在している。冷却孔54のスロット53に面する開口幅Wは、冷却孔54内にコイル7が入り込まないような大きさに設定されている。具体的に、コイル7の直径をD、絶縁紙の厚さをTとすると、冷却孔54の開口幅Wは、W<(D+2T)となるように設定されている。本実施形態において、冷却孔54の開口幅Wは、コイルの外径(コイル直径D)よりも小さい。すなわち、W<Dとなるように設定されている。
(作用、効果)
次に、ステータ4及び回転電機1の作用、効果について説明する。
本実施形態のステータ4によれば、冷却孔54はスロット53に連通するとともに冷媒Sが流通可能とされているので、冷却孔54を流通する冷媒Sにより、スロット53に挿入されたコイル7を冷却できる。また、冷却孔54はティース52に形成されているので、スロット53内に冷媒Sを流通させる空間を確保できない場合であっても、コイル7及びステータコア5を確実に冷却できる。冷却孔54は導入口57から排出口58へ向かって鉛直下方へ傾斜しているので、冷却孔54内を流れる冷媒Sには、重力により排出口58へ向かう力が作用する。これにより、冷却孔54内における冷媒Sの移動を促進し、積極的にコイル7を冷却できる。
したがって、冷媒Sの流通効率を向上してコイル7を積極的に冷却できるステータ4を提供できる。
冷却孔54は、スロット53を囲むステータコア5のうち周方向のティース52に形成されるので、スロット53の外周部のうち径方向のステータコア5に冷却孔54を形成する場合よりも広い領域に冷却孔54を設けることができる。これにより、スロット53に挿入されるコイル7と冷却孔54との接触面積が増加し、冷却効率を向上できる。また、ステータ4の軸方向に向かうにつれて、径方向における冷却孔54の配置を変更することにより、冷却孔54を導入口57から排出口58へ向かって鉛直下方へ傾斜させることができる。よって、簡素な構成により冷媒Sの流通効率を向上したステータ4とすることができる。
ステータ4は冷媒分配プレート6を有するので、冷媒分配プレート6を介してステータ4の外周部からステータ4内に冷媒Sを供給できる。冷媒分配プレート6の冷媒導入孔61は冷却孔54に連通しているので、冷媒分配プレート6を介して冷却孔54に確実に冷媒Sを供給できる。これにより、冷媒Sの流通効率をより一層向上し、冷却効果を高めることができる。特に、冷媒分配プレート6をステータ4の軸方向における中央部に配置した場合、ステータ4の中央部から両端に向かって冷媒Sを供給できる。これにより、冷却孔54内を流れる冷媒Sの流路抵抗を低減し、積極的に冷媒Sを流通させることができる。
冷却孔54とコイル7との間には絶縁紙40が介在しているので、絶縁紙40によりコイル7とステータコア5との間を絶縁できる。また、冷却孔54とコイル7との間にステータコア5が介在する場合と比較して、コイル7と冷却孔54との距離を近接させることができる。これにより、冷却孔54を流れる冷媒Sによりコイル7を効果的に冷却できる。
冷却孔54のスロット53に面する開口幅Wはコイル7の外径(コイル直径D)よりも小さいので、コイル7が冷却孔54に入り込んで流路を塞ぐことを抑制できる。これにより、冷却孔54に確実に冷媒Sを流通させることができる。
冷却孔54は断面半円形状に形成されているので、断面が矩形状や三角形状等に形成される場合と比較して、冷却孔54の管路抵抗を低減できる。よって、冷媒Sを積極的に流通させ、冷却効率を向上できる。また、冷却孔54が形成されたスロット53の外周部におけるステータコア5の強度を向上できる。よって、長寿命で冷却性能に優れたステータ4とすることができる。
突出部55は冷却孔54の間に設けられ、スロット53側に向かって突出しているので、突出部55にコイル7が当接することにより、冷却孔54内にコイル7が入り込むことを抑制できる。よって、冷却孔54内に冷媒Sを確実に流通させることができる。また、コイル7と冷却孔54との間に配置された絶縁紙40が突出部55に当接することにより、絶縁紙40の位置ずれを抑制できる。よって、ステータ4の性能低下を抑制した、優れたステータ4とすることができる。
冷却孔54は、スロット53の一端部から他端部にかけて直線状に延びて形成されているので、冷却孔54内に段差が設けられる場合と比較して、冷却孔54の管路抵抗を低減できる。よって、冷媒Sの流通効率を向上できる。
