JP2020112383A - Microchannel chip - Google Patents

Microchannel chip Download PDF

Info

Publication number
JP2020112383A
JP2020112383A JP2019001685A JP2019001685A JP2020112383A JP 2020112383 A JP2020112383 A JP 2020112383A JP 2019001685 A JP2019001685 A JP 2019001685A JP 2019001685 A JP2019001685 A JP 2019001685A JP 2020112383 A JP2020112383 A JP 2020112383A
Authority
JP
Japan
Prior art keywords
inlet
channel
arc
liquid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019001685A
Other languages
Japanese (ja)
Other versions
JP7219093B2 (en
Inventor
文章 渡邉
Fumiaki Watanabe
文章 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukoku Co Ltd
Fukoku KK
Original Assignee
Fukoku Co Ltd
Fukoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukoku Co Ltd, Fukoku KK filed Critical Fukoku Co Ltd
Priority to JP2019001685A priority Critical patent/JP7219093B2/en
Priority to PCT/JP2019/042989 priority patent/WO2020144920A1/en
Publication of JP2020112383A publication Critical patent/JP2020112383A/en
Application granted granted Critical
Publication of JP7219093B2 publication Critical patent/JP7219093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

To provide a microchannel chip capable of evenly distributing a solution injected from one inlet to a plurality of reaction sections and allowing the solution to simultaneously reach the reaction sections.SOLUTION: A microchannel chip includes: an inlet section having a solution inlet 10; a plurality of reaction sections 51-54 through which chemicals reacting with the solution is arranged with respect to the solution inlet 10; a plurality of distribution sections 31-34 communicating with the inlet section 20 and distributing the solution injected through the solution inlet 10; first flow channels 141-144 communicating with the distribution sections and communicating with each of the reaction sections; and branch flow channels 141A-144A communicating the distribution sections 31-34 with the first flow channels 141-144.SELECTED DRAWING: Figure 2

Description

本発明は、例えば、試験液に対する複数の薬剤の効果を比較するために使用されるマイクロ流路チップに関する。 The present invention relates to, for example, a microchannel chip used for comparing the effects of a plurality of drugs on a test solution.

薬剤の感受性評価試験、薬剤の分析又は反応度評価等には、マイクロ流路チップが使用される。マイクロ流路チップは、ガラス又は合成樹脂からなる基板にマイクロ流路を形成した構成となっている。マイクロ流路は、試験液の注入口、薬剤が保持される反応部、及び注入口と反応部とを連通させる流路を備える。 A microchannel chip is used for drug sensitivity evaluation tests, drug analysis, reactivity evaluation, and the like. The micro channel chip has a structure in which a micro channel is formed on a substrate made of glass or synthetic resin. The micro flow channel includes a test liquid injection port, a reaction part in which a drug is held, and a flow channel which connects the injection port and the reaction part.

例えば、薬剤の感受性評価試験等を行うためのマイクロ流路は、一つの注入口から注入された試験液が複数の反応部に到達するように構成される。 For example, a microchannel for conducting a drug sensitivity evaluation test or the like is configured so that a test solution injected from one injection port reaches a plurality of reaction parts.

特許文献1では、複数の反応部に同じタイミングで試験液を到達させるように構成されたマイクロ流路が提案されている。これによれば、1つの導入口を有する導入部と複数の反応部、それらを接続する流路を備え、導入部から複数の反応部までの流路の長さ、幅、表面状態等の流路抵抗を全て同一にすることで、各流路内の試験液の流量が一定になり、試験液が各反応部に対して同じタイミングで到達することができる、とされている。 Patent Document 1 proposes a microchannel configured so that a test solution reaches a plurality of reaction parts at the same timing. According to this, an introduction part having one introduction port, a plurality of reaction parts, and a flow path connecting them are provided, and the flow length, width, surface state, etc. of the flow path from the introduction part to the plurality of reaction parts. It is said that by making all the path resistances the same, the flow rate of the test solution in each flow path becomes constant, and the test solution can reach each reaction part at the same timing.

特開2014−199206号公報JP, 2014-199206, A

ところで、前述したような感受性試験を行うためのマイクロ流路チップでは、導入口から導入された試験液は、分配(分岐)された後、各流路を経由して均等量、かつ同一タイミングで複数の反応部に到達する必要がある。その理由は、感受性試験において、試験液の量が不均一あるいは複数の反応部への試験液が到達するタイミングにずれが発生してしまうと、異なる薬剤を保持した複数の反応部において、同一試験液に対する薬剤の効果を十分に検証できなくなる(=薬剤選定の誤り)危険性があるためである。
上述したように、同一試験液に対する複数の薬剤の中で、どの薬剤が最も効果的であるかを分析するためには、1つのマイクロ流路チップに異なる薬剤が保持された複数の反応部を設ける必要がある。しかし、特許文献1の図5に示されたマイクロ流路では、反応部が導入口を起点として放射状に広がっているために、マイクロ流路チップの基板面積が大きくなってしまい、小型化できない難点がある。
また、特許文献1の図4に示すように、マイクロ流路チップを小型化するため反応部を集約した場合には、導入口から反応部に向かうマイクロ流路の出射角度が不均一になるため、各々のマイクロ流路内の試験液量がばらつく原因となる。
加えて、特許文献1の図5では、複数の薬剤と試験液との反応状態を同時に観察することが難しく、観察装置自体が大型化してしまう。
By the way, in the microchannel chip for performing the sensitivity test as described above, the test liquid introduced from the inlet is distributed (branched), and then is evenly distributed at the same timing via each channel. It is necessary to reach multiple reaction sites. The reason for this is that in a susceptibility test, if the amount of test solution is non-uniform or there is a deviation in the timing at which the test solution reaches multiple reaction parts, the same test will be performed in multiple reaction parts holding different drugs. This is because there is a risk that the effect of the drug on the liquid cannot be sufficiently verified (=error in drug selection).
As described above, in order to analyze which drug is the most effective among a plurality of drugs for the same test liquid, one microchannel chip has a plurality of reaction parts holding different drugs. It is necessary to provide. However, in the microchannel shown in FIG. 5 of Patent Document 1, since the reaction portion is radially expanded from the introduction port, the substrate area of the microchannel chip becomes large, which makes it difficult to downsize. There is.
Further, as shown in FIG. 4 of Patent Document 1, when the reaction parts are integrated in order to miniaturize the micro flow path chip, the emission angles of the micro flow paths from the inlet to the reaction part become uneven. This causes variations in the amount of test liquid in each microchannel.
In addition, in FIG. 5 of Patent Document 1, it is difficult to simultaneously observe the reaction states of a plurality of drugs and a test liquid, and the observation device itself becomes large.

本発明は、上記問題点に鑑みてなされたものであり、一つの注入口から注入された液体を複数の反応部に均等量分配し、且つ同じタイミングで反応部に到達させることが可能であり、さらに、マイクロ流路チップ自体を小型化でき、かつ各反応部に分配された液体を同時に観察することができるマイクロ流路チップを提供することを目的とする。 The present invention has been made in view of the above problems, and it is possible to evenly distribute the liquid injected from one injection port to a plurality of reaction parts, and to reach the reaction parts at the same timing. Further, it is an object of the present invention to provide a micro-channel chip which can miniaturize the micro-channel chip itself and can simultaneously observe the liquid distributed to each reaction part.

(1)上記目的を達成するために、本発明のマイクロ流路チップは、1つの液体導入口を有する導入部と、前記液体導入口に対し、液体と反応する薬剤が配置される複数の反応部と、前記導入部に連通し、前記液体導入口から導入された液体を分配する複数の分配部と、前記分配部に連通する分岐流路と、前記分岐流路と前記反応部とを連通させる流路とを備える。 (1) In order to achieve the above-mentioned object, the microchannel chip of the present invention has an introduction part having one liquid introduction port, and a plurality of reactions in which a drug that reacts with a liquid is arranged in the liquid introduction port. Section, a plurality of distribution sections that communicate with the introduction section and distribute the liquid introduced from the liquid introduction port, a branch channel that communicates with the distribution section, and the branch channel and the reaction section that communicate with each other. And a flow path for allowing the flow.

(2)好ましくは、上記(1)のマイクロ流路チップにおいて、前記流路は前記分岐流路よりも流路断面積が大きい第一流路を少なくとも有する。 (2) Preferably, in the microchannel chip according to (1) above, the channel has at least a first channel having a channel cross-sectional area larger than that of the branch channel.

