JP2020112449A - Method for collecting position information of underwater dwelling creature - Google Patents

Method for collecting position information of underwater dwelling creature Download PDF

Info

Publication number
JP2020112449A
JP2020112449A JP2019003782A JP2019003782A JP2020112449A JP 2020112449 A JP2020112449 A JP 2020112449A JP 2019003782 A JP2019003782 A JP 2019003782A JP 2019003782 A JP2019003782 A JP 2019003782A JP 2020112449 A JP2020112449 A JP 2020112449A
Authority
JP
Japan
Prior art keywords
receiver
navigation device
underwater
ultrasonic
underwater navigation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019003782A
Other languages
Japanese (ja)
Inventor
穣 立田
Minoru Tatsuta
穣 立田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2019003782A priority Critical patent/JP2020112449A/en
Publication of JP2020112449A publication Critical patent/JP2020112449A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

To enable a signal from an oscillator attached to an underwater dwelling creature to be received without being largely affected to the assumption of a dwelling region and without installing a plurality of receivers.SOLUTION: An ultrasonic oscillator 4 is attached to a creature 2 of a survey object dwelling underwater, an ultrasonic receiver 3 is provided in an underwater navigation device 1 which automatically sails in an unmanned manner, and the ultrasonic receiver 3 receives ultrasonic waves transmitted from the ultrasonic oscillator 4 while the underwater navigation device 1 automatically sails according to a route 5 set in advance.SELECTED DRAWING: Figure 1

Description

本発明は、水中生息生物の位置情報の収集方法に関する。さらに詳述すると、本発明は、例えば水中を移動しながら生息する生物の位置を特定したり追跡したりする調査などに用いて好適な技術に関する。 The present invention relates to a method of collecting position information of aquatic habitats. More specifically, the present invention relates to a technique suitable for use in, for example, an investigation for identifying or tracking the position of an organism that inhabits while moving in water.

水中に生息する生物、例えば魚類の位置を特定する方法として、水中生物に超音波発振器をつけて、これから発信される超音波を受信する位置に基づいて前記水中生物の位置を特定する方法がある。 As a method of identifying the position of an organism living in water, for example, a fish, there is a method of attaching an ultrasonic oscillator to the aquatic organism and identifying the position of the aquatic organism based on the position of receiving ultrasonic waves emitted from this. ..

水中生物の位置を特定する手法として、例えば、受信のために指向性受信機による方向探査をして想定生息域内に移動する方法がある(非特許文献1,非特許文献2)。 As a method of specifying the position of aquatic organisms, for example, there is a method of performing direction search by a directional receiver for reception and moving into an assumed habitat (Non-Patent Documents 1 and 2).

水中生物の位置を特定する他の手法として、多数の受信機を設置して、複数受信機の位置と受信信号強度とから、位置を特定する方法がある(非特許文献3,特許文献1)。 As another method for identifying the position of aquatic organisms, there is a method in which a large number of receivers are installed and the position is identified from the positions of a plurality of receivers and the received signal strength (Non-Patent Document 3, Patent Document 1). ..

特開2007−170989号公報JP, 2007-170989, A

VEMCO社,“VH110&VH180−D Directional Hydrophones(69&180 kHz)”,[online],[平成30年12月7日検索],インターネット〈URL https://vemco.com/products/vh110-vh180d-directional-hydrophone/〉VEMCO, "VH110 & VH180-D Directional Hydrophones (69 & 180 kHz)", [online], [Search on December 7, 2018], Internet <URL https://vemco.com/products/vh110-vh180d-directional-hydrophone /〉 株式会社テクノ中部,“バイオテレメトリー調査”,[online],[平成30年12月7日検索],インターネット〈URL https://www.techno-chubu.co.jp/topics/biotelemetry/〉Techno Chubu Co., Ltd., "Biotelemetry Survey", [online], [Search on December 7, 2018], Internet <URL https://www.techno-chubu.co.jp/topics/biotelemetry/> VEMCO社,“VPS(VEMCO Positioning System)”,[online],[平成30年12月7日検索],インターネット〈URL https://vemco.com/products/vps/〉VEMCO, "VPS (VEMCO Positioning System)", [online], [Search on December 7, 2018], Internet <URL https://vemco.com/products/vps/>

しかしながら、移動探査受信する方法では、事前に生息域を想定する必要があり、想定が外れた場合には受信不可能となってしまい、効率的な方法であるとは言い難い。 However, with the method of mobile exploration reception, it is necessary to assume the habitat in advance, and if it does not meet the assumption, it will not be possible to receive, so it cannot be said that this is an efficient method.

