JP2020113590A - Method for cooling hot plate and heat treatment apparatus - Google Patents

Method for cooling hot plate and heat treatment apparatus Download PDF

Info

Publication number
JP2020113590A
JP2020113590A JP2019001571A JP2019001571A JP2020113590A JP 2020113590 A JP2020113590 A JP 2020113590A JP 2019001571 A JP2019001571 A JP 2019001571A JP 2019001571 A JP2019001571 A JP 2019001571A JP 2020113590 A JP2020113590 A JP 2020113590A
Authority
JP
Japan
Prior art keywords
hot plate
cooling
temperature
flow rate
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019001571A
Other languages
Japanese (ja)
Other versions
JP7186096B2 (en
Inventor
優 溝部
Masaru Mizobe
優 溝部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2019001571A priority Critical patent/JP7186096B2/en
Priority to KR1020200000332A priority patent/KR20200086629A/en
Priority to CN202010022946.3A priority patent/CN111430267B/en
Publication of JP2020113590A publication Critical patent/JP2020113590A/en
Application granted granted Critical
Publication of JP7186096B2 publication Critical patent/JP7186096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

To efficiently cool a hot plate for heat-treating a substrate.SOLUTION: In a method for cooling a hot plate for heat-treating a substrate, the hot plate is divided into a plurality of regions, the temperature can be set by a heating mechanism for each of the regions, and when a cooling medium is supplied from a plurality of refrigerant supply units to the hot plate to cool the hot plate, the flow rate of the cooling medium for each of the refrigerant supply units is controlled according to the relative difference in the temperature decrease rate between the regions.SELECTED DRAWING: Figure 8

Description

本開示は、熱板の冷却方法及び加熱処理装置に関する。 The present disclosure relates to a hot plate cooling method and a heat treatment apparatus.

特許文献1には、基板を加熱処理する加熱処理装置が開示されている。加熱処理装置は、基板を加熱処理する加熱プレートと、加熱プレートの裏面に冷却ガスを供給して、加熱プレートを降温する冷却ガス供給手段とを具備する。冷却ガス供給手段は、加熱プレートの冷却速度の遅い部位から冷却速度の速い部位に向けて冷却ガスが流れるように冷却ガスを供給する。 Patent Document 1 discloses a heat treatment apparatus that heats a substrate. The heat treatment apparatus includes a heating plate that heats the substrate, and a cooling gas supply unit that supplies a cooling gas to the back surface of the heating plate to lower the temperature of the heating plate. The cooling gas supply means supplies the cooling gas such that the cooling gas flows from the portion of the heating plate having a slow cooling rate to the portion of the heating plate having a high cooling rate.

特開2001−189250号公報JP 2001-189250 A

本開示にかかる技術は、基板を加熱処理する熱板を効率よく冷却する。 The technique according to the present disclosure efficiently cools a hot plate that heats a substrate.

本開示の一態様は、基板を加熱処理する熱板の冷却方法であって、前記熱板は複数の領域に区画され、当該領域毎に加熱機構によって温度設定可能であり、複数の冷媒供給部から前記熱板に冷却媒体を供給して当該熱板を冷却する際に、前記領域間の相対的な降温速度の違いに応じて、前記冷媒供給部毎の冷却媒体の流量制御を行う。 One aspect of the present disclosure is a method for cooling a hot plate that heat-treats a substrate, wherein the hot plate is divided into a plurality of regions, and the temperature can be set by a heating mechanism for each of the regions, and a plurality of refrigerant supply units is provided. When the cooling medium is supplied to the hot plate to cool the hot plate, the flow rate of the cooling medium is controlled for each of the refrigerant supply units according to the difference in the relative temperature decrease rate between the regions.

本開示によれば、基板を加熱処理する熱板を効率よく冷却することができる。 According to the present disclosure, a hot plate that heat-treats a substrate can be efficiently cooled.

本実施形態にかかる加熱処理装置の構成の概略を示す縦断面の説明図である。It is explanatory drawing of the vertical cross section which shows the outline of a structure of the heat processing apparatus concerning this embodiment. 熱板の構成の概略を示す平面の説明図である。It is explanatory drawing of the plane which shows the outline of a structure of a heat plate. ガスノズルの配置を示す平面の説明図である。It is explanatory drawing of the plane which shows arrangement|positioning of a gas nozzle. ガスノズルに冷却ガスを供給する機構を模式的に示す説明図である。It is explanatory drawing which shows typically the mechanism which supplies a cooling gas to a gas nozzle. 従来においてガスノズルからの冷却ガスの流量を一定にした場合の、熱板の領域の温度を経時的に示したグラフである。It is a graph which showed the temperature of the field of a hot plate over time when the flow rate of the cooling gas from a gas nozzle was made constant conventionally. 従来においてガスノズルからの冷却ガスの流量を一定にした場合の、冷却中の熱板と温度の関係を示す説明図である。It is explanatory drawing which shows the relationship between the hot plate and temperature in the case of cooling, when the flow volume of the cooling gas from a gas nozzle is made constant conventionally. 本実施形態において熱板の領域の温度を経時的に示したグラフである。It is a graph which showed the temperature of the field of a hot plate in this embodiment over time. 本実施形態において冷却中の熱板と冷却ガスの流量の関係を示す説明図である。It is explanatory drawing which shows the relationship of the hot plate in cooling and the flow volume of cooling gas in this embodiment. 他の実施形態において冷却中の熱板と冷却ガスの流量の関係を示す説明図である。It is explanatory drawing which shows the relationship of the hot plate during cooling and the flow volume of cooling gas in other embodiment. ガスノズルに冷却ガスを供給する機構を模式的に示す説明図である。It is explanatory drawing which shows typically the mechanism which supplies a cooling gas to a gas nozzle.

半導体デバイス等の製造プロセスにおけるフォトリソグラフィー工程では、各種処理が行われ、基板としての半導体ウェハ(以下、「ウェハ」という。)上に、所定のレジストパターンが形成される。各種処理とは、ウェハW上にレジスト液を塗布しレジスト膜を形成する処理、レジスト膜を露光する処理、露光されたレジスト膜を現像する処理、ウェハを加熱する処理等である。 In a photolithography process in a manufacturing process of semiconductor devices and the like, various processes are performed to form a predetermined resist pattern on a semiconductor wafer (hereinafter referred to as “wafer”) as a substrate. The various processes include a process of applying a resist solution on the wafer W to form a resist film, a process of exposing the resist film, a process of developing the exposed resist film, a process of heating the wafer, and the like.

上述のウェハ加熱処理は、通常、ウェハが載置されて当該ウェハを加熱する熱板を有する加熱処理装置で行われる。加熱処理装置の熱板には、例えば、給電により発熱するヒータが内蔵されており、このヒータによる発熱により熱板は所定温度に調整されている。 The above-described wafer heat treatment is usually performed by a heat treatment apparatus having a hot plate on which a wafer is placed and which heats the wafer. The heat plate of the heat treatment apparatus has, for example, a built-in heater that generates heat by power supply, and the heat plate adjusts the heat plate to a predetermined temperature by the heat generated by the heater.

加熱処理における加熱温度は、最終的にウェハ上に形成されるレジストパターンの線幅に大きな影響を与える。そこで、加熱時のウェハ面内の温度を厳密に調整するために、上述の加熱処理装置の熱板は、複数の領域に区画され、領域毎の独立したヒータ及び温度センサが内蔵され、領域毎に温度調整されている。 The heating temperature in the heat treatment greatly affects the line width of the resist pattern finally formed on the wafer. Therefore, in order to strictly adjust the temperature in the wafer surface at the time of heating, the heat plate of the above-mentioned heat treatment apparatus is divided into a plurality of areas, and an independent heater and temperature sensor for each area are built-in. The temperature is adjusted.

