JP2020109328A - Air cleaner - Google Patents

Air cleaner Download PDF

Info

Publication number
JP2020109328A
JP2020109328A JP2018248701A JP2018248701A JP2020109328A JP 2020109328 A JP2020109328 A JP 2020109328A JP 2018248701 A JP2018248701 A JP 2018248701A JP 2018248701 A JP2018248701 A JP 2018248701A JP 2020109328 A JP2020109328 A JP 2020109328A
Authority
JP
Japan
Prior art keywords
light
guide component
light guide
ultraviolet
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018248701A
Other languages
Japanese (ja)
Other versions
JP7176948B2 (en
Inventor
和正 大角
Kazumasa Osumi
和正 大角
祐幸 森戸
Yuko Morito
祐幸 森戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
U Vix Corp
Original Assignee
U Vix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by U Vix Corp filed Critical U Vix Corp
Priority to JP2018248701A priority Critical patent/JP7176948B2/en
Publication of JP2020109328A publication Critical patent/JP2020109328A/en
Application granted granted Critical
Publication of JP7176948B2 publication Critical patent/JP7176948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

To provide an air cleaner diffusing light in a wide range by using a small number of LEDs and efficiently inducing a catalytic reaction by using a photocatalytic sheet in the air cleaner using a photocatalyst.SOLUTION: An air cleaner 1 includes: a bar-shaped or cylindrical light guiding component 10 formed of an ultraviolet ray permeable material; a light-emitting diode 20 introducing ultraviolet light from an end surface of the light guiding component 10; and a photocatalyst titanium mesh filter 30 surrounding the light guiding component 10. Since a scattering layer 11 scattering ultraviolet light is provided on the side surface of the light guiding component 10, the ultraviolet light introduced to the light guiding component 10 is scattered by the scattering layer 11 and is emitted to a photocatalyst titanium mesh filter 30, and then, a photocatalytic reaction is induced to decompose organic matters, so as to clean air.SELECTED DRAWING: Figure 1A

Description

本発明は空気清浄器に関する。詳しくは、紫外線触媒反応を利用した空気清浄器に関する。 The present invention relates to an air purifier. Specifically, it relates to an air purifier using an ultraviolet catalytic reaction.

従来の紫外線触媒反応を利用した空気清浄器は、紫外線発光体として、水銀ランプが使用されてきた。しかしながら、水銀については、健康、および環境被害を防ぐため、「水銀に関する水俣条約」が締結(2013年)され、大気中への放出等が規制された。水銀ランプの使用もいずれ禁止される流れにある。他方、LED技術が発展し、400mWの強力な紫外線を発光するLEDが出現した。また、発明者は光触媒となるアナターゼ型酸化チタンを強固に担持させ、光触媒の表面積を大きくしたメッシュ型の光触媒シートを開発した(特許文献1、2参照)。このメッシュ型の光触媒シートを空気の流路に設置し、LEDからの紫外光を照射することにより、光触媒反応を誘起させて空気の清浄化を促進できる。 A mercury lamp has been used as an ultraviolet light emitter in the conventional air purifier utilizing an ultraviolet catalytic reaction. However, regarding mercury, in order to prevent health and environmental damage, the Minamata Convention on Mercury was signed (2013), and its release into the atmosphere was regulated. The use of mercury lamps will eventually be banned. On the other hand, the LED technology has developed, and an LED emitting 400 mW of strong ultraviolet rays has appeared. The inventor has also developed a mesh-type photocatalyst sheet in which anatase-type titanium oxide serving as a photocatalyst is firmly supported and the surface area of the photocatalyst is increased (see Patent Documents 1 and 2). By installing this mesh-type photocatalyst sheet in the air flow path and irradiating it with ultraviolet light from the LED, it is possible to induce a photocatalytic reaction and promote cleaning of the air.

また、図12に示すように、発明者達は、棒状の金属製基板10Gに多数のLED20を配置した光源を検討した。しかしながら、LED数が増すにつれて製造コストがかかるという不具合が生じた。 Further, as shown in FIG. 12, the inventors examined a light source in which a large number of LEDs 20 are arranged on a rod-shaped metal substrate 10G. However, as the number of LEDs increases, the manufacturing cost increases.

特開2014−094340号公報JP, 2014-094340, A 国際公開WO2018/147444号公報International publication WO2018/147444

そこで、如何にして少数のLEDからの紫外光を光触媒シートに効率的に導くかが課題であった。 Therefore, how to efficiently guide the ultraviolet light from a small number of LEDs to the photocatalyst sheet has been a problem.

本発明は、光触媒を用いる空気清浄器において、少数のLEDで広範囲に光を発散させ、効率的に光触媒シートで触媒反応を誘起させる、空気清浄器を提供することを目的とする。 It is an object of the present invention to provide an air purifier that uses a photocatalyst to emit light over a wide range with a small number of LEDs and efficiently induce a catalytic reaction with a photocatalyst sheet.

本発明の第1の態様における空気清浄器1は、例えば図1Aに示すように、
紫外線透過材料で形成された棒状又は筒状の導光部品10と、
導光部品10の端面から紫外光を導入する発光ダイオード20と、
導光部品10を取り囲む光触媒チタンメッシュフィルタ30とを備え;
導光部品10の表面に紫外光を散乱させる散乱層11(図2参照)を設けることにより、
導光部品10に導入された紫外光が散乱層11で散乱されて光触媒チタンメッシュフィルタ30に照射され、光触媒反応が誘起されて有機物を分解することにより空気を清浄化することを特徴とする。
The air purifier 1 according to the first aspect of the present invention is, for example, as shown in FIG. 1A,
A rod-shaped or tubular light-guide component 10 formed of an ultraviolet-transparent material;
A light emitting diode 20 for introducing ultraviolet light from the end face of the light guide component 10,
A photocatalytic titanium mesh filter 30 surrounding the light guide component 10.
By providing a scattering layer 11 (see FIG. 2) for scattering ultraviolet light on the surface of the light guide component 10,
The ultraviolet light introduced into the light guide component 10 is scattered by the scattering layer 11 and is applied to the photocatalyst titanium mesh filter 30, and a photocatalytic reaction is induced to decompose organic substances to clean the air.