移動探査受信は、また、広範囲を移動する必要があり、一箇所の受信探査時間が限られることから、水中生物からの超音波発信がさえぎられる環境、たとえば岩礁などに隠れる場合、移動探査受信する方法では、受信率が低下するという問題があり、効率的な方法であるとは言い難い。 Mobile exploration reception also needs to travel over a wide area, and since the reception exploration time at one location is limited, if exploration is hidden in an environment where ultrasonic waves from underwater organisms are blocked, such as a reef, mobile exploration reception is performed. The method has a problem that the reception rate is lowered, and it cannot be said to be an efficient method.

また、複数の受信機を設置する方法では、受信率は上昇するものの、多数の受信機の設置が必要となって費用対効果が低下し、また移動探査受信と比べると探査水域が小さくなることから、生息域の想定がさらに困難になるという問題があり、費用対効果の優れた方法であるとは言い難い。 In addition, although the method of installing multiple receivers increases the reception rate, it requires multiple receivers to be installed, which reduces the cost-effectiveness and results in a smaller exploration area compared to mobile exploration reception. Therefore, it is difficult to say that it is a cost-effective method because it makes it more difficult to predict the habitat.

そこで、本発明は、生息域の想定に大きな影響を受けること無く(言い換えると、想定する生息域を広範囲に設定することができ)、また、複数の受信機を設置すること無く、水中生息生物に取り付けられた発信器からの信号を受信することができる水中生息生物の位置情報の収集方法を提供することを目的とする。 Therefore, the present invention does not greatly affect the assumption of the habitat (in other words, the assumed habitat can be set in a wide range), and without installing a plurality of receivers, the underwater habitat It is an object of the present invention to provide a method of collecting position information of aquatic habitats capable of receiving signals from a transmitter attached to the.

かかる目的を達成するため、本発明の水中生息生物の位置情報の収集方法は、水中に生息する生物に発信器が取り付けられ、また、無人で自動航走する水中航行装置に受信器が備え付けられ、予め設定された経路に従って水中航行装置が自動航走しながら、発信器から発信される信号が受信器によって受信されるようにしている。 In order to achieve such an object, the method of collecting position information of aquatic inhabitants of the present invention has a transmitter attached to organisms in the water, and an unmanned underwater navigation device equipped with a receiver. While the underwater navigation system is automatically traveling according to a preset route, the signal transmitted from the transmitter is received by the receiver.

したがって、この水中生息生物の位置情報の収集方法によると、受信器が広い範囲を移動するようにし得るので、調査対象の生物について予め想定する生息域が広範囲に設定され得る。 Therefore, according to this method of collecting position information of aquatic inhabitants, the receiver can be made to move in a wide range, so that a presumed habitat for the organism to be investigated can be set in a wide range.

この水中生息生物の位置情報の収集方法によると、また、調査対象の生物の生息域に近い深度を受信器が移動するようにし得るので、受信効率が高くなる。 According to this method of collecting position information of aquatic inhabitants, the receiver can be moved to a depth close to the habitat of the inspected organism, so that the receiving efficiency is increased.

本発明の水中生息生物の位置情報の収集方法は、水中航行装置の航走軌跡の相互の間隔が、発信器と受信器との間での最大送受信可能距離以下であるようにしても良い。この場合には、調査対象の領域/水域の各地点が原則として複数回に亙って受信器の受信カバー範囲の対象になる。 In the method for collecting position information of aquatic habitats of the present invention, the mutual intervals of the running trajectories of the underwater navigation device may be equal to or less than the maximum transmittable/receivable distance between the transmitter and the receiver. In this case, each point in the surveyed area/water area is in principle subject to the receiver coverage of the receiver multiple times.

本発明の水中生息生物の位置情報の収集方法は、水中航行装置の航走速度がv[m/分]であると共に発信器の信号の発信間隔がTint[分]であり、また、発信器と受信器との間での最大送受信可能距離がDmax[m]であるとき、v×Tint ≦ Dmax/2 であるようにしても良い。この場合には、水中航行装置の航走速度と発信器による信号の発信間隔と信号の最大送受信可能距離とが適切な関係に調整されるので受信効率が高くなる。 According to the method of collecting position information of underwater habitats of the present invention, the traveling speed of the underwater navigation device is v [m/min], the transmission interval of the signal of the transmitter is Tint [min], and the transmitter is When the maximum transmittable/receivable distance between the receiver and the receiver is Dmax[m], v×Tint≦Dmax/2 may be satisfied. In this case, the traveling speed of the underwater navigation device, the signal transmission interval by the transmitter, and the maximum signal transmittable/receivable distance are adjusted to an appropriate relationship, so that the reception efficiency is increased.