また、加熱処理における加熱温度は、半導体デバイスの種類やレジスト液の種類、プロセスの種類等により異なる場合がある。そこで例えば、高温の設定温度の熱板を低温に変更する際には、当該熱板を降温させる必要がある。特許文献1に記載された加熱処理装置では、冷却ガス供給手段から熱板(加熱プレート)の裏面に冷却ガスを供給して、熱板を降温している。 Further, the heating temperature in the heat treatment may differ depending on the type of semiconductor device, the type of resist solution, the type of process, and the like. Therefore, for example, when changing a hot plate having a high set temperature to a low temperature, it is necessary to lower the temperature of the hot plate. In the heat treatment device described in Patent Document 1, the cooling gas is supplied from the cooling gas supply means to the back surface of the hot plate (heating plate) to lower the temperature of the hot plate.

ところで、熱板を冷却する際の各領域の降温速度は、例えば熱板の組み立て時の影響や、冷却ガスを供給するノズルの配置などに起因して決まる。このため、各領域の降温速度が異なる場合がある。降温速度が異なる場合、領域間の熱干渉により温度が上昇する現象、いわゆるオーバーシュートが発生する。そうするとこのオーバーシュートにより、熱板の温度整定に時間がかかる。なお、オーバーシュートの発生メカニズムについては、後述においてその詳細を説明する。 By the way, the cooling rate of each region when cooling the hot plate is determined due to, for example, the influence at the time of assembling the hot plate and the arrangement of the nozzles that supply the cooling gas. Therefore, the cooling rate of each region may be different. When the rate of temperature decrease is different, a phenomenon in which the temperature rises due to thermal interference between regions, so-called overshoot occurs. Then, due to this overshoot, it takes time to settle the temperature of the hot plate. The overshoot generation mechanism will be described in detail later.

この点、特許文献1に記載された加熱処理装置では冷却ガス供給手段によって、熱板の降温速度(冷却速度)の遅い部位から降温速度の速い部位に向けて冷却ガスが流れるように冷却ガスが供給され、これにより均一な冷却を図っている。しかしながら、予め降温速度の遅い部位と速い部位を把握していたとしても、冷却ガスの下流における気流の向きを制御するのは困難である。特に、複数のノズルから冷却ガスを供給する場合、これら冷却ガスの干渉も生じるため、熱板の各領域の降温を精度よく制御するのは困難となる。したがって、従来の熱板の冷却方法には改善の余地がある。 In this regard, in the heat treatment apparatus described in Patent Document 1, the cooling gas is supplied by the cooling gas supply means so that the cooling gas flows from a portion having a slow temperature lowering rate (cooling rate) of the hot plate toward a portion having a faster temperature lowering rate. It is supplied for uniform cooling. However, it is difficult to control the direction of the air flow in the downstream of the cooling gas even if the region where the temperature drop rate is slow and the region where the temperature drop rate is fast are known in advance. In particular, when the cooling gas is supplied from a plurality of nozzles, interference of these cooling gases also occurs, so that it is difficult to accurately control the temperature drop in each region of the hot plate. Therefore, there is room for improvement in the conventional hot plate cooling method.

以下、本実施形態にかかる加熱処理装置と、当該加熱処理装置の熱板の冷却方法について、図面を参照しながら説明する。なお、本明細書において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 Hereinafter, a heat treatment apparatus according to the present embodiment and a method for cooling a hot plate of the heat treatment apparatus will be described with reference to the drawings. In the present specification, elements having substantially the same functional configuration will be assigned the same reference numerals and overlapping description will be omitted.

<加熱処理装置>
図1は、本実施形態にかかる加熱処理装置1の構成の概略を示す縦断面の説明図である。加熱処理装置1は、図1に示すようにウェハWを内部に収容する筐体10を有している。筐体10の一側面には、ウェハWを搬入出するための搬入出口11が形成されている。
<Heat treatment equipment>
FIG. 1 is an explanatory view of a vertical cross section showing the outline of the configuration of the heat treatment apparatus 1 according to the present embodiment. The heat treatment apparatus 1 has a housing 10 that accommodates the wafer W therein, as shown in FIG. A loading/unloading port 11 for loading/unloading the wafer W is formed on one side surface of the housing 10.

筐体10の内部には、上側に位置して上下動自在な蓋体20と、下側に位置してその蓋体20と一体となって処理室Sを形成する熱板収容部21が設けられている。 Inside the housing 10, there are provided a lid 20 that is located on the upper side and is movable up and down, and a hot plate accommodating portion 21 that is located on the lower side and forms a processing chamber S integrally with the lid 20. Has been.

蓋体20は、下面が開口した略筒形状を有している。蓋体20の上面中央部には、排気部20aが設けられている。処理室S内の雰囲気は、排気部20aから排気される。 The lid 20 has a substantially cylindrical shape with an open lower surface. An exhaust portion 20a is provided in the center of the upper surface of the lid body 20. The atmosphere in the processing chamber S is exhausted from the exhaust unit 20a.

熱板収容部21は、外周の略円筒状の外側ケース22と、外側ケース22内に配置された略円筒状の内側ケース23と、内側ケース23の下面を覆う底板24と、内側ケース23内に固着され断熱性を備えたサポートリング25と、を有している。なお、底板24には、多数の通気孔(図示せず)が形成されている。 The hot plate accommodating portion 21 includes a substantially cylindrical outer case 22 having an outer periphery, a substantially cylindrical inner case 23 arranged in the outer case 22, a bottom plate 24 covering a lower surface of the inner case 23, and an inner case 23. And a support ring 25 having heat insulating properties. It should be noted that the bottom plate 24 has a large number of ventilation holes (not shown).

サポートリング25には、ウェハWが載置され当該ウェハWを加熱する熱板30が設けられている。熱板30は、厚みのある略円盤形状を有している。 The support ring 25 is provided with a hot plate 30 on which the wafer W is placed and which heats the wafer W. The heat plate 30 has a substantially disk shape with a large thickness.

図2に示すように熱板30は、複数、例えば7つの領域R〜Rに区画されている。領域Rは、平面視において熱板30の中央部に設けられた円形の領域である。領域R〜Rは、平面視において領域Rの外側にある環状領域を2等分した円弧状の領域である。領域R〜Rは、平面視において領域R〜Rのさらに外側にある環状領域(外周領域)を周方向に4等分した円弧状の領域である。以下の説明においては、領域Rを第1領域といい、領域R〜Rの環状領域を第2領域といい、領域R〜Rの環状領域を第3領域という。そしてこれら第1領域、第2領域、第3領域はそれぞれ、熱板30と同心円状に配置されている。なお、熱板30において区画される領域の数や配置は本実施形態に限定されず、任意に設定できる。 As shown in FIG. 2, the hot plate 30 is divided into a plurality of, for example, seven regions R 1 to R 7 . The region R 1 is a circular region provided in the central portion of the heat plate 30 in plan view. Regions R 2 to R 3 are arc-shaped regions that divide the annular region outside the region R 1 into two equal parts in plan view. The regions R 4 to R 7 are arc-shaped regions obtained by dividing an annular region (outer peripheral region) further outside the regions R 2 to R 3 in a plan view into four equal parts in the circumferential direction. In the following description, the region R 1 is referred to as the first region, the annular regions of the regions R 2 to R 3 are referred to as the second region, and the annular regions of the regions R 4 to R 7 are referred to as the third region. And these 1st area|region, 2nd area|region, and 3rd area|region are arrange|positioned concentrically with the heating plate 30, respectively. Note that the number and arrangement of the regions divided in the heat plate 30 are not limited to those in this embodiment, and can be set arbitrarily.