(3)好ましくは、上記(2)のマイクロ流路チップにおいて、前記流路は、前記第一流路よりも流路断面積が小さく、かつ液体と薬剤が反応した反応液を観察する領域を有する第二流路を有する。 (3) Preferably, in the microchannel chip of (2), the channel has a channel cross-sectional area smaller than that of the first channel and has an area for observing a reaction liquid in which a liquid and a drug have reacted. It has a second channel.

(4)好ましくは、上記(1)のマイクロ流路チップにおいて、前記複数分配部の入口は、前記導入部を2次元平面で見たとき、前記導入部内に円弧の中心を有する仮想半円の一端から他端にわたる円弧上に等間隔で存在し、且つ少なくとも当該仮想半円の一端および他端を除き、当該複数分配部の入口の一端は、他方の分配部入口の他端と重なる。 (4) Preferably, in the microchannel chip according to (1) above, the inlet of the plurality of distribution parts is a virtual semicircle having an arc center inside the introduction part when the introduction part is viewed in a two-dimensional plane. Existing at equal intervals on an arc extending from one end to the other end, and except at least one end and the other end of the virtual semicircle, one end of the inlet of the plurality of distribution units overlaps the other end of the other distribution unit inlet.

(5)好ましくは、上記(1)又は(4)のマイクロ流路チップにおいて、前記複数分配部の入口は、前記導入部を2次元平面で見たとき、前記導入部内に円弧の中心を有する仮想半円の一端から他端にわたる円弧上に等間隔で存在し、且つ当該分配部の出口の一端及び他端が前記分岐流路の入口の一端および他端に連結されている。 (5) Preferably, in the microchannel chip according to (1) or (4), the inlet of the plurality of distribution parts has a center of an arc inside the introduction part when the introduction part is viewed in a two-dimensional plane. The virtual semicircles are present at equal intervals on an arc extending from one end to the other end, and one end and the other end of the outlet of the distributor are connected to one end and the other end of the inlet of the branch flow path.

(6)好ましくは、上記(1)、(4)又は(5)のいずれかのマイクロ流路チップにおいて、前記複数分配部の入口は、前記導入部を2次元平面で見たとき、前記導入部内に円弧の中心を有する仮想半円の一端から他端にわたる円弧上に等間隔で存在し、且つ当該等間隔で存在する前記分配部入口の一端と他端を結ぶ線分の長さは、前記分岐流路の入口に連結される分配部の一端及び他端を結ぶ線分の長さより長い。 (6) Preferably, in the microchannel chip according to any one of (1), (4), or (5), the inlet of the plurality of distribution portions has the introduction when the introduction portion is viewed in a two-dimensional plane. The length of a line segment connecting one end and the other end of the distribution section inlet existing at equal intervals on the arc extending from one end to the other end of the virtual semicircle having the center of the arc within the part, It is longer than the length of a line segment connecting one end and the other end of the distribution unit connected to the inlet of the branch flow path.

(7)好ましくは、上記(1)のマイクロ流路チップにおいて、前記複数分配部の入口は、前記導入部を2次元平面で見たとき、前記導入部内に円弧の中心を有する仮想半円の一端から他端にわたる円弧上に等間隔で存在し、且つ少なくとも当該仮想半円の一端および他端を除き、当該分配部の入口の一端は、他方の分配部入口の他端と重なり、さらに該重なりの部分は、前記導入部方向に所定曲率を有する凸状である。 (7) Preferably, in the microchannel chip according to (1) above, the inlet of the plurality of distribution parts is a virtual semicircle having an arc center inside the introduction part when the introduction part is viewed in a two-dimensional plane. Existing at equal intervals on an arc extending from one end to the other end, and except at least one end and the other end of the virtual semicircle, one end of the inlet of the distribution unit overlaps with the other end of the other distribution unit inlet, and further, The overlapping portion has a convex shape having a predetermined curvature in the introduction portion direction.

(8)好ましくは、上記(1)又は(2)のマイクロ流路チップにおいて、前記分岐流路の平均断面積は、前記分配部の平均断面積よりも小さい。 (8) Preferably, in the microchannel chip according to (1) or (2), the average sectional area of the branch channel is smaller than the average sectional area of the distributor.

(9)好ましくは、上記(1)、(4)、(5)、(6)又は(7)のマイクロ流路チップにおいて、前記複数分配部の入口は、前記導入部を2次元平面で見たとき、前記導入部内に円弧の中心を有する仮想半円の一端から他端にわたる円弧上に等間隔で存在し、且つ各々の分配部入口の一端および他端は、当該分配部の出口の一端及び他端に曲線で連結されている。 (9) Preferably, in the microchannel chip according to (1), (4), (5), (6) or (7) above, the inlet of the plurality of distribution parts has the introduction part viewed in a two-dimensional plane. In this case, one end and the other end of each distributor inlet are present at equal intervals on the arc extending from one end to the other end of the virtual semicircle having the center of the arc in the introduction part, and one end of the outlet of the distributor. And the other end is connected by a curve.

(10)好ましくは、上記(1)、(4)、(5)、(6)又は(7)のマイクロ流路チップにおいて、前記複数分配部の入口は、前記導入部を2次元平面で見たとき、前記導入部内に円弧の中心を有する仮想半円の一端から他端にわたる円弧上に等間隔で存在し、且つ各々の分配部入口の一端および他端は、当該分配部の出口の一端及び他端に直線で連結されている。 (10) Preferably, in the microchannel chip according to (1), (4), (5), (6) or (7) above, the inlet of the plurality of distribution parts has the introduction part viewed in a two-dimensional plane. In this case, one end and the other end of each distributor inlet are present at equal intervals on the arc extending from one end to the other end of the virtual semicircle having the center of the arc in the introduction part, and one end of the outlet of the distributor. And connected to the other end with a straight line.

(11)好ましくは、上記(1)、(4)、(5)、(6)又は(7)のマイクロ流路チップにおいて、前記複数分配部の入口は、前記導入部を2次元平面で見たとき、前記導入部内に円弧の中心を有する仮想半円の一端から他端にわたる円弧上に等間隔で存在し、且つ各々の分配部入口の一端および他端は、当該分配部の出口の一端及び他端に直線で連結され、さらに当該直線の一部に少なくとも1つの屈曲点を有する。 (11) Preferably, in the microchannel chip according to (1), (4), (5), (6) or (7) above, the inlet of the plurality of distribution parts has the introduction part viewed in a two-dimensional plane. In this case, one end and the other end of each distributor inlet are present at equal intervals on the arc extending from one end to the other end of the virtual semicircle having the center of the arc in the introduction part, and one end of the outlet of the distributor. And a straight line connected to the other end, and at least one bending point is provided in a part of the straight line.

本発明のマイクロ流路チップによれば、一つの注入口から注入された液体を複数の反応部に均等量分配し、且つ同じタイミングで反応部に到達させることが可能であり、さらに、マイクロ流路チップ自体を小型化でき、かつ各反応部に分配された液体を同時に観察することができるマイクロ流路チップを提供することを目的とする。 According to the micro-channel chip of the present invention, it is possible to evenly distribute the liquid injected from one injection port to a plurality of reaction parts, and to reach the reaction parts at the same timing. It is an object of the present invention to provide a microchannel chip capable of miniaturizing the channel chip itself and simultaneously observing the liquid distributed to each reaction part.

本発明に係るマイクロ流路チップの構成を示す平面図である。It is a top view showing composition of a micro channel chip concerning the present invention. 図1の複数のマイクロ流路のうちの1つのマイクロ流路の拡大図である。FIG. 2 is an enlarged view of one of the plurality of micro flow paths shown in FIG. 1. 図2の分岐構造部分の拡大図である。It is an enlarged view of the branch structure part of FIG. マイクロ流路に導入された試験液の挙動を示す模式図である。It is a schematic diagram which shows the behavior of the test liquid introduce|transduced into the microchannel. 図2の分配部の拡大図を示す。3 shows an enlarged view of the distributor of FIG. マイクロ流路に試験液導入に連続して導入される空気の挙動を示す模式図である。It is a schematic diagram which shows the behavior of the air continuously introduce|transduced into a microchannel after test liquid introduction. 図2の分岐点形状の他の実施例を示す図である。It is a figure which shows the other Example of the branch point shape of FIG. 図2の分配部の他の実施例を示す模式図である。FIG. 6 is a schematic view showing another embodiment of the distributor of FIG. 2.

以下、本発明の実施形態に係るマイクロ流路チップについて、図面を参照しつつ説明するが、本発明は以下の形態に限定されるものではない。 Hereinafter, the microchannel chip according to the embodiment of the present invention will be described with reference to the drawings, but the present invention is not limited to the following modes.