本発明の水中生息生物の位置情報の収集方法によれば、受信器を広い範囲に亙って移動させることができるので、調査対象の生物について予め想定する生息域を広範囲に設定することができ、調査対象生物の捕捉の確実性の向上を図ることが可能になる。また、調査対象の生物の生息域に近い深度で受信器を移動させることができるので、受信率を高めることができ、生息域特定の確実性の向上を図ることが可能になる。 According to the method for collecting position information of aquatic habitats of the present invention, the receiver can be moved over a wide range, and thus it is possible to set a wide range of habitats that are assumed in advance for the organisms to be investigated. , It is possible to improve the certainty of capturing the target organism. Further, since the receiver can be moved at a depth close to the habitat of the organism to be surveyed, the reception rate can be increased and the certainty of habitat identification can be improved.

本発明の水中生息生物の位置情報の収集方法は、水中航行装置の航走軌跡相互の間隔と信号の最大送受信可能距離との関係を調整するようにした場合には、調査対象の領域/水域の各地点を原則として複数回に亙って受信器の受信カバー範囲の対象にすることができるので、受信率を高めることができ、生息域特定の確実性の向上を図ることが可能になる。 In the method for collecting position information of underwater habitats of the present invention, when the relationship between the intervals between the traveling loci of the underwater navigation device and the maximum transmittable and receivable distance of signals is adjusted, the area/water area to be investigated In principle, each point can be covered by the receiver's coverage area multiple times, so the reception rate can be increased and the certainty of habitat identification can be improved. ..

本発明の水中生息生物の位置情報の収集方法は、水中航行装置の航走速度と発信器による信号の発信間隔と信号の最大送受信可能距離との関係を調整するようにした場合には、航走速度と発信間隔と最大送受信可能距離とを適切な関係に調整して受信効率を高めることができ、生息域特定の確実性の向上を図ることが可能になる。 The method of collecting position information of aquatic habitats of the present invention, when the relationship between the running speed of the underwater navigation device, the signal transmission interval by the transmitter and the maximum signal transmittable and receivable distance is adjusted, It is possible to improve the reception efficiency by adjusting the running speed, the transmission interval, and the maximum transmittable/receivable distance to an appropriate relationship, and to improve the certainty of habitat identification.

本発明に係る水中生息生物の位置情報の収集方法の実施形態の一例を説明する図であり、水中航行装置の航行ルートの例を示す図である。It is a figure explaining an example of an embodiment of a collection method of position information on aquatic inhabitants concerning the present invention, and is a figure showing an example of a navigation route of an underwater navigation device.

以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。 Hereinafter, the configuration of the present invention will be described in detail based on an example of an embodiment shown in the drawings.

図1に、本発明に係る水中生息生物の位置情報の収集方法の実施形態の一例を示す。 FIG. 1 shows an example of an embodiment of a method of collecting position information of aquatic habitats according to the present invention.

本実施形態の水中生息生物の位置情報の収集方法は、水中に生息する調査対象の生物2に超音波発振器4が取り付けられ、また、無人で自動航走する水中航行装置1に超音波受信器3が備え付けられ、予め設定された経路5に従って水中航行装置1が自動航走しながら、超音波発振器4から発信される超音波が超音波受信器3によって受信されるようにしている。 The position information collecting method of the aquatic inhabitants of this embodiment is such that an ultrasonic oscillator 4 is attached to an inspected organism 2 inhabiting underwater, and an ultrasonic receiver is attached to an underwater navigation device 1 that is automatically driven unmanned. 3, the underwater navigation system 1 automatically travels along a preset route 5 while the ultrasonic wave emitted from the ultrasonic oscillator 4 is received by the ultrasonic wave receiver 3.

水中に生息する調査対象の生物2に超音波発振器4(「ピンガー」とも呼ばれる)が取り付けられた上で前記生物2が放される。 An ultrasonic oscillator 4 (also referred to as "Pinger") is attached to an organism 2 to be investigated that lives in water, and then the organism 2 is released.

調査対象の生物2は、特定の種類の生物に限定されるものではなく、例えば調査目的が考慮されるなどした上で、魚類をはじめとして種々の生物が適宜選択され得る。 The organism 2 to be surveyed is not limited to a specific type of organism, and various organisms including fish can be appropriately selected, for example, after considering the purpose of the survey.

超音波発振器4としては、内蔵された電池を電源とし、超音波パルスを間欠的に且つ無指向的に発信する機序が用いられる。 As the ultrasonic oscillator 4, a mechanism in which an internal battery is used as a power source and ultrasonic pulses are intermittently and omnidirectionally transmitted is used.

水中航行装置1に超音波受信器3が備え付けられる。 The underwater navigation device 1 is equipped with an ultrasonic receiver 3.