熱板30の各領域R〜Rには、加熱機構としてのヒータ31が個別に内蔵されている。ヒータ31は例えば電気ヒータであり、各領域R〜Rを個別に加熱できる。また、各領域R〜Rには、温度センサ32が個別に設けられている。温度センサ32は、当該温度センサ32が設けられた領域R〜Rの温度を個別に測定する。各領域R〜Rのヒータ31の発熱量は、例えば後述する制御部60により、領域R〜R毎に、それぞれの温度センサ32で測定される温度が設定温度となるように調整される。 A heater 31 as a heating mechanism is individually built in each of the regions R 1 to R 7 of the heating plate 30. The heater 31 is, for example, an electric heater and can individually heat each of the regions R 1 to R 7 . A temperature sensor 32 is individually provided in each of the regions R 1 to R 7 . The temperature sensor 32 individually measures the temperatures of the regions R 1 to R 7 in which the temperature sensor 32 is provided. The heat generation amount of the heater 31 in each of the regions R 1 to R 7 is adjusted by, for example, the control unit 60 described later such that the temperature measured by each of the temperature sensors 32 becomes the set temperature for each of the regions R 1 to R 7. To be done.

図1に示すように熱板30の下方であって底板24上には、冷媒供給部としてのガスノズルNが複数設けられている。ガスノズルNは、熱板30の裏面に向けて、冷却媒体としての冷却ガスを供給する。冷却ガスには、例えば常温のエアが用いられる。なお、ガスノズルNから熱板30に供給された冷却ガスは、底板24の通気孔(図示せず)を介して、筐体10の外部に排出される。 As shown in FIG. 1, below the heating plate 30 and on the bottom plate 24, a plurality of gas nozzles N as a coolant supply unit are provided. The gas nozzle N supplies a cooling gas as a cooling medium toward the back surface of the hot plate 30. Air at room temperature is used as the cooling gas, for example. The cooling gas supplied from the gas nozzle N to the hot plate 30 is discharged to the outside of the housing 10 via the ventilation holes (not shown) of the bottom plate 24.

図3に示すようにガスノズルNは、複数、例えば7つ設けられている。7つのガスノズルN〜Nはそれぞれ、例えば、熱板30の領域R〜Rに対応するように配置されている。なお、各ガスノズルN〜Nは、平面視において温度センサ32と重ならない位置に配置されていてもよい。また、ガスノズルN〜Nの数や配置は本実施形態に限定されず、任意に設定できる。 As shown in FIG. 3, a plurality of gas nozzles N, for example, seven are provided. The seven gas nozzles N 1 to N 7 are arranged so as to correspond to the regions R 1 to R 7 of the hot plate 30, respectively, for example. The gas nozzles N 1 to N 7 may be arranged at positions that do not overlap the temperature sensor 32 in plan view. Further, the number and arrangement of the gas nozzles N 1 to N 7 are not limited to those in this embodiment and can be set arbitrarily.

図1及び図4に示すように複数のガスノズルN〜Nには、ガス供給管40が接続されている。ガス供給管40は、ガスノズルN〜Nに冷却ガスを供給するガス供給源41に連通している。またガス供給管40には、ガス供給源41からの冷却ガスを各ガスノズルN〜Nに分岐させるための分岐部42が設けられている。すなわち、ガス供給源41に接続されたガス供給管40aは、分岐部42でガス供給管40bに分岐され、各ガスノズルN〜Nに接続される。分岐部42の内部において、ガス供給管40aとガス供給管40bのそれぞれの分岐点には、オリフィス43が設けられている。そして各オリフィス43の径を調整することで、各ガスノズルN〜Nに供給する冷却ガスの流量を個別に制御することができる。 As shown in FIGS. 1 and 4, a gas supply pipe 40 is connected to the plurality of gas nozzles N 1 to N 7 . The gas supply pipe 40 communicates with a gas supply source 41 that supplies cooling gas to the gas nozzles N 1 to N 7 . Further, the gas supply pipe 40 is provided with a branch portion 42 for branching the cooling gas from the gas supply source 41 to each of the gas nozzles N 1 to N 7 . That is, the gas supply pipe 40a connected to a gas supply source 41 is branched into the gas supply pipe 40b at a branch portion 42 is connected to each of the gas nozzles N 1 to N 7. Inside the branch portion 42, an orifice 43 is provided at each branch point of the gas supply pipe 40a and the gas supply pipe 40b. Then, by adjusting the diameter of each orifice 43, the flow rate of the cooling gas supplied to each of the gas nozzles N 1 to N 7 can be individually controlled.

図1に示すように熱板収容部21には、ウェハWを下方から支持し昇降させるための昇降ピン50が、例えば3本設けられている。昇降ピン50は、底板24の下方に設けられた、シリンダ等の駆動部51により昇降自在である。そして昇降ピン50は、底板24の貫通孔24aと熱板30に形成された貫通孔30aを挿通し、熱板30の下方から上方に突出できる。 As shown in FIG. 1, the hot plate accommodating portion 21 is provided with, for example, three elevating pins 50 for supporting and elevating the wafer W from below. The lift pins 50 can be lifted and lowered by a drive unit 51 such as a cylinder provided below the bottom plate 24. The elevating pin 50 can be inserted through the through hole 24a of the bottom plate 24 and the through hole 30a formed in the heat plate 30 and can protrude upward from below the heat plate 30.

加熱処理装置1には、制御部60が設けられている。制御部60は、例えばCPUやメモリ等を備えたコンピュータにより構成され、プログラム格納部(図示せず)を有している。プログラム格納部には、加熱処理装置1における処理の制御するプログラムが格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体Hに記録されていたものであって、当該記憶媒体Hから制御部60にインストールされたものであってもよい。 The heat treatment device 1 is provided with a control unit 60. The control unit 60 is composed of a computer including, for example, a CPU and a memory, and has a program storage unit (not shown). The program storage unit stores a program for controlling the processing in the heat treatment apparatus 1. The program may be recorded in a computer-readable storage medium H and may be installed in the control unit 60 from the storage medium H.

以上の加熱処理装置1で行われる加熱処理において、筐体10内に搬入されたウェハWは昇降ピン50に受け渡されて、熱板30に載置される。熱板30は所定の設定温度に加熱されており、当該熱板によりウェハWは加熱処理される。 In the heat treatment performed by the heat treatment apparatus 1 described above, the wafer W carried into the housing 10 is transferred to the elevating pins 50 and placed on the hot plate 30. The hot plate 30 is heated to a predetermined set temperature, and the wafer W is heat-treated by the hot plate.

ここで、熱板30の設定温度は、上述したように半導体デバイスの種類やレジスト液の種類、プロセスの種類等により異なる場合がある。かかる場合、ウェハWの加熱処理に先だって、熱板30を設定温度に調整する必要がある。例えば、高温の設定温度の熱板30を低温の設定温度に変更する際には、当該熱板30を降温させる必要があるが、かかる場合、オーバーシュートが発生する場合がある。そこで、本発明者らはオーバーシュートの発生メカニズムを明らかにし、その対応策を見出すに至った。 Here, the set temperature of the heating plate 30 may differ depending on the type of semiconductor device, the type of resist solution, the type of process, etc., as described above. In such a case, it is necessary to adjust the temperature of the heating plate 30 to the set temperature prior to the heat treatment of the wafer W. For example, when changing the hot plate 30 having a high set temperature to a low set temperature, it is necessary to lower the temperature of the hot plate 30, but in such a case, overshoot may occur. Therefore, the present inventors have clarified the mechanism of occurrence of overshoot and found a countermeasure against it.