[マイクロ流路チップの構成]
以下、図1〜図6を用いて詳細に説明する。
図1は、複数のマイクロ流路2を第一基板101に形成した後、第二基板102を貼り付けて形成されたマイクロ流路チップ100の平面模式図である。図中、マイクロ流路2は、第一基板101に形成される凹溝(図示せず)と、基板101に接合される第二基板102とにより形成される。
[Configuration of micro-channel chip]
Hereinafter, a detailed description will be given with reference to FIGS.
FIG. 1 is a schematic plan view of a microchannel chip 100 formed by forming a plurality of microchannels 2 on a first substrate 101 and then pasting a second substrate 102 thereon. In the figure, the micro channel 2 is formed by a concave groove (not shown) formed in the first substrate 101 and a second substrate 102 bonded to the substrate 101.

ところで、第一基板101は透明であることが好ましい。第一基板101が透明であることで、試験液の変化の観察、薬剤保持部の薬剤量、薬剤と菌に反応状態(後述する感受性評価)の確認等に有利であり、好ましい。また、第一基板101はゴム弾性を有することが好ましい。更に、第一基板101が気体透過性を有することも好ましい。具体的には、少なくとも天然ゴム以上の気体透過性を有することが好ましい。これは、第一基板と第二基板の貼り合せの際、両者に挟まれて不可避的に残存する空気を大気中に放出し、加熱による気体の膨張によるマイクロ流路チップの破損を防止することが期待されるからである。ここで、ゴム弾性を有する好ましい素材は、JIS K6251:2010に従って測定された引張強さが40−100kg/cm2であり、伸びが50−500%のものである。上記のような物性を備えたゴムとしてはシリコーンゴムが挙げられ、特にポリジメチルシロキサンが推奨される。なお、ポリジメチルシロキサンのJIS K6251:2010に従って測定された引張強さは70−100kg/cm2であり、伸びが100−500%であり、特にこの範囲であることが好ましい。さらに、ポリジメチルシロキサンは撥水性を有するために、後述する感受性評価の際に使用する試験液が表面エネルギを最小にするように働くと同時に、試験液導入口および反応部が大気解放されているため、試験液が流路内で逆流しづらいという特徴を有する。 By the way, the first substrate 101 is preferably transparent. Since the first substrate 101 is transparent, it is advantageous in observing changes in the test liquid, confirming the amount of the drug in the drug holding portion, the reaction state (sensitivity evaluation described later) with the drug and the bacteria, and the like, which is preferable. The first substrate 101 preferably has rubber elasticity. Furthermore, it is also preferable that the first substrate 101 has gas permeability. Specifically, it preferably has gas permeability of at least that of natural rubber. This is because when bonding the first substrate and the second substrate, the air unavoidably sandwiched between them is released into the atmosphere to prevent the microchannel chip from being damaged by the expansion of the gas due to heating. Is expected. Here, a preferable material having rubber elasticity is one having a tensile strength of 40-100 kg/cm 2 and an elongation of 50-500% measured according to JIS K6251:2010. Examples of rubber having the above physical properties include silicone rubber, and polydimethylsiloxane is particularly recommended. The tensile strength of polydimethylsiloxane measured according to JIS K6251:2010 is 70-100 kg/cm2, and the elongation is 100-500%, preferably in this range. Further, since polydimethylsiloxane has water repellency, the test solution used in the sensitivity evaluation described later works to minimize the surface energy, and at the same time, the test solution inlet and the reaction part are exposed to the atmosphere. Therefore, the test liquid has a feature that it is difficult to flow backward in the flow path.

また、第二基板102はマイクロ流路チップに慣用されている基板を用いればよい。素材としては、例えば、ガラス、シリコン、有機ポリマー、ガラス・有機ポリマー複合体等が挙げられる。特にガラスは好適である。 As the second substrate 102, a substrate commonly used for microchannel chips may be used. Examples of the material include glass, silicon, organic polymers, glass/organic polymer composites, and the like. Glass is particularly suitable.

図2は、1つのマイクロ流路2の拡大図である。マイクロ流路2は、試験液導入口10および分配部31〜34を含む導入部20、分配部31〜34に連通する分岐流路141A〜144A、分岐流路141A〜144Aと反応部51〜54を連通させるための逆流防止流路141B〜144B、第一流路141〜144、第二流路141D〜144Dが形成されている。ここで、反応部51〜54は、薬剤保持部も兼ねており、試験液導入口10から導入された試験液は、分配部31〜34により等量分割されて、分配部31〜34に連通するマイクロメートル(μm)レベルの微細な分岐流路141A〜144A、逆流防止流路141B〜144B、第一流路141〜144、第二流路141D〜144Dを介して、反応部51〜54に送液されて、薬剤と試験液とを接触させる。
これにより、薬剤と試験液とを反応させて反応液を得る。特に、反応部と連通する第二流路141D〜144Dの流路断面積を小さく、密集させることで第二流路141D〜144Dの領域の一部を後述する試験液の感受性評価等の観察領域60として使用することができる。
FIG. 2 is an enlarged view of one micro flow channel 2. The micro channel 2 includes the test liquid inlet 10 and the introducing section 20 including the distributing sections 31 to 34, the branch channels 141A to 144A communicating with the distributing sections 31 to 34, the branch channels 141A to 144A, and the reaction sections 51 to 54. Backflow prevention flow paths 141B to 144B, first flow paths 141 to 144, and second flow paths 141D to 144D for communicating with each other. Here, the reaction units 51 to 54 also serve as the drug holding unit, and the test liquid introduced from the test liquid inlet 10 is divided into equal amounts by the distribution units 31 to 34 and communicates with the distribution units 31 to 34. Sent to the reaction sections 51 to 54 via the micro-branch (μm) level fine branch flow channels 141A to 144A, the backflow prevention flow channels 141B to 144B, the first flow channels 141 to 144, and the second flow channels 141D to 144D. Liquid is contacted with the drug and the test liquid.
As a result, the reaction liquid is obtained by reacting the drug with the test liquid. In particular, by making the flow passage cross-sectional areas of the second flow passages 141D to 144D communicating with the reaction part small and making them dense, a part of the region of the second flow passages 141D to 144D is observed area such as the sensitivity evaluation of the test liquid described later. It can be used as 60.

ここで、図3に示すように、逆流防止流路141B〜144Bと第一流路141〜144の連通境界部には、試験液の逆流防止機構40が設けられていることが好ましい。逆流防止機構40は、分岐流路側141A〜144Aを上流、反応部側51〜54を下流として、上流端から下流側に向けて流路幅が狭くなったテーパ状の絞り部入口40aと、この絞り部入口に連通するほぼ一定幅の絞り部40bとを有しており、絞り部40bは反応液流動方向に略直交する壁面を有する絞り部出口40cに連なっている。通常、絞り部入口40aの更に上流側の部分の流路幅は、絞り部出口40cの下流側の流路幅とほぼ同一である。 Here, as shown in FIG. 3, it is preferable that a backflow preventing mechanism 40 for the test liquid is provided at the communication boundary portion between the backflow preventing channels 141B to 144B and the first channels 141 to 144. The backflow prevention mechanism 40 has the tapered flow path inlets 40a having narrowed flow paths from the upstream end toward the downstream side, with the branch flow paths 141A to 144A upstream and the reaction parts 51 to 54 downstream. The throttle portion 40b communicates with the inlet of the throttle portion and has a substantially constant width. The throttle portion 40b communicates with the outlet 40c of the throttle portion having a wall surface that is substantially orthogonal to the flow direction of the reaction liquid. Normally, the flow passage width of the portion further upstream of the throttle portion inlet 40a is substantially the same as the flow passage width of the downstream portion of the throttle portion outlet 40c.

試験液導入口10から流入して分岐流路141B〜144Bを通過した試験液は、絞り部入口40a、絞り部40b、絞り部出口40cを経て、反応部51〜54に向けて送液される。その際、試験液と薬剤が反応した反応液は、反応部51〜54から試験液導入口10に向けて逆流、つまり液戻りが、上述した逆流防止機構40により防止される。なお、逆流防止機構40の構造はこれに限定されるものではなく、慣用の逆流防止機構とすることができる。例えば、試験液導入口10から反応部51〜54に向かって逆流防止流路141B〜144B幅が漸減する構造を有するものであってもよい。 The test liquid that has flowed in from the test liquid inlet 10 and passed through the branch flow paths 141B to 144B is sent toward the reaction parts 51 to 54 via the throttle inlet 40a, the throttle 40b, and the throttle outlet 40c. .. At that time, the reaction liquid in which the test liquid and the chemical have reacted is prevented from backflowing from the reaction parts 51 to 54 toward the test liquid introducing port 10, that is, liquid return, by the above-described backflow prevention mechanism 40. The structure of the backflow prevention mechanism 40 is not limited to this, and a conventional backflow prevention mechanism can be used. For example, it may have a structure in which the widths of the backflow prevention channels 141B to 144B gradually decrease from the test liquid inlet 10 toward the reaction sections 51 to 54.