ここにおいて、棒状は丸棒状、筒状は円筒状であることが導光の損失が小さいので望ましいが、導光部品10から紫外光が散乱されれば、必ずしも丸棒状、円筒状でなくても良い。導光部品10の端面も鏡面研磨されているのが紫外光導入の損失が小さいので望ましいが、紫外光が導光部品10に導入されれば、必ずしも研磨されていなくても良い。また、散乱層11は散乱光量が多いことが好ましいが、所定量の散乱、例えば光触媒チタンメッシュフィルタ30上で12mW/cm以上あれば散乱層11とみなして良い。
このように構成すると、光触媒を用いる空気清浄器において、数少ないLEDで広範囲に光を発散させ、効率的に光触媒シートで触媒反応を誘起させる空気清浄器を提供することができる。
従来の棒状又は筒状の導光部品の表面に光触媒を配置する場合に比して、導光部品から離れた光触媒チタンメッシュフィルタに光触媒を配置する場合には、光触媒を配置できる表面積をかなり広くとれるので、触媒反応を促進できる。また、光触媒に触れる空気量も増えるので空気の清浄化を促進できる。
Here, it is desirable that the rod-like shape is a round rod-like shape and the cylindrical shape is a cylindrical shape because the loss of the light guide is small, but if the ultraviolet light is scattered from the light-guide component 10, it is not necessarily a round-bar-like shape or a cylindrical shape. good. It is desirable that the end surface of the light guide component 10 is also mirror-polished because the loss of the introduction of ultraviolet light is small, but if the ultraviolet light is introduced into the light guide component 10, it does not necessarily have to be polished. The scattering layer 11 preferably has a large amount of scattered light, but a predetermined amount of scattering, for example, 12 mW/cm 2 or more on the photocatalytic titanium mesh filter 30 may be regarded as the scattering layer 11.
With this structure, it is possible to provide an air purifier that uses a photocatalyst to emit light in a wide range with a few LEDs and efficiently induce a catalytic reaction with the photocatalyst sheet.
Compared to the case where the photocatalyst is arranged on the surface of the conventional rod-shaped or cylindrical light guide component, when the photocatalyst is arranged on the photocatalyst titanium mesh filter far from the light guide component, the surface area where the photocatalyst can be arranged is considerably wide. Therefore, the catalytic reaction can be promoted. Further, since the amount of air that comes into contact with the photocatalyst increases, the cleaning of air can be promoted.

本発明の第2の態様における空気清浄器1は、第1の態様において、例えば図3に示すように、導光部品10Bの側面の散乱層11の密度は中央部で密、端部近傍で粗であることを特徴とする。
このように構成すると、導光部品10Bの長手方向に、より均一に紫外光を散乱できる。
In the air purifier 1 according to the second aspect of the present invention, in the first aspect, as shown in FIG. 3, for example, the density of the scattering layer 11 on the side surface of the light guide component 10B is high in the central portion and close to the end portions. It is characterized by being coarse.
With this configuration, the ultraviolet light can be scattered more uniformly in the longitudinal direction of the light guide component 10B.

本発明の第3の態様における空気清浄器は、第1又は第2の態様において、例えば図9に示すように、導光部品10Dは筒状であり、筒状の導光部品10Bの中空部に微小粒を含む樹脂が埋め込まれていることを特徴とする。
このように構成すると、導光部品10Dの内部の微小粒からも光を散乱できるので、散乱光量を増加できる。
In the air purifier according to the third aspect of the present invention, in the first or second aspect, for example, as shown in FIG. 9, the light guide component 10D has a tubular shape, and the hollow portion of the tubular light guide component 10B. It is characterized in that a resin containing fine particles is embedded in.
With this configuration, light can be scattered even from the fine particles inside the light guide component 10D, so that the amount of scattered light can be increased.

本発明の第4の態様における空気清浄器1Eは、第1又は第2の態様において、例えば図10Aに示すように、導光部品10Eについて、およそ光触媒チタンメッシュフィルタ30に対向する長さに相当する部分を斜めに切断して、反射鏡22を挟み込むことを特徴とする。
このように構成すると、反射鏡22からの反射が加わって光源からの入射光の殆どが光触媒シートの方向に向かって出力される。
The air purifier 1E in the fourth aspect of the present invention corresponds to the length facing the photocatalytic titanium mesh filter 30 in the light guide component 10E in the first or second aspect, for example, as shown in FIG. 10A. It is characterized in that the portion to be cut is obliquely cut and the reflecting mirror 22 is sandwiched.
With this structure, reflection from the reflecting mirror 22 is added, and most of the incident light from the light source is output toward the photocatalyst sheet.

本発明によれば、光触媒を用いる空気清浄器において、少数のLEDで広範囲に光を発散させ、効率的に光触媒シートで触媒反応を誘起させる、空気清浄器を提供することができる。 According to the present invention, in an air purifier using a photocatalyst, it is possible to provide an air purifier that emits light in a wide range with a small number of LEDs and efficiently induces a catalytic reaction with a photocatalyst sheet.

実施例1に係る空気清浄器(導光部品の両端面に発光ダイオードを配置)の構成例を示す図である。It is a figure which shows the structural example of the air cleaner (The light emitting diode is arrange|positioned at the both end surfaces of a light guide component) which concerns on Example 1. 実施例1に係る空気清浄器(導光部品の片端面に発光ダイオードを配置)の構成例を示す図である。It is a figure which shows the structural example of the air cleaner (The light emitting diode is arrange|positioned at the one end surface of a light guide component) which concerns on Example 1. 実施例1に係る紫外線2次光源の構成例を示す図である。FIG. 3 is a diagram showing a configuration example of an ultraviolet secondary light source according to the first embodiment. 導光部品に光散乱微細パターンのグラデーションを付した例を示す図である。It is a figure which shows the example which attached the gradation of a light-scattering fine pattern to a light guide component. 光触媒チタンメッシュフィルタの例を示す図である。It is a figure which shows the example of a photocatalyst titanium mesh filter. 光触媒チタンメッシュフィルタのメッシュ構造を示す図である。It is a figure which shows the mesh structure of a photocatalyst titanium mesh filter. 実施例1に係る空気清浄器全体(制御装置をふくむ)の構成例を示す図である。It is a figure which shows the structural example of the whole air cleaner (a control apparatus is included) which concerns on Example 1. 実施例1に係る空気清浄化フローの例を示す図である。FIG. 5 is a diagram showing an example of an air cleaning flow according to the first embodiment. 実施例2に係る紫外線2次光源の構成例を示す図である。FIG. 6 is a diagram showing a configuration example of an ultraviolet secondary light source according to a second embodiment. 実施例3に係る紫外線2次光源の構成例を示す図である。FIG. 9 is a diagram showing a configuration example of an ultraviolet secondary light source according to a third embodiment. 実施例4に係る紫外線2次光源(導光部品の両端面に発光ダイオードを配置)の構成例を示す図である。It is a figure which shows the structural example of the ultraviolet secondary light source which concerns on Example 4 (a light emitting diode is arrange|positioned at the both end surfaces of a light guide component). 実施例4に係る紫外線2次光源の構成例(導光部品の片端面に発光ダイオードを配置)を示す図である。It is a figure which shows the structural example (The light emitting diode is arrange|positioned at the one end surface of a light guide component) of the ultraviolet secondary light source which concerns on Example 4. 実施例5に係る空気清浄器の概念を示す図である。It is a figure which shows the concept of the air cleaner which concerns on Example 5. 従来の空気清浄器の紫外線発光体の構成例を示す図である。It is a figure which shows the structural example of the ultraviolet light emission body of the conventional air cleaner.

以下に、図面に基づき、本発明の実施の形態について説明する。同一又は相当する装置・
部分には同じ符号を付して、重複した説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. Identical or equivalent device
The same reference numerals are given to the parts, and the duplicated description will be omitted.