超音波受信器3としては、調査対象の生物2に取り付けられる超音波発振器4から発信される超音波パルスを少なくとも受信可能な機序が用いられる。 As the ultrasonic wave receiver 3, a mechanism capable of receiving at least an ultrasonic wave pulse transmitted from an ultrasonic wave oscillator 4 attached to the living thing 2 to be investigated is used.

調査対象の生物2に取り付けられる超音波発振器4から発信される超音波が水中航行装置1に備え付けられる超音波受信器3によって受信され得る距離の最大値を「最大送受信可能距離Dmax」とする。 The maximum value of the distance at which the ultrasonic wave transmitted from the ultrasonic wave oscillator 4 attached to the living thing 2 to be investigated can be received by the ultrasonic wave receiver 3 provided in the underwater navigation apparatus 1 is defined as "maximum transmittable/receivable distance Dmax".

最大送受信可能距離Dmaxは、特定の値に限定されるものではなく、具体的には例えば、あくまで一例として挙げると、150〜250 m 程度であることが考えられる。 The maximum transmittable/receivable distance Dmax is not limited to a specific value, and specifically, for example, it can be considered that the maximum transmittable/receivable distance Dmax is about 150 to 250 m, as an example.

水中航行装置1としては、無人の、自走式の、予め設定された経路/航路5に従って水中を自動航行する器機が用いられる。 As the underwater navigation device 1, an unmanned, self-propelled device that automatically navigates in water according to a preset route/route 5 is used.

水中航行装置1としては、例えば、「自律型水中環境モニタリングロボット」(「AUV」(Autonomous Underwater Vehicle の略)とも呼ばれる)が利用され得る。 As the underwater navigation apparatus 1, for example, an "autonomous underwater environment monitoring robot" (also called "AUV" (abbreviation of Autonomous Underwater Vehicle)) can be used.

水中航行装置1としては、具体的には例えば、あくまで一例として挙げると、「REMUS(レイマス)」(Remote Environmental Monitoring Units の略)(米国ウッズホール海洋研究所開発)が用いられ得る。 As the underwater navigation apparatus 1, specifically, for example, “REMUS (Reymus)” (abbreviation of Remote Environmental Monitoring Units) (developed by Woods Hole Oceanographic Research Institute in the United States) can be used, just to give an example.

「REMUS」は、種々のセンサを装備しつつ事前にプログラミングされたミッションコースを自律潜行することが可能であり、各種の調査(言い換えると、種々のデータの計測・収集)を自動で行うことが可能な器機である。 "REMUS" is capable of autonomously submersing in a pre-programmed mission course while equipped with various sensors, and can automatically perform various surveys (in other words, measurement and collection of various data). It is possible equipment.

「REMUS」は、バッテリー及び当該バッテリーによって駆動するモータを備えると共にプロペラスクリュー及び縦横フィンを備え、超音波を利用した測位システムであるLBL(Long Base Line の略)方式,USBL(Ultra Short Base Line の略)方式,DVL(Doppler Velocity Log の略)方式を応用したナビゲーション/推測航法により、所定のコース(「ミッションコース」と呼ばれる)を自律潜行航走する。 "REMUS" is a positioning system using an ultrasonic wave, which includes a battery and a motor driven by the battery, a propeller screw, and vertical and horizontal fins. (Abbreviated) system, DVL (abbreviation of Doppler Velocity Log) system is applied, and a predetermined course (referred to as "mission course") is autonomously submerged by navigation/dead-reckoning navigation.

水中航行装置1は、図1に示すように、調査対象の領域/水域9内を、或る向きの直線ルート部5fと隣り合う前記或る向きと逆向きの直線ルート部5rとの間隔Rintが最大送受信可能距離Dmax以内であるように、直線ルート部5f,5rの端部で折り返し反転して航行する。 As shown in FIG. 1, the underwater navigation device 1 has an interval Rint between a straight route portion 5f in a certain direction and a straight route portion 5r opposite to the certain direction in the area/water region 9 to be surveyed. Is within the maximum receivable and receivable distance Dmax and is turned around at the ends of the straight route portions 5f and 5r to be inverted and sailed.

すなわち、水中航行装置1の経路/航路5は、平面的には、直線ルート部5f,5rとこれら直線ルート部5f,5rの端と連続する半円ルート部5c(別言すると、折り返す/反転するための曲線ルート部)とが連なり、一連の(別言すると、一続きの,一筆書きの)航行ルートとして設定される。 That is, the route/route 5 of the underwater navigation apparatus 1 is, in a plan view, the straight route portions 5f and 5r and the semicircular route portion 5c that is continuous with the ends of these straight route portions 5f and 5r (in other words, folded/reversed). The curve route part for carrying out the operation is connected, and is set as a series of (in other words, a continuous, one-stroke writing) navigation route.