さらに、第一基板101の背面、つまり第二基板102との接合面には、4つの反応部51〜54の各々と連通する4つの連通流路141D〜144D(第二流路)が形成されている。第二流路141D〜144Dは、反応液を観察する観察領域60を有する。複数の第二流路141D〜144Dは、単一の視野内において複数の第二流路の一部を観察できるように流路幅が設計されているので、反応液の同時観察が可能となる。 Further, four communication channels 141D to 144D (second channels) communicating with each of the four reaction parts 51 to 54 are formed on the back surface of the first substrate 101, that is, the bonding surface with the second substrate 102. ing. The second flow channels 141D to 144D have an observation region 60 for observing the reaction liquid. The plurality of second flow channels 141D to 144D have a channel width designed so that a part of the plurality of second flow channels can be observed within a single visual field, and therefore, the reaction liquids can be simultaneously observed. ..

[マイクロ流路チップの製造方法]
以降、マイクロ流路チップを作製する手順を説明する。
図1および図2に示すように、第一基板101の背面(第二基板102と接する面;図示せず)に貫通孔である試験液導口10を含む導入部20、反応部51〜54(薬剤保持部を兼ねる)を形成する貫通孔、導入部20の一部である分配部31〜34、分岐流路141A〜144A、逆流防止流路141B〜144B、第一流路141〜144、第二流路141D〜144D等が形成され、その背面に第二基板102が貼り合わされ、マイクロ流路チップ100が作製される。
[Method for manufacturing micro-channel chip]
Hereinafter, the procedure for producing the microchannel chip will be described.
As shown in FIGS. 1 and 2, the introduction section 20 including the test solution introducing port 10 which is a through hole on the back surface of the first substrate 101 (the surface in contact with the second substrate 102; not shown), and the reaction sections 51 to 54. Through-holes (also serving as drug holding portions), distributors 31 to 34 that are part of the introduction portion 20, branch channels 141A to 144A, backflow prevention channels 141B to 144B, first channels 141 to 144, and The two flow channels 141D to 144D are formed, and the second substrate 102 is attached to the back surface of the two flow channels 141D to 144D to manufacture the micro flow channel chip 100.

[第一基板の準備]
前述したとおり、第一基板101の素材は特に限定されないが、透明素材であることが好ましく、ゴム弾性を有することが好ましく、気体透過性を有するシリコーンゴムが好ましく、ポリジメチルシロキサンが特に好ましい。第一基板101としてゴム弾性を有する素材を使用すると、第一基板101を第二基板102上に載置するだけで密着し、接着剤等を使用することなく、第一基板101と第二基板102の積層を行うことができる。
[Preparation of the first substrate]
As described above, the material of the first substrate 101 is not particularly limited, but is preferably a transparent material, preferably has rubber elasticity, is preferably silicone rubber having gas permeability, and is particularly preferably polydimethylsiloxane. When a material having rubber elasticity is used as the first substrate 101, the first substrate 101 and the second substrate 102 can be brought into close contact with each other only by placing the first substrate 101 on the second substrate 102, without using an adhesive or the like. A stack of 102 can be performed.

第一基板101を作製するには、まず、導入部20、分岐流路141A〜144A、逆流防止流路141B〜144B、第一流路141〜144、第二流路141D〜144D等を構成する凹溝が設けられた鋳型を用意し、基板101の原材料となる液状の未架橋シリコーンゴムをこの鋳型に流し込んで硬化させる。これにより、第一基板101の背面(図示せず)に、図2のような導入部20、分岐流路141A〜144A、逆流防止流路141B〜144B、第一流路141〜144、第二流路141D〜144D等を構成する凹溝が形成された矩形状のシリコーンゴム製の基板101が得られる。 In order to manufacture the first substrate 101, first, the introduction portion 20, the branch flow paths 141A to 144A, the backflow prevention flow paths 141B to 144B, the first flow paths 141 to 144, the second flow paths 141D to 144D, and the like that form the recesses. A mold provided with grooves is prepared, and a liquid uncrosslinked silicone rubber which is a raw material of the substrate 101 is poured into this mold to be cured. As a result, on the back surface (not shown) of the first substrate 101, the introduction section 20, the branch flow paths 141A to 144A, the backflow prevention flow paths 141B to 144B, the first flow paths 141 to 144, and the second flow path as shown in FIG. The rectangular silicon rubber substrate 101 having the concave grooves forming the paths 141D to 144D is obtained.

続いて、このシリコーンゴム製の基板101を鋳型から脱型した後、導入部20の一端側に対応する部分の基板101を加工することにより試験液導入口10が形成される。
同様に、第二流路141D〜144D末端に対応する部分の基板を加工することにより反応部51〜54がそれぞれ形成される。なお、これらは、鋳型による基板101成型時に同時に形成しても良い。
Subsequently, the silicone rubber substrate 101 is removed from the mold, and then the portion of the substrate 101 corresponding to one end of the introducing portion 20 is processed to form the test liquid introducing port 10.
Similarly, the reaction parts 51 to 54 are respectively formed by processing the substrate in the portions corresponding to the ends of the second flow paths 141D to 144D. Note that these may be formed at the same time when the substrate 101 is molded by the mold.

なお、第一基板101は、例えば、長辺が50mm、短辺が40mmであり、厚さは2mmである。第一流路141〜144凹溝の幅は約300μmであり、分岐流路141A〜144A、第二流路141D〜144Dを構成する凹溝の幅は約50μmである。試験液導入口10の内径は約1mmであり、反応部14の外形は約3mmである。なお、図2のような構造はフォトマスクを用いた微細加工により一括形成することができる。 The first substrate 101 has a long side of 50 mm, a short side of 40 mm, and a thickness of 2 mm, for example. The width of the first flow paths 141 to 144 is about 300 μm, and the width of the recess grooves forming the branch flow paths 141A to 144A and the second flow paths 141D to 144D is about 50 μm. The inner diameter of the test liquid inlet 10 is about 1 mm, and the outer diameter of the reaction section 14 is about 3 mm. Note that the structure shown in FIG. 2 can be collectively formed by microfabrication using a photomask.

このように、本例示形態のマルチ分析用マイクロ流路チップは、1つのマイクロ流路2に合計4個の反応部51〜54が設けられた形態であるが、任意の数の反応部をマイクロ流路2に設けることができる。また、例示では、1つの試験液導入口10に対して、4つの反応部51〜54と、これに対応した本数の分岐流路、逆流防止流路、第一流路及び第二流路とを1セットとして設けているが、この試験液導入口、反応部、分岐流路、第一流路及び第二流路の数は、任意の数とすることができる。 As described above, the micro-channel chip for multi-analysis of the present exemplary embodiment has a configuration in which a total of four reaction sections 51 to 54 are provided in one micro-channel 2, but any number of reaction sections can be used as micro-channels. It can be provided in the flow path 2. Further, in the example, with respect to one test liquid inlet 10, four reaction parts 51 to 54 and a corresponding number of branch flow paths, backflow prevention flow paths, first flow paths, and second flow paths are provided. Although provided as one set, the number of test liquid inlets, reaction sections, branch channels, first channels, and second channels can be any number.

[第二基板の準備]
第二基板102はマイクロ流路チップに慣用されている基板を用いればよいが、以下ガラス基板を例として説明する。
[Preparation of the second substrate]
The second substrate 102 may be a substrate commonly used for microchannel chips, but a glass substrate will be described below as an example.

[第一基板と第二基板の積層]
上述したように作製された第一基板101の背面に第二基板102を接合することにより、図1に示されるように、マイクロ流路チップ100が作製される。
[Lamination of first substrate and second substrate]
By bonding the second substrate 102 to the back surface of the first substrate 101 manufactured as described above, the microchannel chip 100 is manufactured as shown in FIG.

なお、第一基板101と第二基板102が透明な材料により形成され、マイクロ流路チップ10の内部に形成された分岐流路141A〜144A、逆流防止流路141B〜144B、第一流路141〜144、第二流路141D〜144D等が外部から目視観察できることが好ましい。 The first substrate 101 and the second substrate 102 are made of a transparent material, and the branch channels 141A to 144A, the backflow prevention channels 141B to 144B, and the first channel 141 to are formed inside the microchannel chip 10. It is preferable that 144, the second flow channels 141D to 144D, and the like can be visually observed from the outside.