<オーバーシュートの発生メカニズム>
先ず、オーバーシュートの発生メカニズムについて、加熱処理装置1を対象として説明する。具体的には、高温の熱板30に対して複数のガスノズルN〜Nから冷却ガスを供給して、当該熱板30を設定温度T0にまで冷却する。この際、各ガスノズルN〜Nから供給される冷却ガスの流量は同じとする。なお、熱板30の目標冷却温度は設定温度T0であるが、数℃程度の整定幅ΔTがある。そこで、各領域R〜Rは、目標温度範囲T1〜T2の間に制定されればよいものとする。温度T1は設定温度T0に整定幅ΔTを加えたものであり(T1=T0+ΔT)、温度T2は設定温度T0から整定幅ΔTを引いたものである(T2=T0−ΔT)。
<Mechanism of occurrence of overshoot>
First, the mechanism of overshoot generation will be described for the heat treatment apparatus 1. Specifically, the cooling gas is supplied to the hot plate 30 having a high temperature from a plurality of gas nozzles N 1 to N 7 to cool the hot plate 30 to the set temperature T0. At this time, the flow rate of the cooling gas supplied from each of the gas nozzles N 1 to N 7 is the same. The target cooling temperature of the heating plate 30 is the set temperature T0, but there is a settling width ΔT of about several degrees Celsius. Therefore, each region R 1 to R 7 may be established between the target temperature ranges T1 and T2. The temperature T1 is the set temperature T0 plus the settling width ΔT (T1=T0+ΔT), and the temperature T2 is the set temperature T0 minus the settling width ΔT (T2=T0−ΔT).

以上のように熱板30を冷却し、温度センサ32にて温度を測定した結果を、図5及び図6に示す。図5は、熱板30の各領域の温度を経時的に示したグラフである。図6は、冷却中の熱板30と温度の関係を示す説明図である。上述したように熱板30を冷却する際の各領域R〜Rの降温速度は、例えば熱板30の組み立て時の影響などに起因して異なる場合がある。ここでは、降温速度の順が、第2領域、第1領域、第3領域である場合について説明する。さらに詳細には、図5に示すように第2領域における領域Rの降温速度が最も速く、第3領域における領域Rの降温速度が最も遅い。なお、図5においては図示の煩雑さを避けるため、他の領域R、R〜Rのグラフを省略するが、これら領域R、R〜Rのグラフは、領域Rのグラフと領域Rのグラフの間に入る。 The results of cooling the hot plate 30 as described above and measuring the temperature with the temperature sensor 32 are shown in FIGS. 5 and 6. FIG. 5 is a graph showing the temperature of each region of the heating plate 30 over time. FIG. 6 is an explanatory diagram showing the relationship between the hot plate 30 and the temperature during cooling. As described above, the cooling rates of the regions R 1 to R 7 when cooling the hot plate 30 may be different due to, for example, the influence at the time of assembling the hot plate 30. Here, a case will be described where the order of the cooling rates is the second region, the first region, and the third region. More specifically, as shown in FIG. 5, the cooling rate of the region R 2 in the second region is the highest, and the cooling rate of the region R 7 in the third region is the slowest. In addition, in FIG. 5, graphs of the other regions R 1 and R 3 to R 6 are omitted in order to avoid complexity of the drawing, but the graphs of these regions R 1 and R 3 to R 6 are shown in the region R 2 . Enter between the graph and the graph of region R 7 .

熱板30に対してすべてのガスノズルN〜Nから冷却ガスを供給すると、領域R〜Rのうち、図5に示すように領域Rが最初に温度T1に到達する。この際、図6(a)に示すように領域Rを含む第2領域の温度が、他の第1領域と第3領域の温度よりも高くなり、第2領域に対して第1領域と第3領域から熱が流れる(図6(a)中のブロック矢印)。しかも、第3領域は熱が外部に放出されるが、第2領域では熱が放出されにくい。このように第2領域で熱干渉が生じるため、図5に示した時間t1において、領域Rの温度が上昇する。この温度上昇がオーバーシュートである。 When supplying cooling gas from all of the gas nozzle N 1 to N 7 against the hot plate 30, in the region R 1 to R 7, a region R 2 as shown in FIG. 5 reaches the first temperature T1. At this time, as shown in FIG. 6A, the temperature of the second region including the region R 2 becomes higher than the temperatures of the other first region and the third region, so that the second region becomes the first region. Heat flows from the third region (block arrow in FIG. 6A). Moreover, heat is released to the outside in the third region, but it is difficult to release heat in the second region. Since thermal interference occurs in the second region in this manner, the temperature of the region R 2 rises at time t1 shown in FIG. This temperature rise is an overshoot.

続いて、熱板30に対してすべてのガスノズルN〜Nからの冷却ガスを継続し、図5に示すように領域R〜Rのうち、領域Rが最後に温度T1に到達する(時間t2)。この時間t2において、すべてのガスノズルN〜Nからの冷却ガスの供給を停止する。そうすると、図6(b)に示すように領域Rを含む第3領域では温度が低くなるが、領域Rを含む第2領域では温度が高いままとなる。 Subsequently, continuing the cooling gas from all of the gas nozzle N 1 to N 7 against the hot plate 30, in the region R 1 to R 7 as shown in FIG. 5, the region R 7 reaches the end temperature T1 (Time t2). At this time t2, the supply of the cooling gas from all the gas nozzles N 1 to N 7 is stopped. Then, as shown in FIG. 6B, the temperature decreases in the third region including the region R 7 , but the temperature remains high in the second region including the region R 2 .

なお、この時間t2において領域Rでは、ガスノズルN〜Nからの冷却ガスの供給が停止されるため、ヒータ31による加熱により、さらに温度が上昇することになる。このため、オーバーシュートの時間が長くなる。 Incidentally, in the region R 2 at this time t2, the supply of the cooling gas from the nozzle N 1 to N 7 is stopped, the heating by the heater 31, so that further temperature increases. Therefore, the overshoot time becomes long.

その後、ガスノズルN〜Nからの冷却ガスの供給を停止し、所定時間が経過すると、領域Rの温度が温度T1に到達し、整定される(時間t3)。ここで、仮にオーバーシュートが無ければ、時間t2において、すべての領域R〜Rの温度がT1〜T2になって整定されていたはずである。したがって、時間t2から時間t3までの時間(t3−t2)、例えば10秒間は、オーバーシュートに起因する無駄な時間であるといえる。 After that, when the supply of the cooling gas from the gas nozzles N 1 to N 7 is stopped and a predetermined time elapses, the temperature of the region R 2 reaches the temperature T1 and is settled (time t3). Here, if there is no overshoot, the temperatures of all the regions R 1 to R 7 should have been set to T1 to T2 at time t2. Therefore, it can be said that the time from the time t2 to the time t3 (t3-t2), for example, 10 seconds is a wasteful time due to the overshoot.