冷却孔54は水平スロット53cを有し、水平スロット53cは径方向外側に向かうにしたがい漸次開口幅が増加する。水平スロットの上側冷却孔54aにおいて、径方向外側の上側冷却孔54aは、径方向内側の上側冷却孔54aよりも鉛直上方側に位置する。これにより、径方向外側の上側冷却孔54aを導入口57の近傍に配置し、径方向内側の上側冷却孔54aを排出口58の近傍に配置することにより、冷媒Sは、重力により径方向外側から径方向内側に向かうに従って鉛直下方へ流れる。よって、上側冷却孔54a内における冷媒Sの移動を促進し、積極的にコイル7を冷却できる。
一方、水平スロット53cの下側冷却孔54bにおいて、径方向内側の下側冷却孔54bは、径方向外側の下側冷却孔54bよりも鉛直上方側に位置する。これにより、径方向内側の下側冷却孔54bを導入口57の近傍に配置し、径方向外側の下側冷却孔54bを排出口58の近傍に配置することにより、冷媒Sは、重力により径方向内側から径方向外側に向かうに従って鉛直下方へ流れる。よって、下側冷却孔54b内における冷媒Sの移動を促進し、積極的にコイル7を冷却できる。
したがって、水平スロット53cに冷却孔54を設けた場合であっても、冷却孔54に冷媒Sを確実に流通させ、水平スロット53c内のコイル7を冷却できる。
本実施形態の回転電機1によれば、回転電機1は上述のステータ4を備えているので、製造が容易で、かつ冷媒Sの流通効率を向上してコイル7を積極的に冷却できるステータ4を備えた、製造性及び冷却性に優れた回転電機1を提供できる。
(第2実施形態)
次に、本発明に係る第2実施形態について説明する。図17は、第2実施形態に係るステータ4の断面図である。図18は、図17のXVIII部拡大図である。本実施形態では、冷却孔54が段差形状に形成されている点において上述した実施形態と相違している。
本実施形態において、図17に示すように、冷却孔254は、スロット53の一端部から他端部にかけて段差形状に形成されている。具体的に、冷却孔254の一端部には導入口57が形成され、他端部には排出口58が形成されている。導入口57は、排出口58よりも鉛直上方側に位置している。冷却孔54は、軸方向に対して導入口57から排出口58へ向かって鉛直下方側へ位置するとともに段差形状に延びている。
図18は、図17における段差形状の構成を示す図17のXVIII部拡大図である。段差形状は、ステータコア5を形成する各鋼板15において、鋼板15ごとに冷却孔254の位置を徐々に変化させることにより形成される。本実施形態において、冷却孔254は、軸方向とほぼ平行に延びる直線部254aと、直線部254aの間に設けられる長孔部254bと、を有する。直線部254aは、導入口57側から排出口58側へ向かうにしたがい徐々に鉛直下方へ位置するように、軸方向に断続的に設けられている。長孔部254bは、鉛直方向の位置が互いに異なる直線部254aの間に設けられ、隣り合う2つの直線部254aにそれぞれ連通している。換言すれば、長孔部254bは径方向に沿って長軸を有し、長軸の長さは、鉛直方向の位置が互いに異なる隣り合う直線部254a間の長さと実質的に同等となるように形成されている。
本実施形態によれば、冷却孔254内部の冷媒Sは、直線部254aを通って軸方向に移動するとともに、長孔部254bを通って鉛直下方へ移動しながら冷却孔254内を流通する。これにより、導入口57から排出口58へ向かって重力により冷媒を効率よく流通させることができる。また、直線部254aは、鉛直方向の高さが同じ段においては同一の鋼板15を重ねることにより形成できるので、例えばプレスにより冷却孔254を形成する場合、金型の種類を減らし、製造コストを削減できる。よって、簡素かつ廉価な方法で冷却孔254を形成することができる。
(第3実施形態)
次に、本発明に係る第3実施形態について説明する。図19は、第3実施形態に係るスロット53近傍の部分拡大図である。本実施形態では、冷却孔54がスロット53の径方向の壁面にも設けられている点において上述した実施形態と相違している。
本実施形態において、ステータコア5は、上述の実施形態における冷却孔54に加え、径方向冷却孔354を有する。径方向冷却孔354は、スロット53の径方向の壁面に設けられている。径方向冷却孔354は、コア本体51を軸方向に貫通している。径方向冷却孔354は、導入口57から排出口58(図5参照)にかけて直線状に延びて形成されている。径方向冷却孔354には、冷媒Sが流通可能とされている。