[薬液の導入]
試験液の感受性評価試験にマイクロ流路チップが使用される場合には、反応部(薬剤保持部を兼ねる)51〜54には、感受性評価試験により比較評価が行われる反応物である薬剤が供給される。
[Introduction of chemical liquid]
When the microchannel chip is used for the sensitivity evaluation test of the test liquid, the reaction parts (also serving as the drug holding parts) 51 to 54 are supplied with the drug which is a reaction product to be compared and evaluated by the sensitivity evaluation test. To be done.

反応部内51〜54に薬剤を配置するには、予め薬剤を水などの溶媒に溶かして調製した後、マイクロシリンジなどを使用して液状の薬剤を反応部導入口(図示せず)から内部に滴下する。その後、反応部51〜54の内部に貯留された薬剤の溶媒を蒸発させることにより、反応部51〜54の底部15に固形の薬剤が固定される。 In order to place the drug in the reaction parts 51 to 54, the drug is prepared by dissolving it in a solvent such as water in advance, and then the liquid drug is introduced from the reaction part introduction port (not shown) using a microsyringe or the like. Drop it. Then, the solid drug is fixed to the bottom portion 15 of the reaction parts 51 to 54 by evaporating the solvent of the drug stored in the reaction parts 51 to 54.

[マイクロ流路チップの使用方法]
以下、マイクロ流路チップの使用方法を、感受性評価試験を例に説明する。
この説明の中で本件発明のポイントである分配部31〜34の機能を詳細に説明する。
[感受性評価試験手順]
本発明に係るマルチ分析用のマイクロ流路チップにおいては、試験液が複数の薬剤と個別に反応し、それらを比較評価することができる。図2は、導入部20の一部である分配部31〜34を介して、試験液を4つに分岐させ、4つの反応部51〜54に4種類の薬剤を配置可能な流路形状例である。この時、試験液の導入口10を1つにし、その液体の流路を分岐させることで、異なる薬剤に対する試験液の感受性評価を同時に行うことができる。
[How to use the microchannel chip]
Hereinafter, a method of using the microchannel chip will be described by taking a sensitivity evaluation test as an example.
In this description, the function of the distribution units 31 to 34, which is the point of the present invention, will be described in detail.
[Sensitivity evaluation test procedure]
In the micro-channel chip for multi-analysis according to the present invention, the test solution individually reacts with a plurality of drugs, and they can be compared and evaluated. FIG. 2 is a flow path shape example in which the test liquid is branched into four via the distributors 31 to 34, which are a part of the introduction part 20, and four kinds of drugs can be arranged in the four reaction parts 51 to 54. Is. At this time, the number of test solution inlets 10 is set to one, and the flow path of the solution is branched, so that the sensitivity of the test solution to different drugs can be evaluated simultaneously.

以下、感受性評価を行う際の手順を示す。
(Step1)
予め薬剤を反応部(薬剤保持部を兼ねる)51〜54に供給、配置する。
(Step2)
反応部51〜54に薬剤が配置された状態で、試験液導入口10から試験液は、例えば、所定の細菌を含んだ培養液からなり、試験液導入口10に挿入される
マイクロシリンジ等により導入部20内に供給される。
(Step3)
導入された試験液は、分配部31〜34にて均等量分配され、複数の分岐流路141A〜144Aに送液され、逆流防止流路141B〜144B、第一流路141〜144、第二流路141D〜144Dを介して各々の反応部51〜54に蓄積される。試験液が分岐流路141A〜144A、逆流防止流路141B〜144B、第一流路141〜144、第二流路141D〜144D等を流れると、各流路内の空気は、反応部51〜54に設けられた薬剤導入口(図示せず)から外部に排出され、反応部の薬剤導入口は排気口としての機能を有している。
(Step4)
所望量の試験液導入を行った後に、試験液と混合を起こさないバッファ液又は空気を導入口10から後追いで導入する。
(Step5)
これにより、既に試験液導入口10から導入部20内に導入された試験液は、分配部31〜34にて均等量に分岐された後、4本の微細な分岐流路141A〜144Aに導入され、逆流防止流路141B〜144B、第一流路141〜144、第二流路141D〜144D等を流れて、反応部51〜54の各々に蓄積される。
試験液導入口10のサイズに比して分岐流路141A〜144Aは、相当に微細な部分を有しており、マイクロ流路チップ10を傾斜させて試験液を自重で第一流路141〜144内に流動させることは難しいが、バッファ液又は空気によって、試験液を第一流路141〜144内に押し込むことにより、均等量の試験液を確実に同じタイミングで試験液を反応部51〜54に配置された薬剤に接触させることができる。このように、複数の流路を有するマルチ分析用のマイクロ流路チップでは、それぞれの分岐流路141A〜144Aに試験液を均等に分配する事を促進させるためにバッファ液又は空気供給による送液は有用である。
(Step6)
反応部51〜54の底部に固定された薬剤に試験液が接触すると、薬剤が試験液に溶解し、薬剤に含まれる薬効成分と試験液に含まれる細菌との反応が開始される。
(Step7)
反応部51〜54での反応開始と同時に、反応液は流路断面積が小さい(流路幅が狭い)第二流路141D〜144Dにも満たされるため、第二流路の一部に設けた観察領域60にて、反応液の観察、分析を行う。
具体的には、試験液として細胞や細菌を分散させた培養液を用い、これを反応部内で添加剤や薬剤と反応させ、培養のために数時間保持した後、細胞や細菌の形態変化や増殖を、観察領域60を位相差顕微鏡等で観察することで、添加剤や薬剤の効果を迅速、かつ高精度に評価することができる。特に、図2に示すように、複数の第二流路141D〜144Dに観察領域60を設けることで、異なる反応液の状態を同時に観察でき、効率的な分析が可能となる。
The procedure for carrying out the sensitivity evaluation will be described below.
(Step1)
The drug is supplied and arranged in advance in the reaction units (also serving as the drug holding units) 51 to 54.
(Step2)
With the drug placed in the reaction parts 51 to 54, the test solution from the test solution introducing port 10 is composed of, for example, a culture solution containing predetermined bacteria, and the test solution is introduced by a microsyringe or the like into the test solution introducing port 10. It is supplied into the introduction section 20.
(Step3)
The introduced test liquid is evenly distributed by the distribution units 31 to 34, and is sent to the plurality of branch flow paths 141A to 144A, and the backflow prevention flow paths 141B to 144B, the first flow paths 141 to 144, and the second flow path. It accumulates in each reaction part 51-54 via the paths 141D-144D. When the test liquid flows through the branch flow passages 141A to 144A, the backflow prevention flow passages 141B to 144B, the first flow passages 141 to 144, the second flow passages 141D to 144D, etc., the air in the respective flow passages becomes the reaction parts 51 to 54. It is discharged to the outside from a drug introduction port (not shown) provided in the, and the drug introduction port of the reaction part has a function as an exhaust port.
(Step4)
After introducing a desired amount of the test liquid, a buffer liquid or air that does not cause mixing with the test liquid is introduced later from the introduction port 10.
(Step 5)
As a result, the test liquid that has already been introduced into the introduction unit 20 from the test liquid introduction port 10 is branched into equal amounts in the distribution units 31 to 34 and then introduced into the four fine branch flow channels 141A to 144A. Then, it flows through the backflow prevention channels 141B to 144B, the first channels 141 to 144, the second channels 141D to 144D, etc., and is accumulated in each of the reaction sections 51 to 54.
The branch channels 141A to 144A have considerably finer parts than the size of the test solution inlet 10, and the microchannel chip 10 is tilted to allow the test solution to fall under the weight of the first channels 141 to 144. Although it is difficult to flow the test solution into the first flow paths 141 to 144 by the buffer solution or the air, it is possible to ensure that an equal amount of the test solution is supplied to the reaction sections 51 to 54 at the same timing. The placed drug can be contacted. As described above, in the micro-channel chip for multi-analysis having a plurality of channels, a buffer solution or an air supply is used to promote the even distribution of the test solution to the respective branch channels 141A to 144A. Is useful.
(Step6)
When the test liquid comes into contact with the drug fixed to the bottoms of the reaction parts 51 to 54, the drug is dissolved in the test liquid, and the reaction between the medicinal component contained in the drug and the bacteria contained in the test liquid is started.
(Step7)
Simultaneously with the start of the reaction in the reaction parts 51 to 54, the reaction liquid is also filled in the second flow paths 141D to 144D having a small flow path cross-sectional area (flow path width is narrow), and thus is provided in a part of the second flow path. In the observation area 60, the reaction solution is observed and analyzed.
Specifically, a culture solution in which cells and bacteria are dispersed is used as a test solution, and this is reacted with an additive or a drug in the reaction section, and after being held for several hours for culturing, morphological changes of the cells and bacteria and By observing the proliferation in the observation region 60 with a phase-contrast microscope or the like, the effect of the additive or the drug can be evaluated quickly and with high accuracy. In particular, as shown in FIG. 2, by providing the observation regions 60 in the plurality of second flow channels 141D to 144D, the states of different reaction liquids can be observed at the same time, and efficient analysis becomes possible.