相互に隣り合って向きが逆になっている直線ルート部5f,5r同士の間隔Rintは、得られるデータの緻密性(言い換えると、超音波発振器4から発信される超音波を複数の方向において受信する頻度の増加)の観点からは、最大送受信可能距離Dmaxと等しいことが好ましく、最大送受信可能距離Dmaxよりも小さいことが好ましい。 The interval Rint between the straight line root portions 5f and 5r which are adjacent to each other and whose directions are opposite to each other is the density of the obtained data (in other words, the ultrasonic waves transmitted from the ultrasonic oscillator 4 are received in a plurality of directions). From the viewpoint of (increased frequency), it is preferable to be equal to the maximum transmittable/receivable distance Dmax, and it is preferable to be smaller than the maximum transmittable/receivable distance Dmax.

相互に隣り合って向きが逆になっている直線ルート部5f,5r同士の間隔Rintが最大送受信可能距離Dmax以下であるように設定されることにより、水中航行装置1の航走軌跡の相互の間隔(尚、Rintに等しい)が最大送受信可能距離Dmax以下になり、調査対象の領域/水域9が漏れ無く、且つ異なる時点において原則として複数回、超音波受信器3の受信カバー範囲6の対象になる。 By setting the interval Rint between the straight route portions 5f and 5r that are adjacent to each other and have opposite directions to be less than or equal to the maximum transmittable/receivable distance Dmax, the running trajectories of the underwater navigation device 1 are mutually reciprocated. The interval (equal to Rint) is less than or equal to the maximum transmittable/receivable distance Dmax, the area/water area 9 to be investigated does not leak, and in principle, the object is covered by the reception coverage area 6 of the ultrasonic receiver 3 at different times. become.

相互に隣り合って向きが逆になっている直線ルート部5f,5r同士の間隔Rintは、また、効率性の観点からは、最大送受信可能距離Dmaxの例えば1.4倍程度であるようにしても良い。超音波受信器3の受信カバー範囲6は最大送受信可能距離Dmaxを半径とする円形であるので、直線ルート部5f,5rから離れるに従い、超音波発振器4が受信カバー範囲6に含まれる程度が減少する(言い換えると、中心位置が直線ルート部5f,5r上を移動する円形の受信カバー範囲6に含まれる時間が減少する)。これに対し、直線ルート部5f,5r同士の間隔Rintを最大送受信可能距離Dmaxの例えば1.4倍程度であるようにすることにより、水中航行装置1の進行方向(即ち、超音波受信器3の移動方向)に対して例えば前方45°から後方45°までの範囲のうちの直線ルート部5f,5rから離れた部分については相互に隣り合って向きが逆になっている直線ルート部5f,5rそれぞれを航行する際の二回は受信カバー範囲6に含まれることになるので、超音波発振器4から発信される超音波が複数回受信される確実性を向上させることができる(尚、超音波は超音波発振器4から間欠的に発信される)。 From the viewpoint of efficiency, the distance Rint between the straight line route portions 5f and 5r that are adjacent to each other and have opposite directions is set to, for example, about 1.4 times the maximum transmittable and receivable distance Dmax. Is also good. Since the reception cover range 6 of the ultrasonic receiver 3 is a circle having a radius of the maximum transmittable/receivable distance Dmax, the extent to which the ultrasonic oscillator 4 is included in the reception cover range 6 decreases with increasing distance from the straight route portions 5f and 5r. (In other words, the time in which the center position is included in the circular receiving cover range 6 moving on the straight route portions 5f and 5r is reduced). On the other hand, by setting the interval Rint between the straight route portions 5f and 5r to be, for example, about 1.4 times the maximum transmittable/receivable distance Dmax, the traveling direction of the underwater navigation device 1 (that is, the ultrasonic receiver 3). Direction of movement), for example, in the range from the front 45° to the rear 45°, apart from the straight route portions 5f, 5r, the straight route portions 5f, which are adjacent to each other and have opposite directions, Since the two times of traveling each of the 5r are included in the reception cover range 6, it is possible to improve the certainty that the ultrasonic waves transmitted from the ultrasonic oscillator 4 are received a plurality of times. Sound waves are emitted intermittently from the ultrasonic oscillator 4).