図1Aに実施例1に係る空気清浄器の構成例を示す。本実施例では光透過部品として、紫外線透過材料としての石英又はガラスで形成された丸棒を使用する例を説明する。まず、発光ダイオードが導光部品の両端面に配置される例について説明する。
図1Aにおいて、左側に(a)断面図、右側に(b)側面図を示す。空気清浄器1は、丸棒状の紫外線2次光源(以下、棒状又は筒状の紫外線2次光源を線状UVランプともいう)2の周りを光触媒チタンメッシュフィルタ(以下、光触媒シートともいう)30が取り囲む構成をしている。
FIG. 1A shows a configuration example of the air purifier according to the first embodiment. In the present embodiment, an example in which a round bar made of quartz or glass as an ultraviolet transmitting material is used as the light transmitting component will be described. First, an example in which the light emitting diodes are arranged on both end surfaces of the light guide component will be described.
In FIG. 1A, a cross-sectional view (a) is shown on the left side, and a side view (b) is shown on the right side. The air purifier 1 includes a photocatalyst titanium mesh filter (hereinafter also referred to as a photocatalyst sheet) 30 around a round rod-shaped ultraviolet secondary light source (hereinafter, a rod-shaped or cylindrical ultraviolet secondary light source is also referred to as a linear UV lamp) 2. Is surrounded by.

光触媒チタンメッシュフィルタ30は、光触媒であるアナターゼ型酸化チタンを強固に担持させたメッシュ型の光触媒シートである。メッシュ型であるため、空気の流路に光触媒シート30を置けば、光触媒シート30のメッシュを通過して空気が流れる。紫外線2次光源2から散乱された紫外光がメッシュに固着したアナターゼ型酸化チタンに照射されると触媒反応が誘起され、促進されて、メッシュに触れた空気中の有機ガスが分解され、空気が清浄化される。
光触媒による分解をより効率的に行わせるためには、光触媒と光源との距離及び流路を考慮する必要があるが、光触媒チタンメッシュフィルタ30は球状や円筒状が効率的である。しかし、球状の場合は製作が困難なので、円筒状が理想的といえる。円筒状フィルタの場合は棒状(円柱状)又は円筒状の2次光源に適合するので、光触媒シート30は円筒形に加工しやすいことが必要である。
The photocatalyst titanium mesh filter 30 is a mesh-type photocatalyst sheet in which anatase-type titanium oxide, which is a photocatalyst, is firmly supported. Since it is a mesh type, if the photocatalyst sheet 30 is placed in the air flow path, the air flows through the mesh of the photocatalyst sheet 30. When the ultraviolet light scattered from the ultraviolet secondary light source 2 is irradiated to the anatase type titanium oxide fixed to the mesh, a catalytic reaction is induced and promoted, and the organic gas in the air that touches the mesh is decomposed and the air is removed. Be cleaned.
In order to perform the decomposition by the photocatalyst more efficiently, it is necessary to consider the distance between the photocatalyst and the light source and the flow path, but the photocatalyst titanium mesh filter 30 is efficiently spherical or cylindrical. However, in the case of a spherical shape, it is difficult to manufacture, so a cylindrical shape can be said to be ideal. Since the cylindrical filter is suitable for a rod-shaped (cylindrical) or cylindrical secondary light source, the photocatalyst sheet 30 needs to be easily processed into a cylindrical shape.

本発明に係る光触媒シート30は、周期的パターンを有する網状チタンシートの表面に酸化チタン被膜が形成され、当該酸化チタン被膜にアナターゼ型酸化チタン粒子が担持されていることを特徴とする。また、本発明に係る光触媒シート30の製造方法は、チタンからなる金属基板に複数の傷を形成し、さらに、金属基板の両端を引き延ばして周期的パターンを有する網状のエキスパンドチタンメッシュシートとし、エキスパンドチタンメッシュシートに陽極酸化処理及び/または加熱処理を施して表面に酸化チタン被膜を形成し、酸化チタン皮膜にアナターゼ型酸化チタン粒子を担持させることを特徴とする。この場合、引っ張ってエキスパンドメタルにしたときに、穴が横になるように形成され、空気抵抗が大きくなる。これにより、空気浄化のための接触面積が大きくなり、浄化効率がより向上する。又は、本発明に係る光触媒シート30の製造方法は、チタンのワイヤーを編み込み周期的パターンを有する網状のチタンワイヤーメッシュシートとし、チタンワイヤーメッシュシートに陽極酸化処理及び/又は加熱処理を施して表面に酸化チタン被膜を形成し、酸化チタン被膜にアナターゼ型酸化チタン粒子を担持させることを特徴とする。 The photocatalyst sheet 30 according to the present invention is characterized in that a titanium oxide film is formed on the surface of a reticulated titanium sheet having a periodic pattern, and the titanium oxide film carries anatase-type titanium oxide particles. In addition, the method for producing the photocatalyst sheet 30 according to the present invention comprises forming a plurality of scratches on a metal substrate made of titanium, and further extending both ends of the metal substrate to form a reticulated expanded titanium mesh sheet having a periodic pattern. It is characterized in that a titanium mesh sheet is subjected to anodizing treatment and/or heat treatment to form a titanium oxide coating film on the surface, and anatase type titanium oxide particles are carried on the titanium oxide coating film. In this case, when it is pulled to be expanded metal, the holes are formed so as to lie down, and the air resistance is increased. As a result, the contact area for air purification is increased, and the purification efficiency is further improved. Alternatively, the method for producing the photocatalyst sheet 30 according to the present invention is a net-like titanium wire mesh sheet having a periodic pattern in which a titanium wire is woven, and the titanium wire mesh sheet is anodized and/or heat-treated to form a surface. It is characterized in that a titanium oxide film is formed and anatase type titanium oxide particles are carried on the titanium oxide film.

エキスパンドチタンメッシュシートの厚みは、例えば0.05〜3mmが好ましく、0.2〜2mmがより好ましい。エキスパンドチタンメッシュシートの開口率は、10〜80%が好ましく、30〜60%がより好ましい。また、酸化皮膜の厚みは、例えば70〜150nmが好ましい。酸化チタン被膜と光触媒層は、酸化チタン同士が結合することになるので、その結合性が極めて強くなり、その結果、光触媒層が剥がれ難くなる。 The thickness of the expanded titanium mesh sheet is preferably 0.05 to 3 mm, more preferably 0.2 to 2 mm. The aperture ratio of the expanded titanium mesh sheet is preferably 10 to 80%, more preferably 30 to 60%. The thickness of the oxide film is preferably 70 to 150 nm, for example. In the titanium oxide coating and the photocatalyst layer, the titanium oxides are bound to each other, so the bondability is extremely strong, and as a result, the photocatalyst layer is less likely to peel off.