<熱板の冷却方法>
そこで本実施形態では、このオーバーシュートを抑制するため、領域R〜R間の相対的な降温速度の違いに応じて、ガスノズルN〜Nからの冷却ガスの流量を制御する。なお、その他の冷却条件は、図5及び図6に示した場合と同様である。すなわち、本実施形態における熱板30の設定温度はT0であり、整定幅ΔTを加味して、目標温度範囲はT1〜T2である。また、熱板30における降温速度の順は、第2領域、第1領域、第3領域であり、さらに第2領域における領域Rの降温速度が最も速く、第3領域における領域Rの降温速度が最も遅い。
<Hot plate cooling method>
Therefore, in the present embodiment, in order to suppress this overshoot, the flow rate of the cooling gas from the gas nozzles N 1 to N 7 is controlled according to the difference in the relative temperature decrease rate between the regions R 1 to R 7 . The other cooling conditions are the same as those shown in FIGS. 5 and 6. That is, the set temperature of the hot plate 30 in the present embodiment is T0, and the target temperature range is T1 to T2 in consideration of the settling width ΔT. Further, the order of the cooling rate of the hot plate 30 is the second region, the first region, and the third region, and the cooling rate of the region R 2 in the second region is the highest, and the cooling rate of the region R 7 in the third region is the highest. The slowest speed.

以上のように熱板30を冷却し、温度センサ32にて温度を測定した結果を、図7及び図8に示す。図7は、熱板30の各領域の温度を経時的に示したグラフである。図8は、冷却中の熱板30と冷却ガスの流量の関係、及び熱板30と温度の関係を示す説明図である。なお、図7においては図示の煩雑さを避けるため、領域R、Rのみ図示し、他の領域R、R〜Rのグラフを省略する。 The results of cooling the hot plate 30 and measuring the temperature with the temperature sensor 32 as described above are shown in FIGS. 7 and 8. FIG. 7 is a graph showing the temperature of each region of the heating plate 30 over time. FIG. 8 is an explanatory diagram showing the relationship between the hot plate 30 during cooling and the flow rate of the cooling gas, and the relationship between the hot plate 30 and the temperature. In addition, in FIG. 7, in order to avoid complexity of illustration, only the regions R 2 and R 7 are illustrated, and graphs of the other regions R 1 and R 3 to R 6 are omitted.

本実施形態の冷却ガスの流量制御では、複数のガスノズルN〜Nからの冷却ガスの総流量は一定である。かかる状況下で、複数のガスノズルN〜Nからの冷却ガスの流量バランスを制御する。具体的には、図8(a)に示すように降温速度が速い第2領域(領域R〜R)に対してガスノズルN〜Nから供給される冷却ガスの流量を少なくし、特にガスノズルNから領域Rに供給される冷却ガスの流量を少なくする。一方、降温速度が遅い第3領域(領域R〜R)に対してガスノズルN〜Nから供給される冷却ガスの流量を多くし、特にガスノズルNから領域Rに供給される冷却ガスの流量を多くする。降温速度が中間の第1領域(領域R)に供給される冷却ガスの流量は、第2領域と第3領域の中間とする。 In the flow rate control of the cooling gas of this embodiment, the total flow rate of the cooling gas from the plurality of gas nozzles N 1 to N 7 is constant. Under such a condition, the flow rate balance of the cooling gas from the plurality of gas nozzles N 1 to N 7 is controlled. Specifically, as shown in FIG. 8A, the flow rate of the cooling gas supplied from the gas nozzles N 2 to N 3 is reduced with respect to the second region (regions R 2 to R 3 ) in which the cooling rate is high, In particular, the flow rate of the cooling gas supplied from the gas nozzle N 2 to the region R 2 is reduced. On the other hand, by increasing the flow rate of the cooling gas supplied from the gas nozzle N 3 to N 7 with respect to the third area cooling rate is slow (region R 3 to R 7), in particular supplied from the gas nozzle N 7 in the region R 7 Increase the flow rate of the cooling gas. The flow rate of the cooling gas supplied to the first region (region R 1 ) having the intermediate temperature decreasing rate is between the second region and the third region.

なお、ガスノズルN〜Nからの冷却ガスの流量制御は、図4に示した分岐部42のオリフィス43の径を調整することで行われる。本実施形態のように、領域R〜Rの降温速度の傾向が予め分かっている場合には、これに合わせて、オリフィス43の径を調整することができる。具体的には、ガスノズルNに対応するオリフィス43の径を小さくし、ガスノズルNに対応するオリフィス43の径を大きくすればよい。なお、領域R〜Rの降温速度の傾向を把握するタイミングは任意であるが、例えば、加熱処理装置1の立ち上げ時に試運転を行う際や、加熱処理装置1の出荷前に最終検査を行う際などが挙げられる。 The flow rate control of the cooling gas from the gas nozzle N 3 to N 7 is carried out by adjusting the diameter of the orifice 43 of the branch portion 42 shown in FIG. When the tendency of the cooling rate of the regions R 1 to R 7 is known in advance as in the present embodiment, the diameter of the orifice 43 can be adjusted in accordance with this. Specifically, the diameter of the orifice 43 corresponding to the gas nozzle N 2 may be reduced, and the diameter of the orifice 43 corresponding to the gas nozzle N 7 may be increased. Although the timing of grasping the tendency of the temperature decrease rate in the regions R 1 to R 7 is arbitrary, for example, a final inspection may be performed when the test operation is performed when the heat treatment apparatus 1 is started up or before the heat treatment apparatus 1 is shipped. For example, when performing.

以上のように流量制御された冷却ガスによって熱板30を冷却すると、降温速度が速い第2領域(特に領域R)の降温速度を遅らせることができ、降温速度の遅い第3領域(特に領域R)の降温速度を速めることができる。したがって、図7に示すように領域Rが温度T1に到達する時間t4と、領域Rが温度T1に到達する時間t5との時間差が小さくなる。 When the hot plate 30 is cooled by the cooling gas whose flow rate is controlled as described above, it is possible to delay the temperature lowering rate of the second region where the temperature lowering rate is fast (particularly the region R 2 ) and the third region where the temperature lowering rate is slower (particularly the region). The temperature lowering rate of R 7 ) can be increased. Therefore, the time t4 the area R 2 reaches the temperature T1 as shown in FIG. 7, the time difference between the time t5 the area R 7 reaches the temperature T1 becomes smaller.

また、図8(b)に示すように各領域R〜Rの温度差が小さくなるので、熱干渉を抑制することができ、オーバーシュートの発生を抑制することができる。したがって、以上の実施形態によれば、各領域R〜Rの温度制定時間が短くでき、熱板30の冷却を短時間で行うことができる。そしてこのように加熱処理装置1の立ち上げが短時間になるので、すぐにウェハWの加熱処理を行うことができ、その結果ウェハ処理のスループットを向上させることができる。 Further, as shown in FIG. 8B, since the temperature difference between the regions R 1 to R 7 is small, it is possible to suppress thermal interference and suppress the occurrence of overshoot. Therefore, according to the above embodiment, the temperature settling time of each region R 1 to R 7 can be short, it can be performed in a short time the cooling of the hot plate 30. Since the start-up of the heat treatment apparatus 1 is short in this way, the heat treatment of the wafer W can be performed immediately, and as a result, the throughput of wafer treatment can be improved.

なお、以上の実施形態において冷却ガスの流量制御を行う際、図9(a)に示すように第1領域(領域R)、第2領域(領域R〜R)、第3領域(領域R〜R)の順に熱が流れるようにしてもよい(図9(a)中のブロック矢印)。具体的には、第1領域に対してガスノズルNから供給される冷却ガスの流量を少なくし、第3領域に対してガスノズルN〜Nから供給される冷却ガスの流量を多くする。かかる場合、熱板30において内側から外側の一方向に熱が流れるので、熱干渉によるオーバーシュートの発生を抑制することができる。また、図9(b)に示すように各領域R〜Rの温度差を小さくすることもできる。したがって、熱板30の温度整定を短時間で行うことができる。 In addition, when controlling the flow rate of the cooling gas in the above embodiment, as shown in FIG. 9A, the first region (region R 1 ), the second region (regions R 2 to R 3 ), the third region ( Heat may flow in the order of the regions R 4 to R 7 (block arrow in FIG. 9A). Specifically, the flow rate of the cooling gas supplied from the gas nozzle N 1 is reduced to the first area, and the flow rate of the cooling gas supplied from the gas nozzles N 3 to N 7 is increased to the third area. In this case, heat flows in one direction from the inner side to the outer side of the heating plate 30, so that the occurrence of overshoot due to thermal interference can be suppressed. Further, as shown in FIG. 9B, the temperature difference between the regions R 1 to R 7 can be reduced. Therefore, the temperature of the heating plate 30 can be settled in a short time.