本実施形態によれば、第1実施形態と同様の作用、効果を奏することに加え、径方向冷却孔354にも冷媒Sが流通するので、スロット53内のコイル7をより一層効率的に冷却できる。
(第4実施形態)
次に、本発明に係る第4実施形態について説明する。図20は、第4実施形態に係るスロット53近傍の部分拡大図である。本実施形態では、冷却孔54が断面矩形状に形成されている点において上述した実施形態と相違している。
本実施形態において、冷却孔454は、断面矩形状に形成されている。径方向に隣り合う冷却孔454同士の間には矩形状の突出部455が設けられている。突出部455は、ティース52からスロット53に向かって突出している。
本実施形態によれば、冷却孔454は断面矩形状に形成されているので、断面が円形状や矩形状以外の多角形状等に形成される場合と比較して、冷却孔454の加工を容易にできる。よって、製造時の加工性に優れたステータ4とすることができる。また、突出部455の先端部と絶縁紙40との接触面積を広く確保できるので、突出部455の先端部の強度を向上できる。よって、突出部455が破損することによる冷却孔454からの冷媒漏れを抑制した、長寿命なステータコア5とすることができる。
(第5実施形態)
次に、本発明に係る第5実施形態について説明する。図21は、第4実施形態に係るスロット53近傍の部分拡大図である。本実施形態では、冷却孔554がスロット53の径方向外側部分のみに設けられている点において上述した実施形態と相違している。
本実施形態において、冷却孔554は、スロット53の周方向の周壁のうち径方向外側に設けられている。冷却孔554は、ステータコア5を軸方向に沿って貫通している。スロット53は、軸方向から見て矩形状に形成されている。換言すれば、ティース52は、ステータコア5の径方向内側から外側へ向かうにしたがい漸次ティース幅が増加するように形成されている。ティース52は、径方向の最も内側に幅狭部556を有する。ティース52を挟んで周方向に隣り合う冷却孔554同士の間のティース幅寸法L2は、幅狭部556におけるティース幅寸法L1よりも大きい。すなわち、L1<L2となるように設定されている。
本実施形態によれば、周方向におけるティース幅は径方向の内側から外側へ向かうにしたがい増加するので、ティース幅は、径方向の内側に設けられた幅狭部556において最小となる。ここで、ステータコア5を径方向に沿って流れる磁束の量は、ティース幅が最も小さい部分、すなわち幅狭部556により決定される。本発明のステータ4によれば、周方向に隣り合う冷却孔554同士の間のティース幅寸法L2は、幅狭部556におけるティース幅寸法L1よりも大きいので、冷却孔554を形成することによる磁束量への影響を抑えることができる。よって、磁束量の減少を抑制しつつ冷却性能を向上できる。
なお、本発明の技術範囲は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、本実施形態においては、ステータコア5の軸方向の中央に冷媒分配プレート6を配置する構成としたが、これに限られない。例えばステータコア5の軸方向におけるいずれか一方の端面に冷媒分配プレート6を配置してもよい。
また、冷却孔54とスロット53とは連通しているので、スロット53と冷却孔54とを例えばパンチ加工により同時に形成してもよい。これにより、スロット53を形成した後に研磨加工により冷却孔を形成する場合と比較して、冷却孔54を容易に形成できる。また、冷却孔54の加工費を抑えることができる。よって、製造性を向上したステータ4とすることができる。
冷却孔54の断面形状は、半円形状や矩形状以外の形状、例えば三角形状等であってもよい。
ステータコア5は、金属磁性粉末(軟磁性粉)を圧縮成形した、いわゆる圧粉コアであってもよい。
その他、本発明の趣旨を逸脱しない範囲で、上述した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上述した実施形態及び変形例を適宜組み合わせてもよい。
1 回転電機
4 ステータ
5 ステータコア
6 冷媒分配プレート
7 コイル
40 絶縁紙
52 ティース
53 スロット
53c 水平スロット
54,254,354,454,554 冷却孔
54a 上側冷却孔
54b 下側冷却孔
55,455 突出部
57 導入口
58 排出口
61 冷媒導入孔
556 幅狭部
S 冷媒
W 開口幅
D コイル直径(コイルの外形)
L1,L2 ティース幅寸法