導光部品10の長さW,光触媒シート30の長さL、導光部品10と光触媒シート30間の間隔をdとすると、W=(L−2d)±20%が好適である。ただし、導光部品10と光触媒シート30間の間隔が大きくなると(例えば、d>導光部品の半径)、光漏れが生じるので、W=(L−2d)±30%が好適となる。
また、棒状又は筒状の導光部品の表面に光触媒を配置する場合に比して、導光部品10から離れた光触媒チタンメッシュフィルタ30に光触媒を配置する場合には、光触媒を配置できる表面積をかなり広くとれるので、多数の光触媒を配置でき、触媒反応を促進できる。また、光触媒に触れる空気量も増えるので空気の清浄化を促進できる。
When the length W of the light guide component 10, the length L of the photocatalyst sheet 30 and the distance between the light guide component 10 and the photocatalyst sheet 30 are d, W=(L-2d)±20% is preferable. However, when the distance between the light guide component 10 and the photocatalyst sheet 30 becomes large (for example, d>radius of the light guide component), light leakage occurs, so W=(L−2d)±30% is preferable.
Further, in comparison with the case where the photocatalyst is arranged on the surface of the rod-shaped or cylindrical light guide component, when the photocatalyst is arranged in the photocatalyst titanium mesh filter 30 which is separated from the light guide component 10, the surface area where the photocatalyst can be arranged is increased. Since it can be made quite wide, a large number of photocatalysts can be arranged and the catalytic reaction can be promoted. Further, since the amount of air that comes into contact with the photocatalyst increases, the cleaning of air can be promoted.

図1Bに、発光素子が1個の例を示す。図中、空気清浄器を1sで示す。発光ダイオード20が1個でも、発光ダイオード20からの光が導光部品10に入射されれば、導光部品10の表面から光触媒シート30の方向に散乱されるので、光触媒シート30で触媒反応を誘起させ、空気を清浄化できる。 FIG. 1B shows an example with one light emitting element. In the figure, the air purifier is indicated by 1s. Even if only one light emitting diode 20 is provided, if the light from the light emitting diode 20 is incident on the light guide component 10, the light is scattered from the surface of the light guide component 10 toward the photocatalyst sheet 30. Can induce and clean the air.

図2に本実施例に係る紫外線2次光源2の構成例を示す。左側に(a)断面図、右側に(b)側面図を示す。
紫外線2次光源2は、石英又は紫外線透過ガラスで形成された丸棒状の導光部品10の両端に紫外線を発光する発光ダイオード(LED)20を配置して構成される。LED20は発光素子を内包する発光部20Aが放熱器20Bに搭載され、放熱器20Bを介して外側(空中)に放熱すると共に、発光部20Aから導光部品10の鏡面研磨された端面に向けて紫外光を出射し、導光部品10に紫外線を導入する。紫外光の波長は例えば150nmないし375nmである。現時点では、波長<150nmでは透光に適する材料を適用するのが困難であり、波長>375nmでは光触媒反応が困難だからである。
FIG. 2 shows a configuration example of the ultraviolet secondary light source 2 according to this embodiment. The left side is (a) sectional view, and the right side is (b) side view.
The ultraviolet secondary light source 2 is configured by disposing light emitting diodes (LEDs) 20 that emit ultraviolet light at both ends of a round bar-shaped light guide component 10 formed of quartz or ultraviolet transparent glass. In the LED 20, a light emitting portion 20A including a light emitting element is mounted on a radiator 20B, radiates heat to the outside (in the air) via the radiator 20B, and from the light emitting portion 20A toward the mirror-polished end surface of the light guide component 10. Ultraviolet light is emitted and ultraviolet light is introduced into the light guide component 10. The wavelength of ultraviolet light is, for example, 150 nm to 375 nm. This is because it is difficult to apply a material suitable for light transmission at a wavelength of <150 nm and a photocatalytic reaction is difficult at a wavelength of >375 nm at this point.

導光部品10の側面(外周面)にはブラスト、エッチング等により、紫外光を散乱させる散乱層11を設ける。側面が滑らかな導光部品10では屈折率が空気より大きいので紫外線は導光部品10内に閉じ込められ外に出ない。散乱層11を設けることにより、散乱層11から外側に向けて紫外光が発散される。また、長い丸棒状の導光部品10を用いることにより、数少ない(2個の)LED20で広範囲に紫外光を発散させられる。
これにより、数少ないLEDで広範囲に光を発散させられ、効率的に光触媒シートで触媒反応を誘起させられる。
A scattering layer 11 that scatters ultraviolet light is provided on the side surface (outer peripheral surface) of the light guide component 10 by blasting, etching, or the like. Since the light guide component 10 having a smooth side surface has a refractive index higher than that of air, ultraviolet rays are confined in the light guide component 10 and do not go out. By providing the scattering layer 11, ultraviolet light diverges outward from the scattering layer 11. Further, by using the long round bar-shaped light guide component 10, ultraviolet light can be diffused in a wide range with a few (two) LEDs 20.
As a result, light can be diffused over a wide range with a few LEDs, and the photocatalytic sheet can efficiently induce a catalytic reaction.

図3に導光部品の散乱層11(外周に設けられた)に微細パターンのグラデーションを付した例を示す。中央部での凹凸の度合いを蜜に、端部近傍での凹凸の度合いを粗とした例である。導入された紫外線は端部近傍で強く、中央部で弱いと考えられるので、中央部での散乱光を多く、端部近傍での散乱光を少なくするように、凹凸の度合いに勾配を付することにより、導光部品10Aからの散乱光を長さ方向に均一化するものである。 FIG. 3 shows an example in which the scattering layer 11 (provided on the outer circumference) of the light guide component is provided with a fine pattern gradation. This is an example in which the degree of unevenness in the central portion is close and the degree of unevenness in the vicinity of the end portion is rough. Since it is considered that the introduced ultraviolet rays are strong near the edges and weak at the central portion, the degree of unevenness is graded so that the scattered light at the central portion is large and the scattered light near the edges is small. Thereby, the scattered light from the light guide component 10A is made uniform in the length direction.

図4に光触媒チタンメッシュフィルタ30の例を示す。光触媒チタンメッシュフィルタ30は円筒状に形成され、フィルタ担持冶具31を用いて壁面等に取り付けられる。そして、光触媒チタンメッシュフィルタ30の筒中に紫外線2次光源2の導光部品10が収納される。導光部品10側面の散乱層11から散乱された紫外線が光触媒チタンメッシュフィルタ30に担持されたアナターゼ型酸化チタンに照射されて、光触媒反応が誘起される。このようにして、空気清浄器1が構成される。 FIG. 4 shows an example of the photocatalytic titanium mesh filter 30. The photocatalyst titanium mesh filter 30 is formed in a cylindrical shape, and is attached to a wall surface or the like using the filter supporting jig 31. Then, the light guide component 10 of the ultraviolet secondary light source 2 is housed in the cylinder of the photocatalytic titanium mesh filter 30. The ultraviolet light scattered from the scattering layer 11 on the side surface of the light guide component 10 is irradiated on the anatase type titanium oxide carried on the photocatalytic titanium mesh filter 30 to induce a photocatalytic reaction. In this way, the air purifier 1 is constructed.