<他の実施形態>
以上の実施形態の加熱処理装置1では、予め領域R〜Rの降温速度の傾向が分かっており、この傾向に合わせて、分岐部42のオリフィス43の径を調整していたが、ガスノズルN〜Nからの冷却ガスの流量を制御する方法は、これに限定されない。例えば分岐部42に代えて、図10に示すように電磁弁100を設けてもよい。電磁弁100は、ガスノズルN〜Nにそれぞれ設けられ、当該ガスノズルN〜Nの開口を個別に調整する。
<Other Embodiments>
In the heat treatment apparatus 1 of the above embodiment, the tendency of the temperature lowering rate of the regions R 1 to R 7 is known in advance, and the diameter of the orifice 43 of the branch portion 42 is adjusted according to this tendency. The method of controlling the flow rate of the cooling gas from N 1 to N 7 is not limited to this. For example, instead of the branch portion 42, a solenoid valve 100 may be provided as shown in FIG. Solenoid valve 100 is provided on each of the gas nozzles N 1 to N 7, to adjust the opening of the gas nozzles N 1 to N 7 individually.

熱板30を冷却ガスで冷却する際、当該熱板30の各領域R〜Rでは、温度センサ32によって温度が個別に測定されている。そこで、この温度センサ32による各領域R〜Rの温度測定結果に基づき、電磁弁100を用いて、ガスノズルN〜Nからの冷却ガスの流量を個別にリアルタイム制御してもよい。具体的には、温度センサ32で測定された温度と、予め降温速度から想定した温度と差に応じて、冷却ガスの流量を制御する。かかる場合、冷却ガスの流量制御をより精密に行うことができる。 When cooling the hot plate 30 with the cooling gas, the temperature is measured individually by the temperature sensor 32 in each of the regions R 1 to R 7 of the hot plate 30. Therefore, the flow rate of the cooling gas from the gas nozzles N 1 to N 7 may be individually controlled in real time using the solenoid valve 100 based on the temperature measurement result of each of the regions R 1 to R 7 by the temperature sensor 32. Specifically, the flow rate of the cooling gas is controlled according to the difference between the temperature measured by the temperature sensor 32 and the temperature assumed in advance from the cooling rate. In such a case, the flow rate of the cooling gas can be controlled more precisely.

以上の実施形態の加熱処理装置1では、冷却ガスの流量制御において、ガスノズルN〜Nからの冷却ガスの総流量を一定としていたが、当該総流量を経時的に変化させてもよい。具体的には、例えば、熱板30の冷却工程の前半では冷却ガスの総流量を多くして熱板30を急速に冷却し、後半では冷却ガスの総流量を少なくして熱板30を緩やかに冷却してもよい。かかる場合、熱板30の冷却に使用される冷却ガスの全体の量を軽減することができる。 In the heating treatment apparatus 1 of the above embodiment, the flow control of the cooling gas, although the total flow rate of the cooling gas from the nozzle N 1 to N 7 has been constant, may be time varying the total flow rate. Specifically, for example, in the first half of the step of cooling the hot plate 30, the total flow rate of the cooling gas is increased to rapidly cool the hot plate 30, and in the latter half, the total flow rate of the cooling gas is decreased to loosen the hot plate 30. You may cool to. In such a case, the total amount of cooling gas used for cooling the hot plate 30 can be reduced.

以上の実施形態の加熱処理装置1では、すべての領域R〜Rが温度T1に到達した際にガスノズルN〜Nからの冷却ガスの供給を停止したが、各ガスノズルN〜Nの停止タイミングを個別に制御してもよい。かかる場合、各領域R〜Rの温度制御をより精密に行うことができる。 In the heating treatment apparatus 1 of the above embodiment, the entire region R 1 to R 7 stops the supply of the cooling gas from the nozzle N 1 to N 7 upon reaching the temperature T1, the gas nozzles N 1 to N The stop timing of 7 may be controlled individually. In such a case, the temperature control of each region R 1 to R 7 can be performed more precisely.

以上の実施形態の加熱処理装置1では、熱板30に冷却ガスを供給して当該熱板30を冷却したが、冷却媒体はこれに限定されない。例えば冷却媒体として、ミストを含むガスを用いてもよいし、あるいは冷却水を用いてもよい。 In the heat treatment apparatus 1 of the above embodiment, the cooling gas is supplied to the hot plate 30 to cool the hot plate 30, but the cooling medium is not limited to this. For example, a gas containing mist may be used as the cooling medium, or cooling water may be used.

今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The above-described embodiments may be omitted, replaced, or modified in various forms without departing from the scope and spirit of the appended claims.

なお、以下のような構成も本開示の技術的範囲に属する。
(1)基板を加熱処理する熱板の冷却方法であって、
前記熱板は複数の領域に区画され、当該領域毎に加熱機構によって温度設定可能であり、
複数の冷媒供給部から前記熱板に冷却媒体を供給して当該熱板を冷却する際に、前記領域間の相対的な降温速度の違いに応じて、前記冷媒供給部毎の冷却媒体の流量制御を行う、熱板の冷却方法。
前記(1)では、領域間の相対的な降温速度の違いに応じて、冷媒供給部毎の冷却媒体の流量制御を行うので、領域間の熱干渉を抑えて、オーバーシュートの発生を抑制することができる。このため、熱板の複数の領域の温度制定を短時間で行うことができ、その結果、加熱処理のスループットを向上させることができる。
The following configurations also belong to the technical scope of the present disclosure.
(1) A method for cooling a hot plate, which heats a substrate, comprising:
The hot plate is divided into a plurality of regions, the temperature can be set by a heating mechanism for each region,
When cooling medium is supplied from a plurality of coolant supply units to the heat plate to cool the heat plate, the flow rate of the cooling medium for each coolant supply unit depends on the difference in the relative temperature decrease rate between the regions. How to control the hot plate cooling method.
In the above (1), since the flow rate of the cooling medium for each refrigerant supply unit is controlled according to the relative difference in the temperature decrease rate between the regions, the thermal interference between the regions is suppressed and the occurrence of overshoot is suppressed. be able to. Therefore, it is possible to establish the temperatures of the plurality of regions of the hot plate in a short time, and as a result, it is possible to improve the throughput of the heat treatment.

(2)前記複数の冷媒供給部から供給される冷却媒体の総流量は一定であり、
前記流量制御では、前記複数の冷媒供給部における冷却媒体の流量バランスを制御する、前記(1)に記載の熱板の冷却方法。
前記(2)では、冷却媒体の総流量を変更することなく、流量バランスのみを制御するので、全体として制御が簡易になる。
(2) The total flow rate of the cooling medium supplied from the plurality of refrigerant supply units is constant,
In the flow rate control, the hot plate cooling method according to (1), wherein the flow rate balance of the cooling medium in the plurality of coolant supply units is controlled.
In the above (2), since only the flow rate balance is controlled without changing the total flow rate of the cooling medium, the control becomes simple as a whole.