ここで、例えば図1に示す調査対象の領域/水域9について、ブイに取り付けられたりブイに結び付けられたケーブルに吊り下げられたりする浮遊式(別言すると、放置式)の受信器が用いられる場合には、受信器相互の間隔を最大送受信可能距離Dmax以下にするためには多数の受信器が必要になり、また、海流や風などによって受信器が流されて調査対象の領域/水域9について受信器の受信カバー範囲によってカバーされない領域が残ることも考えられる。 Here, for example, for the area/water area 9 to be investigated shown in FIG. 1, a floating type (in other words, standing type) receiver that is attached to a buoy or suspended from a cable connected to the buoy is used. In this case, a large number of receivers are required in order to keep the distance between the receivers at the maximum transmittable and receivable distance Dmax or less, and the receivers are swept away by the ocean current or wind, etc. It is also conceivable that there will remain areas of the receiver not covered by the receiver coverage.

浮遊式/放置式の受信器が用いられる場合に対し、水中航行装置1によれば、調査対象の領域/水域9を面的に漏れ無く調査することが可能であり、また、超音波発振器4から間欠的に発信される信号(具体的には、超音波)を複数回に亙って受信することが可能であることが期待される。 In contrast to the case where a floating/leaving type receiver is used, the underwater navigation system 1 enables the area/water area 9 to be investigated to be investigated without omission, and the ultrasonic oscillator 4 It is expected that it is possible to receive a signal (specifically, an ultrasonic wave) intermittently transmitted from a plurality of times.

水中航行装置1の潜行水深は、当該の水中航行装置1の潜行性能に照らして許容される範囲で、調査対象の生物2の生息深度として想定される深度若しくは前記深度にできる限り近い深度に適宜設定される。 The submersible depth of the underwater navigation device 1 is appropriately within the range allowed in view of the submersion performance of the underwater navigation device 1 and to the depth assumed as the habitat depth of the organism 2 to be surveyed or a depth as close as possible to the depth. Is set.

水中航行装置1の航走速度は、当該の水中航行装置1の水深性能に照らして許容される範囲で、比較的遅い速度に設定されることが好ましい。例えば、水中航行装置1の航走速度をv(単位:m/分)とすると共に超音波発振器4の超音波の発信間隔をTint(単位:分)としたときに、最大送受信可能距離Dmax(単位:m)との間で、下記の数式1の関係が成り立つことが好ましく、下記の数式2の関係が成り立つことが一層好ましい。
(数1) v×Tint ≦ Dmax/2
(数2) v×Tint ≦ Dmax/4
The running speed of the underwater navigation device 1 is preferably set to a relatively slow speed within a range that is allowable in view of the water depth performance of the underwater navigation device 1. For example, when the running speed of the underwater navigation device 1 is v (unit: m/min) and the ultrasonic wave transmission interval of the ultrasonic oscillator 4 is Tint (unit: min), the maximum transmittable/receivable distance Dmax( With respect to the unit: m), it is preferable that the relation of the following formula 1 is established, and it is more preferable that the relation of the following formula 2 is established.
(Equation 1) v×Tint ≤ Dmax/2
(Equation 2) v×Tint ≤ Dmax/4

水中航行装置1が予め設定された航行ルート(即ち、水中航行装置1の経路/航路5)に沿って潜行航走しながら、調査対象の生物2に取り付けられた超音波発振器4から発信される超音波が水中航行装置1に備え付けられた超音波受信器3によって受信される。 The underwater navigation device 1 diverts along a preset navigation route (that is, the route/route 5 of the underwater navigation device 1), and is transmitted from the ultrasonic oscillator 4 attached to the organism 2 to be investigated. Ultrasonic waves are received by the ultrasonic receiver 3 provided in the underwater navigation apparatus 1.

超音波受信器3によって受信されることによって得られるデータの内容としては、例えば、受信した信号(具体的には、超音波)の識別子(言い換えると、超音波受信器3によって受信された信号/超音波を発信した超音波発振器4のID;尚、受信された超音波の周波数などによって判別されるようにしても良い),超音波を受信した時の水中航行装置1の位置,及び(必要に応じて)超音波の受信信号強度などが挙げられる。 The content of the data obtained by being received by the ultrasonic receiver 3 is, for example, the identifier of the received signal (specifically, the ultrasonic wave) (in other words, the signal received by the ultrasonic receiver 3/ The ID of the ultrasonic oscillator 4 that transmitted the ultrasonic wave; it may be determined by the frequency of the received ultrasonic wave), the position of the underwater navigation device 1 when the ultrasonic wave is received, and (necessary) The received signal strength of ultrasonic waves, etc. may be mentioned.