上述したように、感受性評価を正確に行うためには、試験液導入口10から、挿入された試験液を異なる薬剤を保持する複数の反応部に試験液を均等量与えると同時に、複数の反応部に同じタイミングで到達することが、特に異なる薬剤に対する試験液の感受性評価においては重要である。 As described above, in order to accurately perform the sensitivity evaluation, the test liquid is supplied from the test liquid inlet 10 to a plurality of reaction parts holding different chemicals at the same time, and at the same time, a plurality of reactions are performed. It is important to arrive at the part at the same timing, especially in evaluating the sensitivity of the test solution to different drugs.

[分配部機能]
感受性評価において重要な複数流路に均等量の試験液を同じタイミングで分配する分配部の機能について、図4〜図6を用いて詳細に説明する。なお、図中グレー部分が試験液を示す。
[Distribution function]
The function of the distribution unit that distributes an equal amount of the test liquid to the plurality of flow channels, which is important in the sensitivity evaluation, at the same timing will be described in detail with reference to FIGS. 4 to 6. The gray portion in the figure indicates the test liquid.

図4(A)に示すように、一つの菌種が培養された試験液を、たとえばマイクロシリンジ等を用いて、試験液導入口10に導入することで、試験液の界面(試験液前端である試験液と空気の境界)は、導入部20の一側に円形状に広がる。その後、図4(B)〜図4(C)に示すように、試験液は分配部31〜34近傍まで試験液界面を円形状に保った状態で到達する。 As shown in FIG. 4(A), the test liquid in which one bacterial species is cultured is introduced into the test liquid inlet 10 using, for example, a microsyringe, so that the interface of the test liquid (at the front end of the test liquid) A boundary between a certain test liquid and air spreads in a circular shape on one side of the introduction part 20. Then, as shown in FIGS. 4(B) to 4(C), the test liquid reaches the vicinity of the distributors 31 to 34 with the test liquid interface kept circular.

その後、図4(C)に示すように、試験液円形状界面は、四つの分配部31〜34の入口を構成する複数の分岐点35、36に到達する。これら分岐点は、図5に示すように、4つの分配部31〜34に試験液を均等量分配できるように、導入部20内に円弧の中心(P2)を有する仮想半円Qを等間隔に分割した分配部入口31A〜34Aを形成している。このように、試験液円形状界面と略相似形の仮想半円Qの円弧上に分配部入口31A〜34Aを設けることで、試験液は、分配部31〜34に均等に分配される(図4(D))。同時に、4つの分配部31〜34に導入された試験液は、分配部31〜34から各々の流路を経由して、同じタイミングで反応部51〜54に到達することができる。(図4(E)〜図4(F)) Then, as shown in FIG. 4(C), the test liquid circular interface reaches the plurality of branch points 35 and 36 forming the inlets of the four distributors 31 to 34. These branch points are, as shown in FIG. 5, equidistantly formed by a virtual semicircle Q having an arc center (P2) in the introduction part 20 so that the test liquid can be equally distributed to the four distribution parts 31 to 34. The distribution section inlets 31A to 34A divided into two are formed. In this way, the test liquid is evenly distributed to the distribution parts 31 to 34 by providing the distribution part inlets 31A to 34A on the arc of the virtual semicircle Q that is substantially similar to the test liquid circular interface (FIG. 4(D)). At the same time, the test liquid introduced into the four distribution parts 31 to 34 can reach the reaction parts 51 to 54 at the same timing from the distribution parts 31 to 34 via the respective flow paths. (FIG. 4(E) to FIG. 4(F))

次に、試験液導入口10に試験液を導入した後に、さらに追加で試験液導入口10に空気を導入した場合の、分配部機能について、図6を用いて説明する。なお、図中グレー部分は、前述したように試験液を示す。 Next, the function of the distributor when the test liquid is introduced into the test liquid introducing port 10 and then air is additionally introduced into the test liquid introducing port 10 will be described with reference to FIG. The gray portion in the figure indicates the test solution as described above.

前述したようにマイクロシリンジ等を用いて、試験液を試験液導入口10に導入した後、同じマイクロシリンジに入っている空気を連続して試験液導入口10に導入することにより、すでに導入された試験液を後方から加圧して試験液を迅速に流路に送液することができる。同時に、試験液を図2に示すように第一流路141〜144の任意の位置(図2では、マーク160の下流で、反応部51〜54側の任意の位置)で停止させ、第一流路141〜144に送液された試験液の逆流を抑えることができる。 As described above, after the test solution is introduced into the test solution introducing port 10 by using the microsyringe or the like, the air contained in the same microsyringe is continuously introduced into the test solution introducing port 10 so that the test solution is already introduced. It is possible to pressurize the test liquid from the rear and quickly deliver the test liquid to the flow channel. At the same time, as shown in FIG. 2, the test solution is stopped at an arbitrary position of the first flow paths 141 to 144 (in FIG. 2, an arbitrary position on the reaction section 51 to 54 side, downstream of the mark 160), and the first flow path is stopped. It is possible to suppress the backflow of the test liquid sent to 141 to 144.

マイクロシリンジ等を用いて、試験液を流路全体に満たした(図6(A))後に、図6(B)に示すように、さらに試験液に連続してマイクロシリンジ等に存在する空気(S)を、試験液導入口10に導入すると、空気も前述した試験液の界面(試験液前端である試験液と空気の境界)の挙動と同様に、導入部20の一側に円形に広がり、その後、図6(C)に示すように、空気は分配部31〜34近傍まで空気界面が円形状に保たれたままで到達する。 After filling the entire flow path with the test liquid using a microsyringe or the like (FIG. 6(A)), as shown in FIG. 6(B), the air existing in the microsyringe or the like in succession to the test liquid ( When S) is introduced into the test solution inlet 10, the air also spreads in a circle on one side of the introduction section 20 in the same manner as the behavior of the interface of the test solution (the boundary between the test solution and the test solution, which is the front end of the test solution). After that, as shown in FIG. 6C, the air reaches the vicinity of the distributors 31 to 34 with the air interface kept circular.

その後、図6(D)に示すように、空気の円形状界面は、四つの分配部の入口を構成する複数の分岐点35、36に到達する。さらに、前述した試験液同様に、4つの分配部31〜34に空気は均等量分配される。分配部31〜34に導入された空気は、同じタイミングで分配部31〜34から流路に送られる。(図6(E)) Then, as shown in FIG. 6(D), the circular interface of air reaches the plurality of branch points 35 and 36 forming the inlets of the four distributors. Further, like the test liquid described above, the air is evenly distributed to the four distributors 31 to 34. The air introduced into the distribution units 31 to 34 is sent from the distribution units 31 to 34 to the flow path at the same timing. (Fig. 6(E))

上述したように、後から追加された空気は、分岐点35,36および分配部入口31A〜34Aの構成により、一つの試験液導入口10から注入された試験液を後方から押すことで、四つの反応部51〜54に均等に分配し、且つ同じタイミングで到達させることが可能となる。これにより、各反応部51〜54での感受性試験条件が揃い、各反応部51〜54に保持された複数の薬剤の効果を正確に評価することができる。さらに、試験液が流路内で逆流することなく、図2に示すように試験液を流路内の所定の位置に停止されることができる。 As described above, the air added later is pushed by the test liquid injected from one test liquid introduction port 10 from the rear by the constitution of the branch points 35, 36 and the distribution part inlets 31A to 34A, whereby It becomes possible to evenly distribute to the one reaction section 51 to 54 and to arrive at the same timing. Thereby, the sensitivity test conditions in each reaction part 51-54 are complete, and the effect of the several chemical|medical agent hold|maintained at each reaction part 51-54 can be evaluated correctly. Furthermore, the test liquid can be stopped at a predetermined position in the flow channel as shown in FIG. 2 without the test liquid flowing backward in the flow channel.