Claims (12)

  1. 環状のステータコアを備え、
    前記ステータコアは、
    前記ステータコアの周方向に間隔をあけて配置され、前記ステータコアの軸方向に延びる複数のティースと、
    前記周方向で隣り合う2つの前記ティース間に配置され、コイルが挿入されるスロットと、
    前記ティースに沿って形成され、前記スロットに連通するとともに冷媒が流通可能な冷却孔と、
    を有し、
    前記冷却孔は、前記軸方向に対して、前記冷媒の導入口から前記冷媒の排出口へ向かって鉛直下方へ傾斜していることを特徴とするステータ。
  2. 前記冷却孔は、前記周方向の前記ティースに形成されることを特徴とする請求項1に記載のステータ。
  3. 前記ステータコアは、前記ステータコア内に前記冷媒を供給するための冷媒分配プレートに隣接して配置され、
    前記冷却孔は、前記冷媒分配プレートに設けられた冷媒導入孔と連通していることを特徴とする請求項1又は請求項2に記載のステータ。
  4. 前記冷却孔と前記コイルとの間には、絶縁紙が介在していることを特徴とする請求項1から3のいずれか1項に記載のステータ。
  5. 前記コイルは丸線であり、前記冷却孔の前記スロットに面する開口幅は、前記コイルの外径よりも小さいことを特徴とする請求項1から4のいずれか1項に記載のステータ。
  6. 前記冷却孔は、断面半円形状に形成されていることを特徴とする請求項1から5のいずれか1項に記載のステータ。
  7. 前記冷却孔は、断面矩形状に形成されていることを特徴とする請求項1から5のいずれか1項に記載のステータ。
  8. 前記ステータコアは、
    前記スロットにおいて隣り合う前記冷却孔同士の間に配置され、前記ステータコアから前記スロットに向かって突出する突出部を更に備えることを特徴とする請求項1から7のいずれか1項に記載のステータ。
  9. 前記冷却孔は、前記スロットの一端部から他端部にかけて直線状に延びて形成されていることを特徴とする請求項1から8のいずれか1項に記載のステータ。
  10. 前記冷却孔は、複数設けられ、
    複数の前記スロットは、水平方向に沿って延びる水平スロットを含み、
    前記水平スロットは、前記ステータコアの径方向外側に向かうにしたがい漸次開口幅が増加し、
    複数の前記冷却孔は、
    前記水平スロットの鉛直上方側に設けられた上側冷却孔と、
    前記水平スロットの鉛直下方側に設けられた下側冷却孔と、
    を含み、
    前記上側冷却孔は、前記冷媒が前記ステータコアの径方向外側から径方向内側に向かうに従って鉛直下方へ流れるように形成され、
    前記下側冷却孔は、前記冷媒が前記ステータコアの径方向内側から径方向外側に向かうに従って鉛直下方へ流れるように形成されていることを特徴とする請求項1から9のいずれか1項に記載のステータ。
  11. 前記ティースは、前記ステータコアの径方向の内側から外側へ向かうにしたがい漸次ティース幅が増加し、
    前記ティースを挟んで前記周方向に隣り合う前記冷却孔同士の間の前記ティース幅寸法は、前記径方向の内側に設けられた幅狭部におけるティース幅寸法よりも大きいことを特徴とする請求項1から10のいずれか1項に記載のステータ。
  12. 請求項1から11のいずれか1項に記載のステータを備えたことを特徴とする回転電機。
JP2019011240A 2019-01-25 2019-01-25 ステータ及び回転電機 Pending JP2020120536A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019011240A JP2020120536A (ja) 2019-01-25 2019-01-25 ステータ及び回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019011240A JP2020120536A (ja) 2019-01-25 2019-01-25 ステータ及び回転電機