超音波受信器3によって受信されるデータは、例えば、超音波を受信した時の水中航行装置1の位置が平面的にプロットされた上で複数のプロットの重心位置が求められて調査対象の生物2の位置が特定されることに利用されたり、超音波の受信信号強度が計測されている場合には受信信号強度で重み付けされた複数のプロットの重心位置が求められて調査対象の生物2の位置が特定されることに利用されたりすることが考えられる。 The data received by the ultrasonic wave receiver 3 is, for example, the position of the underwater navigation apparatus 1 when the ultrasonic wave is received is plotted in a plane, and the barycentric positions of a plurality of plots are obtained to determine the organism to be investigated. 2 is used for specifying the position, or when the received signal strength of the ultrasonic wave is measured, the barycentric positions of a plurality of plots weighted by the received signal strength are obtained and It may be used for specifying the position.

以上のように構成された水中生息生物の位置情報の収集方法によれば、超音波受信器3を広い範囲に亙って移動させることができるので、調査対象の生物2について予め想定する生息域を広範囲に設定することができる。このため、調査対象生物の捕捉の確実性の向上を図ることが可能になる。また、調査対象の生物2の生息域に近い深度で超音波受信器3を移動させることができるので、受信率を高めることができ、生息域特定の確実性の向上を図ることが可能になる。 According to the method of collecting position information of aquatic inhabitants configured as described above, the ultrasonic receiver 3 can be moved over a wide range. Can be set in a wide range. Therefore, it is possible to improve the certainty of capturing the target organism. In addition, since the ultrasonic receiver 3 can be moved at a depth close to the habitat of the organism 2 to be investigated, the reception rate can be increased and the certainty of habitat identification can be improved. ..

なお、上述の実施形態は本発明を実施する際の好適な形態の一例ではあるものの本発明の実施の形態が上述のものに限定されるものではなく、本発明の要旨を逸脱しない範囲において本発明は種々変形実施可能である。 Although the above-described embodiment is an example of a preferred mode for carrying out the present invention, the embodiment of the present invention is not limited to the above-described one, and the present invention is not limited to the scope not departing from the gist of the present invention. The invention can be implemented in various modifications.

例えば、上述の実施形態では超音波発振器4から超音波が発信されると共に超音波受信器3によって前記超音波が受信されるようにしているが、調査対象の生物2に取り付けられる発信器から発信/送信される信号の種類は超音波に限定されるものではなく、水中を伝播し得る信号であればどのような種類の信号であっても構わない。したがって、本発明において調査対象の生物2に取り付けられる発信器として利用される器機は超音波発振器に限定されるものではなく、また、本発明において水中航行装置1に備え付けられる受信器として利用される器機は超音波受信器に限定されるものではない。 For example, in the above-described embodiment, the ultrasonic wave is transmitted from the ultrasonic oscillator 4 and the ultrasonic wave is received by the ultrasonic wave receiver 3. However, the ultrasonic wave is transmitted from the transmitter attached to the organism 2 to be investigated. / The type of signal to be transmitted is not limited to ultrasonic waves, and may be any type of signal as long as it is a signal that can propagate in water. Therefore, the device used as a transmitter attached to the living thing 2 to be investigated in the present invention is not limited to the ultrasonic oscillator, and is also used as a receiver installed in the underwater navigation device 1 in the present invention. The device is not limited to the ultrasonic receiver.

本発明に係る水中生息生物の位置情報の収集方法は、例えば、水産動物の水中への放流や水中での定着状況を適切に確認することができるので、種々の海洋生態調査や海洋資源の保護或いは海洋環境の創生・再生などの分野で特に利用価値が高い。 The method of collecting position information of aquatic inhabitants according to the present invention can appropriately confirm, for example, the release of aquatic animals into the water and the status of their establishment in the water. Alternatively, it is particularly useful in fields such as the creation and regeneration of marine environments.

1 水中航行装置
2 調査対象の生物(水中生息生物)
3 超音波受信器
4 超音波発振器
5 経路/航路
5f 或る向きの直線ルート部
5r 逆向きの直線ルート部
5c 半円ルート部
6 受信カバー範囲
9 領域/水域
1 Underwater navigation device 2 Organisms under investigation (underwater habitats)
3 Ultrasonic Receiver 4 Ultrasonic Oscillator 5 Route/Route 5f Straight Route Route in Certain Direction 5r Reverse Straight Route Route 5c Semi-Circular Route 6 Reception Coverage 9 Area/Water Area

Claims (3)