図5に光触媒チタンメッシュフィルタのメッシュ構造を示す。SEM写真を模写したものである。チタンの網目構造が形成されていることが解る。 FIG. 5 shows the mesh structure of the photocatalytic titanium mesh filter. It is a copy of an SEM photograph. It can be seen that a titanium mesh structure is formed.

図6に本実施例に係る空気清浄器1全体(制御装置を含む)の構成例を示す。導光部品10の両端にそれぞれLED20が配置され、導光部品10表面の散乱層11から紫外線が発散される。すなわち、導光部品10と2個のLED20で線状UVランプ2が構成されている。そして、線状UVランプ2の周りを光触媒チタンメッシュフィルタ30が取り囲んでいる。線状UVランプ2から射出された紫外線が光触媒チタンメッシュフィルタ30に照射されて、光触媒反応が誘起される。 FIG. 6 shows a configuration example of the entire air purifier 1 (including the control device) according to the present embodiment. The LEDs 20 are arranged at both ends of the light guide component 10, and ultraviolet rays are emitted from the scattering layer 11 on the surface of the light guide component 10. That is, the light guide component 10 and the two LEDs 20 form the linear UV lamp 2. The photocatalytic titanium mesh filter 30 surrounds the linear UV lamp 2. The photocatalytic titanium mesh filter 30 is irradiated with the ultraviolet rays emitted from the linear UV lamp 2, and the photocatalytic reaction is induced.

線状UVランプ2は制御装置40に接続される。制御装置40は、例えば、UVランプ安定器又はLEDドライバーを含む。UVランプ安定器またはLEDドライバーは、LED20の駆動を制御し、発光を安定化させる。制御装置40は、電源入力部41を介して外部より電力を供給される。またIoT(物のインターネット)チップ42を有し、IoTチップ42はスマートフォン43Aやパーソナルコンピュータ43Bからの指示により、ワイヤレス通信により遠隔から線状UVランプ2を制御する。例えば、光源情報(玉切れ、運転時間等)を取得して、LEDの交換を通知し、また、運転時間の設定を行う。また、機器制御(ON/OFF制御、電流調整、光強度調整)を行う。 The linear UV lamp 2 is connected to the control device 40. The controller 40 includes, for example, a UV lamp ballast or an LED driver. The UV lamp ballast or LED driver controls the driving of the LED 20 and stabilizes the light emission. The control device 40 is supplied with electric power from the outside via the power input unit 41. Further, it has an IoT (Internet of things) chip 42, and the IoT chip 42 remotely controls the linear UV lamp 2 by wireless communication according to an instruction from the smartphone 43A or the personal computer 43B. For example, the light source information (ball break, operating time, etc.) is acquired, the replacement of the LED is notified, and the operating time is set. In addition, device control (ON/OFF control, current adjustment, light intensity adjustment) is performed.

図7に本実施例に係る空気清浄化フローの例を示す。
まず、LED20からの紫外光を導光部品10に導入する(S101)。次に、導光部品10に導入された紫外光が、表面に形成された散乱層11から散乱される(S102)。次に、散乱された紫外光が、導光部品10を取り巻く光触媒チタンメッシュフィルタ30に照射される(S103)。次に、光触媒チタンによる光触媒反応が誘起、促進される(S104)。これにより、空気が清浄される(S105)。
FIG. 7 shows an example of an air cleaning flow according to this embodiment.
First, the ultraviolet light from the LED 20 is introduced into the light guide component 10 (S101). Next, the ultraviolet light introduced into the light guide component 10 is scattered from the scattering layer 11 formed on the surface (S102). Next, the scattered ultraviolet light is applied to the photocatalytic titanium mesh filter 30 surrounding the light guide component 10 (S103). Next, the photocatalytic reaction by the photocatalytic titanium is induced and promoted (S104). As a result, the air is cleaned (S105).

以上により、本実施例によれば、光触媒を用いる空気清浄器において、数少ないLEDで広範囲に光を発散させ、効率的に光触媒シートで触媒反応を誘起させる空気清浄器を提供できる。 As described above, according to the present embodiment, it is possible to provide an air purifier that uses a photocatalyst to emit light in a wide range with a few LEDs and efficiently induce a catalytic reaction with the photocatalyst sheet.

実施例1では光透過部品として石英又は紫外線透過ガラスで形成された丸棒状の部品を使用する例を説明したが、本実施例では。石英又は紫外線透過ガラスで形成された円筒状の部品を使用する例を説明する。 In the first embodiment, an example in which a round bar-shaped component made of quartz or ultraviolet light-transmitting glass is used as the light-transmitting component has been described, but in this embodiment, An example of using a cylindrical part made of quartz or UV transparent glass will be described.

図8に本実施例に係る空気清浄器の紫外線2次光源2Aの構成例を示す。
紫外線2次光源2Cは、石英又は紫外線透過ガラスで形成された円筒状の導光部品10Cの両端に紫外線を発光する発光ダイオード(LED)20を配置して構成される。LED20は発光素子を内包する発光部20Aが放熱器20Bに搭載され、放熱器20Bを介して外側(空中)に放熱すると共に、発光部20Aから導光部品10の鏡面研磨された端面に向けて紫外光を出射し、導光部品10Cに紫外線を導入する。紫外光の波長は例えば150nmないし375nmである。導光部品10Cの側面(外周面)にはブラスト、エッチング等により、紫外光を散乱させる散乱層を設ける。側面が滑らかな導光部品10Cでは屈折率が空気より大きいので紫外線は基本的には、導光部品10Cの円筒状の固体部分に閉じ込められ、外側及び中空側に出ない。散乱層を設けることにより、散乱層から外側に向けて紫外光が発散される。また、長い円筒棒状の導光部品10Cを用いることにより、数少ない(2個の)LEDで広範囲に紫外光を発散させられる。
これにより、数少ないLEDで広範囲に光を発散させられ、効率的に光触媒シートで触媒反応を誘起させられる。LEDが片側1個に配置の場合も、同様に数少ない(1個の)LEDで広範囲に紫外光を発散させられる。
FIG. 8 shows a configuration example of the ultraviolet secondary light source 2A of the air purifier according to the present embodiment.
The ultraviolet secondary light source 2C is configured by arranging light emitting diodes (LEDs) 20 that emit ultraviolet light at both ends of a cylindrical light guide component 10C made of quartz or ultraviolet transparent glass. In the LED 20, a light emitting portion 20A including a light emitting element is mounted on a radiator 20B, radiates heat to the outside (in the air) via the radiator 20B, and from the light emitting portion 20A toward the mirror-polished end surface of the light guide component 10. Ultraviolet light is emitted and ultraviolet rays are introduced into the light guide component 10C. The wavelength of ultraviolet light is, for example, 150 nm to 375 nm. A scattering layer that scatters ultraviolet light is provided on the side surface (outer peripheral surface) of the light guide component 10C by blasting, etching, or the like. Since the light guide component 10C having a smooth side surface has a refractive index larger than that of air, ultraviolet rays are basically confined in the cylindrical solid portion of the light guide component 10C and do not exit to the outside and the hollow side. By providing the scattering layer, ultraviolet light diverges outward from the scattering layer. Further, by using the long cylindrical rod-shaped light guide component 10C, it is possible to radiate ultraviolet light over a wide range with a few (two) LEDs.
As a result, light can be diffused over a wide range with a few LEDs, and the photocatalytic sheet can efficiently induce a catalytic reaction. Even when the LEDs are arranged on one side, ultraviolet light can be diffused in a wide range with a small number (one) of LEDs.