このように、2次元平面上で見たとき、導入部20内に液体分配部31〜34を設けることにより、複数の流路の合計幅を小さくすることができ、マイクロ流路の小型化、ひいてはマイクロ流路チップの小型化を図ることができる。
[分岐点形状の変形例]
Thus, when viewed on a two-dimensional plane, by providing the liquid distributors 31 to 34 in the introduction part 20, it is possible to reduce the total width of the plurality of flow paths, and to downsize the micro flow path. As a result, the microchannel chip can be downsized.
[Modification of branch point shape]

図7に示すように、分岐点36の形状を、試験液導入口10方向に所定曲率を有する凸状とすることで、試験液をより均等な量に分配することができ、反応部51〜54のそれぞれに保持される薬剤の効果を正確に評価することができる。
[分配部の変形例]
As shown in FIG. 7, by making the shape of the branch point 36 into a convex shape having a predetermined curvature in the direction of the test liquid inlet 10, the test liquid can be distributed in a more uniform amount, and the reaction parts 51 to 51. The effect of the drug retained on each of the 54 can be accurately assessed.
[Modification of distribution unit]

分配部31〜34の形状として、図8(A)〜(C)に示すような各種の形状を採ることができる。図8(A)は、分配部31〜34が半円形状であり、図8(B)は、分配部31〜34が四角形であり、図8(C)は五角形の分配部31〜34を有する。いずれの形状も、試験液を均等量分配できるとともに、反応部51〜54に試験液を同じタイミングで送液することができる。 Various shapes as shown in FIGS. 8A to 8C can be adopted as the shapes of the distributors 31 to 34. In FIG. 8A, the distributors 31 to 34 are semicircular, in FIG. 8B, the distributors 31 to 34 are quadrangular, and in FIG. 8C, the pentagonal distributors 31 to 34 are shown. Have. In any of the shapes, the test liquid can be evenly distributed, and the test liquid can be sent to the reaction parts 51 to 54 at the same timing.

なお、本発明のマイクロ流路2は、1つの試験液導入口に対して、4つの反応部を有するが、反応部の数は4つに限定されるものではなく、反応部に保持される異なる薬剤の種類に応じて、任意の数とできることは勿論である。さらに、基板上に形成されるマイクロ流路2の本数も、図1においては、5つの場合を説明したが、基板上に任意の数のマイクロ流路2を形成しても良いことは勿論である。加えて、第二流路141D〜144Dにある観察領域60も、第二流路の長さの範囲にあればよいことは勿論である。 The microchannel 2 of the present invention has four reaction parts for one test solution inlet, but the number of reaction parts is not limited to four, and the reaction parts are retained. It goes without saying that the number can be arbitrary according to the types of different drugs. Further, although the case where the number of the micro channels 2 formed on the substrate is five is described in FIG. 1, it is needless to say that any number of the micro channels 2 may be formed on the substrate. is there. In addition, it goes without saying that the observation region 60 in the second flow channels 141D to 144D may also be in the range of the length of the second flow channel.

上述したように、マイクロ流路チップを、薬剤に対する細菌の感受性評価に適用する場合について説明したが、このマイクロ流路チップは、感受性評価以外にも、試薬の分析、反応度評価等、種々の対象物の分析、評価に適用することができる。 As described above, the case where the micro-channel chip is applied to the susceptibility evaluation of the bacteria to the drug has been described, but the micro-channel chip can be used for various analysis such as reagent analysis, reactivity evaluation, etc. in addition to the susceptibility evaluation. It can be applied to analysis and evaluation of objects.

本発明のマイクロ流路チップによれば、一つの注入口から注入された液体を複数の反応部に均等量分配し、且つ同じタイミングで到達させることが可能であり、さらに、マイクロ流路チップ自体を小型化でき、かつ各反応部に分配された液体を同時に観察することができるマイクロ流路チップを提供することができる。 According to the micro-channel chip of the present invention, it is possible to evenly distribute the liquid injected from one injection port to a plurality of reaction parts, and to make them arrive at the same timing. Further, the micro-channel chip itself It is possible to provide a microchannel chip that can be miniaturized and can observe the liquid distributed to each reaction part at the same time.

1、2 マイクロ流路
10 試験液導入口
20 導入部
31〜34 分配部
31A〜34A 分配部入口
31B〜34B 分配部出口
35、36 分岐点
40 逆流防止機構
51〜54 反応部
60 観察領域
100 マイクロ流路チップ
101 第1基板
102 第2基板
141〜144 第一流路
141A〜144A 分岐流路
141B〜144B 逆流防止流路
141D〜144D 第二流路
160 マーク
O 中心軸
P1、P2 中心点
Q 仮想半円
S 空気
1, 2 Micro flow path 10 Test liquid inlet 20 Introductory part 31-34 Distributor 31A-34A Distributor inlet 31B-34B Distributor outlet 35, 36 Branch point 40 Backflow prevention mechanism 51-54 Reaction part 60 Observation area 100 micro Flow channel chip 101 First substrate 102 Second substrate 141-144 First flow channel 141A-144A Branch flow channel 141B-144B Backflow prevention flow channel 141D-144D Second flow channel 160 Mark O Center axis P1, P2 Center point Q Virtual half Yen S air

Claims (11)