Publications (1)

Publication Number Publication Date
JP2020120536A true JP2020120536A (ja) 2020-08-06

Family

ID=71891446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019011240A Pending JP2020120536A (ja) 2019-01-25 2019-01-25 ステータ及び回転電機

Country Status (1)

Country Link
JP (1) JP2020120536A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021097531A (ja) * 2019-12-18 2021-06-24 本田技研工業株式会社 ステータ及びステータの製造方法
WO2023285755A1 (fr) 2021-07-13 2023-01-19 Nidec Psa Emotors Stator de machine électrique tournante et procédé de fabrication
WO2023285754A1 (fr) 2021-07-13 2023-01-19 Nidec Psa Emotors Stator de machine électrique tournante et procédé de fabrication
DE102021211919A1 (de) 2021-10-22 2023-04-27 Zf Friedrichshafen Ag Stator für eine elektrische Maschine
JP7266791B1 (ja) 2021-11-24 2023-05-01 株式会社明電舎 回転電機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012202U (ja) * 1973-05-30 1975-02-07
JP2011120402A (ja) * 2009-12-04 2011-06-16 Hitachi Ltd 回転電機
JP2012186880A (ja) * 2011-03-03 2012-09-27 Hitachi Constr Mach Co Ltd 冷却構造を備えた回転電機、およびこの回転電機を用いた建設機械

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012202U (ja) * 1973-05-30 1975-02-07
JP2011120402A (ja) * 2009-12-04 2011-06-16 Hitachi Ltd 回転電機
JP2012186880A (ja) * 2011-03-03 2012-09-27 Hitachi Constr Mach Co Ltd 冷却構造を備えた回転電機、およびこの回転電機を用いた建設機械

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021097531A (ja) * 2019-12-18 2021-06-24 本田技研工業株式会社 ステータ及びステータの製造方法
WO2023285755A1 (fr) 2021-07-13 2023-01-19 Nidec Psa Emotors Stator de machine électrique tournante et procédé de fabrication
WO2023285754A1 (fr) 2021-07-13 2023-01-19 Nidec Psa Emotors Stator de machine électrique tournante et procédé de fabrication
FR3125365A1 (fr) 2021-07-13 2023-01-20 Nidec Psa Emotors Stator de machine électrique tournante et procédé de fabrication
FR3125366A1 (fr) 2021-07-13 2023-01-20 Nidec Psa Emotors Stator de machine électrique tournante et procédé de fabrication
DE102021211919A1 (de) 2021-10-22 2023-04-27 Zf Friedrichshafen Ag Stator für eine elektrische Maschine
JP7266791B1 (ja) 2021-11-24 2023-05-01 株式会社明電舎 回転電機
WO2023095405A1 (ja) * 2021-11-24 2023-06-01 株式会社明電舎 回転電機
JP2023077030A (ja) * 2021-11-24 2023-06-05 株式会社明電舎 回転電機

Similar Documents

Publication Publication Date Title
JP2020120536A (ja) ステータ及び回転電機
US8922083B2 (en) Rotor
US8269382B2 (en) Cooling structure of stator
CN111463942B (zh) 旋转电机
US10361597B2 (en) Electric machine for a motor vehicle, coil carrier for an electric machine, and motor vehicle
KR101673333B1 (ko) 구동 모터의 냉각유닛
CN110247497B (zh) 旋转电机的转子
JP2011120402A (ja) 回転電機
JP2010166708A (ja) 電機子
CN110601446B (zh) 转子的制造方法
US20200287432A1 (en) Rotor and rotating electrical machine
JP2010252507A (ja) 回転電機の固定子および回転電機の固定子の冷却方法
JP6452164B2 (ja) 回転電機のステータ
WO2017146117A1 (ja) 回転電動機の絶縁ボビン
US11451102B2 (en) Rotary electric machine
JP2016149905A (ja) 回転電機のステータおよびその製造方法
US11323004B2 (en) Rotating electric machine
JP2020120486A (ja) 回転電機
JP2013220004A (ja) 誘導電動機
JP2020096474A (ja) 回転電機のロータ
JP2013051805A (ja) 回転電機の冷却構造
JP2016129447A (ja) 回転電機
JP2011050179A (ja) ロータおよびモータ
JP2013192339A (ja) 誘導電動機
JP6793178B2 (ja) 回転電気のロータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220816