水中に生息する生物に発信器が取り付けられ、また、無人で自動航走する水中航行装置に受信器が備え付けられ、予め設定された経路に従って前記水中航行装置が自動航走しながら、前記発信器から発信される信号が前記受信器によって受信されることを特徴とする水中生息生物の位置情報の収集方法。 A transmitter is attached to a living organism that lives in water, and a receiver is attached to an underwater navigation device that automatically and unmanned, and the transmitter is automatically operated by the underwater navigation device according to a preset route. A method for collecting position information of aquatic inhabitants, characterized in that a signal transmitted from the receiver is received by the receiver. 前記水中航行装置の航走軌跡の相互の間隔が、前記発信器と前記受信器との間での最大送受信可能距離以下であることを特徴とする請求項1記載の水中生息生物の位置情報の収集方法。 The mutual information of the running trajectories of the underwater navigation device is less than or equal to the maximum transmittable/receivable distance between the transmitter and the receiver. Collection method. 前記水中航行装置の航走速度がv[m/分]であると共に前記発信器の信号の発信間隔がTint[分]であり、また、前記発信器と前記受信器との間での最大送受信可能距離がDmax[m]であるとき、v×Tint ≦ Dmax/2 であることを特徴とする請求項1記載の水中生息生物の位置情報の収集方法。 The running speed of the underwater navigation device is v [m/min], the transmission interval of the signal of the transmitter is Tint [min], and maximum transmission/reception between the transmitter and the receiver is performed. The method for collecting position information of aquatic inhabitants according to claim 1, wherein v×Tint ≤ Dmax/2 when the possible distance is Dmax [m].
JP2019003782A 2019-01-11 2019-01-11 Method for collecting position information of underwater dwelling creature Pending JP2020112449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019003782A JP2020112449A (en) 2019-01-11 2019-01-11 Method for collecting position information of underwater dwelling creature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019003782A JP2020112449A (en) 2019-01-11 2019-01-11 Method for collecting position information of underwater dwelling creature

Publications (1)

Publication Number Publication Date
JP2020112449A true JP2020112449A (en) 2020-07-27

Family

ID=71667440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019003782A Pending JP2020112449A (en) 2019-01-11 2019-01-11 Method for collecting position information of underwater dwelling creature

Country Status (1)

Country Link
JP (1) JP2020112449A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178376A1 (en) * 2013-04-30 2014-11-06 三菱電機株式会社 Laser radar device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178376A1 (en) * 2013-04-30 2014-11-06 三菱電機株式会社 Laser radar device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CLARK, C.M. 外7名: ""Tracking and Following a Tagged Leopard Shark with an Autonomous Underwater Vehicle"", JOURNAL OF FIELD ROBOTICS, vol. 30, JPN6022043083, 2013, pages 309 - 322, ISSN: 0004897650 *
GROTHUES, T.M. 外2名: ""Collecting, interpreting, and merging fish telemetry data from an AUV: Remote sensing from an alre", 2010 IEEE/OES AUTONOMOUS UNDERWATER VEHICLES, JPN6022043085, 2010, pages 9 Pages, ISSN: 0005033268 *

Similar Documents

Publication Publication Date Title
Tokekar et al. A robotic system for monitoring carp in Minnesota lakes
KR100734814B1 (en) Auto-piloting unmanned ship
US5894450A (en) Mobile underwater arrays
Benoit‐Bird et al. Equipping an underwater glider with a new echosounder to explore ocean ecosystems
Plueddemann et al. Autonomous underwater vehicle operations beneath coastal sea ice
DK2830934T3 (en) UNDERWORK WORKING SYSTEM AND PROCEDURE FOR OPERATING AN UNDERWORKING SYSTEM
EP3371623B1 (en) System for detecting subsurface objects and unmanned surface vessel
US20200284903A1 (en) Method for tracking underwater objects
Von Alt et al. Hunting for mines with REMUS: A high performance, affordable, free swimming underwater robot
JP2003026090A (en) Submarine exploring method using autonomous unmanned navigating body and its device
CN107202990B (en) A kind of mixing frogman method for early warning and device based on unmanned boat and submariner device
Grothues et al. Collecting, interpreting, and merging fish telemetry data from an AUV: remote sensing from an already remote platform
JP5354638B2 (en) Underwater object search system
Bhadauria et al. A robotic sensor network for monitoring carp in Minnesota lakes
Mondal et al. Autonomous underwater vehicles: recent developments and future prospects
Sheikh et al. Challenges and opportunities for underwater sensor networks
Zolich et al. A formation of unmanned vehicles for tracking of an acoustic fish-tag
Mahalle et al. Introduction to underwater wireless sensor networks
Totland et al. Kayak Drone–a silent acoustic unmanned surface vehicle for marine research
Goulon et al. Hydroacoustic Autonomous boat for Remote fish detection in LakE (HARLE), an unmanned autonomous surface vehicle to monitor fish populations in lakes
JP2020112449A (en) Method for collecting position information of underwater dwelling creature
Carlon Tracking tagged fish using a wave glider
RU2709059C1 (en) Underwater situation illumination method and device for its implementation
Kawada et al. Acoustic positioning system of combined aerial and underwater drones
JP2018017502A (en) Underwater sound positioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230411