1つの液体導入口を有する導入部と、
前記液体導入口に対し、液体と反応する薬剤が配置される複数の反応部と、
前記導入部に連通し、前記液体導入口から導入された液体を分配する複数の分配部と、
前記分配部に連通する分岐流路と、
前記分岐流路と前記反応部とを連通させる流路とを備える、
ことを特徴とするマイクロ流路チップ。
An inlet having one liquid inlet,
A plurality of reaction parts in which a drug that reacts with a liquid is arranged with respect to the liquid introduction port;
A plurality of distribution units that communicate with the introduction unit and distribute the liquid introduced from the liquid introduction port;
A branch channel communicating with the distributor,
A flow path that connects the branch flow path and the reaction section,
A micro-channel chip characterized by the above.
前記流路は前記分岐流路よりも流路断面積が大きい第一流路を少なくとも有する
ことを特徴とする請求項1に記載のマイクロ流路チップ。
The microchannel chip according to claim 1, wherein the channel has at least a first channel having a channel cross-sectional area larger than that of the branch channel.
前記流路は、前記第一流路よりも流路断面積が小さく、かつ液体と薬剤が反応した反応液を観察する領域を有する第二流路を有する
ことを特徴とする請求項2に記載のマイクロ流路チップ。
The flow channel has a second flow channel having a flow channel cross-sectional area smaller than that of the first flow channel and having a region for observing a reaction liquid in which a liquid and a drug have reacted. Micro channel chip.
前記複数分配部の入口は、前記導入部を2次元平面で見たとき、前記導入部内に円弧の中心を有する仮想半円の一端から他端にわたる円弧上に等間隔で存在し、且つ少なくとも当該仮想半円の一端および他端を除き、当該複数分配部の入口の一端は、他方の分配部入口の他端と重なる
ことを特徴とする請求項1に記載のマイクロ流路チップ。
The entrances of the plurality of distribution units are present at equal intervals on an arc extending from one end to the other end of a virtual semicircle having the center of the arc in the introduction unit when the introduction unit is viewed in a two-dimensional plane, and at least The microchannel chip according to claim 1, wherein one end of the inlet of the plurality of distribution parts is overlapped with the other end of the other distribution part except for one end and the other end of the virtual semicircle.
前記複数分配部の入口は、前記導入部を2次元平面で見たとき、前記導入部内に円弧の中心を有する仮想半円の一端から他端にわたる円弧上に等間隔で存在し、且つ当該分配部の出口の一端及び他端が前記分岐流路の入口の一端および他端に連結されている
ことを特徴とする請求項1または請求項4に記載のマイクロ流路チップ。
The inlets of the plurality of distributing portions are present at equal intervals on an arc extending from one end to the other end of a virtual semicircle having the center of the arc in the introducing portion when the introducing portion is viewed in a two-dimensional plane, and The microchannel chip according to claim 1 or 4, wherein one end and the other end of the outlet of the section are connected to one end and the other end of the inlet of the branch channel.
前記複数分配部の入口は、前記導入部を2次元平面で見たとき、前記導入部内に円弧の中心を有する仮想半円の一端から他端にわたる円弧上に等間隔で存在し、且つ当該等間隔で存在する前記分配部入口の一端と他端を結ぶ線分の長さは、前記分岐流路の入口に連結される分配部の一端及び他端を結ぶ線分の長さより長い
ことを特徴とする請求項1、請求項4または請求項5のいずれか一項に記載のマイクロ流路チップ。
The inlets of the plurality of distribution portions are present at equal intervals on an arc extending from one end to the other end of a virtual semicircle having the center of the arc in the introduction portion when the introduction portion is viewed in a two-dimensional plane. A length of a line segment connecting one end and the other end of the distribution unit inlet existing at intervals is longer than a length of a line segment connecting one end and the other end of the distribution unit connected to the branch flow passage inlet. The microchannel chip according to any one of claims 1, 4 and 5.
前記複数分配部の入口は、前記導入部を2次元平面で見たとき、前記導入部内に円弧の中心を有する仮想半円の一端から他端にわたる円弧上に等間隔で存在し、且つ少なくとも当該仮想半円の一端および他端を除き、当該分配部の入口の一端は、他方の分配部入口の他端と重なり、さらに該重なりの部分は、前記導入部方向に所定曲率を有する凸状である
ことを特徴とする請求項1に記載のマイクロ流路チップ。
The entrances of the plurality of distribution units are present at equal intervals on an arc extending from one end to the other end of a virtual semicircle having the center of the arc in the introduction unit when the introduction unit is viewed in a two-dimensional plane, and at least Except for one end and the other end of the virtual semicircle, one end of the inlet of the distributor overlaps the other end of the other inlet of the distributor, and the overlapped portion is a convex shape having a predetermined curvature in the direction of the inlet. The microchannel chip according to claim 1, wherein the microchannel chip is present.
前記分岐流路の平均断面積は、前記分配部の平均断面積よりも小さい
ことを特徴とする請求項1または請求項2に記載のマイクロ流路チップ。
The microchannel chip according to claim 1 or 2, wherein an average sectional area of the branch channel is smaller than an average sectional area of the distribution unit.
前記複数分配部の入口は、前記導入部を2次元平面で見たとき、前記導入部内に円弧の中心を有する仮想半円の一端から他端にわたる円弧上に等間隔で存在し、且つ各々の分配部入口の一端および他端は、当該分配部の出口の一端及び他端に曲線で連結されている
ことを特徴とする請求項1、請求項4、請求項5、請求項6または請求項7に記載のマイクロ流路チップ。
The inlets of the plurality of distributing portions are present at equal intervals on an arc extending from one end to the other end of a virtual semicircle having the center of the arc in the introducing portion when the introducing portion is viewed in a two-dimensional plane, and One end and the other end of the distributor inlet are connected to one end and the other end of the outlet of the distributor by a curved line, claim 4, claim 5, claim 6, or claim 6. 7. The microchannel chip according to 7.
前記複数分配部の入口は、前記導入部を2次元平面で見たとき、前記導入部内に円弧の中心を有する仮想半円の一端から他端にわたる円弧上に等間隔で存在し、且つ各々の分配部入口の一端および他端は、当該分配部の出口の一端及び他端に直線で連結されている
ことを特徴とする請求項1、請求項4、請求項5、請求項6または請求項7に記載のマイクロ流路チップ。
The inlets of the plurality of distributing portions are present at equal intervals on an arc extending from one end to the other end of a virtual semicircle having the center of the arc in the introducing portion when the introducing portion is viewed in a two-dimensional plane, and The one end and the other end of the inlet of the distributor are linearly connected to the one end and the other end of the outlet of the distributor, claim 1, claim 4, claim 5, claim 6 or claim 6. 7. The microchannel chip according to 7.
前記複数分配部の入口は、前記導入部を2次元平面で見たとき、前記導入部内に円弧の中心を有する仮想半円の一端から他端にわたる円弧上に等間隔で存在し、且つ各々の分配部入口の一端および他端は、当該分配部の出口の一端及び他端に直線で連結され、
さらに当該直線の一部に少なくとも1つの屈曲点を有する
ことを特徴とする請求項1、請求項4、請求項5、請求項6または請求項7に記載のマイクロ流路チップ。
The inlets of the plurality of distributing portions are present at equal intervals on an arc extending from one end to the other end of a virtual semicircle having the center of the arc in the introducing portion when the introducing portion is viewed in a two-dimensional plane, and One end and the other end of the distributor inlet are linearly connected to one end and the other end of the distributor outlet,
Further, at least one bending point is provided in a part of the straight line, The microchannel chip according to claim 1, claim 4, claim 5, claim 6, or claim 7.
JP2019001685A 2019-01-09 2019-01-09 microfluidic chip Active JP7219093B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019001685A JP7219093B2 (en) 2019-01-09 2019-01-09 microfluidic chip
PCT/JP2019/042989 WO2020144920A1 (en) 2019-01-09 2019-11-01 Microchannel chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019001685A JP7219093B2 (en) 2019-01-09 2019-01-09 microfluidic chip

Publications (2)

Publication Number Publication Date
JP2020112383A true JP2020112383A (en) 2020-07-27
JP7219093B2 JP7219093B2 (en) 2023-02-07

Family

ID=71521238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019001685A Active JP7219093B2 (en) 2019-01-09 2019-01-09 microfluidic chip

Country Status (2)

Country Link
JP (1) JP7219093B2 (en)
WO (1) WO2020144920A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246294A1 (en) * 2019-06-03 2020-12-10 株式会社島津製作所 Micro flow path device, testing method using micro flow path device, and testing apparatus using micro flow path device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051229A1 (en) * 2002-12-02 2004-06-17 Nec Corporation Liquid switch, and microchip and mass-analyzing system using the same
JP2004325462A (en) * 2004-08-09 2004-11-18 Hitachi Ltd Chemical analyzer and chemical analysis system
JP2014032171A (en) * 2012-08-01 2014-02-20 Feng-Chia Univ Device for biochemistry detection using flow-dividing constitution, and operation method for the same
US20140311910A1 (en) * 2013-03-29 2014-10-23 Sony Corporation Microchip and method of manufacturing microchip
JP2017215288A (en) * 2016-06-02 2017-12-07 株式会社フコク Micro flow channel chip

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051229A1 (en) * 2002-12-02 2004-06-17 Nec Corporation Liquid switch, and microchip and mass-analyzing system using the same
JP2004325462A (en) * 2004-08-09 2004-11-18 Hitachi Ltd Chemical analyzer and chemical analysis system
JP2014032171A (en) * 2012-08-01 2014-02-20 Feng-Chia Univ Device for biochemistry detection using flow-dividing constitution, and operation method for the same
US20140311910A1 (en) * 2013-03-29 2014-10-23 Sony Corporation Microchip and method of manufacturing microchip
JP2014199206A (en) * 2013-03-29 2014-10-23 ソニー株式会社 Microchip and method of manufacturing microchip
JP2017215288A (en) * 2016-06-02 2017-12-07 株式会社フコク Micro flow channel chip

Also Published As

Publication number Publication date
WO2020144920A1 (en) 2020-07-16
JP7219093B2 (en) 2023-02-07

Similar Documents

Publication Publication Date Title
Khademhosseini et al. Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays
US8871156B2 (en) Fluid interface cartridge for a microfluidic chip
KR101807256B1 (en) Particle separator and method for separating particle
KR101125060B1 (en) Microfluidic device of capturing particles and method of capturing particles using it
US20070054293A1 (en) Microfluidic chaotic mixing systems and methods
US20070231458A1 (en) Spotting Device and Method for High Concentration Spot Deposition on Microarrays and Other Micorscale Devices
US9409173B2 (en) Method and device for generating a tunable array of fluid gradients
JP6003772B2 (en) Microchip and manufacturing method of microchip
JP5013424B2 (en) Microchip, master chip
WO2020144920A1 (en) Microchannel chip
JP6839173B2 (en) Fluid Mechanics Shutling Chip Equipment and Methods for Capturing Separated Single Cells
JP2011257238A (en) Trace droplet weighing structure, microfluidic device, and trace droplet weighing method
WO2004072642A1 (en) A device for application of micro-sample and reaction of a biochip and its method
US20220241787A1 (en) Microfluidic chip, production process and uses
WO2007098933A1 (en) High-throughput cell-based screening system
KR100442680B1 (en) Apparatus for mixing fluids by micro channel
JP2007113922A (en) Microreactor
KR101853968B1 (en) A microfluidic chip for enhanced gradient generation
JP7173759B2 (en) microfluidic chip
WO2020095849A1 (en) Cell culturing chip and production method therefor
JP7202820B2 (en) microfluidic chip
Guckenberger et al. Fluorescence-based assessment of plasma-induced hydrophilicity in microfluidic devices via Nile Red adsorption and depletion
JP6626677B2 (en) Micro channel device
WO2020166228A1 (en) Microchannel chip
Abe et al. Nonlinear concentration gradients regulated by the width of channels for observation of half maximal inhibitory concentration (IC 50) of transporter proteins

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230126

R150 Certificate of patent or registration of utility model

Ref document number: 7219093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150