実施例2では光透過部品として石英又は紫外線透過ガラスで形成された円筒状の部品を使用する例を説明したが、本実施例では。石英又は紫外線透過ガラスで形成された円筒状の部品の中を樹脂で埋め込む例を説明する。 In the second embodiment, an example in which a cylindrical component made of quartz or ultraviolet light transmitting glass is used as the light transmitting component has been described. An example will be described in which a cylindrical part formed of quartz or ultraviolet-transparent glass is embedded with resin.

図9に本実施例に係る空気清浄器の紫外線2次光源2Dの構成例を示す。
紫外線2次光源2Dは、石英又は紫外線透過ガラスで形成された円筒状の導光部品10Dの中に樹脂で埋め込み、両端に紫外線を発光する発光ダイオード(LED)20を配置して構成される。LED20は発光素子を内包する発光部20Aが放熱器20Bに搭載され、放熱器20Bを介して外側(空中)に放熱すると共に、発光部20Aから導光部品10Dの鏡面研磨された端面に向けて紫外光を出射し、導光部品10Dに紫外線を導入する。紫外光の波長は例えば150nmないし375nmである。導光部品10Dの側面(外周面)にはブラスト、エッチング等により、紫外光を散乱させる散乱層を設ける。側面が滑らかな導光部品10Dでは屈折率が空気より大きいので紫外線は導光部品10D内に閉じ込められ外に出ない。ただし、中空部を樹脂で埋め込むので、中空部にも紫外光が出る。樹脂の屈折率で円筒内部の紫外線の導光の状況が変化するので、樹脂の屈折率で調光可能である。また、樹脂に小ビーズ等を分散させると内部散乱層として使用できる(図9はこの状態を示す)。側面及び内部に散乱層を設けることにより、散乱層から外側に向けて紫外光が発散される。また、長い円筒棒状の導光部品10Dを用いることにより、数少ない(2個の)LEDで広範囲に紫外光を発散させられる。
これにより、数少ないLEDで広範囲に光を発散させられ、効率的に光触媒シートで触媒反応を誘起させられる。LEDが片側1個に配置の場合も、同様に数少ない(1個の)LEDで広範囲に紫外光を発散させられる。
FIG. 9 shows a configuration example of the ultraviolet secondary light source 2D of the air purifier according to the present embodiment.
The ultraviolet secondary light source 2D is configured by embedding a resin in a cylindrical light guide component 10D formed of quartz or ultraviolet transparent glass, and disposing light emitting diodes (LEDs) 20 that emit ultraviolet light at both ends. In the LED 20, a light emitting portion 20A including a light emitting element is mounted on a radiator 20B, radiates heat to the outside (in the air) through the radiator 20B, and from the light emitting portion 20A toward the mirror-polished end surface of the light guide component 10D. Ultraviolet light is emitted and ultraviolet light is introduced into the light guide component 10D. The wavelength of ultraviolet light is, for example, 150 nm to 375 nm. A scattering layer that scatters ultraviolet light is provided on the side surface (outer peripheral surface) of the light guide component 10D by blasting, etching, or the like. Since the refractive index of the light guide component 10D having a smooth side surface is larger than that of air, the ultraviolet rays are trapped inside the light guide component 10D and do not go out. However, since the hollow portion is filled with resin, ultraviolet light is also emitted to the hollow portion. Since the situation of guiding the ultraviolet rays inside the cylinder changes depending on the refractive index of the resin, it is possible to adjust light with the refractive index of the resin. Also, small beads or the like dispersed in resin can be used as an internal scattering layer (FIG. 9 shows this state). By providing the scattering layer on the side surface and inside, ultraviolet light is diverged from the scattering layer toward the outside. Further, by using the long cylindrical rod-shaped light guide component 10D, it is possible to diffuse ultraviolet light in a wide range with a few (two) LEDs.
As a result, light can be diffused over a wide range with a few LEDs, and the catalytic reaction can be efficiently induced by the photocatalytic sheet. Even when the LEDs are arranged on one side, ultraviolet light can be diffused in a wide range with a small number (one) of LEDs.

実施例2では光透過部品として石英又は紫外線透過ガラスで形成された円筒状の部品を使用する例を説明したが、本実施例では、その石英又は紫外線透過ガラス層に光反射鏡を挟み込んで、入射光全てを石英又は紫外線透過ガラス層の表面から光触媒シートの方向に向かわせる例を説明する。
図10Aに本実施例に係る紫外線2次光源の構成例を示す。空気清浄器を1Eで示す。導光部品10Eをおよそ光触媒チタンメッシュフィルタ30に対向する長さに相当する部分を斜め方向に切断して、両面反射鏡22を挟み込む。これにより、左側の発光ダイオード20からの光は全て両面反射鏡22で上方向に反射されるので、導光部品10Eの表面から上半分の光触媒シート30の方向に向かって出力され、右側の発光ダイオード20からの光は全て両面反射鏡22で下方向に反射されるので、導光部品10Eの表面から下半分の光触媒シート30の方向に向かって出力される。すなわち、光源からの入射光の全てが光触媒シートの方向に向かって出力される。ここにおいて、光触媒チタンメッシュフィルタ30に対向する長さに相当する部分の長さは、およそ光触媒チタンメッシュフィルタ30の長さ±20%とする。長過ぎるとフィルタに当たらない光が多くなり、短すぎると、光があまり当たらないフィルタ部分が多くなるからである。
その他の構成は実施例1と同様であり、実施例1と同様に、数少ないLEDで広範囲に光を発散させられ、効率的に光触媒シートで触媒反応を誘起させられる。
In the second embodiment, an example of using a cylindrical component formed of quartz or ultraviolet light transmitting glass as the light transmitting component has been described, but in the present embodiment, a light reflecting mirror is sandwiched between the quartz or ultraviolet light transmitting glass layer, An example will be described in which all incident light is directed from the surface of the quartz or ultraviolet transmitting glass layer toward the photocatalyst sheet.
FIG. 10A shows a configuration example of the ultraviolet secondary light source according to this embodiment. The air purifier is designated 1E. A portion of the light guide component 10E corresponding to the length facing the photocatalytic titanium mesh filter 30 is cut diagonally and the double-sided reflecting mirror 22 is sandwiched. As a result, all the light from the light emitting diode 20 on the left side is reflected upward by the double-sided reflecting mirror 22, so that it is output from the surface of the light guide component 10E toward the photocatalyst sheet 30 in the upper half, and the light emitted on the right side is emitted. Since all the light from the diode 20 is reflected downward by the double-sided reflecting mirror 22, it is output from the surface of the light guide component 10E toward the photocatalyst sheet 30 in the lower half. That is, all the incident light from the light source is output toward the photocatalyst sheet. Here, the length of the portion corresponding to the length facing the photocatalytic titanium mesh filter 30 is approximately ±20% of the length of the photocatalytic titanium mesh filter 30. This is because if the length is too long, a large amount of light does not reach the filter, and if it is too short, a large amount of the filter does not reach the filter.
Other configurations are the same as those of the first embodiment, and similarly to the first embodiment, light can be diffused in a wide range with a few LEDs and a catalytic reaction can be efficiently induced by the photocatalytic sheet.