(3)前記流量制御では、前記複数の冷媒供給部から供給される冷却媒体の総流量を経時的に変化させる、前記(1)に記載の熱板の冷却方法。
前記(3)では、冷却媒体の総流量を経時的に変化させるので、熱板の冷却に使用される冷却媒体の量を軽減することができる。
(3) The hot plate cooling method according to (1), wherein in the flow rate control, the total flow rate of the cooling medium supplied from the plurality of refrigerant supply units is changed with time.
In the above (3), since the total flow rate of the cooling medium is changed with time, the amount of the cooling medium used for cooling the hot plate can be reduced.

(4)前記複数の領域は前記熱板と同心円状に配置され、
前記流量制御では、前記熱板において、径方向内側の前記領域の温度が、径方向外側の前記領域の温度以上になるように、前記冷媒供給部からの冷却媒体の流量を制御する、前記(1)〜(3)のいずれか1に記載の熱板の冷却方法。
ここで、径方向外側の領域では熱を外部に放出できるが、径方向内側の領域では熱が放出されず蓄積されやすい。前記(4)では、径方向内側の前記領域の温度が、径方向外側の前記領域の温度以上にすることで、熱板において径方向内側から外側に向けて熱が流れる。その結果、領域間の熱干渉を抑制することができ、オーバーシュートの発生を抑制することができる。
(4) The plurality of regions are arranged concentrically with the hot plate,
In the flow rate control, in the hot plate, the flow rate of the cooling medium from the refrigerant supply unit is controlled so that the temperature of the radially inner region is equal to or higher than the temperature of the radially outer region. The method for cooling a hot plate according to any one of 1) to (3).
Here, heat can be released to the outside in the radially outer region, but heat is likely to be accumulated and not released in the radially inner region. In (4) above, the temperature of the region on the radially inner side is set to be equal to or higher than the temperature of the region on the radially outer side, so that heat flows from the radially inner side to the outer side in the hot plate. As a result, thermal interference between regions can be suppressed, and overshoot can be suppressed.

(5)前記熱板を冷却しながら前記複数の領域の温度を測定し、
前記流量制御では、前記温度の測定結果に基づいて、前記冷媒供給部からの冷却媒体の流量を制御する、前記(1)〜(4)のいずれか1に記載の熱板の冷却方法。
前記(5)では、温度の測定結果に基づいて、冷媒供給部からの冷却媒体の流量をリアルタイム制御するので、当該冷却ガスの流量制御をより精密に行うことができる。
(5) Measuring the temperatures of the plurality of regions while cooling the hot plate,
In the flow rate control, the hot plate cooling method according to any one of (1) to (4), wherein the flow rate of the cooling medium from the coolant supply unit is controlled based on a measurement result of the temperature.
In the above (5), since the flow rate of the cooling medium from the refrigerant supply unit is controlled in real time based on the temperature measurement result, the flow rate of the cooling gas can be controlled more precisely.

(6)前記複数の領域が目標温度範囲に到達した際に、前記複数の冷媒供給部からの冷却媒体の供給を同時に停止する、前記(1)〜(5)のいずれか一項に記載の熱板の冷却方法。
前記(6)では、冷却ガスの供給停止タイミングを、複数の冷媒供給部間で同時にしているので、冷媒供給部における冷却媒体の供給制御が簡易になる。
(6) The supply of the cooling medium from the plurality of coolant supply units is stopped at the same time when the plurality of regions reach a target temperature range, according to any one of (1) to (5) above. How to cool the hot plate.
In the above (6), the supply stop timing of the cooling gas is simultaneously set between the plurality of refrigerant supply units, so that the supply control of the cooling medium in the refrigerant supply unit is simplified.

(7)基板を加熱処理する加熱処理装置であって、
基板を加熱処理する熱板と、
前記熱板が区画された複数の領域に対し、当該領域毎に加熱して温度を設定する加熱機構と、
前記熱板に対して冷却媒体を供給する複数の冷媒供給部と、
前記加熱機構と前記冷媒供給部を制御する制御部と、を有し、
前記制御部は、前記領域間の相対的な降温速度の違いに応じて、前記冷媒供給部毎の冷却媒体の流量を制御する、加熱処理装置。
(7) A heat treatment apparatus for heat treating a substrate, comprising:
A heating plate that heats the substrate,
A heating mechanism that sets a temperature by heating each of the plurality of regions in which the hot plate is partitioned,
A plurality of refrigerant supply units for supplying a cooling medium to the hot plate,
A control unit that controls the heating mechanism and the refrigerant supply unit,
The said control part is a heat processing apparatus which controls the flow volume of the cooling medium for every said refrigerant supply part according to the difference in the relative temperature-fall rate between the said area|regions.

30 熱板
31 ヒータ
〜N ガスノズル
〜R 領域
W ウェハ
30 Heat Plate 31 Heater N 1 to N 7 Gas Nozzle R 1 to R 7 Region W Wafer

Claims (7)

基板を加熱処理する熱板の冷却方法であって、
前記熱板は複数の領域に区画され、当該領域毎に加熱機構によって温度設定可能であり、
複数の冷媒供給部から前記熱板に冷却媒体を供給して当該熱板を冷却する際に、前記領域間の相対的な降温速度の違いに応じて、前記冷媒供給部毎の冷却媒体の流量制御を行う、熱板の冷却方法。
A method of cooling a hot plate for heat treating a substrate, comprising:
The hot plate is divided into a plurality of regions, the temperature can be set by a heating mechanism for each region,
When cooling medium is supplied from a plurality of coolant supply units to the heat plate to cool the heat plate, the flow rate of the cooling medium for each coolant supply unit depends on the difference in the relative temperature decrease rate between the regions. How to control the hot plate cooling method.
前記複数の冷媒供給部から供給される冷却媒体の総流量は一定であり、
前記流量制御では、前記複数の冷媒供給部における冷却媒体の流量バランスを制御する、請求項1に記載の熱板の冷却方法。
The total flow rate of the cooling medium supplied from the plurality of refrigerant supply units is constant,
The method for cooling a hot plate according to claim 1, wherein in the flow rate control, the flow rate balance of the cooling medium in the plurality of refrigerant supply units is controlled.
前記流量制御では、前記複数の冷媒供給部から供給される冷却媒体の総流量を経時的に変化させる、請求項1に記載の熱板の冷却方法。 The method for cooling a hot plate according to claim 1, wherein in the flow rate control, a total flow rate of the cooling medium supplied from the plurality of refrigerant supply units is changed with time. 前記複数の領域は前記熱板と同心円状に配置され、
前記流量制御では、前記熱板において、径方向内側の前記領域の温度が、径方向外側の前記領域の温度以上になるように、前記冷媒供給部からの冷却媒体の流量を制御する、請求項1〜3のいずれか1項に記載の熱板の冷却方法。
The plurality of regions are arranged concentrically with the hot plate,
In the flow rate control, in the hot plate, the flow rate of the cooling medium from the refrigerant supply unit is controlled so that the temperature of the region on the radially inner side is equal to or higher than the temperature of the region on the radially outer side. The method for cooling a hot plate according to any one of 1 to 3.
前記熱板を冷却しながら前記複数の領域の温度を測定し、
前記流量制御では、前記温度の測定結果に基づいて、前記冷媒供給部からの冷却媒体の流量を制御する、請求項1〜4のいずれか1項に記載の熱板の冷却方法。
Measuring the temperature of the plurality of regions while cooling the hot plate,
The hot plate cooling method according to claim 1, wherein in the flow rate control, the flow rate of the cooling medium from the refrigerant supply unit is controlled based on the measurement result of the temperature.
前記複数の領域が目標温度範囲に到達した際に、前記複数の冷媒供給部からの冷却媒体の供給を同時に停止する、請求項1〜5のいずれか1項に記載の熱板の冷却方法。 The method for cooling a hot plate according to claim 1, wherein when the plurality of regions reach a target temperature range, the supply of the cooling medium from the plurality of coolant supply units is stopped at the same time. 基板を加熱処理する加熱処理装置であって、
基板を加熱処理する熱板と、
前記熱板が区画された複数の領域に対し、当該領域毎に加熱して温度を設定する加熱機構と、
前記熱板に対して冷却媒体を供給する複数の冷媒供給部と、
前記加熱機構と前記冷媒供給部を制御する制御部と、を有し、
前記制御部は、前記領域間の相対的な降温速度の違いに応じて、前記冷媒供給部毎の冷却媒体の流量を制御する、加熱処理装置。
A heat treatment apparatus for heat-treating a substrate,
A heating plate that heats the substrate,
A heating mechanism that sets a temperature by heating each of the plurality of regions in which the hot plate is partitioned,
A plurality of refrigerant supply units for supplying a cooling medium to the hot plate,
A control unit that controls the heating mechanism and the refrigerant supply unit,
The said control part is a heat processing apparatus which controls the flow volume of the cooling medium for every said refrigerant supply part according to the difference in the relative temperature-fall rate between the said area|regions.
JP2019001571A 2019-01-09 2019-01-09 Hot plate cooling method and heat treatment apparatus Active JP7186096B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019001571A JP7186096B2 (en) 2019-01-09 2019-01-09 Hot plate cooling method and heat treatment apparatus
KR1020200000332A KR20200086629A (en) 2019-01-09 2020-01-02 Cooling method of heating plate and heating apparatus
CN202010022946.3A CN111430267B (en) 2019-01-09 2020-01-09 Cooling method and heating treatment device for hot plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019001571A JP7186096B2 (en) 2019-01-09 2019-01-09 Hot plate cooling method and heat treatment apparatus