図10Bに、発光ダイオードが1個の例を示す。空気清浄器を1F、紫外線2次光源を2F、導光部品を10Fで示す。両面反射鏡22に変えて、発光ダイオード20の反対側の端面に反射板21を設ける。LED20が1個でも、反射板21の形状を凸面鏡や乱反射鏡など適切に設計することにより、LED20からの光が導光部品10Fに入射されれば、導光部品10Fの表面からより均一な光を取り出せる。この場合でも紫外光が光触媒シート30の方向に散乱されるので、光触媒シートで触媒反応を誘起させ、空気を清浄化できる。 FIG. 10B shows an example with one light emitting diode. The air purifier is shown at 1F, the ultraviolet secondary light source at 2F, and the light guide component at 10F. Instead of the double-sided reflecting mirror 22, the reflecting plate 21 is provided on the opposite end face of the light emitting diode 20. Even if there is only one LED 20, by appropriately designing the shape of the reflection plate 21 such as a convex mirror or a diffuse reflection mirror, if the light from the LED 20 is incident on the light guide component 10F, a more uniform light is emitted from the surface of the light guide component 10F. Can be taken out. Even in this case, since the ultraviolet light is scattered in the direction of the photocatalyst sheet 30, the photocatalytic sheet can induce a catalytic reaction to clean the air.

本実施例では、空気清浄器の近傍にファンを設けて、多くの空気を空気清浄機内を通過させるようにしたものである。
図11に実施例5に係る空気清浄器(空気清浄器の前にファン23を設けたもの)の概念を示す。例えば、実施例1の空気清浄器1の近傍にファン23を設けて、近傍の空気24を空気清浄器1に吹き付けて、空気清浄器1を通過させる。これにより、室内に空気の循環が起こり、多くの空気が空気清浄器1を通る。これにより、空気清浄器1の利用効率が増加する。ファンに代えて、吸引器を用いても同様の効果を奏する。
In this embodiment, a fan is provided near the air purifier so that a large amount of air passes through the air purifier.
FIG. 11 shows the concept of an air purifier according to the fifth embodiment (one in which a fan 23 is provided in front of the air purifier). For example, the fan 23 is provided in the vicinity of the air purifier 1 of the first embodiment, and the air 24 in the vicinity is blown to the air purifier 1 to pass the air purifier 1. As a result, air circulation occurs in the room, and a large amount of air passes through the air purifier 1. As a result, the utilization efficiency of the air purifier 1 is increased. The same effect can be obtained by using a suction device instead of the fan.

以上、本発明の実施の形態について説明したが、実施の形態は以上の例に限られるものではなく、本発明の趣旨を逸脱しない範囲で、種々の変更を加え得ることは明白である。
例えば、以上の実施例では、導光部品が丸棒状、円筒状の例を説明したが、導光可能であれば、多角形棒状、多角形筒状等の他の形状でも良い。また、使用する紫外線の波長スペクトル、散乱光量、空気清浄器の寸法、形状、取り付け位置等を適宜変更可能である。
Although the embodiments of the present invention have been described above, the embodiments are not limited to the above examples, and it is obvious that various modifications can be made without departing from the spirit of the present invention.
For example, in the above embodiments, the light guide component has been described as having a round rod shape or a cylindrical shape, but it may have another shape such as a polygonal rod shape or a polygonal tube shape as long as it can guide light. Further, the wavelength spectrum of the ultraviolet rays used, the amount of scattered light, the size and shape of the air purifier, the mounting position, etc. can be changed as appropriate.

空気清浄器に利用可能である。 It can be used for air purifiers.

1,1s,1E,1F 空気清浄器
2,2s,2A〜2F 紫外線2次光源(線状UVランプ)
10,10A〜10F 導光部品
10G 金属製基板
11 散乱層
20 発光ダイオード(LED)
20A 発光部
20B 放熱器
21 反射板
22 両面反射鏡
23 ファン
24 空気
30 光触媒チタンメッシュフィルタ(光触媒シート)
31 フィルタ担持冶具
40 制御装置
41 電源入力部
42 IoTチップ
43A スマートフォン
43B パーソナルコンピュータ

1, 1s, 1E, 1F Air purifier 2, 2s, 2A-2F UV secondary light source (linear UV lamp)
10, 10A to 10F Light guide component 10G Metal substrate 11 Scattering layer 20 Light emitting diode (LED)
20A Light emitting part 20B Radiator 21 Reflector 22 Double-sided reflector 23 Fan 24 Air 30 Photocatalyst titanium mesh filter (photocatalyst sheet)
31 Filter carrying jig 40 Control device 41 Power input unit 42 IoT chip 43A Smartphone 43B Personal computer

Claims (4)

紫外線透過材料で形成された棒状又は筒状の導光部品と、
前記導光部品の端面から紫外光を導入する発光ダイオードと、
前記導光部品を取り囲む光触媒チタンメッシュフィルタとを備え;
前記導光部品の表面に紫外光を散乱させる散乱層を設けることにより、
前記導光部品に導入された紫外光が前記散乱層で散乱されて前記光触媒チタンメッシュフィルタに照射され、光触媒反応が誘起されて有機物を分解することにより空気を清浄化することを特徴とする;
空気清浄器。
A rod-shaped or tubular light-guide component formed of an ultraviolet-transparent material,
A light emitting diode for introducing ultraviolet light from the end face of the light guide component,
A photocatalytic titanium mesh filter surrounding the light guide component;
By providing a scattering layer that scatters ultraviolet light on the surface of the light guide component,
The ultraviolet light introduced into the light guide component is scattered by the scattering layer and is applied to the photocatalytic titanium mesh filter, and a photocatalytic reaction is induced to decompose organic substances to clean air.
air purifier.
前記導光部品の表面の散乱層の密度は中央部で密、端部近傍で粗であることを特徴とする;
請求項1に記載の空気清浄器。
The density of the scattering layer on the surface of the light guide component is high in the central portion and coarse in the vicinity of the end portions;
The air purifier according to claim 1.
前記導光部品は筒状であり、前記筒状の導光部品の中空部に微小粒を含む樹脂が埋め込まれていることを特徴とする;
請求項1又は請求項2に記載の空気清浄器。
The light guide component has a tubular shape, and a resin containing fine particles is embedded in a hollow portion of the tubular light guide component;
The air purifier according to claim 1 or 2.
前記導光部品について、およそ前記光触媒チタンメッシュフィルタに対向する長さに相当する部分を斜めに切断して、反射鏡を挟み込むことを特徴とする;
請求項1又は請求項2に記載の空気清浄器。


In the light guide component, a portion approximately corresponding to the length facing the photocatalytic titanium mesh filter is obliquely cut to sandwich the reflecting mirror;
The air purifier according to claim 1 or 2.


JP2018248701A 2018-12-28 2018-12-28 air purifier Active JP7176948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018248701A JP7176948B2 (en) 2018-12-28 2018-12-28 air purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018248701A JP7176948B2 (en) 2018-12-28 2018-12-28 air purifier

Publications (2)

Publication Number Publication Date
JP2020109328A true JP2020109328A (en) 2020-07-16
JP7176948B2 JP7176948B2 (en) 2022-11-22

Family

ID=71569998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018248701A Active JP7176948B2 (en) 2018-12-28 2018-12-28 air purifier

Country Status (1)

Country Link
JP (1) JP7176948B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112757877A (en) * 2021-01-21 2021-05-07 浙江吉利控股集团有限公司 Air conditioner filtering device for vehicle and control method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342192A (en) * 2004-06-03 2005-12-15 Zen World:Kk Photocatalyst apparatus and manufacturing method of the same
JP2010198824A (en) * 2009-02-24 2010-09-09 Shin Etsu Polymer Co Ltd Light guide device and air conditioning related equipment
JP2010227840A (en) * 2009-03-27 2010-10-14 Nanocreate Co Ltd Air cleaning apparatus
WO2018016116A1 (en) * 2016-07-22 2018-01-25 三菱電機株式会社 Air cleaning device and dust collecting filter
WO2018147444A1 (en) * 2017-02-13 2018-08-16 サンスター技研株式会社 Photocatalyst-carrying mesh sheet, air purifier, and method for producing photocatalyst-carrying mesh sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342192A (en) * 2004-06-03 2005-12-15 Zen World:Kk Photocatalyst apparatus and manufacturing method of the same
JP2010198824A (en) * 2009-02-24 2010-09-09 Shin Etsu Polymer Co Ltd Light guide device and air conditioning related equipment
JP2010227840A (en) * 2009-03-27 2010-10-14 Nanocreate Co Ltd Air cleaning apparatus
WO2018016116A1 (en) * 2016-07-22 2018-01-25 三菱電機株式会社 Air cleaning device and dust collecting filter
WO2018147444A1 (en) * 2017-02-13 2018-08-16 サンスター技研株式会社 Photocatalyst-carrying mesh sheet, air purifier, and method for producing photocatalyst-carrying mesh sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112757877A (en) * 2021-01-21 2021-05-07 浙江吉利控股集团有限公司 Air conditioner filtering device for vehicle and control method thereof

Also Published As

Publication number Publication date
JP7176948B2 (en) 2022-11-22

Similar Documents

Publication Publication Date Title
JP2007335164A (en) Lighting fixture excellent in air cleaning performance
JP2009181914A (en) Surface light emitter of ultraviolet rays, photocatalystic device, and air purification method
JP7176948B2 (en) air purifier
US20050063881A1 (en) Air purifier including a photocatalyst
KR20200030735A (en) Photocatalyst-based Air Cleaning Module for Attaching and Detaching to Ceiling-Mounted type Electric Lamp Equipped with Sideward Light Emitting Tube type Light Source
KR20200115864A (en) Photocatalyst Module for Attaching and Detaching to Station type Electric Lamp Equipped with Downward type Light Source
KR20200115869A (en) Photocatalyst Module for Attaching and Detaching to Wall Surface Fixed type Electric Lamp Equipped with Downward type Light Source
KR20200115865A (en) Photocatalyst Module for Attaching and Detaching to Station type Electric Lamp Equipped with Upward type Light Source
KR20200030701A (en) Photocatalyst-based Air Cleaning Module for Attaching and Detaching to Wall Surface Fixed type Electric Lamp Equipped with Sideward Light Emitting Tube type Light Source
KR20200115872A (en) Photocatalyst Module for Attaching and Detaching to Ceiling-Mounted type Electric Lamp Equipped with Downward type Light Source
KR20200115870A (en) Photocatalyst Module for Attaching and Detaching to Wall Surface Fixed type Electric Lamp Equipped with Upward type Light Source
KR20200115871A (en) Photocatalyst Module for Attaching and Detaching to Wall Surface Fixed type Electric Lamp Equipped with Sideward type Light Source
KR20200115867A (en) Photocatalyst Module for Attaching and Detaching to Station type Electric Lamp Equipped with Sideward type Light Source
KR20200115876A (en) Photocatalyst Module for Attaching and Detaching to Ceiling-Mounted type Electric Lamp Equipped with Sideward type Light Source
KR20200030716A (en) Photocatalyst Module for Placing to Ceiling-Mounted type Electric Lamp Equipped with Downward Bulb type Light Source
KR20200030729A (en) Photocatalyst-based Air Cleaning Module for Attaching and Detaching to Ceiling-Mounted type Electric Lamp Equipped with Downward Light Emitting Tube type Light Source
KR20200030670A (en) Photocatalyst-based Air Cleaning Module for Attaching and Detaching to Station type Electric Lamp Equipped with Downward Bulb type Light Source
KR20200030668A (en) Photocatalyst-based Air Cleaning Module for Placing to Station type Electric Lamp Equipped with Downward Bulb type Light Source
KR20200030662A (en) Photocatalyst Module for Attaching and Detaching to Station type Electric Lamp Equipped with Upward Light Emitting Tube type Light Source
KR20200030671A (en) Photocatalyst-based Air Cleaning Module for Attaching and Detaching to Station type Electric Lamp Equipped with Downward Light Emitting Tube type Light Source
KR20200030689A (en) Photocatalyst-based Air Cleaning Module for Placing to Wall Surface Fixed type Electric Lamp Equipped with Downward Bulb type Light Source
KR20200030674A (en) Photocatalyst-based Air Cleaning Module for Attaching and Detaching to Station type Electric Lamp Equipped with Upward Light Emitting Tube type Light Source
KR20200030675A (en) Photocatalyst-based Air Cleaning Module for Attaching and Detaching to Sideward Bulb type Light Source of Station type Electric Lamp
KR20200030686A (en) Photocatalyst Module for Attaching and Detaching to Sideward Bulb type Light Source of Wall Surface Fixed type Electric Lamp
KR20200030726A (en) Photocatalyst-based Air Cleaning Module for Placing to Ceiling-Mounted type Electric Lamp Equipped with Downward Bulb type Light Source

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221110

R150 Certificate of patent or registration of utility model

Ref document number: 7176948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150