Publications (2)

Publication Number Publication Date
JP2020113590A true JP2020113590A (en) 2020-07-27
JP7186096B2 JP7186096B2 (en) 2022-12-08

Family

ID=71546987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019001571A Active JP7186096B2 (en) 2019-01-09 2019-01-09 Hot plate cooling method and heat treatment apparatus

Country Status (3)

Country Link
JP (1) JP7186096B2 (en)
KR (1) KR20200086629A (en)
CN (1) CN111430267B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112490148B (en) * 2020-11-13 2024-03-26 北京北方华创微电子装备有限公司 Heating device, heating method and semiconductor process equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118789A (en) * 1999-08-11 2001-04-27 Tokyo Electron Ltd Method of cooling heat treatment device, and heat treatment device
JP2001189250A (en) * 1999-12-28 2001-07-10 Tokyo Electron Ltd Heat treatment apparatus and method thereof
JP2007158074A (en) * 2005-12-06 2007-06-21 Dainippon Screen Mfg Co Ltd Substrate heat treatment apparatus
JP2010087212A (en) * 2008-09-30 2010-04-15 Sokudo Co Ltd Thermal processing apparatus and substrate processing apparatus
JP2016181665A (en) * 2015-03-25 2016-10-13 株式会社Screenホールディングス Thermal treatment device and thermal treatment method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308081A (en) * 2000-04-19 2001-11-02 Tokyo Electron Ltd Heat-treating apparatus and method thereof
JP2005244019A (en) * 2004-02-27 2005-09-08 Hitachi Kokusai Electric Inc Substrate treatment apparatus
JP5222442B2 (en) * 2008-02-06 2013-06-26 東京エレクトロン株式会社 Substrate mounting table, substrate processing apparatus, and temperature control method for substrate to be processed
JP5151777B2 (en) * 2008-07-30 2013-02-27 株式会社Sumco Method for manufacturing silicon epitaxial wafer and silicon epitaxial wafer
JP5107318B2 (en) * 2009-08-24 2012-12-26 東京エレクトロン株式会社 Heat treatment device
JP5762704B2 (en) * 2010-08-20 2015-08-12 東京エレクトロン株式会社 Substrate processing apparatus and temperature control method
CN102651303B (en) * 2011-05-09 2014-12-10 京东方科技集团股份有限公司 Base plate temperature management and control system and method
US10079165B2 (en) * 2014-05-20 2018-09-18 Applied Materials, Inc. Electrostatic chuck with independent zone cooling and reduced crosstalk
JP6789096B2 (en) * 2016-12-22 2020-11-25 東京エレクトロン株式会社 Heat treatment equipment, heat treatment method and computer storage medium
KR101927937B1 (en) * 2017-07-18 2018-12-11 세메스 주식회사 Support unit and apparatus for treating substrate comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118789A (en) * 1999-08-11 2001-04-27 Tokyo Electron Ltd Method of cooling heat treatment device, and heat treatment device
JP2001189250A (en) * 1999-12-28 2001-07-10 Tokyo Electron Ltd Heat treatment apparatus and method thereof
JP2007158074A (en) * 2005-12-06 2007-06-21 Dainippon Screen Mfg Co Ltd Substrate heat treatment apparatus
JP2010087212A (en) * 2008-09-30 2010-04-15 Sokudo Co Ltd Thermal processing apparatus and substrate processing apparatus
JP2016181665A (en) * 2015-03-25 2016-10-13 株式会社Screenホールディングス Thermal treatment device and thermal treatment method

Also Published As

Publication number Publication date
KR20200086629A (en) 2020-07-17
CN111430267B (en) 2024-04-19
CN111430267A (en) 2020-07-17
JP7186096B2 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
US8776393B2 (en) Substrate cooling apparatus, substrate cooling method, and storage medium
US11087983B2 (en) Thermal treatment apparatus, thermal treatment method, and non-transitory computer storage medium
JP5296022B2 (en) Heat treatment method, recording medium recording program for executing heat treatment method, and heat treatment apparatus
US6534750B1 (en) Heat treatment unit and heat treatment method
JP6925213B2 (en) Heat treatment equipment and heat treatment method
KR101667434B1 (en) Heat treatment apparatus, heat treatment method and recording medium
JP2016181665A (en) Thermal treatment device and thermal treatment method
KR20040081045A (en) Heat treatment apparatus and method of semiconductor wafer
JP2004336076A (en) Heating apparatus
US20010029890A1 (en) Heat treatment method, heat treatment apparatus and treatment system
JP2020113590A (en) Method for cooling hot plate and heat treatment apparatus
JP2006222354A (en) Method for setting temperature of heat treatment plate, equipment for setting temperature of heat treatment, program, and program-recorded computer-readable recording medium
JP2008084886A (en) Measuring method and program of substrate, computer readable recording medium recording program and measuring system of substrate
KR102303593B1 (en) Apparatus and Method for treating substrate
JP2011044663A (en) Heat treatment apparatus
JP2003100596A (en) Bake device for resist pattern and method for forming resist pattern
JP6926765B2 (en) Substrate heating device and substrate heating method
JP4393332B2 (en) Heat treatment equipment
US20220390849A1 (en) Method and apparatus for treating substrate, and temperature control method
JP3648150B2 (en) Cooling processing apparatus and cooling processing method
KR102324409B1 (en) Apparatus and Method for treating substrate
KR102221284B1 (en) Hot plate and apparatus for heat-treating substrate with the hot plate, and fabricating method of the hot plate
JP6697089B2 (en) Substrate heat treatment equipment
JP3982672B2 (en) Heat treatment apparatus and heat treatment method
KR20230130350A (en) Heating unit and substrate treating apparatus including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R150 Certificate of patent or registration of utility model

Ref document number: 7186096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150